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Abstract

Recent research has shown that the three-dimensional (3D) genome structure
is strongly linked to cell function. Modeling the 3D genome structure can not
only elucidate vital biological processes, but also reveal structural disruptions
linked to disease. In the absence of experimental techniques able to determine 3D
chromatin structure, this task is achieved computationally by exploiting chromatin
interaction frequencies as measured by high-throughput chromosome conformation
capture (Hi-C) data. However, existing methods are unsupervised, and limited
by underlying assumptions. In this work, we present a novel framework for 3D
chromatin structure prediction from Hi-C data. The framework consists of, a
novel synthetic data generation module that simulates realistic structures and
corresponding Hi-C matrices, and CHROMFORMER, a transformer-based model
to predict 3D chromatin structures from standalone Hi-C data, while providing
local structural-level confidence estimates. Our solution outperforms existing
methods when tested on unseen synthetic data, and achieves comparable results on
experimental data for a full eukaryotic genome. The code, data, and models can be
accessed at https://github.com/AI4SCR/ChromFormer .

1 Introduction

A plethora of recent studies have illustrated that the 3D genome organization affects if, when,
and how genetic information is expressed [2] to ensure controlled execution of essential cellular
processes [20, 19]. As genome misfolding is increasingly linked to different diseases [5, 13],
modeling the 3D structure of chromatin can not only provide mechanistic insights on vital cell
processes, but also identify structural disease biomarkers [1]. However, there exists no method to
experimentally determine 3D genome structure. Chromatin organization is studied implicitly using
high-throughput chromosome conformation capture (Hi-C) experiments [12] that produce a contact
map containing interaction frequencies among tiny DNA fragments (loci) across the genome. In
absence of experimental methods, a plethora of computational approaches that infer 3D chromatin
structure from Hi-C contact maps have emerged [17]. Most methods map interaction frequencies to
3D Euclidean distances via a parametric transfer function and use them as constraints to solve an
optimization problem [18]. However, the transfer function differs between organisms and resolutions
[26]. Recently, data-driven methods employing manifold learning to learn a 3D representation of
Hi-C data without a transfer function assumption have emerged, such as GEM [27]) and REACH-3D
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[3]. Still, in the absence of ground truth, the learning capacity of these unsupervised methods is
limited, as their architecture is not designed to generate encodings resembling 3D structures. In this
work we propose a novel framework for predicting 3D chromatin structure, inspired by TECH-3D,
a state-of-the-art transfer learning method [6]. In contrast to TECH-3D, we propose a synthetic
data generation module that simulates biologically-informed 3D structures and corresponding Hi-C
matrices using optimal transport (OT), and CHROMFORMER, a transformer-based model that predicts
3D structures from Hi-C matrices, while also estimating the confidence of the prediction.

2 Methods

Our proposed framework, presented in Figure 1, consists of a synthetic data generation component
that simulates paired chromatin structures and Hi-C matrices, and CHROMFORMER, a transformer-
based model that is trained on the synthetic data and learns to map Hi-C matrices to 3D chromatin
structures. CHROMFORMER also outputs loci-level confidence values using a calibration network
that corrects the predicted confidence logits to estimated confidence values.

Figure 1: Overview of our proposed chromatin structure prediction framework.

Synthetic Data Generation: To address the lack of ground truth data, in our framework we first
propose a Uniform Cluster Walk to generate pairs of synthetic 3D chromatin structures and Hi-C
matrices. To resemble real 3D chromatin structures, the synthetic structures need to satisfy the
following constraints: i) smoothness and compactness, ii) equidistance of consecutive loci, and iii)
presence of clustered regions resembling topologically associated domains (TADs) [16]. To this end,
given a number of n loci, we generate a structure S ∈ Rn×3 , while employing rejection sampling at
different levels to ensure biological plausibility. More formally, for a given locus {pi, q⃗i}, we first
sample r ∼ U(−1, 1) where ||r||2 ≤ 1 to ensure isotropy. q⃗i+1 is then chosen as (1−δ)q⃗i+δr⃗/||r||2,
where δ is a smoothness parameter, followed by L2 normalization. The next locus pi+1 is derived
as pi + q⃗i+1. To ensure S is compact, pi+1 is subject to rejection sampling according to a Gaussian
N (p0, σ), where p0 is the starting locus and σ controls the degree of compactness. pi+1 is rejected if,

