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Abstract
Retrieving relevant tables from extensive001
databases for a given query is essential for ac-002
curately answering questions in tasks such as003
text-to-SQL and open-domain table question004
answering. Top-k retrieval strategies based on005
similarity scores between the query and tables006
are common in existing table retrieval meth-007
ods. However, the number of required tables008
varies across queries and cannot be known in009
advance. Such strategies may either retrieve an010
undersized set of tables, preventing the model011
from gathering all that was needed, or retrieve012
too large a pool of tables, leading to the in-013
corporation of unnecessary ones. To address014
this issue, we present an adaptive table retrieval015
method that adjusts the number of tables re-016
trieved according to the requirements of each017
query. We adopt an adaptive thresholding mech-018
anism to selectively retrieve tables and inte-019
grate a sliding-window re-ranking algorithm to020
efficiently process large candidate sets. Exten-021
sive experiments on Spider, BIRD, and Spider022
2.0 show that our method effectively addresses023
the limitations of the top-k retrieval strategies,024
improving performance in both retrieval and025
downstream tasks. Our code and data are avail-026
able at link.027

1 Introduction028

Recent advances in large language models (LLMs)029

have improved performance on tasks that require030

structured reasoning over tabular data (Gao et al.,031

2023; Yang et al., 2024; Xie et al., 2024). These032

improvements are important for real-world applica-033

tions such as text-to-SQL and open-domain ques-034

tion answering, where leveraging structured data035

is essential (Zhong et al., 2017; Yu et al., 2018;036

Herzig et al., 2021). Retrieval-augmented gener-037

ation (RAG) approaches address this need, first038

retrieving tables relevant to a query and then gen-039

erating an answer conditioned on the retrieved ta-040

bles (Lewis et al., 2020; Pan et al., 2022; Kothyari041

et al., 2023; Kong et al., 2024).042
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Figure 1: Rather than rely on a rigid retrieval strategy,
ATR retrieves only relevant tables whether few or many.
Gray indicates tables required by the query but not re-
trieved, red denotes irrelevant tables, and blue highlights
retrieved relevant tables.

Existing table retrieval methods rely on a top-k 043

retrieval strategy that selects the top k tables ranked 044

by query-table similarity (Chen et al., 2024c; Zhang 045

et al., 2025). However, this fixed cut-off ignores 046

the fact that the number of tables required by each 047

query is unknown in advance and can vary signif- 048

icantly. Even in the same database, ground-truth 049

tables can range from a single table to several hun- 050

dred. For example, the problem is acute in Spider 051

2.0 (Lei et al., 2025), an enterprise-level text-to- 052

SQL benchmark where the number of ground-truth 053

tables for each query ranges from 1 to 366. 054

Because of the uncertainty, top-k can miss nec- 055

essary tables or retrieve too many tables to answer 056

according to the size of k. As illustrated in Fig- 057

ure 1-(A), answering the query “List all movies 058

directed by Spielberg that won an Oscar.” requires 059

three tables: MOVIE, DIRECTOR, and AWARD. With 060

k = 1, the retriever misses required tables, whereas 061

k = 5 inevitably retrieve two irrelevant ones. Sub- 062

sequently, a small k sacrifices recall and a large k 063

inflates latency and injects noise, degrading down- 064

stream performance (Kothyari et al., 2023). Fig- 065
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Figure 2: Retrieving irrelevant tables introduces noise,
degrading performance on the text-to-SQL task. Execu-
tion accuracy consistently decreases as more irrelevant
tables are added to the ground-truth tables.

ure 2 quantifies how the execution accuracy de-066

creases as irrelevant tables are added.067

To overcome the uncertainty in deciding how068

many tables a query needs, we introduce Adaptive069

Table Retrieval (ATR). As depicted in Figure 1-070

(B), ATR identifies the exact set of required ta-071

bles through an adaptive threshold mechanism that072

retrieves only those tables with logits exceeding073

the threshold. It then applies a sliding-window re-074

ranking module to reorder large candidate sets ef-075

ficiently. Training is guided by a relevance cali-076

bration and a semantic grouping loss that jointly077

model query-table and table-table relevance.078

We evaluate ATR on Spider (Yu et al., 2018),079

BIRD (Li et al., 2023), and Spider 2.0 (Lei et al.,080

2025). Across all three benchmarks, ATR consis-081

tently outperforms top-k baselines retrieving fewer082

irrelevant tables, more essential ones, and boost-083

ing both retrieval metrics and downstream text-to-084

SQL execution accuracy. The improvements hold085

whether a query requires a single table or hundreds,086

demonstrating its robustness.087

Our contributions can be summarized as follows:088

• We show that top-k retrieval ignores the089

variation in required tables, leading to over-090

selection of irrelevant tables or omission of091

essential ones.092

• We propose ATR, which uses query-specific093

thresholding to fetch exactly the necessary094

tables with relevance calibration and semantic095

grouping loss and combines sliding-window096

re-ranking to scale to a large table corpus.097

• Experiments on Spider, Bird, and Spider098

2.0 show that ATR consistently outper-099

forms strong top-k baselines—using fewer100

tokens yet achieving higher execution accu-101

racy—thereby improving both efficiency and102

downstream text-to-SQL performance.103

2 Related Work 104

Table Retrieval Table retrieval is the task of se- 105

lecting the subset of tables that provide evidence for 106

a natural-language query from databases (Herzig 107

et al., 2021; Wang et al., 2021). Kothyari et al. 108

(2023) and Zhang et al. (2025) propose table re- 109

trieval methods that rewrite user queries to enhance 110

table retrieval accuracy. Chen et al. (2024c) and 111

Wu et al. (2025) introduce methods that capture 112

inter-table relationships, enhancing the coherence 113

of retrieved tables. Li et al. (2025) propose a re- 114

trieval method that dynamically weights multiple 115

fields of semi-structured data according to query 116

semantics. Despite these advances, all of the above 117

still rely on a top-k cut-off: with a small k they may 118

omit essential tables, whereas a large k retrieves 119

many irrelevant ones, degrading downstream accu- 120

racy and efficiency. 121

Adaptive Retrieval Strategy Recent RAG re- 122

search has shown growing interest in adaptive 123

retrieval methods, which adjust the size of text 124

chunks based on query (Mallen et al., 2023; Jiang 125

et al., 2023; Asai et al., 2023; Jeong et al., 2024). 126

These approaches typically assess query complex- 127

ity and selectively increase the retrieval budget ac- 128

cordingly. However, such methods are designed 129

exclusively for the text domain and do not con- 130

sider structured tabular data. Moreover, they typ- 131

ically involve iterative interactions with an LLM, 132

increasing inference costs. We propose ATR, an 133

adaptive table retrieval method capable of retriev- 134

ing a query-dependent number of tables without 135

relying on interactions with a generator. 136

Text-to-SQL Text-to-SQL is the task of gener- 137

ating SQL queries from natural language ques- 138

tions, enabling effective access to structured 139

databases (Zhong et al., 2017; Yu et al., 2018). 140

Recent trends in text-to-SQL increasingly adopt 141

retrieval-augmented approaches that integrates ta- 142

ble retrieval with text-to-SQL generation to han- 143

dle large-scale database scenarios (Kothyari et al., 144

2023; Kong et al., 2024; Chen et al., 2024c). Ad- 145

ditionally, large-scale datasets recently introduced 146

by Chen et al. (2024b) and Lei et al. (2025) focus 147

on enterprise-level text-to-SQL tasks. In line with 148

these developments, our work contributes an adap- 149

tive retrieval framework that efficiently scales to 150

large table corpora, significantly enhancing down- 151

stream text-to-SQL performance and efficiency in 152

resource-intensive contexts. 153
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Algorithm 1 Adaptive Table Retrieval

