Retrieve Only Relevant Tables Whether Few or Many:
Adaptive Table Retrieval Method

Anonymous ACL submission

Abstract

Retrieving relevant tables from extensive
databases for a given query is essential for ac-
curately answering questions in tasks such as
text-to-SQL and open-domain table question
answering. Top-k retrieval strategies based on
similarity scores between the query and tables
are common in existing table retrieval meth-
ods. However, the number of required tables
varies across queries and cannot be known in
advance. Such strategies may either retrieve an
undersized set of tables, preventing the model
from gathering all that was needed, or retrieve
too large a pool of tables, leading to the in-
corporation of unnecessary ones. To address
this issue, we present an adaptive table retrieval
method that adjusts the number of tables re-
trieved according to the requirements of each
query. We adopt an adaptive thresholding mech-
anism to selectively retrieve tables and inte-
grate a sliding-window re-ranking algorithm to
efficiently process large candidate sets. Exten-
sive experiments on Spider, BIRD, and Spider
2.0 show that our method effectively addresses
the limitations of the top-k retrieval strategies,
improving performance in both retrieval and
downstream tasks. Our code and data are avail-
able at link.

1 Introduction

Recent advances in large language models (LLMs)
have improved performance on tasks that require
structured reasoning over tabular data (Gao et al.,
2023; Yang et al., 2024; Xie et al., 2024). These
improvements are important for real-world applica-
tions such as text-to-SQL and open-domain ques-
tion answering, where leveraging structured data
is essential (Zhong et al., 2017; Yu et al., 2018;
Herzig et al., 2021). Retrieval-augmented gener-
ation (RAG) approaches address this need, first
retrieving tables relevant to a query and then gen-
erating an answer conditioned on the retrieved ta-
bles (Lewis et al., 2020; Pan et al., 2022; Kothyari
et al., 2023; Kong et al., 2024).

—

List all movies directed by Spielberg that won an Oscar.]

’ & HOLLYWOOD_FILM_DB ‘
____________ Q Q.
((A) Top-k \(B) ATR (Ours)
1l

AWARD

|

: AWARD
: DIRECTOR

| DIRECTOR
| MOVIE MOVIE
|

|

|

|

|

|

|

1l
I need more tables...] Which tables to use?] Eureka! Now | got it!]
o o ” r

Figure 1: Rather than rely on a rigid retrieval strategy,
ATR retrieves only relevant tables whether few or many.
Gray indicates tables required by the query but not re-
trieved, red denotes irrelevant tables, and blue highlights
retrieved relevant tables.

I
|
|

Il |
Il !
Il !
1 DIRECTOR |
Il !
1l MOVIE |
Il |
| | Il I
Il |
I

Il
I
|
|

Existing table retrieval methods rely on a top-k
retrieval strategy that selects the top & tables ranked
by query-table similarity (Chen et al., 2024c; Zhang
et al., 2025). However, this fixed cut-off ignores
the fact that the number of tables required by each
query is unknown in advance and can vary signif-
icantly. Even in the same database, ground-truth
tables can range from a single table to several hun-
dred. For example, the problem is acute in Spider
2.0 (Lei et al., 2025), an enterprise-level text-to-
SQL benchmark where the number of ground-truth
tables for each query ranges from 1 to 366.

Because of the uncertainty, top-k can miss nec-
essary tables or retrieve too many tables to answer
according to the size of k. As illustrated in Fig-
ure 1-(A), answering the query “List all movies
directed by Spielberg that won an Oscar.” requires
three tables: MOVIE, DIRECTOR, and AWARD. With
k = 1, the retriever misses required tables, whereas
k = 5 inevitably retrieve two irrelevant ones. Sub-
sequently, a small k sacrifices recall and a large k
inflates latency and injects noise, degrading down-
stream performance (Kothyari et al., 2023). Fig-

https://anonymous.4open.science/r/Adaptive-Table-Retrieval

|
=
o

Execution Accuracy (A, %)
|
v o
/
/
\ 4
ocC
s o
53
|
N o
o

0 1 2 3 4 5 0 1 2 3 4 5
Number of Irrelevant Tables Number of Irrelevant Tables

Figure 2: Retrieving irrelevant tables introduces noise,
degrading performance on the text-to-SQL task. Execu-
tion accuracy consistently decreases as more irrelevant
tables are added to the ground-truth tables.

ure 2 quantifies how the execution accuracy de-
creases as irrelevant tables are added.

To overcome the uncertainty in deciding how
many tables a query needs, we introduce Adaptive
Table Retrieval (ATR). As depicted in Figure 1-
(B), ATR identifies the exact set of required ta-
bles through an adaptive threshold mechanism that
retrieves only those tables with logits exceeding
the threshold. It then applies a sliding-window re-
ranking module to reorder large candidate sets ef-
ficiently. Training is guided by a relevance cali-
bration and a semantic grouping loss that jointly
model query-table and table-table relevance.

We evaluate ATR on Spider (Yu et al., 2018),
BIRD (Li et al., 2023), and Spider 2.0 (Lei et al.,
2025). Across all three benchmarks, ATR consis-
tently outperforms top-k baselines retrieving fewer
irrelevant tables, more essential ones, and boost-
ing both retrieval metrics and downstream text-to-
SQL execution accuracy. The improvements hold
whether a query requires a single table or hundreds,
demonstrating its robustness.

Our contributions can be summarized as follows:

e We show that top-k retrieval ignores the
variation in required tables, leading to over-
selection of irrelevant tables or omission of
essential ones.

* We propose ATR, which uses query-specific
thresholding to fetch exactly the necessary
tables with relevance calibration and semantic
grouping loss and combines sliding-window
re-ranking to scale to a large table corpus.

* Experiments on Spider, Bird, and Spider
2.0 show that ATR consistently outper-
forms strong top-k baselines—using fewer
tokens yet achieving higher execution accu-
racy—thereby improving both efficiency and
downstream text-to-SQL performance.

2 Related Work

Table Retrieval Table retrieval is the task of se-
lecting the subset of tables that provide evidence for
a natural-language query from databases (Herzig
et al., 2021; Wang et al., 2021). Kothyari et al.
(2023) and Zhang et al. (2025) propose table re-
trieval methods that rewrite user queries to enhance
table retrieval accuracy. Chen et al. (2024c) and
Wu et al. (2025) introduce methods that capture
inter-table relationships, enhancing the coherence
of retrieved tables. Li et al. (2025) propose a re-
trieval method that dynamically weights multiple
fields of semi-structured data according to query
semantics. Despite these advances, all of the above
still rely on a top-k cut-off: with a small k£ they may
omit essential tables, whereas a large k retrieves
many irrelevant ones, degrading downstream accu-
racy and efficiency.

Adaptive Retrieval Strategy Recent RAG re-
search has shown growing interest in adaptive
retrieval methods, which adjust the size of text
chunks based on query (Mallen et al., 2023; Jiang
et al., 2023; Asai et al., 2023; Jeong et al., 2024).
These approaches typically assess query complex-
ity and selectively increase the retrieval budget ac-
cordingly. However, such methods are designed
exclusively for the text domain and do not con-
sider structured tabular data. Moreover, they typ-
ically involve iterative interactions with an LLM,
increasing inference costs. We propose ATR, an
adaptive table retrieval method capable of retriev-
ing a query-dependent number of tables without
relying on interactions with a generator.

Text-to-SQL Text-to-SQL is the task of gener-
ating SQL queries from natural language ques-
tions, enabling effective access to structured
databases (Zhong et al., 2017; Yu et al., 2018).
Recent trends in text-to-SQL increasingly adopt
retrieval-augmented approaches that integrates ta-
ble retrieval with text-to-SQL generation to han-
dle large-scale database scenarios (Kothyari et al.,
2023; Kong et al., 2024; Chen et al., 2024c). Ad-
ditionally, large-scale datasets recently introduced
by Chen et al. (2024b) and Lei et al. (2025) focus
on enterprise-level text-to-SQL tasks. In line with
these developments, our work contributes an adap-
tive retrieval framework that efficiently scales to
large table corpora, significantly enhancing down-
stream text-to-SQL performance and efficiency in
resource-intensive contexts.

