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ABSTRACT

When conducting user studies to ascertain the usefulness of model explanations in
aiding human decision-making, it is important to use real-world use cases, data,
and users. However, this process can be resource-intensive, allowing only a lim-
ited number of explanation methods to be evaluated. Simulated user evaluations
(SimEvals), which use machine learning models as a proxy for human users,
have been proposed as an intermediate step to select promising explanation meth-
ods. In this work, we conduct the first SimEvals on a real-world use case to
evaluate whether explanations can better support ML-assisted decision-making in
e-commerce fraud detection. We study whether SimEvals can corroborate find-
ings from a user study conducted in this fraud detection context. In particular, we
find that SimEvals suggest that all considered explainers are equally performant,
and none beat a baseline without explanations – this matches the conclusions of the
user study. Such correspondences between our results and the original user study
provide initial evidence in favor of using SimEvals before running user studies.
We also explore the use of SimEvals as a cheap proxy to explore an alternative
user study set-up. We hope that this work motivates further study of when and how
SimEvals should be used to aid in the design of real-world evaluations.

1 INTRODUCTION

The field of interpretable machine learning has proposed a large and diverse number of techniques
to explain model behavior. However, it is difficult to anticipate exactly which explanations may
help humans with a particular use case (Chen et al., 2022b; Davis et al., 2020). There have been
calls for more human-centered approaches Wortman Vaughan & Wallach (2021); Liao & Varshney
(2021) to investigate how humans benefit from explanations in specific use cases, particularly through
user studies (Doshi-Velez & Kim, 2017). Ideally, these user studies would utilize real users, tasks,
and data to maximize the applicability of the study’s findings (Amarasinghe et al., 2020). Since
real-world user studies can be resource-intensive to conduct and thus typically only evaluate a limited
number of explanation methods (or explainers), simulated user evaluations (SimEvals) have been
proposed as a way to identify candidate explanation methods for user studies using machine learning
models (Chen et al., 2022a). While the original work by Chen et al. (2022a) performed a cursory
evaluation of SimEvals, it is unclear whether this approach would generalize to real-world use
cases of explanations.

In this work, we focus on a real-world decision support use case where professional fraud analysts
review e-commerce transactions to determine whether a transaction is fraudulent. We conduct the first
SimEvals on a real-world task and data and compare the results to the findings from a user study
with real-world users conducted by Amarasinghe et al. (2022) as shown in Figure 1. We instantiate
SimEvals to study whether any of these explanations contained predictive information about
whether a transaction was fraudulent and find no statistical difference in SimEval performance
between the three explanation methods and a baseline SimEval without explanations. The results of
this SimEval trial closely match the findings of Amarasinghe et al. (2022). Our results suggest that
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Figure 1: We compare real and simulated user studies of explanations (SimEvals) for the real-world use
case of fraud detection decision support, shown in the top and bottom rows respectively. A user study designed
to compare three different study arms, each with a different explanation method, in order of performance. A
corresponding SimEval study that compares the same three explanation methods but replaces fraud analysts
are replaced with ML models. We compare the relative performance of SimEval across a variety of candidate
explainers against results across comparable arms of Amarasinghe et al. (2022) and we find that SimEvals
support the negative result in the user study (i.e., none of the explainers outperform showing the no explanation
condition).

SimEvals could have helped to select better candidate explainers in the original user study, reducing
its cost and improving its chance of locating a successful explainer. They also provide evidence that
SimEval performance is associated with human performance across different explainers.

We also explore the use of SimEvals to cheaply identify an alternative study design beyond the
canonical set-up where analysts are provided both the transaction and the explanation as shown in
Figure 3. Our preliminary findings suggest that a subset of the explainers considered in the original
study can be used as a human-centric dimensionality reduction technique (i.e., there is not statistically
less signal in only presenting the explanation on its own) to reduce the time cost of processing a
full transaction. To get an initial signal on the validity of this proposed design, we conduct short
interviews with multiple fraud analysts and evaluate whether the information the analysts typically
look for in a full transaction is present in the explanations used in the alternative study design.

In summary, this work explores two ways to utilize SimEvals in a real-world context. We believe
that our comparative investigation of real and simulated user studies will serve as an example of using
SimEvals more effectively.