Require: Query q, List of Table C, Model M , Size
of Window W , Size of Retention R, Number
of Table C

Ensure: List of Ranked Table C′
1: Variables:
2: C′ ← ∅, Cretain ← ∅, idx← C
3: thrrank ← 0, thrfinalized ← False
4: while idx > 0 do
5: if Cretain = ∅ then
6: Cwindow ← C[idx−W :]
7: idx← idx−W
8: else
9: Cwindow ← C[idx−(W−R) : idx]+Cretain

10: idx← idx− (W −R)
11: end if
12: logit, score←M(q, Cwindow)
13: Cretain ← Decendscore(Cwindow)[: R]
14: if not thrfinalized then
15: thrrank ← Rank(logit) + idx
16: if Rank(logit) > R then
17: thrfinalized ← True
18: end if
19: end if
20: C′ ← C′+Ascendscore(Cwindow \Cretain)
21: end while
22: C′ ← C′ +Ascendscore(Cretain)
23: C′ ← Reverse(C′)[: thrrank − 1]
24: return C′

3 Problem Definition154

We formulate the table retrieval task as follows.155

Given a query q and a table corpus C = {ti}Ni=1,156

where each table ti contains structured information,157

the objective of the table retrieval task is to find a158

subset of tables Cq ⊆ C that collectively satisfies159

the informational need expressed by the query q.160

A retrieval function f ranks tables in corpus C161

by descending order of the relevance scores s(q, ti),162

computed based on the query-table relevance. The163

top-k tables Ĉq are selected according to s(q, ti).164

Ĉq = { t(i)q }ki=1 = f
(
q, C

)
,

where s
(
q, t(n)q

)
> s

(
q, t(m)

q

)
∀n < m

165

4 Adaptive Table Retrieval166

ATR adaptively selects the number of tables that167

each query needs. Whereas standard top-k retrieval168

always returns a fixed k tables, ATR infers a query- 169

specific number of tables kq to retrieve: 170

Ĉq = { t(i)q }
kq
i=1 = ATR

(
q, C

)
171

ATR—a transformer encoder—uses the query, 172

the candidate tables, and two special tokens as in- 173

put. We use the hidden states from each table and 174

special tokens to infer Ĉq. kq is decided by a com- 175

parison of logits from the hidden states between 176

each table and the special token. To effectively cap- 177

ture both query-table and inter-table relevance, we 178

use two complementary objectives: a relevance cal- 179

ibration loss that sharpens query-table alignment, 180

and a semantic grouping loss that pulls the embed- 181

dings of joinable tables closer together. For efficient 182

inference over large table corpora, we propose a 183

sliding-window re-ranking algorithm that refines 184

the ranking without exhaustively scoring every ta- 185

ble at once. 186

4.1 Adaptive Thresholding 187

ATR learns to separate relevant tables from irrel- 188

evant tables for each query through an adaptive- 189

thresholding mechanism inpired by Zhou et al. 190

(2021) We prepend a threshold token Tth to the 191

input sequence, followed by the natural language 192

query and the candidate tables. Every table begins 193

with a table token Ttab and is encoded together with 194

its metadata (database, table name, column names). 195

ATR computes logits logitTth
and logitTtab

from 196

the hidden states of special tokens Tth and Ttab, re- 197

spectively. While training, we enforce that logitTtab
198

is bigger than logitTth
when the table is relevant, 199

and is smaller than logitTth
otherwise. The loss for 200

this adaptive thresholding is defined as follows: 201

L1 = −
∑
r∈T +

log
exp(logitr)∑

r′∈T +∪{Tth} exp(logitr′)

L2 = − log
exp(logitTth

)∑
r′∈T −∪{Tth} exp(logitr′)

LAT = αL1 + βL2

202

where T + denotes the set of relevant table tokens, 203

and T − denotes the set of irrelevant table tokens. 204

L1 raises logits of query-relevant tables above 205

the threshold logit logitTth
, creating a clear mar- 206

gin from irrelevant tables. Since a single query can 207

have multiple relevant tables, we compute a binary 208

cross-entropy loss for each relevant table and sum 209
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the results. In contrast, L2 suppresses the logits210

of query-irrelevant tables below logitTth
by treat-211

ing the threshold token as their correct class. The212

threshold logit thus becomes a query-dependent de-213

cision boundary that distinguishes relevant tables214

from irrelevant tables. The hyper-parameters α and215

β weight the relative contributions of the two loss216

terms.217

4.2 Relevance Calibration218

Adaptive thresholding assigns a query-specific cut-219

off by computing a logit for every table and com-220

paring it with the logit of the threshold token. To221

sharpen the distinction between relevant tables T +222

and irrelevant tables T −, we maximize the logit223

gap between T + and T − using a binary cross-224

entropy (BCE) loss:225

LRC = − 1

|T + ∪ T −|

 ∑
r∈T +

log (σ(logitr))

+
∑
r∈T −

log (1− σ(logitr))

226

where σ denotes the sigmoid function.227

This relevance calibration loss aligns each query228

with its relevant tables, giving ATR a signal to dis-229

tinguish them from irrelevant ones and thereby im-230

proving its discriminative capability.231

4.3 Semantic Grouping232

Relationships between tables—especially join-233

ability—are critical for accurate multi-table re-234

trieval (Chen et al., 2024c; Wu et al., 2025). To235

consider these dependencies between tables, ATR236

adds a contrastive learning objective (Hadsell et al.,237

2006) that pulls embeddings of joinable tables238

closer together while separating embeddings of239

non-joinable tables by a fixed margin. Let ei be240

the embedding of ti table and let gi denote its join-241

ability group; the semantic grouping loss LSG is242

defined as follows:243

LSG =
1

|P|
∑

(i,j)∈P

[
I(gi = gj) ∥ei − ej∥22

+ I(gi ̸= gj) max
(
0, m− ∥ei − ej∥2

)2]244

where P represents all unique pairs of C, and m245

denotes the margin hyper-parameter. LSG encour-246

ages the embeddings to capture joinability of tables247

Dataset #Q #DB #T Min/Max
Spider

Train 6,989 140 737 1 / 5
Eval 1,034 20 81 1 / 4

BIRD
Train 9,198 69 522 1 / 4
Eval 1,534 11 75 1 / 4

Spider 2.0
Eval 435 155 6,321 1 / 366

Table 1: Data statistics. Number of queries (#Q), num-
ber of databases (#DB), number of tables (#T), and the
number of tables required per query (Min/Max) are re-
ported. Evaluations on Spider and BIRD are performed
using development sets.