Algorithm 1 Adaptive Table Retrieval

Require: Query g, List of Table C, Model M, Size
of Window W, Size of Retention R, Number
of Table C'
Ensure: List of Ranked Table C’
1: Variables:
2: C' 0, Crotain — 0, idz +— C

3 thrrank <= 0, th7 finatized < False
4: while idx > 0 do

5 if Crctain = () then

6: Cwindow < Clidz — W]

7 idx < idx — W

8 else

9: Cwindow < Clide — (W —R) : idx]+Cretain
10: ide < ide — (W — R)

11: end if

12: logit, score <— M (q, Cyindow)

13: Cretain < Decendscore (Cwindow)[: R]
14: if not th7 fin4iizeq then

15: thrrank < Rank(logit) + idx
16: if Rank(logit) > R then

17: thr finatized < TTue

18: end if

19: end if

20: C'+C+ Ascendscore (Cwindow \Cretain)
21: end while

22: C' + C' + Ascendscore(Cretain)

23: C' < Reverse(C')[: thrrank — 1]

24: return C’

3 Problem Definition

We formulate the table retrieval task as follows.
Given a query ¢ and a table corpus C = {t;}}¥,
where each table ¢; contains structured information,
the objective of the table retrieval task is to find a
subset of tables C, C C that collectively satisfies
the informational need expressed by the query q.
A retrieval function f ranks tables in corpus C
by descending order of the relevance scores s(q, t;),
computed based on the query-table relevance. The
top-k tables C, are selected according to s(q, ;).

éq = {tgi)}§:1 = f(Q7C)>
where s(q,tg")) > s(q,tém)) Yn<m

4 Adaptive Table Retrieval

ATR adaptively selects the number of tables that
each query needs. Whereas standard top-k retrieval

always returns a fixed k tables, ATR infers a query-
specific number of tables £, to retrieve:

C, = {t9V", = ATR(q,C)

ATR—a transformer encoder—uses the query,
the candidate tables, and two special tokens as in-
put. We use the hidden states from each table and
special tokens to infer (?q. k4 is decided by a com-
parison of logits from the hidden states between
each table and the special token. To effectively cap-
ture both query-table and inter-table relevance, we
use two complementary objectives: a relevance cal-
ibration loss that sharpens query-table alignment,
and a semantic grouping loss that pulls the embed-
dings of joinable tables closer together. For efficient
inference over large table corpora, we propose a
sliding-window re-ranking algorithm that refines
the ranking without exhaustively scoring every ta-
ble at once.

4.1 Adaptive Thresholding

ATR learns to separate relevant tables from irrel-
evant tables for each query through an adaptive-
thresholding mechanism inpired by Zhou et al.
(2021) We prepend a threshold token Ty, to the
input sequence, followed by the natural language
query and the candidate tables. Every table begins
with a table token T}, and is encoded together with
its metadata (database, table name, column names).
ATR computes logits logitr,, and logitr,,, from
the hidden states of special tokens 73y, and T}y, re-
spectively. While training, we enforce that logitT, ,
is bigger than logitt,, when the table is relevant,
and is smaller than logitr,, otherwise. The loss for
this adaptive thresholding is defined as follows:

logit
L =— Z log exp(logi r)l '
re7+ ZT/GT+U{Tth} exp(Ogltr’)
exp(logit
Ly = —log p(logitr,,)

ZT‘IGT_ U{Tth} eXp(lOgitT/)
Lar = aLi + BLs

where 7" denotes the set of relevant table tokens,
and 7~ denotes the set of irrelevant table tokens.
L raises logits of query-relevant tables above
the threshold logit logitr,, , creating a clear mar-
gin from irrelevant tables. Since a single query can
have multiple relevant tables, we compute a binary
cross-entropy loss for each relevant table and sum

the results. In contrast, Lo suppresses the logits
of query-irrelevant tables below logitr,, by treat-
ing the threshold token as their correct class. The
threshold logit thus becomes a query-dependent de-
cision boundary that distinguishes relevant tables
from irrelevant tables. The hyper-parameters o and
[weight the relative contributions of the two loss
terms.

4.2 Relevance Calibration

Adaptive thresholding assigns a query-specific cut-
off by computing a logit for every table and com-
paring it with the logit of the threshold token. To
sharpen the distinction between relevant tables 7
and irrelevant tables 7, we maximize the logit
gap between 71 and 7~ using a binary cross-
entropy (BCE) loss:

o(logit,.))
€T+

Lrc = — |T+UT | (Z log (o
+) log(1 —U(logitr)))

reT —

where o denotes the sigmoid function.

This relevance calibration loss aligns each query
with its relevant tables, giving ATR a signal to dis-
tinguish them from irrelevant ones and thereby im-
proving its discriminative capability.

4.3 Semantic Grouping

Relationships between tables—especially join-
ability—are critical for accurate multi-table re-
trieval (Chen et al., 2024c; Wu et al., 2025). To
consider these dependencies between tables, ATR
adds a contrastive learning objective (Hadsell et al.,
2006) that pulls embeddings of joinable tables
closer together while separating embeddings of
non-joinable tables by a fixed margin. Let e; be
the embedding of ¢; table and let g; denote its join-
ability group; the semantic grouping loss Lgq is
defined as follows:

1
b56 =]

> [1= llei = el

(1.4)EP
2
+ 1(gi # 97) max(0, m — i — ¢5112)°]
where P represents all unique pairs of C, and m

denotes the margin hyper-parameter. Lsg encour-
ages the embeddings to capture joinability of tables

Dataset #Q #DB #T Min/Max
Spider
Train 6,989 140 737 1/5
Eval 1,034 20 81 1/4
BIRD
Train 9,198 69 522 1/4
Eval 1,534 11 75 1/4
Spider 2.0
Eval 435 155 6,321 1/366

Table 1: Data statistics. Number of queries (#Q), num-
ber of databases (#DB), number of tables (#T), and the
number of tables required per query (Min/Max) are re-
ported. Evaluations on Spider and BIRD are performed
using development sets.

and, in turn, promotes the retrieval of semantically
coherent table sets.

Finally, the ATR objective function can be de-
fined as follows:

Larr = Lar + ALgrc + vLsa

where A and v are hyper-parameters that adjust the
magnitude of the losses. These losses allow ATR to
adaptively retrieve multiple tables in consideration
of the relevance between tables and the relevance
between the query and the tables.

4.4 Sliding Window Re-ranking

Since the encoder used in ATR has a quadratic
complexity with respect to input length, directly
processing large numbers of tables is computation-
ally impractical. To mitigate this inefficiency, ATR
uses a sliding window re-ranking strategy. Given
a window size W and a retention size R with R
< W, ATR processes the tables C from lowest to
highest in their initial ranking. First, in W lowest-
ranked tables, ATR computes logits for every token
Tiqp and for the threshold token T3, and keeps
the top R tables by logit value. Then the retained
set is merged with the next W — R tables in the
original order. If the threshold logit logit7,, ranks
lower than R within W, its rank is finalized. This
iterative process continues until all candidate ta-
bles have been processed. Eventually, all the tables
that outrank the threshold are included in the final
table list. Pseudo-algorithm for this sliding win-
dow re-ranking appears in Algorithm 1. Since ATR
re-ranks subsets of tables within overlapping win-
dows, the method avoids the cost of re-ranking the
full list at once.