2 CAN SIMEVALS CORROBORATE FINDINGS FROM REAL-WORLD USER
STUDY?

While initial results from prior work suggest that SimEvals can be used to identify promising
explanations for user studies, there has been limited evaluation of its utility in real-world contexts.
We conduct such an evaluation to see whether SimEvals confirm user study findings in a fraud
detection use case. We first summarize the findings from the original study by Amarasinghe et al.
(2022) in this use case and then discuss how to instantiate and train a SimEval for each explanation
method in the study. Figure 1 summarizes the findings of this section.
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2.1 PRIOR FINDINGS FROM REAL-WORLD USER STUDY

The user study by Amarasinghe et al. (2022) investigated the real-world application of detecting
financial fraud.1 In the fraud detection use case, a machine learning model f is trained to estimate ŷ
which is the probability that a given transaction was actually fraud given a piece of transaction data
x. The user study introduced an explanation E(x, f) of the model f for a given transaction x to the
fraud analysts, hypothesizing that this additional information could improve decision outcomes and
speed. Specifically, each E(x, f) is a sparse vector which contains feature importance for the top-6
highest magnitude importance features for a given transaction x and model f and 0 otherwise. To
decide whether x was fraudulent, analysts were given the transaction x (which had 112 features), the
explanation E(x, f), and the model score ŷ = f(x). In addition, there were two baseline arms in
which the analysts were given only x or (x, ŷ) to predict fraud.

Analysts in the study were shown 500 transactions for each of three different explainers
(LIME (Ribeiro et al., 2016), TreeSHAP (Lundberg & Lee, 2017), TreeInterpreter (Saabas, 2015))
and for each baseline arm. Amarasinghe et al. (2022) proposed a metric called Percent Dollar Regret
(PDR) to better reflect operational goals. PDR measures the amount of revenue lost due to incorrect
decisions relative to what would be realized if all the reviewed transactions were perfectly classified:

PDR = 1− Realized Revenue
Possible Revenue

(1)

The more detailed equation is found in Amarasinghe et al. (2022). Given this set-up, the main findings
of the experiment were: (1) No explanation improved analyst performance in terms of PDR over the
baseline of showing analysts the model score only; (2) There was no statistical difference in analyst
performance between the three explanation methods. In this work, we evaluate SimEvals for both
claims to determine whether there was predictive information in any of the explanations that did not
translate to improved analyst performance.

2.2 SETTING UP SIMEVALS TO REFLECT USER STUDY

SimEvals are ML models trained to predict the ground truth label (e.g., whether a transaction
is fraud) given the same information that would be presented in a user study. Specifically, the
information in the user study can be represented by the tuple (x, ŷ, E(x, f)), where the explainer
E(·) was either TreeInterpreter, LIME, TreeSHAP, or in the baseline case, no explanation and ŷ the
predicted probability of fraud by f . Each SimEval model corresponds to one candidate explanation
method. Validation set PDR is used to evaluate SimEvals. As noted in Chen et al. (2022a),
SimEvals do not aim to replicate a user’s decision-making process and their results should be
interpreted as measures of the predictive power of their given explanations.

Each SimEval was trained and evaluated on n = 1500 total transactions, which were split into 1000
train and 500 validation transactions. The transactions in each split were chosen to match the ones
shown to the analysts in the original user study to reduce the impact of the validation set choice on
final conclusions. Note that this means the validation split is not the same across different explainers
because different transactions were shown to the analysts across different arms of the experiment to
avoid showing repeated transactions, as shown in Figure 2. However, we verified that the different
training and validation splits followed roughly the same distribution. To select a family of SimEval
models, we ran a hyperparameter grid search over the parameters in Table 5. We found that the best
validation performance was achieved using a Random Forest model with a minimum of 5 samples
per leaf node. We use this as the base model family for SimEvals in the remaining experiments.