and, in turn, promotes the retrieval of semantically 248

coherent table sets. 249

Finally, the ATR objective function can be de- 250

fined as follows: 251

LATR = LAT + λLRC + γLSG 252

where λ and γ are hyper-parameters that adjust the 253

magnitude of the losses. These losses allow ATR to 254

adaptively retrieve multiple tables in consideration 255

of the relevance between tables and the relevance 256

between the query and the tables. 257

4.4 Sliding Window Re-ranking 258

Since the encoder used in ATR has a quadratic 259

complexity with respect to input length, directly 260

processing large numbers of tables is computation- 261

ally impractical. To mitigate this inefficiency, ATR 262

uses a sliding window re-ranking strategy. Given 263

a window size W and a retention size R with R 264

< W , ATR processes the tables C from lowest to 265

highest in their initial ranking. First, in W lowest- 266

ranked tables, ATR computes logits for every token 267

Ttab and for the threshold token Tth, and keeps 268

the top R tables by logit value. Then the retained 269

set is merged with the next W − R tables in the 270

original order. If the threshold logit logitTth
ranks 271

lower than R within W , its rank is finalized. This 272

iterative process continues until all candidate ta- 273

bles have been processed. Eventually, all the tables 274

that outrank the threshold are included in the final 275

table list. Pseudo-algorithm for this sliding win- 276

dow re-ranking appears in Algorithm 1. Since ATR 277

re-ranks subsets of tables within overlapping win- 278

dows, the method avoids the cost of re-ranking the 279

full list at once. 280
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Spider BIRD Spider 2.0

Contriever UAE Contriever UAE Contriever UAE

k R CR R CR R CR R CR R CR R CR
Bi-Encoder 3 94.0 89.2 93.0 88.0 72.9 55.1 79.0 63.5 37.6 24.8 40.6 27.6

5 97.4 95.5 97.8 96.4 82.1 68.6 87.2 77.3 45.1 32.6 48.5 34.9
10 99.2 98.7 99.4 99.0 96.1 92.6 97.6 95.1 56.5 44.8 60.7 49.0

JAR 3 96.5 93.6 96.5 94.1 87.4 76.3 86.3 74.8 42.3 26.9 41.6 27.1
5 98.5 97.2 99.1 98.5 92.5 85.9 91.1 82.9 48.6 34.0 47.9 33.8
10 99.5 99.2 99.5 99.2 97.6 96.0 97.2 95.2 55.1 41.4 56.4 43.9

ATR (Ours) 99.5 99.2 99.6 99.4 98.2 96.0 98.6 97.1 72.4 64.4 75.4 68.7

Table 2: Retrieval performance comparison with baseline methods, evaluated using Recall (R) and Complete Recall
(CR). ATR consistently outperforms all baselines across datasets. The best and second-best scores for each metric
are highlighted in bold and underlined, respectively.

5 Experiments281

In this section, we introduce the datasets, metrics,282

models, and baselines used to evaluate the perfor-283

mance of ATR. The experiments aim to validate284

the effectiveness of ATR that overcomes the inher-285

ent limitations of existing table retrieval strategies286

and to quantify the impact of improved retrieval287

performance on the downstream task.288

5.1 Setups289

Dataset We evaluate ATR on three datasets: Spi-290

der (Yu et al., 2018), BIRD (Li et al., 2023), and291

Spider 2.0 (Lei et al., 2025). Spider is a widely292

used benchmark for text-to-SQL, and BIRD is a293

realistic text-to-SQL dataset reflecting practical294

query scenarios. We adopt the "union" setting for295

these datasets, merging all databases into a single296

corpus (Kothyari et al., 2023; Chen et al., 2024c;297

Zhang et al., 2025). Spider 2.0 is a benchmark com-298

posed of complex, real-world enterprise text-to-299

SQL workflows derived from large-scale database300

systems. Specifically, we use Spider 2.0-Lite1, a301

subset featuring multiple SQL dialects, and apply302

the union setting by grouping databases based on303

dialect. We denote that ATR training utilizes only304

the training sets of Spider and BIRD. Dataset statis-305

tics are summarized in Table 1, with detailed pre-306

processing methods provided in Appendix B.307

Task and Metrics We evaluate ATR on two tasks:308

table retrieval and text-to-SQL generation. In table309

retrieval, given a natural language query q, a model310

retrieves a set of tables Ĉq ⊂ C from the table311

corpus C. Retrieving all the ground-truth tables is312

1For simplicity, we refer to Spider 2.0-Lite as Spider 2.0.

critical for the table retrieval task, we report re- 313

call and complete recall by comparing Ĉq with the 314

ground-truth set Cq following Zhang et al. (2025). 315

In text-to-SQL, the query q and its retrieved ta- 316

bles Ĉq are fed to a generator that produces a SQL 317

statement. We measure execution accuracy: the pro- 318

portion of generated SQL queries whose execution 319

results match those of the reference SQL (Yu et al., 320

2018). To evaluate downstream performance, we 321

ensure that the only difference between retrieval 322

methods is the input tables, allowing a precise as- 323

sessment of how retrieval performance influences 324

the downstream results. 325

Models We utilize ModernBERT-large (Warner 326

et al., 2024), a bidirectional encoder-only trans- 327

former model, as a backbone model for ATR. For 328

table embedding models, we use Contriever (Izac- 329

ard et al., 2021)2 and UAE-Large-V1 (Li and Li, 330

2024).3 For SQL generation, we utilize Llama- 331

3.1-8B/70B-Instruct (Grattafiori et al., 2024) and 332

Qwen2.5-Coder-7B/32B-Instruct (Hui et al., 2024) 333

as generators. 334

Baseline We compare ATR with the two bi- 335

encoder baselines—Contriever and UAE-Large- 336

V1—and with the re-ranking method JAR (Chen 337

et al., 2024c), which explicitly encodes table join- 338

ability. Contriever and UAE-Large-V1 embed the 339

query and each table independently, flattening 340

the table into text and ranking candidates by co- 341

sine similarity between their vector representations. 342

Both ATR and JAR adopt a two-stage re-ranking 343

pipeline: a bi-encoder first retrieves the top 50 ta- 344

2
https://huggingface.co/facebook/contriever-msmarco

3
https://huggingface.co/WhereIsAI/UAE-Large-V1
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Spider BIRD Spider 2.0

k
Llama

(8B/70B)
Qwen

(7B/32B)
Llama

(8B/70B)
Qwen

(7B/32B)
Llama

(8B/70B)
Qwen

(7B/32B)
Contriever 3 54.6 / 64.8 65.4 / 66.3 21.7 / 40.4 35.4 / 46.0 1.1 / 3.4 0.5 / 3.9