Spider BIRD Spider 2.0
Contriever UAE Contriever UAE Contriever UAE
k R CR R CR R CR R CR R CR R CR
Bi-Encoder 3 94.0 89.2 93.0 880 729 551 790 635 37.6 248 40.6 27.6
5 974 955 97.8 964 82.1 68.6 872 773 451 32.6 48.5 349
10 99.2 98.7 994 990 96.1 92.6 97.6 951 56.5 448 60.7 49.0
JAR 3 965 936 96,5 941 874 763 863 748 423 269 41.6 27.1
5 985 972 99.1 985 925 859 O91.1 829 48.6 340 479 33.8
10 99.5 99.2 995 992 97.6 96.0 972 952 551 414 564 439
ATR (Ours) 99.5 99.2 99.6 994 98.2 96.0 98.6 971 724 644 754 68.7

Table 2: Retrieval performance comparison with baseline methods, evaluated using Recall (R) and Complete Recall
(CR). ATR consistently outperforms all baselines across datasets. The best and second-best scores for each metric

are highlighted in bold and underlined, respectively.

5 Experiments

In this section, we introduce the datasets, metrics,
models, and baselines used to evaluate the perfor-
mance of ATR. The experiments aim to validate
the effectiveness of ATR that overcomes the inher-
ent limitations of existing table retrieval strategies
and to quantify the impact of improved retrieval
performance on the downstream task.

5.1 Setups

Dataset We evaluate ATR on three datasets: Spi-
der (Yu et al., 2018), BIRD (Li et al., 2023), and
Spider 2.0 (Lei et al., 2025). Spider is a widely
used benchmark for text-to-SQL, and BIRD is a
realistic text-to-SQL dataset reflecting practical
query scenarios. We adopt the "union" setting for
these datasets, merging all databases into a single
corpus (Kothyari et al., 2023; Chen et al., 2024c;
Zhang et al., 2025). Spider 2.0 is a benchmark com-
posed of complex, real-world enterprise text-to-
SQL workflows derived from large-scale database
systems. Specifically, we use Spider 2.0-Lite', a
subset featuring multiple SQL dialects, and apply
the union setting by grouping databases based on
dialect. We denote that ATR training utilizes only
the training sets of Spider and BIRD. Dataset statis-
tics are summarized in Table 1, with detailed pre-
processing methods provided in Appendix B.

Task and Metrics We evaluate ATR on two tasks:
table retrieval and text-to-SQL generation. In table
retrieval, given a natural language query ¢, a model
retrieves a set of tables (fq C C from the table
corpus C. Retrieving all the ground-truth tables is

"For simplicity, we refer to Spider 2.0-Lite as Spider 2.0.

critical for the table retrieval task, we report re-
call and complete recall by comparing éq with the
ground-truth set C, following Zhang et al. (2025).
In text-to-SQL, the query ¢ and its retrieved ta-
bles éq are fed to a generator that produces a SQL
statement. We measure execution accuracy: the pro-
portion of generated SQL queries whose execution
results match those of the reference SQL (Yu et al.,
2018). To evaluate downstream performance, we
ensure that the only difference between retrieval
methods is the input tables, allowing a precise as-
sessment of how retrieval performance influences
the downstream results.

Models We utilize ModernBERT-large (Warner
et al., 2024), a bidirectional encoder-only trans-
former model, as a backbone model for ATR. For
table embedding models, we use Contriever (Izac-
ard et al., 2021)? and UAE-Large-V1 (Li and Li,
2024).3 For SQL generation, we utilize Llama-
3.1-8B/70B-Instruct (Grattafiori et al., 2024) and
Qwen2.5-Coder-7B/32B-Instruct (Hui et al., 2024)
as generators.

Baseline We compare ATR with the two bi-
encoder baselines—Contriever and UAE-Large-
V1—and with the re-ranking method JAR (Chen
et al., 2024c), which explicitly encodes table join-
ability. Contriever and UAE-Large-V1 embed the
query and each table independently, flattening
the table into text and ranking candidates by co-
sine similarity between their vector representations.
Both ATR and JAR adopt a two-stage re-ranking
pipeline: a bi-encoder first retrieves the top 50 ta-

thtps ://huggingface.co/facebook/contriever-msmarco
3https ://huggingface.co/WhereIsAI/UAE-Large-V1

https://huggingface.co/facebook/contriever-msmarco
https://huggingface.co/WhereIsAI/UAE-Large-V1

Spider BIRD Spider 2.0

! Llama Qwen Llama Qwen Llama Qwen
(8B/70B) (7B/32B) (8B/70B) (7B/32B) (8B/70B) (7B/32B)
Contriever 3 546/648 654/663 21.7/404 354/46.0 11/34 0.5/39
5 533/65.0 657/68.6 224/445 37.0/49.8 11/32 1.4/3.7

10 54.6/67.1 66.0/70.1 243/474 39.1/53.0 1.1/35 09/4.1

JAR 3 539/659 66.6/68.8 254/453 40.1/49.7 0.7/3.7 09/4.1
5 548/66.6 67.5/69.7 268/46.4 434/520 1.1/39 0.7/3.7
10 56.0/66.8 66.6/69.2 26.7/47.5 43.0/53.0 09/30 14/44
ATR (Ours) 58.7/67.8 69.7/71.5 28.6/49.9 450/533 1.1/44 14/5.7
Oracle 66.6/70.8 75.6/752 31.8/53.5 50.6/580 44/72 35/74

Table 3: Text-to-SQL execution accuracy comparison across different table retrieval methods. ATR consistently
outperforms baseline retrievers on the Spider, BIRD, and Spider 2.0 datasets.

Spider

BIRD

Spider 2.0

~
v

* 55

50

~
o

o
vl

45

o
o

40

u
vl

Oracle
% ATR
Contriever

35

Execution Accuracy (%)

v
o

30

7.54
7.0
* 6.5
6.0+
5.5
5.0
4.54

4.0

3.5

400 600 800

Token Length

1000 400 600

800 1000

Token Length

1200 1400 2000 4000 6000 8000 10000 12000 14000

Token Length

Figure 3: Comparison of execution accuracy and average token length for the text-to-SQL task across different
retrieval methods. ATR achieves higher accuracy with fewer tokens compared to the best-performing top-% approach.

bles, and then they are re-ranked using standard
approaches (Glass et al., 2022; Sun et al., 2023;
Qin et al., 2024).

5.2 Table Retrieval Performance

Across all tested values of k, ATR outperforms the
top-k baselines on the in-domain datasets (Spider
and BIRD) and the out-of-domain dataset (Spider
2.0) as shown in Table 2. On Spider with k = 3,
ATR improves complete recall by 10.0% over Con-
triever and 5.6% over JAR. The performance gains
are even larger on BIRD, reaching gains of 40.9%
and 19.7% relative to the same baselines. With
k = 10, ATR still outperforms UAE and JAR on
BIRD by 2.0% and 1.9%, respectively. Although
no query in Spider or BIRD requires more than
four tables and the baselines already use conserva-
tive k values, our method still surpasses them. The
performance improvement becomes more evident
on Spider 2.0, where the number of ground-truth

tables varies from one to hundreds. With & = 10,
ATR improves complete recall by 19.6% over Con-
triever and 23.0% over JAR. These findings confirm
that the top-k retrieval strategy cannot be general-
ized across queries requiring varying numbers of
tables, whereas ATR demonstrates robustness to
such variations.

5.3 End-to-end Performance

We evaluate end-to-end effectiveness through the
text-to-SQL task. To set an upper bound for
retrieval-based approaches, we report an Oracle set-
ting where the generator receives only the ground-
truth tables. For both ATR and JAR, we re-rank the
50 candidates retrieved by Contriever.

Table 3 shows execution accuracy across three
datasets and several generators. The results demon-
strate that ATR achieves substantial improvements
over retrieval baselines. With Qwen2.5-Coder-32B
and k£ = 10, ATR improves on JAR by 2.3% on

Icgl =2 2 <|cg=10 Icgl > 10
Contriever

@8 - ATR

3

< Oracle

oy

© 6

e

5

v

)

<4

<

.2

F=]

3

3 L 7

x

w

0 T T T T T T -
S O S & N S O S & 2 S O S & N
S N 5 S N o LM >
AN & AN 0@° MM o<z>°

Figure 4: Execution accuracy on the Spider 2.0 dataset
across varying numbers of required tables. |C, | denotes
the number of tables required per query.

