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Abstract

Modern neural recordings comprise thousands of neurons recorded at millisecond precision.
An important step in analyzing these recordings is to identify neural ensembles — subsets
of neurons that represent a subsystem of specific functionality. A famous example in the
mammalian brain is that of the grid cells, which separate into ensembles of different spatial
resolution. Recent work demonstrated that recordings from individual ensembles exhibit
the topological signature of a torus. This is obscured, however, in combined recordings
from multiple ensembles. Inspired by this observation, we introduce a topological ensemble
detection algorithm that is capable of unsupervised identification of neural ensembles based
on their topological signatures. This identification is achieved by optimizing a loss function
that captures the assumed topological signature of the ensemble. To our knowledge, this is
the first method that leverages global features of the dataset to identify neural ensembles.
This opens up exciting possibilities, e.g., searching for cell ensembles in prefrontal areas,
which may represent cognitive maps on more conceptual spaces than grid cells.

Keywords: topological data analysis, ensemble detection, grid cells

1. Introduction and Background

The brain is classically described as being made up of brain areas of distinct functions
such as the visual or motor cortices, each with neurons having response profiles, tuned to
specific features of the animal’s behavior. Grouped according to their selectivity, the neu-
rons together encode internal representations of the physical variable. Thus, in cases where
the encoded variable is recorded, one has historically used this additional information to
cluster the neural data into populations of neurons (e.g. in Gardner et al. (2022)). This
approach, however, appears to be overly simplistic when considering that, for instance, in
visual areas there exists a substantial number of neurons with strong locomotive modulation
(Keller et al., 2012) and still more of undetermined function (Olshausen and Field, 2005).
A different approach is via the supposition that functional connectivity between neurons is
exposed through the pairwise correlations of the activity Friston (1994), and that ensembles
of neurons can be identified (clustered) as subgroups of neurons with high internal correla-
tion Eggermont (2006). However, high correlations may be the result of many factors such
as common global input or correlations between representations and not reflect the specific
computation of the ensemble. Hence, the question becomes how to identify which neurons
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belong to which group, especially when the tuning of the neurons is either unknown or
unclear.

The medial entorhinal cortex is a brain area with neurons that have a variety of different
response properties: grid cells Hafting et al. (2005), head direction Sargolini et al. (2006),
border Solstad et al. (2008), speed Kropff et al. (2015) and object-vector cells (Høydal et al.,
2019; Obenhaus et al., 2022). Grid cells are known to group in ensembles (i.e., modules),
each ensemble tiling the space in which an animal navigates into hexagonal patterns of
different spatial resolutions (Fyhn et al., 2007; Stensola et al., 2012). Recent work used
persistent homology to demonstrate that the joint activity of grid cells from an individual
ensemble resides on a toroidal manifold (Gardner et al., 2022) and that we may also think
of each grid cell as having a receptive field, or tuning curve, on the surface of a 2-torus
(Curto, 2017) (Appendix, Fig. 4). Crucially, the toroidal organization becomes apparent
only after separating the distinct grid cell ensembles (see Rebuttal Fig. 4 in Peer Review
File in Gardner et al. (2022)), i.e., it is a signature of the individual ensembles. Usually, the
ensembles are separated based on their spatial autocorrelation functions (Gardner et al.,
2022) which requires recording the animal’s spatial position in an open field. Hence, in the
absence of such additional information, or in tasks where the specific covariate is unknown
(Constantinescu et al., 2016), we require an unsupervised clustering approach that infers
the distinct cell ensembles. We propose doing this solely based on the topological structure
of their population activity.