5 53.3 / 65.0 65.7 / 68.6 22.4 / 44.5 37.0 / 49.8 1.1 / 3.2 1.4 / 3.7
10 54.6 / 67.1 66.0 / 70.1 24.3 / 47.4 39.1 / 53.0 1.1 / 3.5 0.9 / 4.1

JAR 3 53.9 / 65.9 66.6 / 68.8 25.4 / 45.3 40.1 / 49.7 0.7 / 3.7 0.9 / 4.1
5 54.8 / 66.6 67.5 / 69.7 26.8 / 46.4 43.4 / 52.0 1.1 / 3.9 0.7 / 3.7
10 56.0 / 66.8 66.6 / 69.2 26.7 / 47.5 43.0 / 53.0 0.9 / 3.0 1.4 / 4.4

ATR (Ours) 58.7 / 67.8 69.7 / 71.5 28.6 / 49.9 45.0 / 53.3 1.1 / 4.4 1.4 / 5.7

Oracle 66.6 / 70.8 75.6 / 75.2 31.8 / 53.5 50.6 / 58.0 4.4 / 7.2 3.5 / 7.4

Table 3: Text-to-SQL execution accuracy comparison across different table retrieval methods. ATR consistently
outperforms baseline retrievers on the Spider, BIRD, and Spider 2.0 datasets.
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Figure 3: Comparison of execution accuracy and average token length for the text-to-SQL task across different
retrieval methods. ATR achieves higher accuracy with fewer tokens compared to the best-performing top-k approach.

bles, and then they are re-ranked using standard345

approaches (Glass et al., 2022; Sun et al., 2023;346

Qin et al., 2024).347

5.2 Table Retrieval Performance348

Across all tested values of k, ATR outperforms the349

top-k baselines on the in-domain datasets (Spider350

and BIRD) and the out-of-domain dataset (Spider351

2.0) as shown in Table 2. On Spider with k = 3,352

ATR improves complete recall by 10.0% over Con-353

triever and 5.6% over JAR. The performance gains354

are even larger on BIRD, reaching gains of 40.9%355

and 19.7% relative to the same baselines. With356

k = 10, ATR still outperforms UAE and JAR on357

BIRD by 2.0% and 1.9%, respectively. Although358

no query in Spider or BIRD requires more than359

four tables and the baselines already use conserva-360

tive k values, our method still surpasses them. The361

performance improvement becomes more evident362

on Spider 2.0, where the number of ground-truth363

tables varies from one to hundreds. With k = 10, 364

ATR improves complete recall by 19.6% over Con- 365

triever and 23.0% over JAR. These findings confirm 366

that the top-k retrieval strategy cannot be general- 367

ized across queries requiring varying numbers of 368

tables, whereas ATR demonstrates robustness to 369

such variations. 370

5.3 End-to-end Performance 371

We evaluate end-to-end effectiveness through the 372

text-to-SQL task. To set an upper bound for 373

retrieval-based approaches, we report an Oracle set- 374

ting where the generator receives only the ground- 375

truth tables. For both ATR and JAR, we re-rank the 376

50 candidates retrieved by Contriever. 377

Table 3 shows execution accuracy across three 378

datasets and several generators. The results demon- 379

strate that ATR achieves substantial improvements 380

over retrieval baselines. With Qwen2.5-Coder-32B 381

and k = 10, ATR improves on JAR by 2.3% on 382
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Figure 4: Execution accuracy on the Spider 2.0 dataset
across varying numbers of required tables. |Cq| denotes
the number of tables required per query.

Spider and 0.3% on BIRD; the performance gains383

increase to 3.1% and 2.0%, respectively, when the384

small 7B model is used. On the more demanding385

Spider 2.0, ATR surpasses Contriever and JAR by386

1.6% and 1.3%. The trend is consistent for Llama-387

3.1-70B: ATR outperforms JAR by 1.0% on Spider388

and 2.4% on BIRD with k = 10. These results389

confirm earlier findings that stronger retrieval per-390

formance translates into higher downstream accu-391

racy (Kothyari et al., 2023; Chen et al., 2024c).392

6 Analysis393

This section provides an in-depth analysis of ATR,394

focusing on token efficiency, robustness to varying395

numbers of required ground-truth tables, and com-396

parisons with state-of-the-art adaptive document397

retrieval methods. Additionally, we provide abla-398

tion and statistical analyses to empirically validate399

the effectiveness of table representations.400

6.1 Efficiency and Accuracy Improvement401

Retrieving too few tables omits evidence and de-402

grades performance, whereas retrieving too many403

injects noise and inflates inference cost. We ana-404

lyze whether ATR retrieves more relevant tables405

and fewer irrelevant tables than top-k methods,406

and how this difference affects downstream per-407

formance. For the top-k methods, we vary k from408

1 to 10 for Spider and BIRD, and from 5 to 50 with409

intervals of 5 for Spider 2.0.410

Figure 3 shows execution accuracy against the411

average number of input tokens used to generate412

SQL queries. ATR achieves higher execution ac-413

curacy with fewer tokens than the best top-k base-414

line on all three datasets. Specifically, ATR uses415

430 fewer tokens than the best-performing top-k416

configuration (k = 8) on Spider, and 522 fewer417

tokens than the best top-k (k = 10) on BIRD.418

When compared to top-k baselines with similar419

Spider BIRD

R Acc. Time R Acc. Time
Iter-RetGen 98.8 71.7 8.9 96.5 52.7 14.4
FLARE 89.0 63.2 4.0 78.3 43.1 5.7
Adaptive-RAG 86.0 62.8 6.3 89.8 50.7 13.2

ATR (Ours) 99.5 71.5 2.2 98.2 53.3 3.8

Table 4: ATR completes retrieval faster than existing
adaptive document retrieval strategies and achieves su-
perior performance. Acc. denotes execution accuracy.

token budget, ATR demonstrates higher execution 420

accuracy—improving by 5.2% on Spider (k = 3) 421

and 3.5% on BIRD (k = 5). The gap widens on 422

the out-of-domain Spider 2.0 dataset, where ATR 423

narrows the gap toward the oracle which is upper 424

bound. These results demonstrate that ATR is a ro- 425

bust method that retrieves accurately ground-truth 426

tables while minimizing the retrieval of irrelevant 427

tables. 428

6.2 Performance Analysis by Number of 429

Required Tables 430

The top-k retrieval strategy inherently suffers from 431

trade-offs; either failing to retrieve necessary ta- 432

bles or retrieving irrelevant ones. To illustrate this 433

trade-off and demonstrate the robustness of our 434

method, we analyze the downstream task perfor- 435

mance by categorizing the Spider 2.0 queries into 436

three groups based on the number of ground-truth 437

tables they require: two or fewer, between three 438

and ten, and more than ten. 439

Figure 4 illustrates the limitations of a fixed k 440

approach. Top-k retrieval achieves its best perfor- 441

mance for queries that require two or fewer tables 442

when using a smaller retrieval count (k = 10), 443

but its performance collapses for queries that need 444

more than ten tables. Conversely, using a larger 445

retrieval count (k = 50) enhances performance 446

for queries that require more than ten tables, but 447

it falls in accuracy for queries that require two or 448

fewer tables because of noise from irrelevant tables. 449

ATR addresses this trade-off, consistently outper- 450

forming baselines across queries with various table 451

requirements. 452

6.3 Comparison with Adaptive Document 453

Retrieval Methods 454

Recent adaptive document retrieval methods ad- 455

just the retrieval strategy based on query com- 456

plexity. FLARE (Jiang et al., 2023) triggers ad- 457

ditional retrieval whenever the generator outputs 458
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low-confidence tokens, and Adaptive-RAG (Jeong459