Spider and 0.3% on BIRD; the performance gains
increase to 3.1% and 2.0%, respectively, when the
small 7B model is used. On the more demanding
Spider 2.0, ATR surpasses Contriever and JAR by
1.6% and 1.3%. The trend is consistent for Llama-
3.1-70B: ATR outperforms JAR by 1.0% on Spider
and 2.4% on BIRD with £ = 10. These results
confirm earlier findings that stronger retrieval per-
formance translates into higher downstream accu-
racy (Kothyari et al., 2023; Chen et al., 2024c).

6 Analysis

This section provides an in-depth analysis of ATR,
focusing on token efficiency, robustness to varying
numbers of required ground-truth tables, and com-
parisons with state-of-the-art adaptive document
retrieval methods. Additionally, we provide abla-
tion and statistical analyses to empirically validate
the effectiveness of table representations.

6.1 Efficiency and Accuracy Improvement

Retrieving too few tables omits evidence and de-
grades performance, whereas retrieving too many
injects noise and inflates inference cost. We ana-
lyze whether ATR retrieves more relevant tables
and fewer irrelevant tables than top-k methods,
and how this difference affects downstream per-
formance. For the top-%k methods, we vary k from
1 to 10 for Spider and BIRD, and from 5 to 50 with
intervals of 5 for Spider 2.0.

Figure 3 shows execution accuracy against the
average number of input tokens used to generate
SQL queries. ATR achieves higher execution ac-
curacy with fewer tokens than the best top-k base-
line on all three datasets. Specifically, ATR uses
430 fewer tokens than the best-performing top-k
configuration (kK = 8) on Spider, and 522 fewer
tokens than the best top-k£ (k = 10) on BIRD.
When compared to top-k baselines with similar

Spider BIRD
R Acc. Time R Acc. Time
Iter-RetGen 988 71.7 89 965 527 144
FLARE 89.0 632 40 783 43.1 5.7
Adaptive-RAG 86.0 628 63 89.8 50.7 132
ATR (Ours) 995 715 22 982 533 38

Table 4: ATR completes retrieval faster than existing
adaptive document retrieval strategies and achieves su-
perior performance. Acc. denotes execution accuracy.

token budget, ATR demonstrates higher execution
accuracy—improving by 5.2% on Spider (k = 3)
and 3.5% on BIRD (k = 5). The gap widens on
the out-of-domain Spider 2.0 dataset, where ATR
narrows the gap toward the oracle which is upper
bound. These results demonstrate that ATR is a ro-
bust method that retrieves accurately ground-truth
tables while minimizing the retrieval of irrelevant
tables.

6.2 Performance Analysis by Number of
Required Tables

The top-k retrieval strategy inherently suffers from
trade-offs; either failing to retrieve necessary ta-
bles or retrieving irrelevant ones. To illustrate this
trade-off and demonstrate the robustness of our
method, we analyze the downstream task perfor-
mance by categorizing the Spider 2.0 queries into
three groups based on the number of ground-truth
tables they require: two or fewer, between three
and ten, and more than ten.

Figure 4 illustrates the limitations of a fixed k
approach. Top-k retrieval achieves its best perfor-
mance for queries that require two or fewer tables
when using a smaller retrieval count (K = 10),
but its performance collapses for queries that need
more than ten tables. Conversely, using a larger
retrieval count (¢ = 50) enhances performance
for queries that require more than ten tables, but
it falls in accuracy for queries that require two or
fewer tables because of noise from irrelevant tables.
ATR addresses this trade-off, consistently outper-
forming baselines across queries with various table
requirements.

6.3 Comparison with Adaptive Document
Retrieval Methods

Recent adaptive document retrieval methods ad-
just the retrieval strategy based on query com-
plexity. FLARE (Jiang et al., 2023) triggers ad-
ditional retrieval whenever the generator outputs

low-confidence tokens, and Adaptive-RAG (Jeong
et al., 2024) trains a classifier to determine the
number of retrieval iterations based on query com-
plexity. Iter-RetGen (Shao et al., 2023) serves as an
iterative baseline, retrieving documents repeatedly
for a fixed number of iterations. To compare ATR
with these adaptive document retrieval methods,
we conduct experiments on the Spider and BIRD
datasets with Qwen2.5-Coder-32B. We evaluate
recall, text-to-SQL execution accuracy, and end-
to-end latency in seconds. To ensure fairness, we
train the Adaptive-RAG classifier on the Spider and
BIRD training splits.

Table 4 shows that ATR consistently outper-
forms adaptive document retrieval baselines in
both retrieval and end-to-end task. Compared with
Adaptive-RAG, ATR improves execution accuracy
by 8.7% on Spider and 2.6% on BIRD, simulta-
neously reducing processing times by 4.1 and 9.4
seconds, respectively. Against Iter-RetGen, ATR
reduces the end-to-end processing time by 6.7 sec-
onds on Spider and 10.6 seconds on BIRD, while
achieving comparable execution accuracy. These re-
sults demonstrate the effectiveness of ATR through
improved table representation learning and the ef-
ficiency from operating without iterative retrieval
interactions with LLMs.

6.4 Ablation Study

ATR is trained with two auxiliary objectives: a BCE
loss for relevance calibration and a contrastive loss
for semantic grouping. To evaluate the influence of
each loss component, we train separate models by
removing each auxiliary objective individually.
As illustrated in Table 5, removing the BCE loss
lowers both recall and complete recall, confirming
that explicit query-table alignment is crucial for
distinguishing relevant tables from irrelevant ones.
Similarly, the removal of contrastive loss reduces
retrieval performance, indicating that inter-table
joinability enhances the discriminative quality of
table embeddings, which contributes to improved
retrieval accuracy. These findings indicate that both
BCE and contrastive loss components are essential
for learning robust table representations, thereby
contributing to superior retrieval capabilities of
ATR compared to existing table retrieval methods.

6.5 Statistical Analysis of Table
Representations

ATR assigns logits on tokens 7}, for the threshold
and T}, for the table representation. We use analy-

Spider BIRD Spider 2.0

R CR R CR R CR

ATR 99.5 992 982 960 724 644
— (1) BCE 99.0 98.7 97.5 958 682 60.8
— (2) Contrastive 99.0 984 974 952 69.1 60.1
— (D) &((2) 964 944 91.8 857 677 582

Table 5: Ablation study on training strategies for table
representation. Both loss functions contribute signifi-
cantly to the retrieval performance of ATR.

sis of variance (ANOVA) to investigate differences
between group means within relevant tables, irrele-
vant tables, and a threshold. Most of the variance
is explained by the difference of group means on
Spider, revealing large effects (n?> ~ 0.95) with
significant p-values (p < 0.05). On the BIRD and
Spider 2.0 datasets, ANOVA reveals significant ef-
fects (n?> ~ 0.86,0.15) with significant p-values
(p < 0.05). A pairwise Tukey post-hoc test re-
veals a significant difference (p < 0.05 for all the
pairs) between relevant tables, irrelevant tables, and
the threshold for the three datasets. These results
confirm that ATR robustly differentiates between
relevant and irrelevant tables, with the adaptive
threshold serving as a clear decision boundary that
guides accurate table selection for each query.

7 Conclusion

In this work, we address the limitations of conven-
tional table retrieval methods that rely on a top-
k retrieval strategy. Such rigidity often degrades
downstream task performance and efficiency by
retrieving unnecessary tables or failing to retrieve
tables required for accurate reasoning. To mitigate
these problems, we propose ATR, an adaptive ta-
ble retrieval method that dynamically adjusts the
number of retrieved tables based on query require-
ments. ATR leverages threshold embedding and
table-level embedding to determine the optimal
number of tables required for each query. Further-
more, ATR adopts relevance calibration loss and se-
mantic grouping loss to effectively learn table rep-
resentations by capturing query-to-table and inter-
table relationships. Extensive experiments demon-
strate that ATR consistently outperforms top-k re-
trieval methods, demonstrating superior retrieval
performance, improved downstream accuracy, and
enhanced inference efficiency. These results con-
firm ATR as a practical solution suitable for large-
scale database retrieval applications.

