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Abstract

Graph Neural Networks (GNNs) have become indispensable for learning on graph-structured
data, with applications in socially sensitive domains such as recommendation systems and
healthcare. However, recent research has revealed that fairness-enhancing GNNs remain vul-
nerable to adversarial attacks, raising concerns about their real-world robustness. This paper
presents a reproducibility study of Luo et al. (2024), which demonstrates that adversarial
node injection can effectively compromise fairness while preserving overall predictive accu-
racy. Our results confirm that such attacks are efficient (requiring minimal perturbations),
realistic (exploiting feasible node injections), and deceptive (causing fairness degradation
without significant accuracy loss). Along with validating the original findings, we redefine
their framework as an evasion attack, showing that the attack remains effective on a clean
model. Furthermore, we propose a novel defense strategy and analyze the impact of model
depth on the attack. Our results highlight the need for more robust GNN architectures
against fairness-targeted adversarial threats.

1 Introduction

Graph Neural Networks (GNNs) have significantly improved performance on tasks with graph-structured
data by inherently leveraging the underlying relational information. Their ability to capture complex de-
pendencies has led to widespread adoption in various domains centered around human interactions, such as
social media prediction, recommender systems, and healthcare applications (Sankar et al., 2021; Fan et al.,
2019; Yan et al., 2024; Paul et al., 2024). One of the primary applications of GNNs is node classification,
where the goal is to predict labels for individual nodes based on both their attributes and graph structure
(Xiao et al., 2021). Given their deployment in socially sensitive contexts, considerable research has focused
on enhancing fairness in GNNs, ensuring that predictions remain unbiased across attributes like gender or
race (Dai & Wang, 2021; Wang et al., 2022; Yang et al., 2024; Kose & Shen, 2024). Unfortunately, with time,
we have learned that graph neural networks can be quite unfair (Chen et al., 2024), and are also vulnerable
to adversarial attacks (Zügner et al., 2020; Mu et al., 2021). Existing literature has predominantly focused
on degrading model utility, employing strategies that manipulate graph structure, node labels, or node fea-
tures to mislead the learning process. Recently, research has begun to explore attacks aimed at undermining
fairness without affecting the utility. These attacks can be hard to detect without proper fairness metrics.

Several methods have been proposed in this direction. FA-GNN (Hussain et al., 2022) introduces adversarial
edge perturbations to exacerbate bias in graph-based predictions. FATE (Kang et al., 2024) employs a
meta-learning-based framework to optimize adversarial manipulations that amplify fairness disparities. G-
FairAttack (Zhang et al., 2024) formulates fairness attacks through a surrogate loss function while enforcing
utility constraints to maintain stealthiness. Despite these advancements, existing fairness attacks primarily
focus on perturbing the existing graph structure rather than injecting new nodes. This is often infeasible in
real-world scenarios. However, adversaries usually do have the capability of creating new nodes, establishing
connections, and setting features as they wish. This opens up a new attack surface, where fairness can
be compromised by strategically injecting nodes and forming connections in a manner that undermines the
model’s fairness in node classification. Luo et al. (2024) propose such an attack, namely Node Injection-
based Fairness Attack (NIFA), in this gray-box scenario by finding sensitive positions in the graph, connecting
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carefully to desired nodes, and optimizing features of these nodes to undermine fairness while having only
a marginal effect on the accuracy. Gray-box refers to an attack with partial knowledge of the victim model
and the training data. The victim model refers to the target machine learning model that the attacker aims
to manipulate.

In this paper, we reproduce the experiments from Luo et al. (2024) and verify their main claims. The focus
of this study is specifically on group fairness with a binary sensitive attribute, such as gender or binary race
categories, aligning with the original setup by Luo et al. (2024). Additionally, we address missing results
and explore extensions to defense strategies for this attack. These additions include the generalization of
the attack by changing it into an evasion attack, where the poisoned graph is used only during inference.
Furthermore, we investigate the usage of different defense strategies, based on node injection and model
architecture.

2 Scope of Reproducibility

The main contribution of the original paper Luo et al. (2024) is a novel gray-box poisoning attack method,
namely Node Injection based Fairness Attack (NIFA). This method injects poisoned nodes based on two
principles. The first of these is the uncertainty maximization principle, which selects the nodes in the
training graph with the highest uncertainty. These nodes will serve as the target nodes on which the injected
nodes will attach. The second principle is the homophily-increase principle. The authors define the node-
level homophily-ratio Hu as the ratio of neighbors of u that have the same sensitive attribute as the node
u itself. After choosing the uncertain nodes and injecting adversarial nodes, these nodes are attached to
the uncertain nodes which have the same sensitive attribute as the adversarial node. The rationale behind
this principle is that it will increase information propagation within the group and limit propagation across
groups, which would be the case were we to add edges to uncertain nodes randomly. Finally, a surrogate
network is used to optimize the features of the injected nodes to maximize the effectiveness of the attack.
This attack falls under the category of poisoning attacks, which are attacks that occur during the training
phase of the victim model and lead to poisoned models. In comparison, evasion attacks occur during the
inference phase of the victim model and do not affect the parameters of the model. A visualization of the
NIFA framework, originally from their paper Luo et al. (2024), can be seen in Figure 1.

In this study, we aim to reproduce the following claims made in Luo et al. (2024):

• Claim 1: NIFA can consistently attack existing GNN models with only a 1% perturbation rate,
resulting in a significant increase of unfairness in the trained model.

• Claim 2: Utilizing NIFA results in an unnoticeable utility compromise.

• Claim 3: NIFA achieves state-of-the-art attack performance compared to other attacks when all
methods utilize a perturbation rate of only 1%.

• Claim 4: The uncertainty-maximization principle, homophily-increase principle, and iterative train-
ing strategy are all needed to consistently and significantly increase unfairness of the victim model.

Perturbation rate refers to the proportion of modifications applied to the graph, such as the addition or
removal of nodes or edges, relative to the graph’s original structure. Utility indicates the effectiveness of the
GNN in performing its intended tasks, which we measure with accuracy due to the node classification used
in this study.

In addition to reproducing these claims, we also build on their research with our own research questions and
study them with a series of experiments. Our added contribution answers the following questions:

• How significantly can NIFA degrade fairness when modeled as an evasion attack?

• To what extent can a node-injection strategy analogous to NIFA be used as a defense mechanism
against the attack?

2



Under review as submission to TMLR

Figure 1: The complete NIFA framework from Luo et al. (2024) with our additions: Antidote defense (d)
and NIFA as evasion attack (e).

• To what extent does increasing the victim model size mitigate the fairness degradation of NIFA?

While the code for the original experiments is available, independent reproduction can help in the verifica-
tion of results and ensure that the experiments are not dependent on a specific setup or hyperparameters of
the model, which we also explore through our extension experiments. Our study provides an independent
verification of the attack’s generalizability across the datasets and models used in the original paper. Ad-
ditionally, it also allows the identification of potential ambiguities or mistakes in the original experimental
setup. Apart from that, the ease of reproducibility is also a concern, as the availability of code does not
guarantee a straightforward and successful replication of results. Specifically, missing hyperparameters can
prompt a grid search, revealing unexpected results. Furthermore, missing code for fairness-aware models in
the repository can require significant pre-processing. Difficulty in reproducing the results can also indicate
inconsistencies in datasets, methodology, or the attack itself, something our extension experiments provide
insights into.

3 Methodology

3.1 Model Descriptions

The paper uses multiple victim models to study the effectiveness of the attacks. These are as follows:

• GCN (Kipf & Welling, 2017): GCN is a standard graph convolutional network, borrowing the
concept of convolution from computer vision.

• GraphSAGE Hamilton et al. (2017): GraphSAGE samples a fixed number of neighbors at each
layer to avoid neighborhood explosion. This improves the training efficiency as well.

• APPNP (Gasteiger et al., 2022): A GNN that combines graph convolutions with personalized
PageRank (Page et al., 1999) and decouples the prediction and propagation in the training process.

• SGC (Wu et al., 2019): SGC is a variant of GCN which removes the non-linearities from GCN and
essentially collapses the GNN into a single matrix multiplication.

Furthermore, for increased generalizability we evaluate the NIFA framework on:

• GAT (Velickovic et al., 2017): GAT is the vanilla graph attention network, leveraging self-attention
to enable specifying different weights to different neighbors’ features.

In addition to these above, we also use 3 fairness-aware (Chen et al., 2024) victim models. These are
models which incorporate techniques for reducing disparities and mitigating biases across different sensitive
attributes.
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• FairGNN (Dai & Wang, 2021): It uses a sensitive attribute estimator to predict sensitive informa-
tion and an adversarial learning module to minimize the correlation between node representations
and sensitive attributes.

• FairVGNN (Wang et al., 2022): It is a network that identifies and masks channels highly correlated
with sensitive attributes to tackle the problem of sensitive attribute leakage.

• FairSIN (Yang et al., 2024): It is a novel approach which works by introducing additional features
into the node representations instead of filtering out information.

All these models are used in the replication of the work of the original paper. However, in our experiments
to answer the additional question we propose, some of them are omitted. The models not used in any
experiment will be specified in the results for the corresponding experiment.
In addition, the following models are used for executing NIFA:

• Bayesian GNN: For uncertainty estimation, a Bayesian GNN is used with Monte Carlo dropout.
Given a 2-layer GCN the model parameters are estimated using T times independent Bernoulli
dropout sampling. Using these models, T different predictions are made, resulting in a per node
variance. This variance positively correlates with model uncertainty.

• Surrogate GNN: NIFA uses a surrogate GNN for optimizing the features of injected nodes. This
uses an objective function devised by the authors.