2.3 CHECKING FOR PARROTING

One unique challenge of decision support use cases like the fraud detection one we consider is the
similarity of information provided to users (e.g., the ŷ, the model prediction for x) and the output
that the analysts aimed to predict. An effective degenerate strategy emerges for the corresponding
SimEval model to simply apply a threshold to ŷ. A SimEval model which parrots ŷ in this manner

1Note that this use case was studied by both Amarasinghe et al. (2022) and an earlier study by Jesus et al.
(2021). We chose to compare our SimEvals with findings from the more recent user study because it improved
the experimental design in multiple ways to be more representative of the real-world use case.
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Figure 2: A diagram illustrating the train/test split used for each SimEval experiment. As we did not have
explanations available for the 500 transactions used in the ’no explanation’ arm of the original user study, we
perform the above data split. The above data split ensures that the validation dataset associated with each
explanation matches the transactions used in the original user study. It also ensures that each SimEval receives
the same dataset size (1000 train, 500 validation).

will disregard the explainers entirely. When we compare the Original Model results with SimEvals
in Table 1, we find that all explanations improved in PDR when explainers were included, suggesting
that the SimEvals could not have utilized only ŷ when making predictions.

Table 1: Performance measured using PDR (lower is better) of the original fraud detection model, SimEvals
and actual analysts across explainers. Parentheses contain 90 percent CIs. CIs were obtained by bootstrapping
test samples to generate a pivotal confidence interval – we share CIs rather than standard errors as the CIs are
not symmetric. Note that the Original Model column does not depend on the explanations, but the PDR differs
due to the different validation split associated with each explainer.

Original Model SimEvals Analyst
TreeInterpreter 0.102 (0.075, 0.121) 0.071 (0.054, 0.087) 0.100 (0.081, 0.119)
LIME 0.164 (0.099, 0.226) 0.103 (0.061, 0.131) 0.116 (0.087, 0.145)
TreeSHAP 0.109 (0.078, 0.142) 0.081 (0.052, 0.105) 0.097 (0.078, 0.116)
Model Score 0.133 (0.082, 0.172) 0.097 (0.047, 0.127) 0.092 (0.068, 0.112)

2.4 COMPARING SIMEVALS TO USER STUDY FINDINGS

To evaluate whether SimEvals can corroborate user study findings, we test whether or not the
inclusion of explanations generated by any explainer yields higher SimEval PDR as compared to
a baseline SimEval trained without explanations. We present both the aggregate SimEval PDR
scores across the validation set for each explainer, which is equivalent to the metric from the user
study, as well as a transaction-based analysis where we compare SimEval predictions on individual
instances with analyst predictions. A high correspondence on individual transactions would suggest
that SimEvals make decisions in a way that is similar to the analysts.

Comparison of aggregate performance. In Table 1, we compared SimEvals to the aggregate
analyst performance as found in Amarasinghe et al. (2022). The SimEval results show that
the overlap in the actual information provided to the analysts across explanations are roughly
the same (noting the error bars in the SimEvals column), which supports the general finding
from Amarasinghe et al. (2022) that all explainers lead to comparable performance as the baseline
(noting the error bars in the Analyst column). Additionally, while not statistically significant, we do
observe that both TreeInterpreter and TreeSHAP allowed both SimEvals and analysts to achieve
lower PDR compared to LIME.2

2Our reproduced analyst PDR for only the model score case differed slightly from the result found in
Amarasinghe et al. (2022) (0.092 vs. 0.089). This could be due to different choices in the exclusion of “warm-up”
samples or a discrepancy in data preprocessing. We suspect that this difference only appeared in the model score
case because this data was stored in a separate database than in the other experimental arms.
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Figure 3: We use SimEvals to explore a new study design which would only provide the explanation without
the input transaction and find that for two explanations there is minimal difference in performance between the
two SimEval variants. We also conduct short interviews with fraud analysts to get preliminary signal on this
study design.

Comparison on individual transactions. We performed an analysis on the association between
analyst and SimEval predictions on individual transactions. Table 2 shows the ROC AUC when
using SimEval output as an estimate of the probability that an analyst predicted a given transaction
to be fraud. This analysis yielded results which were significantly above 0.5, indicating some
association. However, this association was not significantly stronger than when using predictions
from the fraud model (ŷ) as an estimate for analyst predictions directly, implying SimEvals are
may not be as informative at the individual transaction level.

Table 2: The ROC AUC (higher is better) achieved when using either ŷ or SimEvals output to predict the
analyst predictions, separated by the type of explainer. We see that SimEvals and the Original Model are
about equally predictive of analyst predictions.