Limitations

Although ATR demonstrates substantial improve-
ments in both retrieval and downstream execution
accuracy, two limitations remain. First, the slid-
ing window re-ranking method effectively reduces
computational complexity, but determining optimal
window sizes and retention parameters may neces-
sitate additional empirical tuning across different
datasets or retrieval scenarios. Second, ATR cur-
rently targets structured tabular data exclusively,
and extending its adaptive retrieval strategy to han-
dle other data modalities or mixed data types re-
mains an open research challenge. Nevertheless,
by establishing a robust framework for adaptively
retrieving relevant information efficiently without
direct interaction with LLMs, our methodology pro-
vides a strong foundation for future studies aiming
to generalize retrieval-augmented generation across
diverse data types and broader application contexts.

References

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
In The Twelfth International Conference on Learning
Representations.

Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun
Luo, Defu Lian, and Zheng Liu. 2024a. M3-
embedding: Multi-linguality, multi-functionality,
multi-granularity text embeddings through self-
knowledge distillation. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2024,
pages 2318-2335, Bangkok, Thailand. Association
for Computational Linguistics.

Peter Baile Chen, Fabian Wenz, Yi Zhang, Devin
Yang, Justin Choi, Nesime Tatbul, Michael Cafarella,
Cagatay Demiralp, and Michael Stonebraker. 2024b.
Beaver: an enterprise benchmark for text-to-sql.
arXiv preprint arXiv:2409.02038.

Peter Baile Chen, Yi Zhang, and Dan Roth. 2024c. Is ta-
ble retrieval a solved problem? exploring join-aware
multi-table retrieval. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2687—
2699.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language mod-
els: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Michael Glass, Gaetano Rossiello, Md Faisal Mahbub
Chowdhury, Ankita Naik, Pengshan Cai, and Alfio
Gliozzo. 2022. Re2G: Retrieve, rerank, generate. In

Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2701-2715, Seattle, United States. Association
for Computational Linguistics.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, et al. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimension-
ality reduction by learning an invariant mapping. In
2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’06),
volume 2, pages 1735-1742.

Jonathan Herzig, Thomas Miiller, Syrine Krichene, and
Julian Eisenschlos. 2021. Open domain question
answering over tables via dense retrieval. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
512-519.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense in-
formation retrieval with contrastive learning. arXiv
preprint arXiv:2112.09118.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong C Park. 2024. Adaptive-rag: Learn-
ing to adapt retrieval-augmented large language mod-
els through question complexity. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Pa-
pers), pages 7029-7043.

Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023. Active retrieval
augmented generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7969-7992, Singapore. As-
sociation for Computational Linguistics.

Kezhi Kong, Jiani Zhang, Zhengyuan Shen, Bal-
asubramaniam Srinivasan, Chuan Lei, Christos
Faloutsos, Huzefa Rangwala, and George Karypis.
2024. Opentab: Advancing large language mod-
els as open-domain table reasoners. arXiv preprint
arXiv:2402.14361.

Mayank Kothyari, Dhruva Dhingra, Sunita Sarawagi,
and Soumen Chakrabarti. 2023. CRUSH4SQL.:
Collective retrieval using schema hallucination for
Text2SQL. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 14054—-14066.

https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://arxiv.org/abs/2409.02038
https://doi.org/10.18653/v1/2024.acl-long.148
https://doi.org/10.18653/v1/2024.acl-long.148
https://doi.org/10.18653/v1/2024.acl-long.148
https://doi.org/10.18653/v1/2024.acl-long.148
https://doi.org/10.18653/v1/2024.acl-long.148
https://doi.org/10.18653/v1/2022.naacl-main.194
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.18653/v1/2021.naacl-main.43
https://doi.org/10.18653/v1/2021.naacl-main.43
https://doi.org/10.18653/v1/2021.naacl-main.43
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://doi.org/10.18653/v1/2023.emnlp-main.868

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao,
Dongchan Shin, Hongjin SU, ZHAOQING SUO,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor
Zhong, Caiming Xiong, Ruoxi Sun, Qian Liu, Sida
Wang, and Tao Yu. 2025. Spider 2.0: Evaluating lan-
guage models on real-world enterprise text-to-SQL
workflows. In The Thirteenth International Confer-
ence on Learning Representations.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
tdschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in neu-
ral information processing systems, 33:9459-9474.

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo-
liang Li, Kevin Chang, Fei Huang, Reynold Cheng,
and Yongbin Li. 2023. Can LLM already serve as
a database interface? a Blg bench for large-scale
database grounded text-to-SQLs. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Millicent Li, Tongfei Chen, Benjamin Van Durme, and
Patrick Xia. 2025. Multi-field adaptive retrieval. In
The Thirteenth International Conference on Learning
Representations.

Xianming Li and Jing Li. 2024. AoE: Angle-optimized
embeddings for semantic textual similarity. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1825-1839, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 9802-9822, Toronto,
Canada. Association for Computational Linguistics.

Feifei Pan, Mustafa Canim, Michael Glass, Alfio
Gliozzo, and James Hendler. 2022. End-to-end table
question answering via retrieval-augmented genera-
tion. arXiv preprint arXiv:2203.16714.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy
Lin. 2023. Rankzephyr: Effective and robust zero-
shot listwise reranking is a breeze! ArXiv.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu
Liu, Donald Metzler, Xuanhui Wang, and Michael
Bendersky. 2024. Large language models are effec-
tive text rankers with pairwise ranking prompting.
In Findings of the Association for Computational
Linguistics: NAACL 2024, pages 1504—1518.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023. En-
hancing retrieval-augmented large language models
with iterative retrieval-generation synergy. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2023, pages 9248-9274.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaigiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is ChatGPT good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 14918-14937. Association for Computational
Linguistics.

Fei Wang, Kexuan Sun, Muhao Chen, Jay Pujara, and
Pedro Szekely. 2021. Retrieving complex tables with
multi-granular graph representation learning. In Pro-
ceedings of the 44th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 1472-1482.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,
Orion Weller, Oskar Hallstrom, Said Taghadouini,
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom
Aarsen, Nathan Cooper, Griffin Adams, Jeremy
Howard, and Iacopo Poli. 2024. Smarter, better,
faster, longer: A modern bidirectional encoder for
fast, memory efficient, and long context finetuning
and inference. Preprint, arXiv:2412.13663.

Jian Wu, Linyi Yang, Dongyuan Li, Yuliang Ji, Manabu
Okumura, and Yue Zhang. 2025. MMQA: Evaluat-
ing LLMs with multi-table multi-hop complex ques-
tions. In The Thirteenth International Conference on
Learning Representations.

Yuanzhen Xie, Xinzhou Jin, Tao Xie, Matrixmxlin Ma-
trixmxlin, Liang Chen, Chenyun Yu, Cheng Lei,
Chengxiang Zhuo, Bo Hu, and Zang Li. 2024. De-
composition for enhancing attention: Improving 1lm-
based text-to-sql through workflow paradigm. In
Findings of the Association for Computational Lin-
guistics ACL 2024, pages 10796-10816.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024. Synthesizing text-to-
sql data from weak and strong llms. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7864-7875.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921. Association for
Computational Linguistics.

Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie,
Ziqi Dai, Jialong Tang, Huan Lin, Baosong Yang,

https://openreview.net/forum?id=XmProj9cPs
https://openreview.net/forum?id=XmProj9cPs
https://openreview.net/forum?id=XmProj9cPs
https://openreview.net/forum?id=XmProj9cPs
https://openreview.net/forum?id=XmProj9cPs
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=3PDklqqqfN
https://doi.org/10.18653/v1/2024.acl-long.101
https://doi.org/10.18653/v1/2024.acl-long.101
https://doi.org/10.18653/v1/2024.acl-long.101
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://arxiv.org/abs/2312.02724
https://arxiv.org/abs/2312.02724
https://arxiv.org/abs/2312.02724
https://doi.org/10.18653/v1/2024.findings-naacl.97
https://doi.org/10.18653/v1/2024.findings-naacl.97
https://doi.org/10.18653/v1/2024.findings-naacl.97
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://openreview.net/forum?id=GGlpykXDCa
https://openreview.net/forum?id=GGlpykXDCa
https://openreview.net/forum?id=GGlpykXDCa
https://openreview.net/forum?id=GGlpykXDCa
https://openreview.net/forum?id=GGlpykXDCa
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

Pengjun Xie, Fei Huang, Meishan Zhang, Wenjie Li,
and Min Zhang. 2024. mGTE: Generalized long-
context text representation and reranking models for
multilingual text retrieval. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing: Industry Track, pages 1393—
1412. Association for Computational Linguistics.

Xuanliang Zhang, Dingzirui Wang, Longxu Dou,
Qingfu Zhu, and Wanxiang Che. 2025. MURRE:
Multi-hop table retrieval with removal for open-
domain text-to-SQL. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 5789-5806. Association for Computational
Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

Wenxuan Zhou, Kevin Huang, Tengyu Ma, and Jing
Huang. 2021. Document-level relation extraction
with adaptive thresholding and localized context pool-
ing. In Proceedings of the AAAI conference on artifi-
cial intelligence, volume 35, pages 14612-14620.

https://doi.org/10.18653/v1/2024.emnlp-industry.103
https://doi.org/10.18653/v1/2024.emnlp-industry.103
https://doi.org/10.18653/v1/2024.emnlp-industry.103
https://doi.org/10.18653/v1/2024.emnlp-industry.103
https://doi.org/10.18653/v1/2024.emnlp-industry.103
https://aclanthology.org/2025.coling-main.386/
https://aclanthology.org/2025.coling-main.386/
https://aclanthology.org/2025.coling-main.386/
https://aclanthology.org/2025.coling-main.386/
https://aclanthology.org/2025.coling-main.386/

A Environment Setup

We train ATR using two NVIDIA RTX A6000
GPUs, each equipped with 48GB of memory. Train-
ing is conducted for three epochs with a batch
size of 64 and a learning rate of 3e~°. The maxi-
mum token length of ATR is set to 8,192, match-
ing the input length constraints of ModernBERT-
large. For the adaptive thresholding loss, the hyper-
parameters are set as & = 0.8 and 8 = 0.03. For
relevance calibration and semantic grouping loss,
we select A = 0.13 and v = 0.04, respectively. The
window size is set to 20 for the Spider and BIRD
datasets, and 10 for Spider 2.0-Lite. The retention
size is set to 15 for Spider and BIRD, and 5 for
Spider 2.0-Lite.

B Dataset Processing

ATR is trained on the union of the Spider and BIRD
training splits. For each query, we first use Con-
triever to retrieve the top 100 tables and then split
this list in half: the higher-ranked segments that
rank from 1 to 50 and the lower-ranked segments
that rank from 51 to 100. We pair each segment
with the query to create two training examples: one
that is likely to contain relevant tables and one that
is likely not. This contrastive environment makes
ATR learn how to operate when the candidate set
contains no relevant tables, reducing false positives
at inference time. We split this dataset into train-
ing and validation sets at a ratio of 85% and 15%
and the best checkpoint is selected by validation
performance.

ATR adopts a semantic grouping loss to effec-
tively learn table representations by capturing table-
to-table relationships. To achieve this, we lever-
age joinability information between tables. Specif-
ically, we identify joinable table groups by per-
forming syntactic analysis on the publicly avail-
able database schemas from the Spider and BIRD
training datasets. We exclude training samples for
which joinability cannot be determined from the
given database corpus. Additionally, we remove
tables that exceed the maximum input token length
of 512 tokens, consistent with the constraints of
the dense encoders used in our experiments, along
with queries requiring these tables as ground truths.
Furthermore, we exclude cases from Spider 2.0-
Lite where tables labeled as ground truths are not
present in the corresponding databases.

12

Spider BIRD Spider 2.0

k R CR R CR R CR

OpenAl 3 968 935 858 721 407 282
5 997 994 928 855 50.0 36.7

10 100 100 984 96.7 62.8 49.8

ATR (Ours) 99.6 99.6 995 99.2 795 70.2

Table 6: Evaluation of retrieval performance compar-
ing ATR and a proprietary embedding model. OpenAl
indicates text-embedding-3-large.

Spider BIRD Spider 2.0

k R CR R CR R CR

mGTE 5 948 899 885 76.8 443 30.1
10 989 975 965 925 57.0 420

BGE-M3 5 967 937 789 642 404 268
10 99.1 98.1 913 836 528 406

RankGPT 5 989 979 927 84.6 56.1 42.1
10 99.6 99.5 975 946 640 522

RankZephyr 5 982 969 844 724 46.7 33.8
10 99.5 99.2 965 93.1 573 455

ATR (Ours) 99.5 99.2 982 96.0 724 64.5

Table 7: Comparison of retrieval performance between
ATR and text-based re-ranking methods. Candidate ta-
bles are initially retrieved using Contriever.

C Effectiveness of ATR Leveraging an
Advanced Embedding Model

We evaluate the effectiveness of ATR when lever-
aging an advanced embedding model to potentially
enhance retrieval performance. Our experiments
use text-embedding-3-large, a state-of-the-art pro-
prietary embedding model, and results are illus-
trated in Table 6. ATR achieves high complete re-
call, obtaining 99.2% on the BIRD and 70.2% on
Spider 2.0. These results highlight ATR’s robust-
ness and effectiveness, demonstrating that it can
achieve strong retrieval performance when com-
bined with advanced embedding models.

D Comparison with Text Re-rankers

In this section, we evaluate ATR’s retrieval
performance by comparing it against widely used
text re-ranking methods. For cross-encoder-based
re-ranking, we adopt mGTE-reranker (Zhang
et al., 2024)* and BGE-M3 (Chen et al.,
2024a)>. For LLM-based re-ranking, we
leverage RankGPT (Sun et al., 2023) and
RankZephyr (Pradeep et al., 2023)%. We use

4https://huggingface.co/Alibaba—NLP/
gte-multilingual-reranker-base

5https://huggingface.co/BAAI/bge—reranker-vZ-m3
6https://huggingface.co/castorini/rank_zephyr 7b_v1_full

https://huggingface.co/Alibaba-NLP/gte-multilingual-reranker-base
https://huggingface.co/Alibaba-NLP/gte-multilingual-reranker-base
https://huggingface.co/BAAI/bge-reranker-v2-m3
https://huggingface.co/castorini/rank_zephyr_7b_v1_full

gpt-40-mini-2024-07-18 for RankGPT.

As shown in Table 7, ATR consistently achieves
superior retrieval performance compared to cross-
encoder re-rankers and LLM-based re-rankers.
Specifically, ATR achieves improvement of 1.7%
on Spider and 3.5% on BIRD in complete recall,
compared to mGTE-reranker at k = 10. This per-
formance gap widens on Spider 2.0, where ATR
achieves a 19.0% higher complete recall compared
to RankZephyr at £ = 10. Given that ATR is sub-
stantially smaller than RankZephyr, these results
demonstrate the capability of ATR to overcome the
limitations of top-k retrieval methods and effec-
tively learn robust table representations.

E Case Study

We investigate the limitations of top-k approaches
through qualitative analysis on specific examples
from the BIRD and Spider 2.0 datasets. In these
examples, relevant tables are retrieved using Con-
triever (k = 5) and ATR. SQL queries are gener-
ated using Qwen2.5-Coder-32B.

As illustrated in Table 8, the top-k approach re-
sults in retrieving unnecessary tables when the num-
ber of required tables is fewer than k. These irrele-
vant tables can be noise, leading to confusion and
incorrect SQL generation. Conversely, as illustrated
in Table 9, when the query necessitates more tables
than the k, top-k retrieval fails to retrieve all essen-
tial tables, again resulting in incorrect SQL outputs.
In contrast, ATR adaptively retrieves an appropri-
ate table based on a query, effectively retrieving all
necessary tables while minimizing irrelevant ones.
This demonstrates ATR’s clear advantage of provid-
ing precise and optimized input for the generator,
significantly improving the accuracy and reliability
of the generated SQL query.