Topological data analysis (TDA) studies the topological shapes in datasets (Wasserman,
2018). A key instrument in the toolkit of TDA is the computation of persistent homology.
This is visualized as a persistence diagram, where each point represents the introduction
and depletion of an n-dimensional hole found in the dataset. The assumption is then that
the long-lived holes are the most representative of the dataset (Ghrist, 2008). This has pre-
viously been used to discover the ring topology in head direction neural circuits (Rybakken
et al., 2019), portraying a single long-lived homology class in dimension 1. We note that the
statistics of barcodes are still actively studied (Curto et al., 2021) and which features are
determined to be significant are often based on heuristics (Wasserman, 2018; Kang et al.,
2021; Gardner et al., 2022). We propose an optimization objective which maximizes the
lengths of a fixed number of significant persistent homology bars while minimizing all others.
Optimizing in the discrete space of possible neural subsets requires a nontrivial smoothing
step that we term ‘differentiable yoking’. Essentially, we use stochastic gradient descent
to learn a linear transformation of the data which converges to a repeated permutation of
the correct ensemble. This approach squares the number of required parameters, which
we argue makes the difficult combinatorial problem more easily solvable in an interpolative
overparameterisation regime (Loog et al., 2020). As a proof-of-concept this is validated on
simulated data.

2. Methods

2.1. Problem Setting

Let X ∈ Rt×n be a recording of t instantaneous firing rates from n neurons. The Rips filtra-
tion of X describes a sequence of approximated underlying spaces of X across a given scale
(in our case the pairwise Euclidean distances), connecting the points of X. Let PHk(X) de-
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note the persistent homology of dimension k of the Rips filtration, which can be decomposed
into a sum of elementary persistence intervals (Carlsson, 2009)

PHk(X) ≃
⊕
i

I([bi, di]). (1)

This describes the existence of k-dimensional holes in the filtration and [bi, di] will be referred
to as the corresponding bars, depicting the scales at which a hole appears (bi) and disappears
(di), di − bi, thus referred to as the lifetime.

We wish to find a subset E ⊆ X with E ∈ Rt×m, such that the m ≤ n neurons form an
ensemble with a toroidal state space. Specifically, our hypothesis is that E = {v0, . . . , vt}
consists of t (noisy) samples from the surface of a p-dimensional Torus Tp. Note that here
we focus on ensembles with state space activity dominated by a single p-dimensional torus,
but the approach can be generalized to seek other spaces. However, we focus on T p, as this
may include several neural representations, e.g., head-direction cells (Taube et al., 1990),
spinal motor networks (Lindén et al., 2022) and orientation-tuned cells (Hubel and Wiesel,
1959) are thought to be described as T 1; 2-D grid cells (Hafting et al., 2005) and 3-D head
direction cells (Finkelstein et al., 2015) by T 2 and 3-D grid cells (Ginosar et al., 2021) and
conjunctive grid-by-direction cells (Sargolini et al., 2006) as T 3.

2.2. Topological Loss Function

A torus is the product space of circles, i.e. Tp = S1 × . . . × Sp. As each circle encloses a
1-dimensional hole, we would expect samples from a p-dimensional torus to give p long-lived
holes J = {j1, . . . jp} in dimension 1, while the remaining bars [bi, di]i/∈J could be attributed
to noise,

PH1(E) ≃

(⊕
i∈J

I([bi, di])

)
⊕

(⊕
i/∈J

I([bi, di])

)
. (2)

We make it the objective of our ensemble detection method to maximize the lifetimes
of the p bars found in a subset point cloud E and minimize those of the remaining bars.
This will find the set of neurons whose activity strongly suggests a distinct toroidal repre-
sentation, reflecting a pronounced functional relation between the neurons (Curto, 2017).
Note that we only study the 1-dimensional holes in this paper, due to the computational
complexity of computing higher-dimensional features. One such loss function would simply
be

L(X,W, p) :=
∑
i/∈J

(di − bi)−
∑
i∈J

(di − bi). (3)

Here W is a binary weight matrix of the columns X, excluding the influence of one or more
neurons, and J identifies the p longest-lived bars of PH1(XW ). To find E = (XW ∗)+,
where W ∗ = min

W
(L(X,W, p)) and (. . .)+ gives the non-zero columns, we have to test among

all possible subsets of X. Unfortunately, even if we know m we still have N =
(
n
m

)
distinct

subsets to pick from. Thus, the brute force combinatorial approach does not scale beyond
a few neurons.
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2.3. Differentiable Yoking

Luckily, L is differentiable almost everywhere (Solomon et al., 2021; Gabrielsson et al.,
2020) and we can approach the discrete search (i.e. clustering), for E in the following way
Bjerke et al. (2022). Let W ∈ Rn×n be a real weight matrix, and

σ(W ):,j :=
expW:,j∑
i expWij

(4)

the softmax function applied to each column of W . We may then define a linear function,
fW : Rt×n → Rt×n, multiplying the dataset, X, with the transformed weight matrix σ(W ),
i.e. fW (X) := Xσ(W ). Importantly, each column fW (X):,i ∈ Rn is then a convex com-
bination of columns in X, since

∑
i σ(W )ij = 1,∀j and σ(W )ij > 0, ∀i, j. We call this

smoothing of weights for yoking and next see how it may be applied in procuring a subset
E minimizing the loss function.