et al., 2024) trains a classifier to determine the460

number of retrieval iterations based on query com-461

plexity. Iter-RetGen (Shao et al., 2023) serves as an462

iterative baseline, retrieving documents repeatedly463

for a fixed number of iterations. To compare ATR464

with these adaptive document retrieval methods,465

we conduct experiments on the Spider and BIRD466

datasets with Qwen2.5-Coder-32B. We evaluate467

recall, text-to-SQL execution accuracy, and end-468

to-end latency in seconds. To ensure fairness, we469

train the Adaptive-RAG classifier on the Spider and470

BIRD training splits.471

Table 4 shows that ATR consistently outper-472

forms adaptive document retrieval baselines in473

both retrieval and end-to-end task. Compared with474

Adaptive-RAG, ATR improves execution accuracy475

by 8.7% on Spider and 2.6% on BIRD, simulta-476

neously reducing processing times by 4.1 and 9.4477

seconds, respectively. Against Iter-RetGen, ATR478

reduces the end-to-end processing time by 6.7 sec-479

onds on Spider and 10.6 seconds on BIRD, while480

achieving comparable execution accuracy. These re-481

sults demonstrate the effectiveness of ATR through482

improved table representation learning and the ef-483

ficiency from operating without iterative retrieval484

interactions with LLMs.485

6.4 Ablation Study486

ATR is trained with two auxiliary objectives: a BCE487

loss for relevance calibration and a contrastive loss488

for semantic grouping. To evaluate the influence of489

each loss component, we train separate models by490

removing each auxiliary objective individually.491

As illustrated in Table 5, removing the BCE loss492

lowers both recall and complete recall, confirming493

that explicit query-table alignment is crucial for494

distinguishing relevant tables from irrelevant ones.495

Similarly, the removal of contrastive loss reduces496

retrieval performance, indicating that inter-table497

joinability enhances the discriminative quality of498

table embeddings, which contributes to improved499

retrieval accuracy. These findings indicate that both500

BCE and contrastive loss components are essential501

for learning robust table representations, thereby502

contributing to superior retrieval capabilities of503

ATR compared to existing table retrieval methods.504

6.5 Statistical Analysis of Table505

Representations506

ATR assigns logits on tokens Tth for the threshold507

and Ttab for the table representation. We use analy-508

Spider BIRD Spider 2.0

R CR R CR R CR
ATR 99.5 99.2 98.2 96.0 72.4 64.4

− (1) BCE 99.0 98.7 97.5 95.8 68.2 60.8
− (2) Contrastive 99.0 98.4 97.4 95.2 69.1 60.1
− (1) & (2) 96.4 94.4 91.8 85.7 67.7 58.2

Table 5: Ablation study on training strategies for table
representation. Both loss functions contribute signifi-
cantly to the retrieval performance of ATR.

sis of variance (ANOVA) to investigate differences 509

between group means within relevant tables, irrele- 510

vant tables, and a threshold. Most of the variance 511

is explained by the difference of group means on 512

Spider, revealing large effects (η2 ≈ 0.95) with 513

significant p-values (p < 0.05). On the BIRD and 514

Spider 2.0 datasets, ANOVA reveals significant ef- 515

fects (η2 ≈ 0.86, 0.15) with significant p-values 516

(p < 0.05). A pairwise Tukey post-hoc test re- 517

veals a significant difference (p < 0.05 for all the 518

pairs) between relevant tables, irrelevant tables, and 519

the threshold for the three datasets. These results 520

confirm that ATR robustly differentiates between 521

relevant and irrelevant tables, with the adaptive 522

threshold serving as a clear decision boundary that 523

guides accurate table selection for each query. 524

7 Conclusion 525

In this work, we address the limitations of conven- 526

tional table retrieval methods that rely on a top- 527

k retrieval strategy. Such rigidity often degrades 528

downstream task performance and efficiency by 529

retrieving unnecessary tables or failing to retrieve 530

tables required for accurate reasoning. To mitigate 531

these problems, we propose ATR, an adaptive ta- 532

ble retrieval method that dynamically adjusts the 533

number of retrieved tables based on query require- 534

ments. ATR leverages threshold embedding and 535

table-level embedding to determine the optimal 536

number of tables required for each query. Further- 537

more, ATR adopts relevance calibration loss and se- 538

mantic grouping loss to effectively learn table rep- 539

resentations by capturing query-to-table and inter- 540

table relationships. Extensive experiments demon- 541

strate that ATR consistently outperforms top-k re- 542

trieval methods, demonstrating superior retrieval 543

performance, improved downstream accuracy, and 544

enhanced inference efficiency. These results con- 545

firm ATR as a practical solution suitable for large- 546

scale database retrieval applications. 547
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Limitations548

Although ATR demonstrates substantial improve-549

ments in both retrieval and downstream execution550

accuracy, two limitations remain. First, the slid-551

ing window re-ranking method effectively reduces552

computational complexity, but determining optimal553

window sizes and retention parameters may neces-554

sitate additional empirical tuning across different555

datasets or retrieval scenarios. Second, ATR cur-556

rently targets structured tabular data exclusively,557

and extending its adaptive retrieval strategy to han-558

dle other data modalities or mixed data types re-559

mains an open research challenge. Nevertheless,560

by establishing a robust framework for adaptively561

retrieving relevant information efficiently without562

direct interaction with LLMs, our methodology pro-563

vides a strong foundation for future studies aiming564

to generalize retrieval-augmented generation across565

diverse data types and broader application contexts.566
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A Environment Setup793