3.2 Baselines

To compare the effectiveness of NIFA, three different state-of-the-art fairness gray-box graph attacks were
conducted. FA-GNN (Hussain et al., 2022), FATE (Kang et al., 2024), and G-FairAttack (Zhang et al.,
2024). For FA-GNN, the DD strategy is employed, as it was demonstrated to be more effective in the
original study. For all baselines, the number of injected nodes or modified edges was set to be equal to those
in NIFA. Similar to the original research, these attacks are conducted on the GCN victim model.

3.3 Datasets

Dataset Pokec-z Pokec-n DBLP

# of nodes 67,796 66,569 20,111
# of edges 617,958 517,047 57,508

Feature dim. 276 265 2,530
# of labeled nodes 10,262 8,797 3,196

Table 1: Dataset Statistics as used in our experiments.

We use three real-world datasets, namely Pokec-z,
Pokec-n, and DBLP. For all datasets, we use 50% of
the labelled nodes for training, 25% for validation,
and 25% for test, identical to the original paper.
Pokec-z and Pokec-n are subgraph samples
from Pokec, a popular Slovak social-network (Dai
& Wang, 2021). The subgraphs correspond to
different regions. Each node represents a user, while edges represent a unidirectional following relationship.
The node features include profile information like age, gender, hobbies etc. and the classification task is to
predict the working field of users.
DBLP is a bibliographical dataset which represents academic collaboration networks (Hussain et al., 2022).
The nodes in this dataset are authors, and edges represent co-authorship. Node features are based on
keywords present in authors’ publications. If two authors have published a paper together, they will be
connected. The classification task here is to predict the research area of the authors. Detailed statistics are
summarized in Table 1. We would like to mention that in case of DBLP, while the number of labeled nodes
mentioned is correct, less than 1300 are used in the training, validation, and testing. Some of the labeled
nodes have a missing sensitive attribute and hence are not used. This discrepancy is further elaborated
on in Section 5.5. Due to this discrepancy, we also use the dataset from Hussain et al. (2022), the paper
that adapted this dataset for training of fairness models. We ran experiments on this dataset, of which
the results are shown in Appendix C. The main results we display are from the dataset as supplied in the
authors’ repository to keep the experimental conditions as close as possible to the original paper.
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3.4 Hyperparameters

In reproducing the original experiments, we use the same hyperparameter settings as the original paper,
which are summarized below.

Notations Pokec-z Pokec-n DBLP
ϵ 1.0 1.0 1.0
d 10 5 10
g 10 5 5
c 5 10 5

epochs 1000 1000 500

Table 2: Hyperparameters for final
FairVGNN results. d, g, and c refer
to the epochs for discriminator, gen-
erator, and classifier, respectively.

Victim Models: For all victim models, the hidden layer size is
set to 128 and the learning rate is set to 0.001. For most victim
models, dropout is set to 0, except in the case of FairGNN and
FairVGNN, where 0.5 is used instead. The layer number is 2 for
GCN and GraphSAGE. For APPNP, the teleport probability α is
set to 0.2 and iteration number k is set to 0. FairGNN uses GAT
as backbone, while the FairVGNN uses GCN. For FairVGNN, the
prefix cutting threshold ϵ is searched from {0.01,0.1,1}, and mask
density α is set as 0.5. The epochs for the generator, discriminator,
and classifier are searched from {5, 10}. This is also in accordance
with the original paper, and it does mention exactly which values are
used for the reported results. However, the hyperparameters with
which we obtained the results closest to the paper are mentioned in Table 2. FairSIN also uses the GCN as
backbone, and the weight of neutralized feature δ is set as 4.

NIFA: For NIFA, the hyperparameters that are dataset dependent and are shown in Table 3.

Notations Pokec-z Pokec-n DBLP
α 0.01 0.01 0.1
β 4 4 8
b 102 87 32
d̄ 50 50 24
k 0.5 0.5 0.5

max_step 50 50 50
max_iter 20 20 10

epochs 1000 1000 500

Table 3: Hyperparameters used for
NIFA.

α and β are the weights of the components of the objective function.
d̄ is the degree of injected nodes, and b is the constraint on the
number of injected nodes. b is set to 1%, but since dataset sizes
are different, the absolute value is also different. d̄ represents the
average node degrees in the datasets. k is the uncertainty threshold,
which is the fraction of uncertain nodes that serve as candidates for
injection points. max_iter is the number of rounds the optimizer
runs for, and max_step is the number of epochs per round. Apart
from these, the learning rate for optimizing the surrogate model and
node features is 0.001, and the dropout ratio is set to 0. T is the
sampling times of the Bayesian Network and is set to 20. The model
itself is a two-layer GCN with hidden size of 128.

3.5 Utility and Fairness Metrics

We use the following metrics for evaluating our models. For the fairness metrics, we focus on group fairness,
with a binary sensitive attribute s ∈ {0, 1}, in correspondence with previous works (Dai & Wang, 2021; Dong
et al., 2022; Ling et al., 2023; Luo et al., 2024).

1. Accuracy: This is the percentage of correctly classified nodes, which serves as the utility metric.

2. ∆SP : This metric is derived from statistical parity, which requires the predictions to be independent
of the sensitive attribute. Formally, statistical parity is defined as:

P (ŷv = y|s = 0) = P (ŷv = y|s = 1) (1)

From this, our first fairness metric can be defined as:

∆SP = E|P (ŷ = y|s = 0) − P (ŷ = y|s = 1)| (2)

3. ∆EO: This metric comes from the idea of equal opportunity, which required the predicting correctly
to be independent of the sensitive attribute. Formally,

P (ŷv = y|yv = y, s = 0) = P (ŷv = y|yv = y, s = 1) (3)

From this, our second fairness metric can be defined as:

∆EO = E|P (ŷ = y|y = y, s = 0) − P (ŷ = y|, y = y, s = 1)| (4)
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3.6 Experimental setup and code

To evaluate the effectiveness of NIFA, baselines were obtained by running the models on clean graphs.
To account for the stochastic nature of the process, every model was run 5 times on each dataset. We
report the mean along with the standard deviation of our results obtained. After setting these baselines,
the graph was poisoned using NIFA and the models were re-trained on these graphs to get the final attack
results, which comprise the three metrics listed in Section 3.5. Apart from this, we made some changes to
the code to run our experiments. The code, and the instructions to run these experiments, can be found
on https://anonymous.4open.science/r/fact-ai-8CEB/README.md. All our experiments can be replicated
from the command line without any changes to the code. The used packages are slightly different from the
original research, and corresponding versions can be found in the environment files in the repository.

3.7 Computational Requirements

The experiments were done using an Intel Xeon Platinum 8360Y CPU, an Nvidia A100 GPU and 128 GB of
RAM. Each model run of the main reproducibility results took around 15 minutes to run. The experiment
results we report are from 5 iterations run on 3 datasets. Approximate runtimes for all experiments can be
deduced from this. The Python and module versions can be found in our GitHub repository.

4 Results

4.1 Results reproducing original claims

The results of replicating the original experiments are shown in Table 4. These results correspond to the
original claims we listed earlier about the paper.
Claim 1: From the results found in Table 4, we can see that NIFA does indeed consistently increase unfairness
in GNN models while using only a 1% perturbation rate. Therefore, we can say our results support this
claim. The attack effectiveness depends on the model and the dataset, but the attacks consistently give
us a less fair model. However, the fairness-aware models do not exhibit a consistently significant increase
in their parity or equality values before and after the attack. Only on the Pokec-n dataset does FairGNN
show both a parity and equality metric increase, whereas on the other datasets only one of the metrics
increases. However, we note that our results for the fairness-aware models differ somewhat from the original
results obtained in the paper. This might be caused by the difference in implementation, as the authors
did not release code for these models in their repository. Notably, on the FairSIN model, the NIFA attack
significantly decreases fairness metrics on the DBLP dataset, while it does not cause significant changes on
the Pokec datasets. Furthermore, we note different effectiveness of NIFA on the DBLP dataset, compared
to the Pokec dataset. We hypothesize that due to significantly lower degree of the former dataset compared
to the latter, NIFA might be more effective. Results substantiating this claim can be found in Appendix D.
Claim 2: From the accuracies in the table, we can see that accuracies before and after the attack are quite
similar, especially for the Pokec datasets, where it is mostly within 1%. However, the drop is slightly higher
for DBLP, showing around a 5% decrease in accuracy. This results in an attack which is unnoticable up to
5% percent utility decrease.
Claim 3: Comparing to other attack methods, in Table 5, NIFA increases unfairness significantly across all
datasets. Confirming the claim made by the authors of Luo et al. (2024).
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Table 4: Our Accuracy and Fairness performance of NIFA on different victim models compared to the
reference found in Luo et al. (2024). The results are reported in percentage (%). The colored values (+/-)
indicate the difference between our and the original author’s results. The Bold values indicate a significant
increase in ∆SP or ∆EO after poisoning.