First, we note that a permutation of the m columns of E corresponds to a shuffling
of the basis, and simplical homology is invariant under the ordering of the basis. Thus,
also L is invariant to input permutations and we expect W ∗ to be approximately equal
to a permutation of σ(W ). Moreover, none of the other neurons should be selected, i.e.,
σ(W )i ≈ 0 for any i corresponding to a column not in E.

To finally select the neurons in the ensemble based on the optimal σ(W ∗) found in min-
imizing L, we require the included neurons to have summed weights above some threshold,
θ > 0, i.e. the proposed ensemble is defined as

Ê :=

{
Xi|

∑
i

σ(W ∗):,i > θ

}
. (5)

For computations we choose θ = median(max
i

σ(W ∗)i).

2.4. Teddy algorithm

Topological Ensemble Detection with Differentiable Yoking (Teddy) is based on two critical
components: i) differentiable persistent homology; ii) a continuous relaxation of discrete
optimization in an overparameterized model. We use differentiable persistence (Gabrielsson
et al., 2020) to optimize a gradient directly for a combination of neurons that fits the
expected signature of a toroidal ensemble. Overparameterisation (Loog et al., 2020) is used
as a way to circumvent the discrete optimization of finding a subset of neurons, by searching
instead for a convex combination of our neurons that minimizes the topological loss function.
This, unnecessarily, increases the number of parameters in our model from O(N) to O(N2),
where N is the number of neurons. However, early experiments showed that this was
crucial for getting the optimization scheme to work. We leave further exploration of this
phenomenon for future research.

In the following we give the schematics of the algorithm. In short, we first randomly
initialize the weight matrix W and compute the persistent homology of Xσ(W ). Only a
small batch of X is used in this computation to lessen the computational burden. W is
then updated through the gradient of the loss function and the procedure repeated until it
reaches a minimum (or a given number of iterations).
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Algorithm 1: Teddy

Input: X ∈ Rt×n - Neural recording
Parameter: p - Number of H1’s, γ - Learning rate, θ - Threshold for acceptance
Output: E ∈ Rt×m - A submatrix of X

1 E ← X
2 W ← NormalMatrix(0, 1)
3 W:,j ← Softmax(W:,j)
4 while L(E,W, p) ̸= min{L(E,W, p)} do
5 W ←W − γ∇L(E,W, p)
6 W:,j ← Softmax(W:,j)
7 E ← XW

8 end
9 E ← X[max(W:,j) > θ]

3. Experiments

3.1. Data Generation

We generate grid cell responses (on a 2-torus, i.e., T2) and, for comparison, neural ensembles
with population activity living on other manifolds, including: S1, R2 and SO(3). To this
purpose, we proceed as follows: 1. Generate random points on the manifold as neural
receptive field centers. 2. Generate random points on the manifold as latent/covariate
states. 3. Compute the geodesic distances between the two sets of points. 4. Compute
Gaussian bump-like tuning curves based on the geodesic distances. 5. Add Poisson noise
(Appendix, Fig. 5).

Because each manifold has a different metric, we find that we need to adjust the width
of the tuning curves and their relative response scaling to achieve homogeneously active
populations of neurons for each of the manifolds. Thus, we optimize over tuning width and
response scaling to find ensembles with a biologically plausible firing rate with mean and
variance (same for Poisson) at approximately 5Hz.

3.2. Persistent Homology of Neural Responses

We use the ‘VietorisRipsPersistence’-class from ‘Giotto-TDA’ to compute the persistent
homology (up to dimension 2) for the neural response matrices from each latent manifold
(Tauzin et al., 2021). Importantly, we treat each instance in time as a separate sample in
the neural state space of population activity, which is of the same dimensionality as the
number of neurons.