exp
(
−
(
∥pi+1 − p0∥2/σ

)2)/
exp

(
−
(∥∥(pi − p0)×max

[
0, 1− 1/∥pi − p0∥2

]∥∥
2

/
σ
)2) ≤ ρ (1)

where, ρ is a sampled probability. Further, we create a TAD of length l << n, starting at pi, by
using rejection sampling with a Gaussian N (pi, ν) and Equation 1. As TADs are more compact,
we set ν < σ. We enforce a distance of at least k loci after a TAD ending before being eligible to
form another TAD. More details on the structure generation are given in the Appendix A.1. S is then
centered and normalized by the maximum L2 norm of loci in S. The corresponding distance matrix
D and Hi-C matrix H are generated using pairwise Euclidean distances between all loci in S, and
a power law D−1/α, respectively, where α is a tunable parameter. We normalize H using iterative
correction and eigenvector decomposition (ICE) normalization [14] and employ optimal transport
(OT) [25] to match the synthetic to real Hi-C matrix. First, the real Hi-C is min-max normalized, and
then OT is applied to transform the frequency distribution of the values in the synthetic Hi-C matrix to
the frequency distribution of the values in the real Hi-C matrices (more details in the Appendix A.2).
Notably, the usage of OT mitigates the distribution gap without any training and without requiring
the real chromatin structures.
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CHROMFORMER: The synthetic data generator outputs sets of three matrices, S ∈ Rn×3, D ∈
Rn×n, and H ∈ Rn×n. CHROMFORMER operates on H to predict S̃, D̃ and confidence C̃ ∈
Rn×100. CHROMFORMER builds on the hypothesis that the relative spatial distribution influences
the formulation of a 3D chromatin structure, and we use a Transformer [24] to exploit this hypothesis.
First, CHROMFORMER employs Eproj : Rn×n → Rn×d to project H onto lower dimensional
embeddings E ∈ Rn×d, d < n. E is summed with the positional embeddings from Epos : Zn → Rn×d

to include the loci spatial information. E is processed by a Multi-head Transformer, consisting of two
transformer encoders, which utilizes self-attention to learn the inter-loci relations and contextualizes
E. Subsequently, E is processed by Estr : Rn×d → Rn×3, consisting of a linear decoder, to predict
3D loci coordinates. These coordinates are centered and divided by the maximum loci L2 norm to
produce S̃. D̃ is derived from S̃ by computing pairwise Euclidean distances. A major challenge in the
addressed task is the lack of ground truth 3D chromatin structures, which inhibits assessment of model
predictions. As a proxy, we approximate the prediction uncertainty by producing loci-level confidence
scores. Formally, we linearly project E to C̃, which represents the non-normalised predictions/logits
for belonging to 100 confidence interval bins. C̃ is used for confidence score optimization and model
calibration as described below.

Loss objectives: We optimize L = Ld + λkLk + λcLc, consisting of three loss terms, to tune
CHROMFORMER. Ld is the mean squared error (MSE) between D and D̃ to ensure the distance
preservation. The predicted structure S̃ can be oriented and scaled differently with respect to S while
being similar in structure. To mitigate this, we use the Kabsch algorithm [10] to align S̃ to S, resulting
in S̃aligned. Lk computes the MSE between S and S̃aligned. Lc aims to ensure the correct prediction
loci confidence, computed using a cross entropy between Softmax(C̃) and estimated confidence
scores C. C is derived using a modified AlphaFold’s [9] Local Distance Difference Test [15]. First,
an inverse relative error ReLU

(
1− |D− D̃|/D

)
is computed to assign low confidence to large

deviations between D and D̃. The error is row-normalized excluding self-interacting diagonal to
produce the scores. C is defined as the one hot encoding of ⌊scores × 100⌋. All implementation
details are given in the Appendix A.3.