Pokec-z Pokec-n DBLP

Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO

GCN before 71.50 +0.28 7.84 +0.71 5.87 +0.77 70.34 -0.58 2.23 +1.35 2.33 -0.11 96.58 +0.70 4.36 +0.52 2.42 +0.51
after 70.76 +0.26 17.22 -0.14 15.43 -0.16 70.21 +0.09 8.93 -1.17 8.50 -1.35 93.47 +0.10 11.19 -2.30 17.75 -2.58

GraphSAGE before 70.70 -0.09 4.49 +0.20 3.43 -0.03 69.14 +0.37 0.96 -0.69 1.39 -0.26 96.23 -0.35 2.64 -1.63 2.39 -0.39
after 70.16 +0.11 5.60 -0.60 3.96 -0.24 68.43 0.00 0.98 -2.34 2.44 -1.12 93.62 -2.84 9.62 -0.54 16.60 -0.05

APPNP before 69.88 +0.09 7.26 +0.43 5.53 +0.46 68.33 -0.40 4.40 +1.01 4.73 +1.02 96.58 0.00 3.97 -0.01 2.58 +0.38
after 68.63 -0.49 17.85 -0.59 16.39 -0.46 67.90 0.00 9.77 -3.70 9.53 -3.99 91.51 -0.95 13.20 -0.68 17.30 -2.90

SGC before 68.37 -0.72 5.54 -1.74 3.85 -1.60 66.48 -0.47 4.64 +1.90 4.96 +1.75 96.63 0.00 4.70 0.00 3.25 +0.14
after 67.19 -0.64 16.23 -1.42 14.71 -1.38 64.32 -2.40 7.51 -3.08 7.36 -3.31 92.31 -1.57 10.25 -3.63 15.44 -4.81

FairGNN before 70.27 +1.52 0.94 -0.95 2.98 +1.47 69.66 +0.25 3.79 +2.37 5.97 +3.65 90.70 -2.42 2.56 +0.61 0.32 -2.77
after 69.81 +0.43 3.47 -2.24 1.41 -2.81 68.98 -0.69 10.48 +4.35 9.08 +2.75 90.60 -1.96 2.35 -3.54 2.50 -7.98

FairVGNN before 64.67 -3.9 2.76 -1.03 2.65 +0.06 65.42 -2.35 2.96 +1.06 2.35 -0.75 90.30 -4.88 1.42 -0.48 3.14 +0.23
after 63.44 -4.21 7.01 -4.0 5.79 -3.49 64.41 -1.33 4.01 +0.50 3.88 +0.23 86.78 -4.78 9.83 +1.87 18.27 +4.70

FairSIN before 65.80 -1.53 2.26 +0.53 2.62 +0.01 65.25 -1.93 6.27 +5.88 7.98 +5.58 92.81 -1.91 3.35 +3.12 11.47 +11.02
after 61.70 -4.85 1.88 -7.60 2.33 -8.06 63.64 -2.56 5.59 -6.23 5.93 -8.65 87.84 -4.62 12.11 +1.21 25.96 +2.31

GAT before 71.26 – 7.94 – 5.89 – 69.88 – 1.00 – 1.75 – 94.97 – 3.20 – 3.32 –
after 71.08 – 8.97 – 6.93 – 69.78 – 1.92 – 2.79 – 95.63 – 3.00 – 5.92 –

Table 5: Our accuracy and Fairness performance runs of the baselines compared to our NIFA run, both
conducted on GCN. Results are reported in percentage (%). The colored values (+/-) indicate the difference
between our and the original author’s results. The missing values of FATE and G-FairAttack were not
obtained due to High memory usage.

Pokec-z Pokec-n DBLP

Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO

Clean 71.50 +0.28 7.84 +0.71 5.87 +0.77 70.34 -0.58 2.23 +1.35 2.33 -0.11 96.58 +0.70 4.36 +0.52 2.42 +0.51
FA-GNN 71.72 +1.92 8.33 +1.71 13.23 +4.56 70.19 -0.61 4.00 +1.36 5.79 +2.34 95.43 -0.05 1.56 -1.76 4.78 -3.96

FATE - - - - - - - - - - - - 90.05 -4.82 2.43 -1.19 8.18 +6.06
G-Fair - - - - - - - - - - - - 94.02 -1.10 4.6 -2.20 13.86 +10.92
NIFA 70.76 +0.26 17.22 -0.14 15.43 -0.16 70.21 +0.09 8.93 -1.17 8.50 -1.35 93.47 +0.10 11.19 -2.30 17.75 -2.58

4.2 Results reproducing the ablation study

Figure 2: Ablation study of each principle in NIFA. The green values
indicate an increase of a specific value in our results, compared to the
original authors’ results. The red values indicate the decrease of our
metric compared to the original authors’ results.

Reproducing the ablation study
showed significant consistency. The
different principles are left from the
framework and the attack is tested
on the GCN model. Similarly to
the original authors, 3 new vari-
ants are considered. 1) NIFA-U :
the uncertainty maximization prin-
ciple is removed, and target nodes
are sampled randomly. 2) NIFA-
H : The homophily-increase is re-
moved, meaning that each injected
node may connect to targeted nodes
with a different sensitive group. 3)
NIFA-I : The iterative training strategy is removed, meaning that the victim model is trained first, followed
by the training of the injected feature matrix.

Claim 4: From the results in Figure 2, we can see that the trend of the results matches the original paper.
This confirms their claim, that to significantly and consistently improve the effectiveness of the attack, all
steps are necessary.

Our accuracies are similar to the original paper, but some small differences exist in the fairness metrics.
Our NIFA-I and NIFA values are lower than the original study for Pokec-n and DBLP, while they are the
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same for Pokec-z. NIFA-H for the most part is similar to the original results, and the difference in NIFA-U
is dataset-dependent. However, as stated before, the trend across different ablations is consistent with the
trend in the original paper.

4.3 Extension Experiments

NIFA as an Evasion Attack: We modeled NIFA as an evasion attack by training the victim models
on a clean graph. We used all the models except FairGNN, FairVGNN and FairSIN for this experiment.
This attack uses the same amount of injected nodes and edges as NIFA, with the only change being the
training graph; the training graph is not poisoned in the evasion attack. Our results are summarized in
Table 6. We see from the results that a node-injection attack using the principles of NIFA can effectively
achieve the same effect on the model even if the model itself is not trained on the poisoned graph. We
believe this is because of how feature-optimization works in NIFA. It is designed to mislead the model in
the classification of good nodes. During the classification (or inference) phase, the target node receives
this misleading information during the aggregation of features from the neighborhood. As a result, our
node is exposed to adversarial features during message passing, regardless of whether the model is being
trained on the poisoned graph. However, we also notice that in the case of DBLP, the drop in accuracy
observed is higher for the evasion attack compared to the poisoning attack, making the evasion attack
more vulnerable to detection by simpler utility-based metrics. However, we believe that in a real-world
scenario, the evasion attack is a more practical scenario because it allows the attacker to perform the
fairness attack at any point in time. Although GAT was not evaluated in the original paper, our results
show that the NIFA poisoning attack had little effect on its fairness—for example, on DBLP, ∆SP and
∆EO changed only slightly from 3.20/3.32 in the clean setting to 3.00/5.92 under poisoning—whereas
the evasion attack dramatically increased these gaps (with ∆SP /∆EO surging to 11.02/16.64 on DBLP,
26.24/24.82 on Pokec-z, and 24.82/24.56 on Pokec-n), demonstrating its potent efficacy as an attack strategy.

Table 6: The NIFA evasion attack compared to the original NIFA poisoning attack, and no attack at all.
The Bold values indicate a significant increase in ∆SP or ∆EO over the poisoning version of NIFA.

Pokec-z Pokec-n DBLP

Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO

GCN
Clean 71.50±0.14 7.84±1.07 5.87±1.04 70.34±0.71 2.23±1.25 2.33±1.33 96.58±0.49 4.36±1.22 2.42±1.03

Poisoning 70.76±0.39 17.22±0.95 15.43±1.03 70.21±0.68 8.93±2.25 8.50±2.23 93.47±0.48 11.19±2.33 17.75±2.44
Evasion 70.80±0.25 22.50±1.60 20.79±1.68 70.21±0.40 11.79±3.79 11.79±3.79 91.76±0.58 15.08±2.95 22.02±3.30

GraphSAGE
Clean 70.70±0.66 4.49±1.31 3.43±0.95 69.14±0.87 0.96±0.67 1.39±0.71 96.23±0.28 2.64±1.73 2.39±1.03

Poisoning 70.16±0.47 5.60±2.11 3.96±1.87 68.43±0.30 0.98±0.78 2.44±1.74 93.62±0.44 9.62±3.29 16.60±3.31
Evasion 69.07±0.53 18.97±5.31 17.38±5.37 67.47±0.50 17.81±6.15 17.39±6.15 90.50±1.42 17.00±2.63 24.15±2.65

APPNP
Clean 69.88±0.70 7.26±0.48 5.53±0.52 68.33±0.49 4.40±0.65 4.73±0.65 96.58±0.34 3.97±1.56 2.58±1.17

Poisoning 68.63±1.18 17.85±1.63 16.39±1.68 67.90±0.64 9.77±1.26 9.53±1.23 91.51±0.64 13.20±4.21 17.30±4.95
Evasion 68.72±0.69 21.55±3.59 20.11±3.73 68.15±0.38 12.32±4.43 11.96±4.44 87.79±2.15 19.95±2.06 26.30±1.49

SGC
Clean 68.37±1.30 5.54±1.40 3.85±1.19 66.48±2.35 4.64±2.03 4.96±1.98 96.63±0.38 4.70±0.93 3.25±0.72

Poisoning 67.19±0.89 16.23±1.32 14.71±1.32 64.32±2.67 7.51±1.17 7.36±1.30 92.31±1.54 10.25±2.31 15.44±2.13
Evasion 67.08±0.89 23.07±2.68 21.66±2.68 66.91±0.33 14.66±3.82 14.28±3.82 86.93±1.78 20.64±1.79 26.80±1.19

GAT
Clean 71.26±0.40 7.94±0.75 5.89±0.74 69.88±0.27 1.00±0.44 1.75±0.87 94.97±0.76 3.20±2.84 3.32±1.20

Poisoning 71.08±0.52 8.97±1.98 6.93±2.04 69.78±0.49 1.92±1.16 2.79±1.05 95.63±1.29 3.00±1.49 5.92±3.37
Evasion 69.47±0.57 26.24±10.17 24.82±10.46 67.85±0.85 24.82±4.52 24.56±4.51 92.01±3.42 11.02±6.69 16.64±7.68