The persistence diagrams are as expected. For T2 we find two clear circles (H1) and one
prominent volume in dimension two (H2). For R2 we find a few spurious H1 and H2, but no
significant topological structure – however, these spurious features will become important
below. For S1 we find the signature of one long-lived circle (H1). Finally, for SO(3) one
would expect clear features in H0 (which we always see) and H3 (which we do not measure,
due to the computational burden) (see Bubenik and Kim, 2007; Hatcher, 2005).
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The crucial question is now: What happens if we mix multiple ensembles? Since we are
mainly interested in grid cells, we will test what happens to the topological structure of
neural population activity when a toroidal ensemble is paired with each of the other man-
ifolds (including T2 itself to study the case of multiple mixed grid cell ensembles Stensola
et al. (2012)). Let therefore T2 ×X, for X ∈ {T2,R2, S1,SO(3)}, denote the point cloud
induced from the point clouds in the product of the ambient spaces. In almost all cases
(see Fig. 1), pairing different ensembles hides the topological signature of T2 that we would
have hoped to discover in the data. Interestingly, pairing neural ensembles from T2 × S1

does not completely abolish the strong top H1 signature of S1 in the persistence diagram.

3.3. Evaluating a Topological Loss Function for Separating Ensembles

We test whether the proposed topological loss function is able to tell apart toroidal en-
sembles (grid cells) when mixed with a varying number of neurons from other ensembles.
The mixing degree is given in percentage of neurons from another ensemble relative to
the toroidal ensemble. Furthermore, we assess the minimum number of temporal samples
required to make a reliable inference, motivated by the fact that computing persistent ho-

Figure 1: Persistent Homology of Neural Responses. Top, persistence diagrams
of single neural ensemble responses with underlying manifold representations:
T2,R2, S1,SO(3). The diagrams show time of birth (x axis) and death (y axis)
of zero- (H0), one- (H1) and two-dimensional (H2) holes. Bottom, persistence
diagrams of mixed neural population responses. Note the lack of clear topologi-
cal signatures (long-lived holes), indicating these are obscured in joint recordings
of distinct ensembles. We would however expect the homology of the combined
state space to be found given more samples.

6



Teddy

Figure 2: Topological Loss Function. The behaviour of the (features in the) loss function
L(X) (eq. 3) was tested for a mixed population of neural ensembles from different
manifolds: X ∈ {T2×T2,T2×R2,T2×S1,T2×SO(3)}. The size of X was held
fixed and the x-axis in each plot indicates the percentage of neurons coming from
the T2 ensemble. High values on the right indicate a preference for selecting the
T2 ensemble, whereas high values on the left indicate a preference for selecting
the other ensemble in each comparison. Each row shows different measures of
the persistence diagrams. The first row shows the normalized negative of the loss
function. The second (third) row gives the lifetime of the (second) longest-lived
H1 in the persistence diagram. The fourth row gives the sum over all other H1

lifetimes.
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mology is computationally expensive for a large number of points Somasundaram et al.
(2021). We list the following observations (Fig. 2):

• For T2 × T2, as little as 16 temporal samples gives an increase in the topological
objective function as we move from a perfectly mixed (mixing= 50%) to a perfectly
separated (mixing= 100%) population of neurons. The lifetimes of both top H1 circles
increases in this process. Interestingly, in the sum of lifetimes over all other H1 circles,
we first observe a dip and then a slight increase for increasing mixing. This increase
explains the levelling of the total loss. Moreover, as expected, the curve is symmetric
in both directions since we have two symmetric toroidal ensembles.

• For T2 × R2, there is a small increase in loss function with a larger percentage of
T2-cells compared to perfectly mixed. However, the opposite gives an even higher
increase. This is partially driven by a spurious H1 (but no second H2) appearing in
the R2 ensemble. In addition, it is clear that we get increasingly more H1 circles in
the data as we include more neurons from the T2 ensemble. This is expected as a
torus is made up of these. In composition this results in a total loss which overall
favours the R2 ensemble.

• For T2 × S1, the analysis is similar to the one for T2 × R2. However, we now know
that the top H1 is significant reflecting a true feature of the S1 ensemble; and the
second longest H1 is even more clearly absent.