Calibration network: In the absence of real ground truth structures, it is crucial to define loci-level
confidence scores. Lc is weighted low during model training to give more emphasize to accurate
structure prediction that induces sub-optimal confidence C̃. We design a calibration network to
correct for this and improve confidence estimates on unseen real test data. Additionally, the network
can also correct for overconfident predictions in C̃. To train the calibration network, we use C
and C̃ from the synthetic validation set v, which are then split into Cvtr, Cvval, C̃vtr, and C̃vval for
network training and validation. We train three networks supporting three calibration techniques,
i.e., temperature scaling [7], isotonic calibration [8], and beta calibration [11]. The networks
transform C̃vtr to calibrated[C̃vtr] to match Cvtr. The performance of the networks is quantified by,
MSE(calibrated[C̃vval], Cvval)−MSE(C̃vval, Cvval). Upon training, these networks are applied on
C̃, predicted by CHROMFORMER, for the real test data.

3 Results and Discussion

Public Datasets: We exploit the following publicly available datasets: the TRUSSART dataset [23],
a set of 100 simulated structures that contain loops, TADs and long-range interactions paired with
a single Hi-C matrix (202 loci at 5 kilobase resolution), and the TANIZAWA dataset [22], a real
experimental single Hi-C measurement across the full fission yeast genome that contains 1258 loci at
5 kilobase resolution together with 18 ground truth pair-wise 3D Euclidean distances as measured by
Fluorescence In Situ Hybridization (FISH).

Synthetic dataset: Using the Uniform Cluster Walk algorithm, we generated 1000 and 500 structures
with 202 and 1258 loci to match the TRUSSART and TANIZAWA datasets, respectively (see Appendix
Figure 4). We follow a 4:1 train-validation split for training CHROMFORMER. The validation set is
further split into a 9:1 ratio for the calibration.

Evaluation metrics: For the TRUSSART data, the predicted S̃ by CHROMFORMER is aligned with the
{Si}i=1:100 ground truth structures using the Kabsch algorithm and the mean of {MSE(Si, S̃)}i=1:100

is used to quantify the model performance. For the TANIZAWA data, we match the experimentally
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determined 18 ground truth distances to the equivalent entries in the predicted D̃, and compute
the Pearson correlation between the two sets. To quantify the calibration networks, we compute
MSE(C,Softmax(C̃)) on the Trussart dataset. ReLU

(
1− |D− D̃|/D

)
is row-normalized to get C,

where D is derived from the mean of the Trussart structures.

Figure 2: Synthetic structure (a) and Hi-C (d), and its evolution (b-d) w.r.t TRUSSART Hi-C (e).

Qualitative and quantitative analysis: Figure 2 displays a synthetic structure S and its corresponding
Hi-C matrix H. We clearly observe that S is smooth with equidistant consecutive points and that it
includes chromatin loops and TAD-like domains, that are also visible in H. The Hi-C matrices in
Figure 2(b) and (e) highlight the distribution gap between the synthetic and the real Trussart data,
which is progressively reduced following ICE (c) and OT (d), leading to a final Hi-C matrix that
is closer to the real data distribution while retaining the initial Hi-C information. Appendix Figure
5 presents more sample examples. Figure 3 presents the ground-truth Trussart structure (mean of
100 simulations) and the structure as predicted by CHROMFORMER using the Trussart Hi-C. We
observe that the predicted structure greatly resembles the real one as it preserves all loops and TADs.
Predicted structures by the competing methods are presented in Appendix Figure 7.

Figure 3: Mean ground truth vs. predicted
TRUSSART structure. Arrows (in red) show sam-
ple regions where loops and TADs are preserved.

Methods TRUSSART [↓] TANIZAWA [↑]
(Kabsch distance) (Pearson’s ρ)

Random 0.2233 -0.1044
MiniMDS 0.1439 0.9092
GEM 0.1437 0.9600
REACH-3D 0.0595 0.4831
TECH-3D 0.0214 0.7088
Ours 0.0068 0.9047

Table 1: Quantitative benchmarking of our pro-
posed method with competing algorithms on the
test datasets. Best scores in bold.