Antidote Defense: We propose and evaluate a defense strategy against NIFA. NIFA’s feature optimization
accentuates the unfairness of the models by minimizing an objective function. We attempt to counter this
problem by injecting good nodes and optimizing the features such that they induce fairness into our graph.
That is, we optimize a different fairness objective function during feature optimization compared to Luo
et al. (2024):

LAD = LCE + αLCF − β(LSP + LEO)

where LCE is cross-entropy loss, LCF is constraint of feature and LSP and LEO are fairness loss terms for
statistical parity and equal opportunity. For exact definitions of these terms refer to Luo et al. (2024).
This approach is analogous to how NIFA itself works. Instead of optimizing for unfairness, we inject more
nodes and optimize them for fairness. This defense strategy increases the number of nodes and edges and may
significantly slow down some models depending on the model architecture and depth. Additionally, feature
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optimization is also an overhead but remains small when compared to the training of the victim model
itself. However, for the 2-layer models that we used, we did not notice a significant change in runtimes in
training and testing. Specifically, we inject 300 nodes, with each node having a budget of 100 edges. The
top 75% of most uncertain nodes are considered as nodes to attach to the injected good nodes. The fairness-
and classifier loss are weighted by factors α = 1 and β = 1 respectively. This is compared to reproduced
results for the masking defense proposed in the original paper. For the masking defense, we mask 60% of
the uncertain nodes as it is the value that gives the greatest reduction in fairness metrics according to the
original paper. Our results, summarized in Table 7 show that it consistently manages to reduce ∆SP and
∆EO, in some cases doing even better than the cleanly trained model itself. Additionally, for most of the
cases, the change in accuracy is also insignificant, which means that this defense mechanism does not impact
the utility of the model. SGC is an outlier in this aspect, showing a decrease in accuracy of around 5.28%
when comparing with and without Antidote defense on DBLP. Using the Antidote defense on the evasion
attack variant of NIFA, we observe some mixed results and can be found in Appendix F.

Table 7: Accuracy and Fairness metrics comparing the Antidote defense and node masking defense against
a clean graph and a poisoned graph without the defense. The Bold values indicate a significant decrease in
∆SP or ∆EO after using the defense.

Pokec-z Pokec-n DBLP

Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO

GCN
Clean 71.50±0.14 7.84±1.07 5.87±1.04 70.34±0.71 2.23±1.25 2.33±1.33 96.58±0.49 4.36±1.22 2.42±1.03

No defense 70.76±0.39 17.22±0.95 15.43±1.03 70.21±0.68 8.93±2.25 8.50±2.23 93.47±0.48 11.19±2.33 17.75±2.44
Masking 69.91±0.37 13.65±2.43 11.83±2.40 69.68±0.46 7.16±5.58 7.36±5.34 90.95±0.75 11.28±3.24 16.65±3.99
Antidote 70.11±0.53 4.33±2.66 3.58±1.15 69.99±0.67 0.86±0.88 3.06±1.02 92.51±0.92 11.78±6.96 10.70±5.47

GraphSAGE
Clean 70.70±0.66 4.49±1.31 3.43±0.95 69.14±0.87 0.96±0.67 1.39±0.71 96.23±0.28 2.64±1.73 2.39±1.03

No defense 70.16±0.47 5.60±2.11 3.96±1.87 68.43±0.30 0.98±0.78 2.44±1.74 93.62±0.44 9.62±3.29 16.60±3.31
Masking 67.90±0.58 10.54±2.81 8.85±2.81 66.07±0.89 9.93±2.81 9.73±3.04 88.39±2.03 9.80±6.11 14.40±8.17
Antidote 70.16±0.28 4.52±1.67 3.16±0.91 68.24±0.67 1.90±2.20 4.18±1.29 91.61±0.89 2.33±1.18 4.09±2.63

APPNP
Clean 69.88±0.70 7.26±0.48 5.53±0.52 68.33±0.49 4.40±0.65 4.73±0.65 96.58±0.34 3.97±1.56 2.58±1.17

No defense 68.63±1.18 17.85±1.63 16.39±1.68 67.90±0.64 9.77±1.26 9.53±1.23 91.51±0.64 13.20±4.21 17.30±4.95
Masking 67.25±1.10 14.66±3.44 13.19±3.58 67.26±0.57 6.41±2.60 6.23±2.74 89.45±0.94 8.26±3.40 13.63±4.54
Antidote 66.87±1.10 1.55±2.33 3.15±0.98 67.55±0.62 4.24±2.16 4.55±2.17 88.84±1.76 4.64±2.23 9.07±2.71

SGC
Clean 68.37±1.30 5.54±1.40 3.85±1.19 66.48±2.35 4.64±2.03 4.96±1.98 96.63±0.38 4.70±0.93 3.25±0.72

No defense 67.19±0.89 16.23±1.32 14.71±1.32 64.32±2.67 7.51±1.17 7.36±1.30 92.31±1.54 10.25±2.31 15.44±2.13
Masking 65.82±1.46 11.95±3.72 10.51±3.64 65.22±1.06 9.93±1.54 9.76±1.62 89.25±1.21 9.58±3.26 15.17±3.76
Antidote 66.87±0.81 5.81±2.23 4.20±2.12 63.82±3.66 3.33±3.60 5.24±2.47 87.44±2.00 4.26±1.08 8.35±2.01

Table 8 compares the performance of the Antidote defense against Masking and no defense on NIFA and
all baselines. The Antidote defense achieves comparable performance on G-Fair and FA-GNN, with the
exception of the DBLP dataset in FA-GNN. Furthermore, FATE achieves significantly higher ∆SP and ∆EO

when either the Masking or Antidote defense is used.

Table 8: Accuracy and Fairness metrics comparing the Antidote defense and node masking defense against a
clean graph and a poisoned graph without the defense, on NIFA and all baselines. The Bold values indicate
the lowest ∆SP and ∆EO for every dataset.

Pokec-z Pokec-n DBLP

Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO

Clean 71.50±0.14 7.84±1.07 5.87±1.04 70.34±0.71 2.23±1.25 2.33±1.33 96.58±0.49 4.36±1.22 2.42±1.03
NIFA 70.76±0.39 17.22±0.95 15.43±1.03 70.21±0.68 8.93±2.25 8.50±2.23 93.47±0.48 11.19±2.33 17.75±2.44
+ Masking 69.91±0.37 13.65±2.43 11.83±2.40 69.68±0.46 7.16±5.58 7.36±5.34 90.95±0.75 11.28±3.24 16.65±3.99
+ Antidote 70.11±0.53 4.33±2.66 3.58±1.15 69.99±0.67 0.86±0.88 3.06±1.02 92.51±0.92 11.78±6.96 10.70±5.47

FA-GNN 71.72 ± 0.77 8.33 ± 2.60 13.23 ± 5.18 70.19 ± 0.42 4.00 ± 2.17 5.79 ± 1.52 95.43 ± 00.89 1.56 ± 0.83 4.78 ± 2.74
+ Masking 70.15±0.37 9.17±1.25 7.18±1.40 69.70±0.65 1.74±0.82 3.11±0.59 94.97±0.16 1.74±0.49 1.60±0.77
+ Antidote 69.83±0.61 2.19±1.65 2.64±0.72 69.35±0.53 2.53±0.53 3.56±0.98 93.62±1.33 16.56±8.28 14.33±5.40

FATE - - - - - - 90.05±0.26 2.43±0.45 8.18±0.73
+ Masking - - - - - - 44.67±10.20 9.78±14.25 11.43±13.53
+ Antidote - - - - - - 84.67±1.32 18.26±3.85 26.29±5.34

G-Fair - - - - - - 94.02±0.14 4.6±1.02 13.86±1.05
+ Masking - - - - - - 93.17±0.77 3.25±2.31 7.50±3.83
+ Antidote - - - - - - 94.92±0.66 5.71±3.74 10.73±5.12

Deeper Victim Models: As current research is focused on fairness attacks of quite shallow GNNs with
only 1 to 2 layers (Song & Palanisamy, 2024; Luo et al., 2024; Dai & Wang, 2021; Hussain et al., 2022),
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Table 9: NIFA performance when increasing the number of layers of the victim model. For SGC, only the
hop-number is increased. The 4 layer FairGNN model uses a gelu activation function, kaiming initialization,
layer normalization, and residual connections. The bold values indicate a significant increase of fairness.

Pokec-z Pokec-n DBLP

Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO

GCN 2 Layers 70.76±0.39 17.22±0.95 15.43±1.03 70.21±0.68 8.93±2.25 8.50±2.23 93.47±0.48 11.19±2.33 17.75±2.44
10 Layers 68.32±0.58 3.09±2.08 3.89±0.62 68.42±0.49 5.66±3.67 6.05±3.53 91.51±1.42 2.86±1.98 7.38±1.60

GraphSAGE 2 Layers 70.16±0.47 5.60±2.11 3.96±1.87 68.43±0.30 0.98±0.78 2.44±1.74 93.62±0.44 9.62±3.29 16.60±3.31
8 layers 69.74±0.38 3.94±1.32 3.48±0.77 69.13±0.82 1.52±1.24 2.48±1.20 93.52±1.76 7.82±3.36 11.76±3.97

APPNP 2 Layers 68.63±1.18 17.85±1.63 16.39±1.68 67.90±0.64 9.77±1.26 9.53±1.23 91.51±0.64 13.20±4.21 17.30±4.95
12 Layers 68.54±0.15 11.09±1.37 8.93±1.40 68.54±0.09 3.09±2.25 3.95±0.89 92.26±0.92 7.39±2.19 13.56±2.92

SGC 1-hop 67.19±0.89 16.23±1.32 14.71±1.32 64.32±2.67 7.51±1.17 7.36±1.30 92.31±1.54 10.25±2.31 15.44±2.13
5-hop 63.74±5.28 5.03±4.28 5.69±3.43 63.94±6.24 7.18±4.75 7.28±4.94 90.80±0.91 14.39±3.10 21.10±3.67