Original Model SimEvals

TreeInterpreter 0.734 0.727
LIME 0.695 0.675
TreeSHAP 0.703 0.731

2.5 DISCUSSION & LIMITATIONS

Since SimEvals corroborate findings from the user study, we believe the original study could have
benefited from running SimEvals to potentially select better explanation methods before conducting
a full user study. However, we emphasize that it is not a replacement for running actual user studies.
The aggregate analysis only provides an estimate of which explainers have the highest performance
with no guarantee of how large the difference will actually be in a user study. In particular, we
might expect more divergence between human and SimEval behavior for a few potential reasons:
outside domain knowledge is especially important and the analysts lack the time to carefully examine
each piece of information as a model would. This divergence is reflected in the modest association
between human and SimEval predictions shown in Table 2. Although SimEvals are intended to
find predictive information in explanations, it is possible that our choice of base model family or
learning procedure may fail to extract this information. We also note that only the aggregate analysis
is possible to conduct before running a user study, whereas the transaction-level comparison is only
possible after a user study has already been run.

3 USING SIMEVALS TO GUIDE NEW HYPOTHESES

Once SimEvals are set up for a use case, it is easy to vary the parameters of the set-up, which
include the choice of inputs. In particular, we explore whether SimEvals would perform as well
when x was excluded from the input (i.e., we train SimEvals models in the same way as described
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in Section 2.2 using (ŷ, E(x, f)) as the inputs). Since ŷ is trained on x, we hypothesized that it may
be redundant to include x. When comparing the canonical SimEvalmodels with ones that exclude x,
we find that two of the three explainers (TreeInterpreter and TreeSHAP) had only a small performance
boost while LIME’s performance gap was statistically significant as shown in Table 3. This finding
suggests providing analysts only (ŷ, E(x, f)) for TreeInterpreter and TreeSHAP explainers could
reduce the time an analyst spends on each transaction with minimal loss in information content. We
summarize this line of analysis in Figure 3. Recall that the visualization of each explanation only
shows the top 6 features out of 112.

Table 3: Performance of canonical SimEvals compared with a variant which excludes x as part of the input,
measured in PDR (lower is better). Parentheses contain 90 percent CIs. CIs for simulated users were obtained by
bootstrapping test samples to generate a pivotal confidence interval.

SimEvals excluding x SimEvals
TreeInterpreter 0.072 (0.049, 0.089) 0.071 (0.054, 0.087)
LIME 0.152 (0.124, 0.197) 0.103 (0.061, 0.131)
TreeSHAP 0.097 (0.076, 0.120) 0.081 (0.052, 0.105)

To evaluate whether a set-up in which analysts are only shown (ŷ, E(x, f)) may be justified, we
perform some initial verification with the analysts. In particular, we investigate whether the features
used in E(x, f) across different transactions x have reasonable alignment with features that analysts
think are important because it may be unnatural for the analysts to see only explanations consisting
of features which they would not typically use.

3.1 IDENTIFYING WHICH FEATURES ARE IMPORTANT TO THE ANALYSTS

To obtain analyst’s perceived feature importances, we conducted brief interviews with analysts from
the original user study by Amarasinghe et al. (2022). In the interview, we asked analysts to fill out a
spreadsheet, where they were asked to rank the importance of each feature in a transaction. They
were asked to do this with the context which contained a row for each feature in a transaction. There
was also a column for each potential “transaction reason", where each reason could be considered
as a fraudulent or a legitimate concept (e.g., a suspicious address is a justification for fraud). For
each “transaction reason”, analysts were asked to rank the importance of each feature on a scale of
0-4, where 0 corresponded to the feature being unimportant and 4 corresponded to the feature being
most important. To compute a feature alignment, we average over all of the analyst scores. For each
analyst indexed by i, we refer to their provided importances as scorei which maps a transaction x
and the jth feature of an explanation E(x, f)j to a value ranging from 0 to 4. If a transaction x had
multiple reasons labeled to it, we would select the reason that gave it the maximum score. We use the
following formula to compute the average feature alignment (AVG FA) for a given explainer E:

AVG FA(E) = E(x,y)∼D[
1

n|A|

|A|∑
i=1

n∑
j=1

scorei(x,E(x, f)j)] (2)

where in our setting, the number of features in an explanation n = 6, which is the number of non-zero
features in the sparse explanation, and the number of analysts |A| = 3. An explainer with a higher
AVG FA value means that it uses features that align more with analyst priors.