Quantitative results on the test datasets are presented in Table 1. CHROMFORMER achieves the
lowest Kabsch distance on the Trussart data, outperforming competing methods by a large margin.
On the Tanizawa data, CHROMFORMER outperforms the state-of-the-art method TECH-3D [6],
with comparable performance to MiniMDS [18] and GEM [27]. Still, qualitative results (Appendix
Figure 8) demonstrate that CHROMFORMER reconstructs smooth and loopy structures with a clear
distinction between chromosomes, while miniMDS outputs a structure which is a compact set of
points without loops and biological feasibility. Among the calibration networks, isotonic calibration
results in the best score, followed by beta calibration. The average ground truth confidence, and the
average predicted confidence before and after isotonic calibration are 88.90%, 87.40%, and 88.24%,
respectively. The average uncalibrated confidence is already good, and the calibration step brings it
closer to the upper bound (Appendix Table 2 and Figure 9). On the MSE metric, isotonic calibration
produces a score of 8.64 compared to 10.39 before calibration.

4 Conclusion and Future work

In this work we present a novel approach for reconstructing 3D genome structures that overcomes the
lack of ground-truth data using a biologically-informed synthetic data generation and a transformer-
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based architecture. Our model can accurately reconstruct publicly available synthetic structures,
outperforming state-of-the-art methods, and shows comparable performance to state-of-the-art algo-
rithms on experimental microscopy measurements from real genomes. A limitation of our framework
is data generation, a computationally intensive process that needs to be tuned to tested datasets.
We are currently tuning our model hyperparameters and extending its validation to other datasets,
especially single-cell Hi-C data [21].
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A Appendix

A.1 Uniform Cluster Walk algorithm

Algorithm 1: Synthetic structure generation algorithm.

1: Inputs:

• n: number of loci in a synthetic structure
• σ: degree of compactness of the structure
• ν: degree of compactness of a TAD
• β: probability of creating a TAD
• δ: smoothness coefficient between consecutive loci
• l: number of loci in a TAD
• k: number of aging loci before being eligible to start a new TAD

2:
3: Initialize:

• p0: starting locus 3D co-ordinates
• q⃗0: starting locus trajectory vector

4:
5: function GET_NEXT_LOCUS(pin, q⃗in, pcenter, v) ▷ Get the next locus co-ordinates
6: ρ ∼ [0, 1]

7: while
exp

(
−
(
∥pout−pcenter∥2/v

)2)
exp

(
−
(∥∥∥(pin−pcenter)×max

[
0,1−1/∥pin−pcenter∥2

]∥∥∥
2

/
v
)2) ≤ ρ do ▷ Gaussian

rejection criterion
8: r ∼ U(−1, 1)
9: while ∥r∥2 ≥ 1 do

10: r ∼ U(−1, 1)
11: end while
12: q⃗out ← (1− δ)q⃗in + δ r⃗

∥r∥2
▷ Smoothness constraint

13: pout ← pin + q⃗out
14: end while
15: return pout, qout
16: end function
17:
18: itadBegin ← 0
19: itadEnd ← 0
20: for i = 1 to n do ▷ Loop to derive structure defining loci
21: if i < itadEnd then
22: continue;
23: end if
24: t ∼ [0, 1]
25: if t > β and i < n− l and i > itadBegin then ▷ Begin a TAD
26: itadBegin ← i+ l + k
27: itadEnd ← i+ l
28: pcenter ← pi−1

29: for j = 0 to l − 1 do
30: pi+j , q⃗i+j ← GET_NEXT_LOCUS(pi+j−1, q⃗i+j−1, pcenter, ν)
31: end for
32: else
33: pi, q⃗i ← GET_NEXT_LOCUS(pi−1, q⃗i−1, p0, σ)
34: end if
35: end for
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A.2 Optimal transport