FairGNN 2 Layers 69.81±0.80 3.47±1.29 1.41±0.86 68.98±0.67 10.48±5.57 9.08±4.93 90.60±0.47 2.35±1.81 2.50±1.45
4 Layers 66.32±0.38 0.75±0.72 1.29±0.73 67.40±0.73 2.95±1.47 4.84±2.62 92.26±1.02 3.54±2.06 10.71±4.31

we extended the attack to multilayer victim models with up to 14 layers. For these experiments, the same
selection of victim models as Luo et al. (2024) are used but leaving out the last two Fair models, resulting in
a test on: GCN, GraphSAGE, APPNP, SGC, and FairGNN. To increase the amount of layers for FairGNN,
some changes had to be made to the underlying model architecture. The use of an adversarial minimax
training objective in this model made optimization and convergence more challenging, particularly when
additional layers were added. To overcome this issue, a number of changes were made to the underlying GAT
model. Instead of the original exponential linear unit (ELU), a Gaussian error linear unit (GELU) activation
function was used, which helps to reduce dead neurons in deeper networks (Lee, 2023). Our experiments also
revealed that this change helps reduce variability between runs. Furthermore, we added layer normalization,
kaiming initialization and residual connections, which all help to stabilize training dynamics and increase
convergence (Lee, 2023; Liu et al., 2019). The amount of added layers as found in Table 9 was determined
using the highest average fairness over the three datasets. One such distribution of metrics can be found in
Figure 3. The complete results of these layer experiments are provided in the Appendix I.1 because of space
constraints.

Figure 3: Accuracy and fairness met-
rics for GCN on the Pokec-n Dataset
when adding additional layers.

The trends are different for every model and every dataset, but there
are some common observations among them. Most notably, we see
that every model and dataset combination has a layer number at
which the unfairness reaches a low point. This indicates that the
model can learn patterns from the training data that lower-layer
models cannot capture, inadvertently reducing unfairness. Further-
more, the test accuracy decreases with the amount of layers due to
slight oversmoothing. This effect is further discussed in Section 5.3.
For most models, a decrease in fairness can be observed at around 10
to 12 extra layers. For SGC, this occurs at a differing hop number
depending on the dataset. This could be attributed to the increased
influence of the poisoned nodes during message passing in the train-
ing stage.

5 Discussion

5.1 NIFA as true poisoning attack

We found that NIFA is a combination of a poisoning and evasion attack; it poisons both the training and test
set. To clearly distinguish the influence of poisoning the test graph, we have evaluated the first four victim
models on NIFA without a poisoned test graph. This can be found in Appendix E. We found that evaluating
the poisoned model on a clean test graph significantly reduces the impact of NIFA on the fairness metrics.
We hypothesize that the increase of ∆SP and ∆EO by utilizing NIFA are caused by the poisoned nodes
which are added to the test set, instead of the actual poisoning of the model with a poisoned training set.
We observe that our evasion attack increases ∆SP and ∆EO over the original NIFA poisoning attack, while
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the true poisoning attack shows decreased ∆SP and ∆EO values over a model which is trained and evaluated
on the clean graph. Meaning, that adding the training on the poisoned graph reduces the model unfairness.
These results strengthen our hypothesis about NIFA impacting fairness through the features propagated
from the poisoned nodes, instead of the poisoned model itself. It could indicate limited effectiveness of
feature-based poisoning attack analogous to NIFA. This is crucial, as it tells us that on one hand, poisoning
a model with such an attack has limited effectiveness, while at the same time, existing malicious nodes can
have a big impact during inference. We further hypothesize that injecting poison nodes into the training set
introduces invariance in the victim model towards the attack. Future work could thus study NIFA as a fair
training technique.

5.2 Anomalous FairVGNN results on Pokec

As mentioned earlier in Section 3.4, we did not know the exact values of the hyperparameters used for running
FairVGNN on the datasets, which required us to do a grid search to get results similar to the authors’ original
results. Looking at all these results, we noticed many hyperparameter combinations where NIFA actually
improved the model fairness instead of worsening it and improved or did not affect the accuracy. This
was very prominent in the pokec datasets, but did not happen in case of DBLP. Sometimes, all metrics
improved on poisoning, but instances can be observed where only the accuracy or one of the fairness metrics
improved. The results of all our runs for the Pokec datasets are shown in Table 17 in the Appendix H. We
also noticed that these instances of improvement in utility are not rare. Almost half of our runs in pokec-z
saw an improvement in at least one metric, and pokec-n was even more extreme, with almost three-quarters
of the results having improved metric(s). Perhaps this is not unexpected, since FairVGNN is a fairness-
aware model, and it tries to reduce the unfairness by masking the channels highly correlated with sensitive
attributes. Additionally, these improvements were within the standard deviation of the clean model results,
which may suggest that it might not have improved, but at the very least, it manages to be unaffected by
NIFA. These results highlight NIFA’s sensitivity to victim models’ hyperparameters, suggesting that NIFA
effectiveness is more variable than the paper indicates. Apart from that, it also shows the potential of
limiting sensitive attribute leakage as a defense mechanism against a fairness attack like NIFA. Future work
could look at other methods similar to FairVGNN that work on sensitive attribute leakage.

5.3 Extensions

NIFA as evasion attack. In this study, we evaluate the effectiveness of NIFA as an evasion attack on four
different victim models. We found that these models get significantly more impacted on the given fairness
metrics compared to the original NIFA framework. We hypothesize that this is due to the invariance learned
during training. The victim model inadvertently learns to be fair towards the sensitive attributes if exposed
to malicious nodes during training. This does not happen in case of an evasion attack, and we believe
this is because the feature-propagation mechanism by which NIFA works, as explained earlier. To further
investigate the robustness and effectiveness of this attack, future work can focus on evaluating the application
of NIFA as an evasion attack on fairness-oriented models such as FairGNN, FairVGNN and FairSIN.

Antidote Defense. The effectiveness of our Antidote Defense was tested by evaluating the extent to which
this defense was able to mitigate the effects of the NIFA attack, FA-GNN, FATE, and GFair. As the defender
is able to find the best settings for its defence, we used these hyperparameters which are optimal for each
individual attack. This shows that just as NIFA can induce unfairness by way of providing neighboring
nodes with malicious features, a similar strategy could be used to induce fairness. This is substantiated by
the effectiveness of the defense against the FA-GNN attack on the Pokec datasets. It seems to fail on DBLP.
However, as mentioned in earlier sections, the problems with the DBLP dataset found in the repository
indicates that the results have limited reliability.

Deeper victim models. The use of deeper victim models appears to offer some degree of mitigation against
unfairness, though the extent of this effect is highly dependent on the specific models and datasets used.
This difference is likely due to the properties specific to the graph itself. As for the fairness improvement,
since deeper models aggregate features from farther nodes, the impact of the features from malicious nodes is
reduced. This shows us that simple interventions without altering the graph structure also have the potential
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to limit the effectiveness of an attack such as NIFA. Although, while deeper architectures may help reduce
biases, their effectiveness is not uniform across all scenarios. From Table 3 and the results in Appendix I.1, a
general decrease in accuracy is observed. This is likely due to the oversmoothing of features, which increases
with the amount of layers. The results that validate this claim can be found Appendix I.2.

To fully understand the impact of increasing the number of layers in victim models, a more extensive
evaluation is necessary. Future research on this topic can focus on testing a diverse range of victim models in
conjunction with additional datasets, which would allow for a more comprehensive assessment of how depth
influences fairness across different settings and under varying conditions. Furthermore, future research could
use normalization techniques, like layer normalization to decrease the oversmoothing.

5.4 What was easy

A significant portion of the reproducibility and replicability experiments were made easy because of the
readily available code for their poisoning framework. Additionally, the original authors provided the code
for the first four models—GCN, GraphSAGE, APPNP, and SGC—enabling us to efficiently reproduce their
results.

5.5 What was difficult

Anomalies: While the code for some models was available in the repository of the original paper itself, it
was not the case for the fairness aware models. This meant that while for some of the models we were simply
replicating their results, we had to reproduce the experiments for the fairness-aware models. However, the
main difficulty lay with the unavailability of the exact hyperparameters for some models, such as FairVGNN.
The authors mention in their paper that they searched some parameters from an array of values, but did
not specify which exact values gave them the results they reported. This meant that we had to do a grid
search and find the results which were closest to the original results. Furthermore, some discrepancies were
found between the documented amount of nodes in DBLP and the ones found in the repository of Luo et al.
(2024). Furthermore, we found an overlap between the train, test and validation set. 317 nodes are found in
at least two of the splits. 106 of the nodes found in the training set are present in the test set, accounting for
approximately 23% of the training set. Using the original dataset, from Hussain et al. (2022), required some
pre-processing to be compatible with the code used in this paper. Applying NIFA to this original dataset,
yielded significantly different results, which are detailed in Appendix C.

Environment: Setting up the environment was not straightforward due to the authors’ use of an outdated
Python version and obsolete packages, which were incompatible with our computing environment. Addi-
tionally, each fairness-aware model required its own environment setup, as they originated from different
repositories.

5.6 Communication with original authors

Communication with the authors was very good, and they were very responsive. Unfortunately, they did
not answer our question about FairVGNN hyperparameters adequately, but apart from that, they were very
swift, concise, and co-operative in their responses.