We train ATR using two NVIDIA RTX A6000794

GPUs, each equipped with 48GB of memory. Train-795

ing is conducted for three epochs with a batch796

size of 64 and a learning rate of 3e−5. The maxi-797

mum token length of ATR is set to 8,192, match-798

ing the input length constraints of ModernBERT-799

large. For the adaptive thresholding loss, the hyper-800

parameters are set as α = 0.8 and β = 0.03. For801

relevance calibration and semantic grouping loss,802

we select λ = 0.13 and γ = 0.04, respectively. The803

window size is set to 20 for the Spider and BIRD804

datasets, and 10 for Spider 2.0-Lite. The retention805

size is set to 15 for Spider and BIRD, and 5 for806

Spider 2.0-Lite.807

B Dataset Processing808

ATR is trained on the union of the Spider and BIRD809

training splits. For each query, we first use Con-810

triever to retrieve the top 100 tables and then split811

this list in half: the higher-ranked segments that812

rank from 1 to 50 and the lower-ranked segments813

that rank from 51 to 100. We pair each segment814

with the query to create two training examples: one815

that is likely to contain relevant tables and one that816

is likely not. This contrastive environment makes817

ATR learn how to operate when the candidate set818

contains no relevant tables, reducing false positives819

at inference time. We split this dataset into train-820

ing and validation sets at a ratio of 85% and 15%821

and the best checkpoint is selected by validation822

performance.823

ATR adopts a semantic grouping loss to effec-824

tively learn table representations by capturing table-825

to-table relationships. To achieve this, we lever-826

age joinability information between tables. Specif-827

ically, we identify joinable table groups by per-828

forming syntactic analysis on the publicly avail-829

able database schemas from the Spider and BIRD830

training datasets. We exclude training samples for831

which joinability cannot be determined from the832

given database corpus. Additionally, we remove833

tables that exceed the maximum input token length834

of 512 tokens, consistent with the constraints of835

the dense encoders used in our experiments, along836

with queries requiring these tables as ground truths.837

Furthermore, we exclude cases from Spider 2.0-838

Lite where tables labeled as ground truths are not839

present in the corresponding databases.840

Spider BIRD Spider 2.0

k R CR R CR R CR
OpenAI 3 96.8 93.5 85.8 72.1 40.7 28.2

5 99.7 99.4 92.8 85.5 50.0 36.7
10 100 100 98.4 96.7 62.8 49.8

ATR (Ours) 99.6 99.6 99.5 99.2 79.5 70.2

Table 6: Evaluation of retrieval performance compar-
ing ATR and a proprietary embedding model. OpenAI
indicates text-embedding-3-large.

Spider BIRD Spider 2.0

k R CR R CR R CR
mGTE 5 94.8 89.9 88.5 76.8 44.3 30.1

10 98.9 97.5 96.5 92.5 57.0 42.0
BGE-M3 5 96.7 93.7 78.9 64.2 40.4 26.8

10 99.1 98.1 91.3 83.6 52.8 40.6
RankGPT 5 98.9 97.9 92.7 84.6 56.1 42.1

10 99.6 99.5 97.5 94.6 64.0 52.2
RankZephyr 5 98.2 96.9 84.4 72.4 46.7 33.8

10 99.5 99.2 96.5 93.1 57.3 45.5

ATR (Ours) 99.5 99.2 98.2 96.0 72.4 64.5

Table 7: Comparison of retrieval performance between
ATR and text-based re-ranking methods. Candidate ta-
bles are initially retrieved using Contriever.

C Effectiveness of ATR Leveraging an 841

Advanced Embedding Model 842

We evaluate the effectiveness of ATR when lever- 843

aging an advanced embedding model to potentially 844

enhance retrieval performance. Our experiments 845

use text-embedding-3-large, a state-of-the-art pro- 846

prietary embedding model, and results are illus- 847

trated in Table 6. ATR achieves high complete re- 848

call, obtaining 99.2% on the BIRD and 70.2% on 849

Spider 2.0. These results highlight ATR’s robust- 850

ness and effectiveness, demonstrating that it can 851

achieve strong retrieval performance when com- 852

bined with advanced embedding models. 853

D Comparison with Text Re-rankers 854

In this section, we evaluate ATR’s retrieval 855

performance by comparing it against widely used 856

text re-ranking methods. For cross-encoder-based 857

re-ranking, we adopt mGTE-reranker (Zhang 858

et al., 2024)4 and BGE-M3 (Chen et al., 859

2024a)5. For LLM-based re-ranking, we 860

leverage RankGPT (Sun et al., 2023) and 861

RankZephyr (Pradeep et al., 2023)6. We use 862

4
https://huggingface.co/Alibaba-NLP/

gte-multilingual-reranker-base
5
https://huggingface.co/BAAI/bge-reranker-v2-m3

6
https://huggingface.co/castorini/rank_zephyr_7b_v1_full
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gpt-4o-mini-2024-07-18 for RankGPT.863

As shown in Table 7, ATR consistently achieves864

superior retrieval performance compared to cross-865

encoder re-rankers and LLM-based re-rankers.866

Specifically, ATR achieves improvement of 1.7%867

on Spider and 3.5% on BIRD in complete recall,868

compared to mGTE-reranker at k = 10. This per-869

formance gap widens on Spider 2.0, where ATR870

achieves a 19.0% higher complete recall compared871

to RankZephyr at k = 10. Given that ATR is sub-872

stantially smaller than RankZephyr, these results873

demonstrate the capability of ATR to overcome the874

limitations of top-k retrieval methods and effec-875

tively learn robust table representations.876

E Case Study877

We investigate the limitations of top-k approaches878

through qualitative analysis on specific examples879

from the BIRD and Spider 2.0 datasets. In these880

examples, relevant tables are retrieved using Con-881

triever (k = 5) and ATR. SQL queries are gener-882

ated using Qwen2.5-Coder-32B.883

As illustrated in Table 8, the top-k approach re-884

sults in retrieving unnecessary tables when the num-885

ber of required tables is fewer than k. These irrele-886

vant tables can be noise, leading to confusion and887

incorrect SQL generation. Conversely, as illustrated888

in Table 9, when the query necessitates more tables889

than the k, top-k retrieval fails to retrieve all essen-890

tial tables, again resulting in incorrect SQL outputs.891

In contrast, ATR adaptively retrieves an appropri-892

ate table based on a query, effectively retrieving all893

necessary tables while minimizing irrelevant ones.894

This demonstrates ATR’s clear advantage of provid-895

ing precise and optimized input for the generator,896

significantly improving the accuracy and reliability897

of the generated SQL query.898

F Prompt Template899

We vary prompt templates based on the dataset and900

SQL dialect when performing text-to-SQL tasks.901

Fig. 5 shows the prompt templates used for the Spi-902

der and BIRD datasets. Fig. 6 to Fig. 8 are prompt903

templates used for the Spider 2.0 dataset.904
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Question

Please list player names which are higher than 180.

Tables Retrieved by ATR Tables Retrieved by Top-k

"Player"

"Player"
"Match"
"League"
"Team"
"superhero"

SQL Generated by ATR SQL Generated by Top-k

SELECT player_name FROM Player 
WHERE height > 180

SELECT T1.player_name FROM Player AS T1 
INNER JOIN Match AS T2 
ON T1.player_api_id = T2.home_player_1 
WHERE T1.height > 180

Retrieved Table Schema

"Player": id, player_api_id, height, weight, birthday, player_name, player_fifa_api_id
"Match": id, home_player_1, stage, goal, season, country_id, league_id, match_api_id, ...
"League": id, country_id, name
"Team": id, team_api_id, team_fifa_api_id, team_long_name, team_short_name
"superhero": id, superhero_name, full_name, gender_id, eye_colour_id, hair_colour_id, ...