• For T2 × SO(3), we see almost a symmetric total loss function. This results from a
preference for the significant top two H1 circles in T2 which are counteracted by the
larger total number of circles in T2 (although we see also more circles in SO(3) than,
e.g., in S1 or R2 – which is expected).

3.4. Using Teddy to Separate Ensembles

We test the clustering performance of Teddy by assessing how many neurons it correctly
identified as belonging to either of the two mixed ensembles tested. In these analyses we
take random samples from a larger pool than what used for persistent homology (PH)
computation above. As we are now looking for a distinct topological feature in the data, we
will refer to the optimization of an objective function – the negative of the loss function. We
see in Fig. 7 (Appendix) that Teddy is able to separate the two ensembles in all settings.
Moreover, we make the following observations:

• For T2 ×T2, Teddy randomly (we check this below) selects one of the two tori. This
requires symmetry-breaking, which we discuss below.

• For T2 × R2, Teddy selects R2. We saw above that R2 does indeed lead to a higher
value in the topological objective function due to a combination of a spurious top H1

and more non-significant H1 circles in T2.

• For T2 × S1, Teddy selects S1. Again, this is in line with our observations above
where the top H1 from S1 clearly led to a higher value in the topological objective
function (combined with fewer other H1s).
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Figure 3: Teddy Ensemble Detection Performance. Top, n = 20 different runs (seeds)
showing the ensemble detection accuracy of Teddy over the course of training
(halted at 0.9 accuracy or stopping criterion to reduce computation time) for all
four different mixed populations (columns). Bottom, ensemble detection accuracy
for each run and time point as a function of the value of the topological objective
function (negative of loss function in eq. 3). Colouring shows training progress,
indicated by colorbar. The accuracy is positively correlated with the optimization
target.

• For T2 × SO(3), Teddy selects SO(3). This is somewhat surprising since we specu-
lated above that both T2 and SO(3) present similar solution qualities in terms of the
topological objective function.

Next, we further investigate how often Teddy prefers one solution over the other. To do
this, we re-run each setting over a number of random seeds for data generation and initiali-
sation. This also allows us to study the average performance of our method (independent of
the random seed in the simulations above). We get perfect results for T2×R2 and T2×S1

with a success rate of 1 (see Fig. 3). For the other two settings T2×T2 and T2×SO(3), we
get a decent success rate of 0.8. Looking at the individual runs (plots in top row), we see
that most runs seem to be going in the right direction, but trigger the stopping criterion of
our training. This could be fixed, but would increase the run time. Judging by the average
number of steps, we have our settings in increasing order of difficulty as follows: T2 × S1,
T2×R2, T2× SO(3) and T2×T2. Furthermore, we note that the setting T2×R2 is likely
biased towards picking T 2 as expected (with R2 not containing any 1-D holes). However, in
all other settings Teddy is clearly biased towards picking the alternative ensemble. While
this solves the task we set out to do, it still provides food for thought and further study.
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In the bottom row of Fig. 7 (Appendix), we see that the value of the topological
objective function is strongly related to the accuracy of our learning algorithm. That is,
larger values in the objective are positively correlated with better task performance, which
shows the consistency of our approach. This also suggests a simple remedy for the runs
that did not converge: run the algorithm over a few random seeds and pick the solution
with the highest objective function value. Ideally, that should recover the right solution
even if individual runs got stuck in local minima. A similar approach is the default setting
for sklearn’s implementation of KMeans (see the ‘n init’ parameter there).

4. Conclusion

In this work we have provided a proof-of-concept for two data science challenges that we
find exciting. Firstly, we derived an unsupervised clustering algorithm with a topological
loss function that can separate simulated neural ensembles tuned to distinct latent variable
manifolds, including T2, S1,R2 and SO(3). Secondly, we proposed an overparameterized
relaxation to a discrete optimization problem which we believe merits more research in the
future (Loog et al., 2020). Specifically, we would like to get a better understanding of the
consequences of computing a convex combination of the original data and its implications
for the downstream computation of persistent homology.