F Prompt Template

We vary prompt templates based on the dataset and
SQL dialect when performing text-to-SQL tasks.
Fig. 5 shows the prompt templates used for the Spi-
der and BIRD datasets. Fig. 6 to Fig. 8 are prompt
templates used for the Spider 2.0 dataset.

13

Question

Please list player names which are higher than 180.

Tables Retrieved by ATR Tables Retrieved by Top-&
"Player"
"Match"
"Player" "League"
HTeamll
"superhero"
SQL Generated by ATR SQL Generated by Top-%
SELECT Tl1.player_name FROM Player AS T1
SELECT player_name FROM Player INNER JOIN Match AS T2
WHERE height > 180 ON Tl.player_api_id = T2.home_player_1

WHERE T1.height > 180

Retrieved Table Schema

"Player": id, player_api_id, height, weight, birthday, player_name, player_fifa_api_id
"Match": id, home_player_1, stage, goal, season, country_id, league_id, match_api_id, ...
"League": id, country_id, name

"Team": id, team_api_id, team_fifa_api_id, team_long_name, team_short_name
"superhero": id, superhero_name, full_name, gender_id, eye_colour_id, hair_colour_id, ...

Table 8: A case study illustrating a scenario where the retrieval size k exceeds the number of tables required to
resolve the query. As the top-k approach retrieves unnecessary tables, it propagates noise, degrading downstream
SQL generation. Irrelevant tables are in red, and unnecessary tables that do not contribute to answering the query
are highlighted in yellow. Retrieved table schema displays schema information for all retrieved tables.

14

Question

Please calculate the monthly average levels of PM10, PM2.5 FRM, PM2.5 non-FRM, volatile organic
emissions, SO2 (scaled by a factor of 10), and Lead (scaled by a factor of 100) air pollutants in

California for the year 2020.

Tables Retrieved by ATR

Tables Retrieved by Top-k

"pm25_frm_daily_summary"
"lead_daily_summary"
"pm10_daily_summary"
"pm25_nonfrm_daily_summary"
"s02_daily_summary"
"voc_daily_summary"

"pm25_frm_daily_summary"
"lead_daily_summary"
"pm10_daily_summary"
"pm25_frm_hourly_summary"
"pm10_hourly_summary"

SQL Generated by ATR

SQL Generated by Top-k

WITH pm1@_avg AS (
SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(arithmetic_mean) AS avg_pm1e
FROM "L
WHERE state_name = 'Califor
GROUP BY month),

pm25_frm_avg AS (

SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(arithmetic_mean) AS avg_pm25_frm
FROM “bigquery-public

gquery-public-data.epa_hist air_quality.pm16_daily_summa

ric y
a' AND EXTRACT(YEAR FROM date_local) = 2020

data.epa_historical_air_quality.pm25_frm_daily
WHERE state_name = 'California’ AND EXTRACT(VEAR FROM date_local) = 2020

GROUP BY month),

pm25_nonfrm_avg AS (

SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(arithmetic_mean) AS avg_pm25_nonfrm
FROM “bigquery-publ
WHERE state_name = 'Califor
GROUP BY month),

voc_avg AS (

SELECT EXTRACT(MONTH FROM date_local) AS month,
AVG(arithmetic_mean) AS avg_voc

FROM “bigquery-public-data.epa_historical_a

data.epa_histori air_quality.pm

)" AND EXTRACT(YEAR FROM date_local) = 2020

25_nonfrm_daily_summary

quality.voc_daily_summary

WHERE state_name = 'California’ AND EXTRACT(YEAR FROM date_local) = 2020
GROUP BY month),

s02_avg AS (

SELECT EXTRACT(MONTH FROM date_local) AS month,

AVG(arithmetic_mean * 10) AS avg_so2_scaled

FROM "bigquery-public-data.epa_historical_air_quality.so2_daily_summary
WHERE state_name alifornia’ AND EXTRACT(YEAR FROM date_local) = 2020

GROUP BY month),

lead_avg AS (

SELECT

EXTRACT(MONTH FROM date_local) AS month,

AVG(arithmetic_mean * 100) AS avg_lead_scaled

FROM “bigquery-public-data.epa_historical_air_quality.lead_daily_summary
WHERE state_name = 'California’ AND EXTRACT(YEAR FROM date_local) = 2020
GROUP BY month)

SELECT

pm1e_avg.month, pmi0_avg.avg_pmle, pm25_frm_avg.avg_pm25_frm,
pm25_nonfrm_avg.avg_pm25_nonfrm,

voc_avg.avg_voc, so2_avg.avg_so2_scaled, lead_avg.avg_lead_scaled

FROM pm1@_avg JOIN pm25_frm_avg ON pml@_avg.month = pm25_frm_avg.month
JOIN pm25_nonfrm_avg ON pml@_avg.month = pm25_nonfrm_avg.month

JOIN voc_avg ON pml@_avg.month = voc_avg.month

JOIN so2_avg ON pml@_avg.month = so2_avg.month

JOIN lead_avg ON pm1@_avg.month = lead_avg.month

ORDER BY pm1@_avg.month;

WITH pm1e_monthly_avg AS (

SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(sample_measurement) AS avg_pmio
FROM *bigquery-public-data.epa_historical_air_quality.pm10_hourly_summary
WHERE state_name = 'California’ AND EXTRACT(YEAR FROM date_local) = 2620

GROUP BY month),

pm25_frm_monthly_avg AS (

SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(sample_measurement) AS avg_pm25_frm
“bigquery-public-data.epa_historical_air_quality.pm25_frm_hourly_summary"

£ state_name = 'California’ AND EXTRACT(YEAR FROM date_local) = 2020

GROUP BY month),

pm25_nonfrm_monthly_avg AS (

SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(arithmetic_mean) AS avg_pm25_nonfrm
FROM " bigquery-public-da ty.pm2

WHERE state_name
GROUP BY month),
volatile_organic_emissions_monthly_avg AS (

SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(arithmetic_mean) AS avg_volatile_organic_emissions
FROM bigquery-public-data.epa_historical_air_quality.nox8_hourly_summary

WHERE state_name = 'California’ AND EXTRACT(VEAR FROM date_local) = 2620 AND

parameter_name = 'Nit xide

GROUP BY month),

s02_monthly_avg AS (

SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(arithmetic_mean) * 10 AS avg_so2_scaled
FROM " bigquery-publ)
WHERE

state_name = 'Californ
GROUP BY month),
lead_monthly_avg AS (

1lifornia’ AND EXTRACT(YEAR FROM date_local) = 2020

AND EXTRACT(YEAR FROM date_local) = 2020

ELECT
EXTRACT(MONTH FROM date_local) AS month, AVG(arithmetic_mean) * 100 AS avg_lead_scaled
FROM " bigquery-public-data.epa_historical_air_quality.lead_daily_sum

WHERE state_name AND EXTRACT(YEAR FROM date_local) = 2020

GROUP BY month)

SELECT

m.month, COALESCE(p1@.avg_pml@, @) AS avg_pmle,

COALESCE(p25frm.avg_pm25_frm,) AS avg_pm25_frm,

COALESCE (p25nonfrm.avg_pm25_nonfrm, ©) AS avg_pm25_nonfrm,

COALESCE(voe. avg_volatile_organic_emissions, 6) AS avg_volatile_ organic_emissions,
COALESCE(502.avg_so2_scaled, 0) AS avg_so2_scaled,
COALESCE(lead.avg_lead_scaled, ©) AS avg_lead_scaled

FROM (SELECT DISTINCT EXTRACT(MONTH FROI date_local) AS month

FROM bigquery-public-data.epa_historical_air_quality.pm16_hourly_summary
WHERE EXTRACT(YEAR FROM date_local) = 2026

) m LEFT JOIN pm1e_monthly_avg p1@ ON m.month = p1@.month

LEFT JOIN pm25_frm_monthly_avg p25frm ON m.month = p25frm.month

LEFT JOIN pm25_nonfrm_monthly_avg p2Snonfrm ON m.month = p2Snonfrm.month
LEFT JOIN volatile_organic_emissions_monthly_avg voe ON m.month = voe.month
LEFT JOIN s02_monthly_avg so2 ON m.month = so2.month

LEFT JOIN lead_monthly_avg lead ON m.month = lead.month

ORDER BY m.month;

Retrieved Table Schema

"pm25_frm_daily_summary": arithmetic_mean, date_local, state_code, county_code, ...
"lead_daily_summary": arithmetic_mean, date_local, state_code, county_code, ...
"pm10_daily_summary": arithmetic_mean, date_local, state_code, county_code, ...
"pm25_nonfrm_daily_summary": arithmetic_mean, date_local, state_code, county_code, ...
"s02_daily_summary": arithmetic_mean, date_local, state_code, county_code, ...
"voc_daily_summary": arithmetic_mean, date_local, state_code, county_code, ...