Table 8: A case study illustrating a scenario where the retrieval size k exceeds the number of tables required to
resolve the query. As the top-k approach retrieves unnecessary tables, it propagates noise, degrading downstream
SQL generation. Irrelevant tables are in red, and unnecessary tables that do not contribute to answering the query
are highlighted in yellow. Retrieved table schema displays schema information for all retrieved tables.
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Question

Please calculate the monthly average levels of PM10, PM2.5 FRM, PM2.5 non-FRM, volatile organic
emissions, SO2 (scaled by a factor of 10), and Lead (scaled by a factor of 100) air pollutants in
California for the year 2020.

Tables Retrieved by ATR Tables Retrieved by Top-k

"pm25_frm_daily_summary"
"lead_daily_summary"
"pm10_daily_summary"
"pm25_nonfrm_daily_summary"
"so2_daily_summary"
"voc_daily_summary"

"pm25_frm_daily_summary"
"lead_daily_summary"
"pm10_daily_summary"
"pm25_frm_hourly_summary"
"pm10_hourly_summary"
"pm25_nonfrm_daily_summary"
"so2_daily_summary"
"voc_daily_summary"

SQL Generated by ATR SQL Generated by Top-k

WITH pm10_avg AS (
SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(arithmetic_mean) AS avg_pm10
FROM `bigquery-public-data.epa_historical_air_quality.pm10_daily_summary`
WHERE state_name = 'California' AND EXTRACT(YEAR FROM date_local) = 2020
GROUP BY month),
pm25_frm_avg AS (
SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(arithmetic_mean) AS avg_pm25_frm
FROM `bigquery-public-data.epa_historical_air_quality.pm25_frm_daily_summary`
WHERE state_name = 'California' AND EXTRACT(YEAR FROM date_local) = 2020
GROUP BY month),
pm25_nonfrm_avg AS (
SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(arithmetic_mean) AS avg_pm25_nonfrm
FROM `bigquery-public-data.epa_historical_air_quality.pm25_nonfrm_daily_summary`
WHERE state_name = 'California' AND EXTRACT(YEAR FROM date_local) = 2020
GROUP BY month),
voc_avg AS (
SELECT EXTRACT(MONTH FROM date_local) AS month,
AVG(arithmetic_mean) AS avg_voc
FROM `bigquery-public-data.epa_historical_air_quality.voc_daily_summary`
WHERE state_name = 'California' AND EXTRACT(YEAR FROM date_local) = 2020
GROUP BY month),
so2_avg AS (
SELECT EXTRACT(MONTH FROM date_local) AS month,
AVG(arithmetic_mean * 10) AS avg_so2_scaled
FROM `bigquery-public-data.epa_historical_air_quality.so2_daily_summary`
WHERE state_name = 'California' AND EXTRACT(YEAR FROM date_local) = 2020
GROUP BY month),
lead_avg AS (
SELECT
EXTRACT(MONTH FROM date_local) AS month,
AVG(arithmetic_mean * 100) AS avg_lead_scaled
FROM `bigquery-public-data.epa_historical_air_quality.lead_daily_summary`
WHERE state_name = 'California' AND EXTRACT(YEAR FROM date_local) = 2020
GROUP BY month)
SELECT
pm10_avg.month, pm10_avg.avg_pm10, pm25_frm_avg.avg_pm25_frm, 
pm25_nonfrm_avg.avg_pm25_nonfrm,
voc_avg.avg_voc, so2_avg.avg_so2_scaled, lead_avg.avg_lead_scaled
FROM pm10_avg JOIN pm25_frm_avg ON pm10_avg.month = pm25_frm_avg.month
JOIN pm25_nonfrm_avg ON pm10_avg.month = pm25_nonfrm_avg.month
JOIN voc_avg ON pm10_avg.month = voc_avg.month
JOIN so2_avg ON pm10_avg.month = so2_avg.month
JOIN lead_avg ON pm10_avg.month = lead_avg.month
ORDER BY pm10_avg.month;

WITH pm10_monthly_avg AS (
SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(sample_measurement) AS avg_pm10
FROM `bigquery-public-data.epa_historical_air_quality.pm10_hourly_summary`
WHERE state_name = 'California' AND EXTRACT(YEAR FROM date_local) = 2020
GROUP BY month),
pm25_frm_monthly_avg AS (
SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(sample_measurement) AS avg_pm25_frm
FROM `bigquery-public-data.epa_historical_air_quality.pm25_frm_hourly_summary`
WHERE state_name = 'California' AND EXTRACT(YEAR FROM date_local) = 2020
GROUP BY month),
pm25_nonfrm_monthly_avg AS (
SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(arithmetic_mean) AS avg_pm25_nonfrm
FROM `bigquery-public-data.epa_historical_air_quality.pm25_nonfrm_daily_summary`
WHERE state_name = 'California' AND EXTRACT(YEAR FROM date_local) = 2020
GROUP BY month),
volatile_organic_emissions_monthly_avg AS (
SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(arithmetic_mean) AS avg_volatile_organic_emissions
FROM `bigquery-public-data.epa_historical_air_quality.nox8_hourly_summary`
WHERE state_name = 'California' AND EXTRACT(YEAR FROM date_local) = 2020 AND
parameter_name = 'Nitric oxide'
GROUP BY month),
so2_monthly_avg AS (
SELECT EXTRACT(MONTH FROM date_local) AS month, AVG(arithmetic_mean) * 10 AS avg_so2_scaled
FROM `bigquery-public-data.epa_historical_air_quality.so2_daily_summary`
WHERE
state_name = 'California' AND EXTRACT(YEAR FROM date_local) = 2020
GROUP BY month),
lead_monthly_avg AS (
SELECT
EXTRACT(MONTH FROM date_local) AS month, AVG(arithmetic_mean) * 100 AS avg_lead_scaled
FROM `bigquery-public-data.epa_historical_air_quality.lead_daily_summary`
WHERE state_name = 'California' AND EXTRACT(YEAR FROM date_local) = 2020
GROUP BY month)
SELECT
m.month, COALESCE(p10.avg_pm10, 0) AS avg_pm10,
COALESCE(p25frm.avg_pm25_frm, 0) AS avg_pm25_frm,
COALESCE(p25nonfrm.avg_pm25_nonfrm, 0) AS avg_pm25_nonfrm,
COALESCE(voe.avg_volatile_organic_emissions, 0) AS avg_volatile_organic_emissions,
COALESCE(so2.avg_so2_scaled, 0) AS avg_so2_scaled,
COALESCE(lead.avg_lead_scaled, 0) AS avg_lead_scaled
FROM (SELECT DISTINCT EXTRACT(MONTH FROM date_local) AS month
FROM `bigquery-public-data.epa_historical_air_quality.pm10_hourly_summary`
WHERE EXTRACT(YEAR FROM date_local) = 2020
) m LEFT JOIN pm10_monthly_avg p10 ON m.month = p10.month
LEFT JOIN pm25_frm_monthly_avg p25frm ON m.month = p25frm.month
LEFT JOIN pm25_nonfrm_monthly_avg p25nonfrm ON m.month = p25nonfrm.month
LEFT JOIN volatile_organic_emissions_monthly_avg voe ON m.month = voe.month
LEFT JOIN so2_monthly_avg so2 ON m.month = so2.month
LEFT JOIN lead_monthly_avg lead ON m.month = lead.month
ORDER BY m.month;

Retrieved Table Schema
"pm25_frm_daily_summary": arithmetic_mean, date_local, state_code, county_code, ...
"lead_daily_summary": arithmetic_mean, date_local, state_code, county_code, ...
"pm10_daily_summary": arithmetic_mean, date_local, state_code, county_code, ...
"pm25_nonfrm_daily_summary": arithmetic_mean, date_local, state_code, county_code, ...
"so2_daily_summary": arithmetic_mean, date_local, state_code, county_code, ...
"voc_daily_summary": arithmetic_mean, date_local, state_code, county_code, ...
"pm25_frm_hourly_summary": date_local, sample_measurement, state_code, county_code, ...
"pm10_hourly_summary": date_local, sample_measurement, state_code, county_code, ...