We apply OT as an unsupervised domain adaptation method to minimize the differences in values between
the synthetic and the real Hi-C matrices by matching the frequency distribution of the synthetic and real
values. Figure 5 shows the histograms of the synthetic Hi-C values before and after applying OT. In particular,
given a set of synthetic and real Hi-C matrices, we first compute the histograms of the frequencies of the
values in the two sets by using 30 uniformly-spaced bins. Then, the histograms are normalized to have a
total mass of 1, so that they can be considered discrete probability distributions. Given the two normalized
histograms α, β, their supports A,B with equal size (|A| = |B| = 30), and squared euclidean distance costs
c : A×B → R; c(a, b) = (a− b)2, the OT problem is defined as follows:

min
Γ

∑
(a,b)∈A×B

c(a, b)Γ(a, b) subject to:

∑
b∈B

Γ(a, b) = α(a) ∀a ∈ A

∑
a∈A

Γ(a, b) = β(b) ∀b ∈ B

Γ(a, b) ≥ 0 ∀a ∈ A, b ∈ B

The solution of the above linear program is the optimal transport plan Γ that maps each bin a ∈ A of the source
histogram α to one or more bins b ∈ B of the target histogram β. The value of each Γ(a, b) denotes the amount
of transported mass from α(a) to β(b). Finally, the source histogram is transported to the target histogram by
using the optimal transport plan Γ. With the transported histogram, the values of the synthetic Hi-C matrices are
transformed to match the frequency distribution of the values of the real Hi-C matrices. For the implementation,
we used the OT solver from Python Optimal Transport [4] library. Notably, OT transformation is independent
of the specific structure of the target Hi-C, and only relies on the frequency distribution of values in the target
Hi-C matrices. Figure 2 shows the effect of the OT transformation with source Hi-C (c), target Hi-C (e), and
transported source Hi-C (d).

Figure 4: Pairs of synthetic structures and Hi-C matrices for TRUSSART and TANIZAWA.

Figure 5: Frequency distribution of Hi-C values for TRUSSART and TANIZAWA datasets.
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A.3 Implementation details

On a local CPU, it takes 30 minutes to generate the Trussart synthetic data, and 6 hours to generate the Fission
Yeast synthetic data. To create the TRUSSART and TANIZAWA synthetic structures, the selected parameters were:

Parameters TRUSSART TANIZAWA

# of loci n 202 1258
smoothness δ 0.45 0.2
degree of compactness of a structure σ 4 6
probability of creating a TAD 0.1 0.8
degree of compactness of a TAD σ 1.5 1
# of loci per TAD l 30 15
# of aging loci k 30 5
power law α 1 1

CHROMFORMER model and training parameters were the same for both the datasets:
• embedding dimension d: 100
• Eproj: number of layers = 1, hidden dimensions = 100
• # transformer blocks: 2 (dimension of the feedforward networks 100 and 48, respectively)
• # heads in a transformer block: 2
• Estr: number of layers = 1, hidden dimensions = 100
• Econf: number of layers = 1, hidden dimensions = 100
• Ecal: number of layers = 1, hidden dimensions = 100
• Training: #epochs: 100, batch size: 10, optimized: Adamw with lr: 0.0005, weight decay: 1e-5
• Loss weights: λk = 0.1 and λc = 0.1

Training on a local CPU takes 1 and 5 hours for TRUSSART and TANIZAWA, respectively. Training on a NVIDIA
P100 GPU with POWER9 CPU takes 20 and 50 minutes for TRUSSART and TANIZAWA datasets, respectively.

Figure 6: Evolution of Lk and Ld losses (train and validation), and evolution of Kabsch distance on
test during model training on TRUSSART.

A.4 Quantitative and qualitative results

Methods average(Softmax(C̃)) [in %][↑] MSE(C, 100 × Softmax(C̃)) [↓]
Ground truth 88.90 0.00

Before calibration 87.40 10.39
Temperature calibration [7] 87.16 11.16
Isotonic calibration [8] 88.24 8.64
Beta calibration [11] 88.17 8.72

Table 2: Quantitative results for the calibration networks on TRUSSART data. Best scores in bold.
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Figure 7: Predicted chromatin structures on TRUSSART by different algorithms.

Figure 8: Predicted chromatin structures on TANIZAWA by different algorithms.

Figure 9: Heatmaps of loci-level confidence on TRUSSART dataset.
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