6 Conclusion

In our experiments, we were successfully able to replicate and reproduce the authors’ results and experiments,
some more accurately than others. We can clearly see that NIFA is an effective fairness attack, validating
one of the main claims of the original paper. However, we also had some anomalous results in the case of
FairVGNN, where NIFA not only seemed to be ineffective, but also worked in the direction opposite to what
was intended. Apart from this, we modeled NIFA as an evasion attack, and show that it is an effective
method for degrading fairness of GNNs. Using the results from this evasion attack, we hypothesize that
utilizing NIFA during training improved model fairness. Lastly, we propose a defense strategy against NIFA,
which works to improve fairness of the graph.
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A Environmental Impact

To understand the computational feasibility of the NIFA-attack and environmental impacts, we express the
CO2-equivalent (Equation 5) of our reproduction experiments.

CO2e = CI · PUE · P · t (5)

Here, CI is carbon intensity in kg CO2e/kWh, PUE is power usage effectiveness, the ratio that describes
how efficiently a data-center uses its power, P is wattage in the used system, and t is the time needed to
perform the computations in hours. For the NIFA-attack, we observed an average of 40 seconds needed for
performing the attack. These experiments were performed on a HPC-cluster at Amsterdam Science Park.
This HPC-cluster runs at a PUE of 1.19 (Dolas, 2022), and a node was used that consumes 0.375 kilowatts
of power. Taking the Dutch average of carbon intensity as of 2023; 220g CO2e/kWh (CBS (Statistics
Netherlands), 2024), we obtain a CO2-equivalent of:

0.22 · 1.19 · 0.375 · 40
3600 ≈ 0.00109 kg CO2e

≈ 1.09 g CO2e.

B Main Attack results

This section contains the main reproducibility results comparing our runs of NIFA on the 7 models and 3
datasets with those obtained by the original authors.

Table 10: Our Accuracy and Fairness performance of NIFA on different victim models compared to the
reference found in Luo et al. (2024). The results are reported in percentage (%).

Pokec-z Pokec-n DBLP

Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO

before 71.50 ± 0.14 7.84 ± 1.07 5.87 ± 1.04 70.34 ± 0.71 2.23 ± 1.25 2.33 ± 1.33 96.58 ± 0.49 4.36 ± 1.22 2.42 ± 1.03

O
ur

after 70.76±0.39 17.22±0.95 15.43±1.03 70.21±0.68 8.93±2.25 8.50±2.23 93.47±0.48 11.19±2.33 17.75±2.44

R
ef

GCN before 71.22±0.28 7.13±1.21 5.10±1.28 70.92±0.66 0.88±0.62 2.44±1.37 95.88±1.61 3.84±0.34 1.91±0.75
after 70.50±0.30 17.36±1.16 15.59±1.08 70.12±0.37 10.10±2.10 9.85±1.97 93.37±1.48 13.49±2.83 20.33±3.82

before 70.70±0.66 4.49±1.31 3.43±0.95 69.14±0.87 0.96±0.67 1.39±0.71 96.23±0.28 2.64±1.73 2.39±1.03

O
ur

after 70.16±0.47 5.60±2.11 3.96±1.87 68.43±0.30 0.98±0.78 2.44±1.74 93.62±0.44 9.62±3.29 16.60±3.31

R
ef

GraphSAGE before 70.79±0.62 4.29±0.84 3.46±1.12 68.77±0.34 1.65±1.31 1.65±1.41 96.58±0.29 4.27±1.09 2.78±0.91
after 70.05±1.15 6.20±1.63 4.20±1.77 68.43±0.30 3.32±1.88 3.56±1.91 96.46±0.28 10.16±2.24 16.65±3.30

before 69.88±0.70 7.26±0.48 5.53±0.52 68.33±0.49 4.40±0.65 4.73±0.65 96.58±0.34 3.97±1.56 2.58±1.17

O
ur

after 68.63±1.18 17.85±1.63 16.39±1.68 67.90±0.64 9.77±1.26 9.53±1.23 91.51±0.64 13.20±4.21 17.30±4.95

R
ef

APPNP before 69.79±0.42 6.83±1.25 5.07±1.26 68.73±0.34 3.39±0.28 3.71±0.28 96.58±0.38 3.98±1.18 2.20±1.08
after 69.12±0.70 18.44±1.41 16.85±1.50 67.90±0.64 13.47±3.22 13.52±3.56 92.46±0.94 13.88±3.20 20.20±4.25

before 68.37±1.30 5.54±1.40 3.85±1.19 66.48±2.35 4.64±2.03 4.96±1.98 96.63±0.38 4.70±0.93 3.25±0.72

O
ur

after 67.19±0.89 16.23±1.32 14.71±1.32 64.32±2.67 7.51±1.17 7.36±1.30 92.31±1.54 10.25±2.31 15.44±2.13

R
ef

SGC before 69.09±0.99 7.28±1.50 5.45±1.42 66.95±1.69 2.74±0.85 3.21±0.78 96.63±0.48 4.70±1.26 3.11±1.24
after 67.83±0.70 17.65±1.01 16.09±1.06 66.72±1.21 10.59±2.40 10.67±2.61 93.88±3.37 13.88±3.37 20.25±4.44

before 70.27±0.22 0.94±0.39 2.98±0.48 69.66±0.69 3.79±1.22 5.97±1.58 90.70±0.00 2.56±0.00 0.32±0.00

O
ur

after 69.81±0.80 3.47±1.29 1.41±0.86 68.98±0.67 10.48±5.57 9.08±4.93 90.60±0.47 2.35±1.81 2.50±1.45

R
ef

FairGNN before 68.75±1.12 1.89±0.63 1.51±0.47 69.41±0.66 1.42±0.35 2.32±0.57 93.12±1.23 1.95±0.99 3.09±1.81
after 69.38±0.27 5.71±2.52 4.22±1.89 69.67±0.42 6.13±4.81 6.33±5.77 92.56±1.42 5.89±2.52 10.48±3.82

before 64.67±1.63 2.76±1.48 2.65±0.70 65.42±3.44 2.96±1.59 2.35±1.22 90.30±2.22 1.42±1.14 3.14±2.20

O
ur

after 63.44±1.10 7.01±2.77 5.79±3.06 64.41±5.24 4.01±2.97 3.88±3.20 86.78±0.72 9.83±2.66 18.27±7.78

R
ef

FairVGNN before 68.57±0.45 3.79±0.51 2.59±0.59 67.77±1.23 1.90±1.23 3.10±1.20 95.18±0.54 1.90±0.52 2.91±1.05
after 67.65±0.38 11.01±2.79 9.28±2.87 65.74±1.42 3.51±1.51 3.65±1.56 91.56±1.13 7.96±1.49 13.57±2.57

before 65.80±1.23 2.26±2.28 2.62±2.10 65.25±1.23 6.27±0.92 7.98±1.01 92.81±3.26 3.35±1.89 11.47±5.46

O
ur

after 61.70±3.91 1.88±0.99 2.33±1.99 63.64±0.86 5.59±1.03 5.93±0.91 87.84±1.44 12.11±1.73 25.96±4.78

R
ef

FairSIN before 67.33±0.22 1.73±1.49 2.61±1.44 67.18±0.30 0.39±0.89 2.40±1.02 94.72±0.62 0.23±0.15 0.45±0.16
after 66.55±0.44 9.48±2.62 10.39±1.06 66.20±0.12 11.82±0.75 14.58±1.22 92.46±0.32 10.90±2.12 23.65±7.77

16



Under review as submission to TMLR

Table 11: Our accuracy and Fairness performance runs of the baselines compared to our NIFA run.The
results are reported in percentage (%). The missing values of FATE and G-FairAttack were not obtained
due to High memory usage.

Pokec-z Pokec-n DBLP

Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO

Our Clean 71.50 ± 0.14 7.84 ± 1.07 5.87 ± 1.04 70.34 ± 0.71 2.23 ± 1.25 2.33 ± 1.33 96.58 ± 0.49 4.36 ± 1.22 2.42 ± 1.03
Ref 71.22±0.28 7.13±1.21 5.10±1.28 70.92±0.66 0.88±0.62 2.44±1.37 95.88±1.61 3.84±0.34 1.91±0.75
Our FA-GNN 71.72 ± 0.77 8.33 ± 2.60 13.23 ± 5.18 70.19 ± 0.42 4.00 ± 2.17 5.79 ± 1.52 95.43 ± 00.89 1.56 ± 0.83 4.78 ± 2.74
Ref 69.80±0.48 6.62±1.21 8.67±1.28 70.80±0.97 2.64±0.76 3.45±0.54 95.48±0.48 3.32±1.65 8.74±1.23
Our FATE - - - - - - 90.05±0.26 2.43±0.45 8.18±0.73
Ref - - - - - - 94.87±0.41 3.62±1.49 2.12±1.01
Our G-FairAttack - - - - - - 94.02±0.14 4.6±1.02 13.86±1.05
Ref - - - - - - 95.12±0.38 6.80±0.59 2.94±1.10
Our NIFA 70.76±0.39 17.22±0.95 15.43±1.03 70.21±0.68 8.93±2.25 8.50±2.23 93.47±0.48 11.19±2.33 17.75±2.44
Ref 70.50±0.30 17.36±1.16 15.59±1.08 70.12±0.37 10.10±2.10 9.85±1.97 93.37±1.48 13.49±2.83 20.33±3.82

C DBLP

As discussed in Section 3.3 and 5.5, some discrepancies were found in the DBLP dataset. Using the dataset
obtained as discussed in these sections, results in significantly different fairness results, shown in Table 12.

Table 12: NIFA performance on the original DBLP dataset. The colored values (+/-) indicate the difference
between our runs using this DBLP dataset and our runs using the dataset provided by the authors of Luo
et al. (2024).