Table 9: A case study illustrating a scenario where the retrieval size k is smaller than the number of tables required
to resolve the query. As the top- k approach fails to retrieve all necessary tables, it produces inaccurate SQL,
whereas ATR retrieves all essential tables, enabling correct SQL generation. Tables not retrieved but crucial for SQL
generation are displayed in light gray.

15



[System]

You are a highly experienced data analyst with expert-level SQL skills. You have 
been given a database schema, external knowledge and a question about the data.
Your task is to generate a valid SQLite query that correctly answers the question, 
respecting any conditions or filters implied in the prompt.
Your answer should consist only of the SQL code, without additional explanations or 
commentary.

Follow this Output Format:
SQL: <YOUR_SQL>

[User]
Database Schema:
CREATE TABLE students (
  id INT PRIMARY KEY,
  name VARCHAR(255),
  major VARCHAR(255)
);

CREATE TABLE courses (
  course_id INT PRIMARY KEY,
  course_name VARCHAR(255),
  instructor VARCHAR(255)
);

Question: How many students are currently listed in the students table?

[Assistant]
SQL: SELECT count (*) FROM students

[User]
Database Schema:
{table_str}

External Knowledge:
{external_knowledge}

Question: {query_str}

Figure 5: Prompt template for Spider and BIRD datasets.
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[System]
You are a highly experienced data analyst with expert-level SQL skills. You have been given a 
database schema, external knowledge and a question about the data.
Your task is to generate a valid query that correctly answers the question, respecting any 
conditions or filters implied in the prompt.
Your answer should consist only of the SQL code, without additional explanations or commentary.

Follow this Output Format:
SQL: <YOUR_SQL>

**IMPORTANT**
Use backticks for table identifiers (`project.dataset.table`).

[User]
Database Schema:
CREATE TABLE `SALES.CUSTOMERS` (
  id INT64,
  customer_name STRING,
  email STRING,
  address STRING,
  join_date DATE
);

CREATE TABLE `SALES.ORDERS` (
  order_id INT64,
  customer_id INT64,
  order_date DATE,
  amount NUMERIC,
  status STRING
);

Question: Find the top 5 customers with highest purchase amount

[Assistant]
SQL: SELECT
  C.customer_name, 
  SUM(O.amount) AS total_purchases
FROM 
  `SALES.CUSTOMERS` AS C
JOIN 
  `SALES.ORDERS` AS O ON C.id = O.customer_id
GROUP BY 
  C.customer_name
ORDER BY 
  total_purchases DESC
LIMIT 5;

[User]
Database Schema: 
{database_schema}

External Knowledge: 
{external_knowledge}

Question: {question}

Figure 6: Prompt template for Spider 2.0 (BigQuery dialect)
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[System]
You are a highly experienced data analyst with expert-level SQL skills. You have been given 
a database schema, external knowledge and a question about the data.
Your task is to generate a valid query that correctly answers the question, respecting any 
conditions or filters implied in the prompt.
Your answer should consist only of the SQL code, without additional explanations or 
commentary.

Follow this Output Format:
SQL: <YOUR_SQL>

**IMPORTANT**
Use double quotes for Enclose all identifiers (database, schema, table, column names, and 
aliases) in double quotes ("). 
SQL function names (YEAR, TO_TIMESTAMP, etc.) and keywords (SELECT, FROM, etc.) should NOT 
be enclosed in quotes.
When using table aliases, the alias itself must also be enclosed in double quotes. Example: 
"USERS" "U“
When referencing through aliases with dot notation, both parts need quotes: "U"."email“
Make sure all column references in SELECT, WHERE, GROUP BY, ORDER BY clauses use double 
quotes.

[User]
Database Schema:
"CREATE TABLE “SALES”.”CUSTOMERS” (
  “id” INTEGER,
  “customer_name” VARCHAR(100),
  “email” VARCHAR(100),
  “address” VARCHAR(200),
  “join_date” DATE
);

CREATE TABLE “SALES”.”ORDERS” (
  “order_id” INTEGER,
  “customer_id” INTEGER,
  “order_date” DATE,
  “amount” DECIMAL(10,2),
  “status” VARCHAR(20)
);
Question: Find the top 5 customers with highest purchase amount

[Assistant]
SQL: SELECT 
  "C"."customer_name", 
  SUM("O"."amount") AS "total_purchases" 
FROM 
  "SALES"."CUSTOMERS" "C" 
JOIN 
  "SALES"."ORDERS" "O" ON "C"."id" = "O"."customer_id" 
GROUP BY 
  "C"."customer_name" 
ORDER BY 
  "total_purchases" DESC 
LIMIT 5;

[User]
Database Schema: 
{database_schema}

External Knowledge: 
{external_knowledge}

Question: {question}

Figure 7: Prompt template for Spider 2.0 (Snowflake dialect)
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[System]
You are a highly experienced data analyst with expert-level SQL skills. You have been given a database 
schema, external knowledge and a question about the data.
Your task is to generate a valid query that correctly answers the question, respecting any conditions 
or filters implied in the prompt.
Your answer should consist only of the SQL code, without additional explanations or commentary.

Follow this Output Format:
SQL: <YOUR_SQL>

[User]
Database Schema:
CREATE TABLE CUSTOMERS (
  id INTEGER,
  customer_name TEXT,
  email TEXT,
  address TEXT,
  join_date TEXT
);

CREATE TABLE ORDERS (
  order_id INTEGER,
  customer_id INTEGER,
  order_date TEXT,
  amount REAL,
  status TEXT
);

Question: Find the top 5 customers with highest purchase amount

[Assistant]
SQL: SELECT
  C.customer_name, 
  SUM(O.amount) AS total_purchases
FROM 
  CUSTOMERS C
JOIN 
  ORDERS O ON C.id = O.customer_id
GROUP BY 
  C.customer_name
ORDER BY 
  total_purchases DESC
LIMIT 5;

[User]
Database Schema: 
{database_schema}

External Knowledge: 
{external_knowledge}

Question: {question}

Figure 8: Prompt template for Spider 2.0 (SQLite dialect)
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