3.2 FEATURE ALIGNMENT RESULTS

Table 4: Average feature alignment (higher is better) for each explainer across fraudulent and legitimate
transactions. Parentheses contain 90 percent CIs. Legitimate transactions score lower due to analysts considering
all features similarly important when fraud is not detected.

Fraudulent Concepts Legitimate Concepts
TreeInterpreter 2.21 (2.09, 2.37) 1.28 (1.26, 1.29)
LIME 2.05 (1.95, 2.15) 1.22 (1.21, 1.23)
TreeSHAP 2.15 (2.02, 2.32) 1.22 (1.20, 1.23)

As shown in Table 4, we find that particularly for Fraudulent Concepts, there is higher feature
alignment, AVG FA, for both TreeInterpreter and TreeSHAP compared to LIME. This aligns with
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Table 3 where we found that TreeInterpreter and TreeSHAP outperformed LIME for SimEvals
excluding x. One potential reason for why LIME has higher PDR and lower AVG FA is because the
same feature appears more often in the LIME explanation compared to the two other explainers (as
shown in Table 7). Given the explanations are sparsely populated, an explanation which consistently
ranks one feature as being important would likely be less useful in distinguishing fraudulent from
legitimate transactions. These trends do not hold for Legitimate Concepts. Interviews with analysts
revealed that explainers’ AVG FA scores for legitimate transactions were significantly lower across
the board because all features could be considered to be similarly important when the transaction is
legitimate. The fact that analysts consider all features somewhat important for legitimate transactions
might mean that any drastic dimensionality reduction may be unnatural. However, it is possible
that analysts can adapt to this set-up over time. These results provide mixed evidence for the use
of explainers as a dimensionality reduction technique, though a user study would be necessary to
evaluate its benefits and drawbacks.

4 CONCLUSION

We conduct the first comparison of SimEvals against existing user study findings for the real-
world use case of decision support for fraud detection. We find that SimEvals results generally
agreed with findings from the user study by Amarasinghe et al. (2022), which is that there was no
statistical difference in predictiveness of fraud between the three explanation methods considered,
despite limited statistical power due to sample size. This finding suggests that SimEvals could
have been used to identify better choices of explainers for the use case and provides additional
evidence in favor of using SimEvals before running expensive user studies. Furthermore, we use
SimEvals to evaluate new hypotheses and find promising evidence in favor of using explanations
as a dimensionality reduction technique. We hope this work serves as a guideline to illustrate the
potential uses of SimEvals in real-world contexts both as a way to both verify whether candidate
explanation methods are predictive of a use case as well as to explore experimental design set-ups.
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A ADDITIONAL FIGURES

Table 5: A list of different values used for each hyperparameter included in the grid search. In total, 12 different
hyperparameter combinations were tested.

Hyperparameter Possible Values
Model Family Random Forest / Decision Tree

Minimum Samples at Leaf 5 / 10 / 15 / 20 / 25 / 30

Table 6: A confusion matrix of analyst and SimEval predictions. Each entry contains the portion of transactions
which were actually fraud, followed by the number of transactions, given that particular combination of
SimEval and analyst predictions. The SimEvals in the comparison were trained on (ŷ, x, E) for E ∈
{TreeInterpreter, LIME, TreeSHAP}, respectively.

Analyst Decision approved declined suspicious
Simulated User Prediction

False 0.0650, N=354 0.1111, N=045 0.0000, N=007
True 0.3962, N=053 0.6562, N=032 0.5714, N=007

Analyst Decision approved declined suspicious
Simulated User Decision

False 0.0729, N=384 0.1471, N=034 0.2857, N=007
True 0.4286, N=042 0.6296, N=027 0.6667, N=006

Analyst Decision approved declined suspicious
Simulated User Decision

False 0.0877, N=365 0.0750, N=040 0.2222, N=009
True 0.3000, N=050 0.6897, N=029 0.4286, N=007

Table 7: Summary analysis which aims to explore the repetitiveness of each explainer. For each explainer, we
find the variance vari∈features(pi), where pi is the portion of transactions shown to the analysts which had a
nonzero explanation for feature i. We also found the number of unique features which ever received a nonzero
explanation in transactions shown to the original user study analysts. Higher variance and lower number of
unique features indicates that an explainer has more uninformative features.

Variance Number of Unique Features (out of 112)
TreeInterpreter 0.006 104
LIME 0.030 31
TreeSHAP 0.015 89
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