Accuracy ∆SP ∆EO

GCN before 95.92 -0.66 0.70 -3.66 3.93 +1.51
after 94.97 +1.50 3.28 -7.91 4.15 -13.60

GraphSAGE before 95.12 -1.11 1.90 -0.74 1.30 -1.09
after 94.54 +0.92 4.52 -5.10 5.94 -10.66

APPNP before 95.69 -0.89 1.69 -2.28 0.78 -1.80
after 94.72 +3.21 6.11 -7.09 8.07 -9.23

SGC before 95.32 -1.31 1.90 -2.80 1.13 -2.12
after 94.49 +2.18 4.90 -5.35 5.87 -9.57

FairGNN before 94.39 +3.69 5.00 +2.44 6.04 +5.72
after 94.67 +4.07 5.05 +2.70 7.19 +4.69
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D Graph Sparseness and NIFA

In Section 4, differing results were shown by the DBLP dataset, when comparing to the Pokec datasets. We
hypothesize that this is due to the sparse nature of DBLP. DBLP has an average degree of 3, compared to 9 of
Pokec. In Table 13 we provide a table summarizing fairness metrics before and after poisoning categorized by
node degree. We discretized node degree into three approximately equal-sized bins using the 33rd and 67th
percentiles as cut-off points, creating groups for low, medium, and high degree evaluation nodes. Consistent
with our observations in fairness differences observed between the Pokec datasets and DBLP (Table 4), we
see that fairness is impacted more significantly by NIFA poisoning when node degrees are low. Intuitively,
injecting nodes to degrade fairness is more effective in sparse neighborhoods, as the relative influence of each
injected node increases when the number of existing nodes is small.

Table 13: Change in fairness metrics before and after performing NIFA when comparing different Node
degrees.

Before After Change
Group ∆SP ∆EO ∆SP ∆EO ∆SP ∆EO

P
ok

ec
-z Low (2-7) 8.91 5.39 27.10 25.17 ↑↑ ↑↑

Medium (8-22) 15.58 13.58 23.53 21.65 ↑ ↑
High (23+) 9.34 7.72 10.23 9.02 ∼ ↑

Avg 9.24 7.38 17.36 15.70 ↑↑ ↑↑

P
ok

ec
-n Low (2-6) 8.31 8.16 10.78 12.31 ↑ ↑

Medium (7-19) 6.05 5.80 13.55 12.10 ↑↑ ↑
High (20+) 9.34 7.57 8.09 6.75 ↓ ↓

Avg 0.72 2.95 8.12 7.69 ↑↑ ↑

D
B

L
P Low (2-5) 9.74 7.69 14.40 22.00 ↑↑ ↑↑

Medium (6-10) 11.24 3.21 13.49 28.09 ↑ ↑↑
High (11+) 0.94 2.63 3.70 0.00 ↑ ↓

Avg 4.83 2.76 12.30 17.90 ↑↑ ↑↑

E NIFA as true poisoning attack

Table 14 shows the increase of fairness when training the model on the poisoned graph produced by NIFA.
In true poisoning, we evaluate on a clean graph, instead of the poisoned graph as seen in the original NIFA
research.

Table 14: The NIFA attack where the test graph remains unpoisoned: the true poisoning attack, compared
to the original NIFA poisoning attack, and no attack at all. The Bold values indicate an insignificant impact
of NIFA on the ∆SP or ∆EO compared to no attack.

Pokec-z Pokec-n DBLP

Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO

GCN
Clean 71.50±0.14 7.84±1.07 5.87±1.04 70.34±0.71 2.23±1.25 2.33±1.33 96.58±0.49 4.36±1.22 2.42±1.03

Poisoning 70.76±0.39 17.22±0.95 15.43±1.03 70.21±0.68 8.93±2.25 8.50±2.23 93.47±0.48 11.19±2.33 17.75±2.44
True Poisoning 71.26±0.49 3.65±0.90 2.07±0.70 70.55±0.58 0.87±0.39 3.14±0.77 97.19±0.29 5.07±1.27 2.76±0.93

GraphSAGE
Clean 70.70±0.66 4.49±1.31 3.43±0.95 69.14±0.87 0.96±0.67 1.39±0.71 96.23±0.28 2.64±1.73 2.39±1.03

Poisoning 70.16±0.47 5.60±2.11 3.96±1.87 68.43±0.30 0.98±0.78 2.44±1.74 93.62±0.44 9.62±3.29 16.60±3.31
True Poisoning 70.80±0.34 4.35±2.05 4.53±1.18 68.96±0.80 1.31±1.00 2.29±1.14 96.18±0.62 3.47±1.46 3.05±1.20

APPNP
Clean 69.88±0.70 7.26±0.48 5.53±0.52 68.33±0.49 4.40±0.65 4.73±0.65 96.58±0.34 3.97±1.56 2.58±1.17

Poisoning 68.63±1.18 17.85±1.63 16.39±1.68 67.90±0.64 9.77±1.26 9.53±1.23 91.51±0.64 13.20±4.21 17.30±4.95
True Poisoning 68.83±1.44 6.15±1.56 4.73±1.18 68.83±0.45 4.23±0.38 4.57±0.39 96.83±0.34 2.21±1.25 1.57±0.87

SGC
Clean 68.37±1.30 5.54±1.40 3.85±1.19 66.48±2.35 4.64±2.03 4.96±1.98 96.63±0.38 4.70±0.93 3.25±0.72

Poisoning 67.19±0.89 16.23±1.32 14.71±1.32 64.32±2.67 7.51±1.17 7.36±1.30 92.31±1.54 10.25±2.31 15.44±2.13
True Poisoning 66.20±3.63 5.64±1.14 4.34±0.44 67.34±0.63 3.90±0.89 4.22±0.92 96.38±0.41 2.44±0.40 2.98±1.53
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F Antidote defense on evasion attack

Our Antidote defense showed significant reduction in both ∆SP and ∆EO on NIFA. To test the general-
izability, we defended against the evasion attack. Defense, ‘good’, nodes are added before training on the
clean graph. After training the victim model is evaluated using a poisoned test graph. Table 15 shows the
improvement in fairness after using the Antidote defense on the evasion attack. Using this defense on the
evasion attack of GCN on Pokec-n seems to be an outlier, showing higher ∆SP and ∆EO than the evasion
attack without defense.

Table 15: Accuracy and Fairness metrics comparing the clean model, evasion attack and antidote defense
on the evasion attack. The bold values indicate a significant decrease in fairness compared to models under
the evasion attack with no defense

Pokec-z Pokec-n DBLP

Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO

GCN
Clean 71.50±0.14 7.84±1.07 5.87±1.04 70.34±0.71 2.23±1.25 2.33±1.33 96.58±0.49 4.36±1.22 2.42±1.03

Evasion 70.80±0.25 22.50±1.60 20.79±1.68 70.21±0.40 11.79±3.79 11.79±3.79 91.76±0.58 15.08±2.95 22.02±3.30
Antidote 71.23±0.35 17.01±1.14 15.08±1.18 69.24±0.84 17.59±5.16 17.32±4.93 88.64±0.72 15.26±3.08 20.41±2.06

GraphSAGE
Clean 70.70±0.66 4.49±1.31 3.43±0.95 69.14±0.87 0.96±0.67 1.39±0.71 96.23±0.28 2.64±1.73 2.39±1.03

Evasion 69.07±0.53 18.97±5.31 17.38±5.37 67.47±0.50 17.81±6.15 17.39±6.15 90.50±1.42 17.00±2.63 24.15±2.65
Antidote 69.41±0.65 4.93±3.40 4.34±2.56 67.43±0.95 12.01±3.40 11.73±3.32 91.01±2.20 7.04±3.57 10.52±3.48

APPNP
Clean 69.88±0.70 7.26±0.48 5.53±0.52 68.33±0.49 4.40±0.65 4.73±0.65 96.58±0.34 3.97±1.56 2.58±1.17

Evasion 68.72±0.69 21.55±3.59 20.11±3.73 68.15±0.38 12.32±4.43 11.96±4.44 87.79±2.15 19.95±2.06 26.30±1.49
Antidote 67.55±0.48 7.15±1.14 5.41±1.12 67.91±0.49 9.78±1.62 9.58±1.69 91.11±2.05 10.44±4.91 15.11±5.64

SGC
Clean 68.37±1.30 5.54±1.40 3.85±1.19 66.48±2.35 4.64±2.03 4.96±1.98 96.63±0.38 4.70±0.93 3.25±0.72

Evasion 67.08±0.89 23.07±2.68 21.66±2.68 66.91±0.33 14.66±3.82 14.28±3.82 86.93±1.78 20.64±1.79 26.80±1.19
Antidote 63.89±1.72 4.12±1.53 3.21±1.33 65.63±0.98 9.63±7.77 9.43±7.68 90.85±1.55 12.44±4.70 11.96±4.98

G Masking and Antidote together

After observing the generalizability of the Masking defense in Section 4.3 on other attacks, a combination of
both the Antidote and Masking defense was used. Using this combination of defenses, a more generalizable
and effective defense could be created. First, using the Masking defense uncertain nodes are masked. Then
using the Antidote defense, nodes are added which aim to optimize the fairness of the classification. The
results for this ensemble defense are summarized in Table 16. This Table shows that the ensemble defense
does not generalize, achieving higher ∆SP and ∆EO than the Antidote defense.

Table 16: Accuracy and Fairness metrics comparing the ensemble defense , the Antidote defense and node
masking defense against a clean graph and a poisoned graph without the defense. The Bold values indicate
a significant decrease in ∆SP or ∆EO after using the defense.