Next, we have seen that our algorithm tends to separate ensembles, however, preferring
the unintended solutions. Practically, we note that this is not a concern since we just need
to separate the two ensembles (or more, provided repeated application of Teddy). We can
then post-hoc always compute each ensembles’ persistence diagram and choose the ensemble
with the designated, in this case toroidal, signature. One might also wonder if we could set
up our loss function differently, e.g., by also maximizing the lifetime of the top H2 – but
this increases the computation burden considerably. Another approach would be to only
maximize the lifetime of the second longestH1 or dropping the term in the loss function that
aims at minimizing the sum over all other H1. However, simulations (not shown here) have
shown that, in the former case, while this more often selects the correct toroidal ensemble,
it takes much longer to optimize because, effectively, we are only computing gradients for
a single simplicial complex and thus much less of the data. In the latter case, simulations
slows down substantially and also reduces the success of our optimization, possibly due
to the convex combination of the original data that we are feeding into the persistence
computation. We believe that further theoretical investigation will likely provide a more
selective objective function that still results in a fast and robust optimization.

We have hinted at the problem of symmetry-breaking which comes up in the case of a
mixed population where each ensemble comes from the same type of latent manifold (T2×T2

in our simulations). We note (results not shown) that changing the mean firing rate and,
therefore, the signal-to-noise ratio (SNR) in one of the two ensembles immediately achieved
this goal. Thus, this problem may be less of a nuisance in realistic settings where it is unlikely
that we will ever record from two neural populations with identical SNR. Another limitation
of our approach is that computing persistent homology is computationally burdening and
also prone to noise. Further research is needed to investigate how both shortcomings might
be improved (see Methods in Gardner et al. (2022)). One exciting direction might be a
differentiable estimation of persistence metrics with neural networks (de Surrel et al., 2022).
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Appendix A. Appendix

Figure 4: Receptive Fields on Torus. Illustration of the idea that each grid cell has
a receptive field on a torus (Curto, 2017; Gardner et al., 2022). Each of the
shown receptive fields (separated, bright spots) represent the selectivity of a single
neuron. Thus, if the current toroidal representation location of the animal’s
location is close to the center of a neuron’s receptive field, then this will elicit a
strong response.

Figure 5: Simulated Grid Cell Responses. Left, example neuron’s response (clean and
noisy) to a 100 time steps of toroidal positions. Right, torus represented as a
square [−π, π]2 with circular boundaries (top folds to bottom, sides fold onto each
other). Time points (representation of space in toroidal coordinates) are marked
in blue and center/extent of reach neuron’s receptive field (RF) in black/red.

A.1. Baseline: KMeans Clustering

Here we assess how well neural ensembles can be separated with the classical KMeans
algorithm, which is loosely inspired by previous work (Hamm et al., 2021; Lopes-dos Santos
et al., 2011; Baden et al., 2016). Being a critical case (with an eye on grid cell research),
we test this on the pairing of two neural ensembles each tuned to covariates on T2. We
perform KMeans in the space of principal directions of the data and assess the clustering
performance (with known ground truth) as a function of the number of directions included.
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Figure 6: KMeans Ensemble Detection. Top, spectrum, i.e., cumulative variance ex-
plained by singular values of neural population activity for the distinct mixtures.
Bottom, ensemble separation accuracy as a function of the number of princi-
pal directions included into a standard KMeans clustering of the resulting low-
dimensional projection of the population activity.

Chance level performance is at 50%. However, since both ensembles are identical we
consider each possible labelling of the two ensembles equally valid. Nevertheless, we find
that for all dimensions of the data, KMeans is not able to separate the two toroidal ensembles
with an accuracy above 62% (Appendix, Fig. 6).
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Figure 7: Example Optimization Run. The four rows show Teddy optimization for all
settings (in order: [T2 ×T2], [T2 ×R2], [T2 × S1], [T2 × SO(3)]). Left, shows the
final trained weight matrix, clearly placing higher values (see colorbar) on the left
half of the column belonging to the same ensemble. Middle, maximum (green/left)
and sum (blue/right) over the rows of the learned weight matrix. Right, loss
functions over time: total loss (blue), sum over two longest H1s (orange), sum
over remaining H1s (green) and ensemble detection accuracy (black, left).
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