"pm25_frm_hourly_summary": date_local, sample_measurement, state_code, county_code, ...
"pm10_hourly_summary": date_local, sample_measurement, state_code, county_code, ...

Table 9: A case study illustrating a scenario where the retrieval size k is smaller than the number of tables required
to resolve the query. As the top- k approach fails to retrieve all necessary tables, it produces inaccurate SQL,
whereas ATR retrieves all essential tables, enabling correct SQL generation. Tables not retrieved but crucial for SQL
generation are displayed in light gray.

15

ﬂSystem] \

You are a highly experienced data analyst with expert-level SQL skills. You have
been given a database schema, external knowledge and a question about the data.
Your task is to generate a valid SQLite query that correctly answers the question,
respecting any conditions or filters implied in the prompt.

Your answer should consist only of the SQL code, without additional explanations or
commentary.

Follow this Output Format:
SQL: <YOUR_SQL>

[User]

Database Schema:

CREATE TABLE students (
id INT PRIMARY KEY,
name VARCHAR(255),
major VARCHAR(255)

)5

CREATE TABLE courses (
course_id INT PRIMARY KEY,
course_name VARCHAR(255),
instructor VARCHAR(255)

)s
Question: How many students are currently listed in the students table?

[Assistant]
SQL: SELECT count (*) FROM students

[User]
Database Schema:

{table_str}

External Knowledge:
{external_knowledge}

\Question: {query_str} /

Figure 5: Prompt template for Spider and BIRD datasets.

16

/,iSystem]
You are a highly experienced data analyst with expert-level SQL skills. You have been given a
database schema, external knowledge and a question about the data.
Your task is to generate a valid query that correctly answers the question, respecting any
conditions or filters implied in the prompt.
Your answer should consist only of the SQL code, without additional explanations or commentary.

Follow this Output Format:
SQL: <YOUR_SQL>

**IMPORTANT **
Use backticks for table identifiers (" project.dataset.table’).

[User]
Database Schema:
CREATE TABLE “SALES.CUSTOMERS™ (
id INT64,
customer_name STRING,
email STRING,
address STRING,
join_date DATE
)

CREATE TABLE “SALES.ORDERS® (
order_id INT64,
customer_id INT64,
order_date DATE,
amount NUMERIC,
status STRING

)
Question: Find the top 5 customers with highest purchase amount

[Assistant]
SQL: SELECT
C.customer_name,
SUM(0.amount) AS total_purchases
FROM
"SALES.CUSTOMERS™ AS C
JOIN
“SALES.ORDERS™ AS O ON C.id = O.customer_id
GROUP BY
C.customer_name
ORDER BY
total_purchases DESC
LIMIT 5;

[User]
Database Schema:
{database_schema}

External Knowledge:
{external_knowledge}

\\9uestion: {question}

Figure 6: Prompt template for Spider 2.0 (BigQuery dialect)

17

[System]

You are a highly experienced data analyst with expert-level SQL skills. You have been given
a database schema, external knowledge and a question about the data.

Your task is to generate a valid query that correctly answers the question, respecting any
conditions or filters implied in the prompt.

Your answer should consist only of the SQL code, without additional explanations or
commentary.

Follow this Output Format:
SQL: <YOUR_SQL>

**TIMPORTANT **

Use double quotes for Enclose all identifiers (database, schema, table, column names, and
aliases) in double quotes (").

SQL function names (YEAR, TO_TIMESTAMP, etc.) and keywords (SELECT, FROM, etc.) should NOT
be enclosed in quotes.

When using table aliases, the alias itself must also be enclosed in double quotes. Example:
"USERS" "U*

When referencing through aliases with dot notation, both parts need quotes: "U"."email*
Make sure all column references in SELECT, WHERE, GROUP BY, ORDER BY clauses use double
quotes.

[User]

Database Schema:

"CREATE TABLE “SALES”.”CUSTOMERS” (
“id” INTEGER,
“customer_name” VARCHAR(100),
“email” VARCHAR(100),
“address” VARCHAR(209),
“join_date” DATE

)

CREATE TABLE “SALES”.”’ORDERS” (
“order_id” INTEGER,
“customer_id” INTEGER,
“order_date” DATE,

“amount” DECIMAL(1e,2),
“status” VARCHAR(20)
)5

Question: Find the top 5 customers with highest purchase amount

[Assistant]
SQL: SELECT
"C"."customer_name",
SUM("0"."amount") AS "total_purchases"
FROM
"SALES"."CUSTOMERS" "C"
JOIN
"SALES"."ORDERS" "O" ON "C"."id" = "0"."customer_id"
GROUP BY
"C"."customer_name"
ORDER BY
"total_purchases" DESC
LIMIT 5;

[User]
Database Schema:

{database_schema}

External Knowledge:
{external_knowledge}

Question: {question}

Figure 7: Prompt template for Spider 2.0 (Snowflake dialect)

18

/,Eéystem] ‘\\

You are a highly experienced data analyst with expert-level SQL skills. You have been given a database
schema, external knowledge and a question about the data.

Your task is to generate a valid query that correctly answers the question, respecting any conditions
or filters implied in the prompt.

Your answer should consist only of the SQL code, without additional explanations or commentary.

Follow this Output Format:
SQL: <YOUR_SQL>

[User]

Database Schema:

CREATE TABLE CUSTOMERS (
id INTEGER,
customer_name TEXT,
email TEXT,
address TEXT,
join_date TEXT

)5

CREATE TABLE ORDERS (
order_id INTEGER,
customer_id INTEGER,
order_date TEXT,
amount REAL,
status TEXT

)s

Question: Find the top 5 customers with highest purchase amount

[Assistant]
SQL: SELECT
C.customer_name,
SUM(0.amount) AS total_purchases
FROM
CUSTOMERS C
JOIN
ORDERS O ON C.id = O.customer_id
GROUP BY
C.customer_name
ORDER BY
total_purchases DESC
LIMIT 5;

[User]
Database Schema:

{database_schema}

External Knowledge:
{external_knowledge}

\\Suestion: {question} A//

Figure 8: Prompt template for Spider 2.0 (SQLite dialect)

19

	Introduction
	Related Work
	Problem Definition
	Adaptive Table Retrieval
	Adaptive Thresholding
	Relevance Calibration
	Semantic Grouping
	Sliding Window Re-ranking

	Experiments
	Setups
	Table Retrieval Performance
	End-to-end Performance

	Analysis
	Efficiency and Accuracy Improvement
	Performance Analysis by Number of Required Tables
	Comparison with Adaptive Document Retrieval Methods
	Ablation Study
	Statistical Analysis of Table Representations

	Conclusion
	Environment Setup
	Dataset Processing
	Effectiveness of ATR Leveraging an Advanced Embedding Model
	Comparison with Text Re-rankers
	Case Study
	Prompt Template