Pokec-z Pokec-n

Accuracy ∆SP ∆EO Accuracy ∆SP ∆EO

Clean 71.50±0.14 7.84±1.07 5.87±1.04 70.34±0.71 2.23±1.25 2.33±1.33
FA-GNN 71.72 ± 0.77 8.33 ± 2.60 13.23 ± 5.18 70.19 ± 0.42 4.00 ± 2.17 5.79 ± 1.52

+ Masking 70.15±0.37 9.17±1.25 7.18±1.40 69.70±0.65 1.74±0.82 3.11±0.59
+ Antidote 69.83±0.61 2.19±1.65 2.64±0.72 69.35±0.53 2.53±0.53 3.56±0.98
+ Both 68.82±0.34 6.70±4.20 9.60±3.36 67.97±0.39 13.04±2.39 13.42±2.40
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H Anomalous FairVGNN results

As discussed in Section 5.2, we found anomalies in the performance of FairVGNN on the Pokec datasets.
These results are shown in Table 17, where some combinations of hyperparameters do significantly reduce
the influence of NIFA on ∆SP and ∆EO.

Table 17: FairVGNN results for Pokec datasets. d, g, and c refer to the discriminator, generator, and
classifier, respectively. The instances where the attack improved utility or fairness are highlighted in bold

Epochs Pokec-z Pokec-n
ϵ d g c State Acc ∆SP ∆EO Acc ∆SP ∆EO

1.0 5 5 5 Before 67.67±0.84 1.34±0.97 1.63±0.76 63.19±4.93 2.55±0.83 1.42±1.07
After 66.07±2.76 3.72±2.29 4.39±1.81 64.38±3.30 2.12±1.21 1.76±1.06

0.1 5 5 5 Before 66.52±1.36 2.70±1.47 2.31±1.41 65.23±4.16 3.08±1.40 2.48±1.23
After 66.27±1.30 4.44±1.64 3.65±2.52 67.01±1.07 2.87±1.19 2.88±0.93

0.01 5 5 5 Before 62.91±2.49 3.50±3.85 2.43±3.20 63.33±4.41 4.00±2.28 3.73±2.22
After 63.38±1.88 1.30±0.64 1.82±0.44 66.11±1.39 2.92±2.20 2.82±1.68

1.0 5 5 10 Before 63.17±2.19 3.86±1.74 2.85±1.64 65.42±3.44 2.96±1.59 2.35±1.22
After 64.86±2.51 3.00±2.64 2.77±2.10 64.41±5.24 4.01±2.97 3.88±3.20

0.1 5 5 10 Before 66.07±1.33 3.64±2.37 3.11±1.60 64.04±4.52 5.81±3.93 4.04±2.75
After 66.17±0.64 3.18±3.65 3.62±2.67 65.71±1.84 3.97±2.50 2.98±3.72

0.01 5 5 10 Before 59.59±1.88 2.32±1.69 1.22±0.52 65.48±1.98 3.09±1.91 3.85±1.53
After 60.63±0.59 5.62±2.15 3.57±2.11 61.61±6.56 4.29±2.60 2.40±2.64

1.0 5 10 5 Before 67.15±2.65 1.86±1.55 1.74±1.13 65.37±2.69 4.04±1.81 3.24±1.39
After 67.17±1.23 4.83±3.12 4.80±1.94 64.85±3.13 3.29±1.42 2.60±0.65

0.1 5 10 5 Before 67.34±1.43 2.24±1.40 2.09±1.69 65.38±2.54 2.92±1.79 2.16±1.36
After 66.35±1.00 5.13±4.52 4.98±4.15 65.99±2.30 9.36±3.97 7.40±4.29

0.01 5 10 5 Before 60.72±2.31 2.99±2.50 2.17±1.26 66.15±1.48 3.69±2.19 4.05±1.82
After 62.17±2.40 2.57±2.19 2.17±2.19 60.86±6.12 2.44±0.85 2.94±1.81

1.0 10 5 5 Before 67.00±1.64 3.33±2.88 2.11±2.21 66.53±1.90 3.01±2.05 2.13±1.33
After 65.63±1.84 5.53±4.94 5.45±2.97 67.20±0.81 2.66±1.87 3.18±1.78

0.1 10 5 5 Before 64.86±2.79 10.71±7.71 7.18±5.00 67.16±1.46 3.71±3.07 3.21±2.24
After 65.95±1.88 5.76±4.37 4.75±4.64 61.96±3.47 10.52±5.43 7.79±3.32

0.01 10 5 5 Before 60.94±3.67 0.91±1.32 1.91±1.70 58.67±5.65 12.18±9.29 9.23±6.80
After 59.52±2.63 3.88±4.67 2.67±3.50 56.89±6.90 5.22±6.57 6.06±8.54

1.0 5 10 10 Before 67.79±0.83 1.99±0.97 3.30±0.95 65.79±2.38 2.87±1.71 1.73±1.40
After 64.43±1.88 3.49±2.65 2.80±2.36 64.01±3.02 6.04±4.12 4.15±2.59

0.1 5 10 10 Before 66.48±0.98 1.38±0.99 1.33±1.22 68.65±0.56 4.77±3.04 5.51±2.84
After 65.64±0.68 4.18±2.13 3.93±2.06 66.99±1.77 3.76±2.54 3.62±3.02

0.01 5 10 10 Before 60.58±1.14 2.48±1.52 1.12±1.08 65.16±1.14 2.51±1.27 3.11±1.49
After 61.34±1.92 2.82±1.44 1.18±0.49 62.57±5.21 3.50±2.30 2.73±2.88

1.0 10 5 10 Before 66.45±2.52 3.49±1.24 3.36±1.48 63.92±2.34 3.00±1.22 3.28±1.51
After 66.75±0.54 2.91±2.94 3.79±2.76 64.27±4.66 4.82±1.12 3.69±1.80

0.1 10 5 10 Before 65.83±0.89 2.47±1.65 1.95±1.11 67.50±1.08 3.07±2.82 2.42±2.74
After 65.58±1.00 2.48±2.08 2.31±1.15 65.15±3.19 4.91±2.10 3.95±1.79

0.01 10 5 10 Before 61.50±3.47 2.50±1.62 1.31±0.80 66.41±0.88 5.67±1.10 5.96±1.72
After 62.37±2.79 2.52±2.50 2.13±1.83 63.57±2.53 4.48±2.93 3.56±2.61

1.0 10 10 5 Before 64.67±1.63 2.76±1.48 2.65±0.69 66.49±3.11 4.06±2.88 3.47±3.06
After 63.44±1.10 7.01±2.77 5.79±3.06 65.17±1.98 5.09±4.28 5.05±3.34

0.1 10 10 5 Before 67.13±0.72 7.07±6.02 6.98±5.23 64.75±6.04 7.85±4.12 4.59±2.28
After 65.22±1.38 10.52±10.87 8.07±8.02 65.44±3.63 1.90±1.61 1.69±1.39

0.01 10 10 5 Before 58.73±3.87 2.35±1.54 1.07±0.63 60.30±6.46 8.17±4.31 6.03±3.87
After 57.89±2.90 8.01±5.87 6.66±6.05 62.19±2.14 4.60±3.77 2.56±2.05

1.0 10 10 10 Before 67.65±0.55 1.82±0.94 1.65±0.99 65.17±2.94 2.33±2.23 2.36±1.64
After 65.42±1.28 2.44±1.95 2.21±2.08 66.28±1.46 3.56±3.03 3.07±2.35

0.1 10 10 10 Before - - - 65.41±3.74 3.09±1.49 2.04±1.00
After - - - 66.95±0.88 3.71±1.50 4.21±1.42

0.01 10 10 10 Before - - - 66.24±0.59 3.63±2.08 4.36±2.10
After - - - 59.85±5.47 4.75±2.62 2.48±0.93
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I Increasing Model size

I.1 Main Results

This section contains the complete results for the layer experiments found in Section 4.3 of our research. The
plots below indicate the choice of extra layers per model. 0 extra layers denotes the performance as seen in
Table 4.

Figure 4: Impact of increasing the number of layers in the GCN model on accuracy, statistical parity, and
equal opportunity metrics.

Figure 5: Impact of increasing the number of layers in the GraphSAGE model on the accuracy, Statistical
Parity and Equal opportunity metrics.
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Figure 6: Impact of increasing the number of layers in the APPNP model on the accuracy, Statistical Parity
and Equal opportunity metrics.

Figure 7: Impact of increasing the number of layers in the SGC model on the accuracy, Statistical Parity
and Equal opportunity metrics.

Figure 8: Impact of increasing the number of layers in the FairGNN model on the accuracy, Statistical Parity
and Equal opportunity metrics.
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I.2 Oversmoothing

We found that adding layers causes oversmoothing of the features in the penultimate layer, before the last
activation function and classification layer. These results are visualized in Figures 9a, 9b, and 10, where
the standard deviation between the output features of this penultimate layer is plotted per added layers,
averaged over the test set. SGC is left out in these results, as no layers are added to this model. The
oversmoothing by the victim models likely causes the decrease in accuracy, ∆SP , and ∆EO. In particular
this decrease in unfairness, indicates a tradeoff between utility and fairness, where decreasing the influence
of individual neighbors decreases utility, but increases fairness.

The GCN and APPNP models follow a consistent pattern, where the standard deviation of the output
features decreases with the amount of added layers. However, on the DBLP dataset, this standard deviation
seems to increase with the amount of layers. This might be due to the sparseness of the graph compared
to the Pokec datasets, as shown in Appendix D. Increasing the amount of layers increases the amount of
aggregated neighbors, but this affect is not as significant on DBLP as on the Pokec datasets.

GraphSAGE shows increased standard deviation of output features when adding more layers. This is ex-
pected considering its architecture, where at each layer it considers a fixed neighborhood from which it
aggregates features. This means that the features do not get oversmoothed, when adding more layers.

(a) Mean standard deviation of the penultimate layer
when adding more layers to the GCN victim model.

(b) Mean standard deviation of the penultimate layer
when adding more layers to the GraphSAGE victim
model.

Figure 10: Mean standard deviation of the penultimate layer when adding more layers to the APPNP
victim model.
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