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Abstract

We establish rigorous benchmarks for visual percep-
tion robustness. Synthetic images such as ImageNet-C,
ImageNet-9, and Stylized ImageNet provide specific type
of evaluation over synthetic corruptions, backgrounds, and
textures, yet those robustness benchmarks are restricted
in specified variations and have low synthetic quality. In
this work, we introduce generative model as a data source
for synthesizing hard images that benchmark deep mod-
els’ robustness. Leveraging diffusion models, we are able
to generate images with more diversified backgrounds, tex-
tures, and materials than any prior work, where we term
this benchmark as ImageNet-D. Experimental results show
that ImageNet-D results in a significant accuracy drop to
a range of vision models, from the standard ResNet vi-
sual classifier to the latest foundation models like CLIP and
MiniGPT-4, significantly reducing their accuracy by up to
60%. Our work suggests that diffusion models can be an
effective source to test vision models. The code and dataset
are available at https://github.com/chenshuang-
zhang/imagenet_d.

1. Introduction

Neural networks have achieved remarkable performance in
tasks ranging from image classification [33, 34, 55] to vi-
sual question answering [10, 28, 31, 65]. These advances
have inspired the application of neural networks in various
fields, including security and safety-critical systems such as
self-driving cars [27, 32, 42], malware detection [9, 43, 60]
and robots [6, 7, 25]. Due to their wide adaptation, it is
becoming increasingly important to identify the robustness
of neural networks [30, 41] for safety reasons.

To evaluate the robustness of neural networks, Object-
Net [3] collects real-world object images on controlled fac-
tors like background with human workers, which is time-
consuming and labor-intensive. To scale up data collection,
synthetic images are proposed as test images [15, 19, 58].
For example, ImageNet-C [19] introduces a set of low-level
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Figure 1. Top predictions from CLIP (ViT-L/14) on ImageNet-D.
We synthesize the images by changing their background, texture
and material. The groundtruth for the images are plunger, spat-
ula, and ladle in order, together with the background (badminton
court), texture (freckled), and material (painted).

common visual corruptions, such as gaussian noise and
blur, to test models’ robustness. ImageNet-9 [58] uses sim-
ple cutting and paste technique to create robustness bench-
mark on object background, yet the images are not realistic.
Stylized-ImageNet [15] generates new images by altering
the textures of ImageNet images, which cannot control the
global factors like background.

In this work, we introduce ImageNet-D, a synthetic test
set generated by diffusion models for object recognition
task. Capitalizing on the capability of pioneering Stable
Diffusion models[48], we show that we can steer diffusion
models with language to create realistic test images that
cause vision models fail. Figure 1 shows three failure cases
of CLIP model on our synthetic ImageNet-D dataset. Since
we rely on language to create images, we can vary the high-
level factors in the images in contrast to the local corrup-
tions and texture in prior work, introducing addition factors
that one can evaluate robustness on.

To enhance sample difficulty of our dataset, we selec-
tively retain images that cause failures in multiple chosen
vision models. Our results show that images triggering er-
rors in chosen models can reliably transfer their challenging
nature to other, previously untested models. This leads to a
notable decrease in accuracy, even in state-of-the-art foun-
dation models like MiniGPT-4 [65] and LLaVa [31], sug-
gesting our dataset reveals common failures in vision mod-
els.

Visualizations demonstrate that Imagenet-D signifi-
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Figure 2. Examples from ImageNet-9 [58], Stylized-
ImageNet [15] and ImageNet-C [19] and our ImageNet-D. For
the second row, we show images from ImageNet-D with differ-
ent backgrounds, textures and materials orderly. Take the back-
ground for example (the two columns on the left), ImageNet-9 [58]
generates new images by simply cutting and paste foreground and
background from different images, leading to object deformation
and dislocation. By contrast, ImageNet-D includes images with
diverse backgrounds by diffusion generation, achieving superior
visual fidelity.

cantly enhances image quality compared to previous
synthetic robustness benchmarks, as evidenced in Fig-
ure 2. Imagenet-D serves as an effective tool for reduc-
ing the performance and assessing model robustness, in-
cluding ResNet 101 (reducing 55.02%), ViT-L/16 (reducing
59.40%), CLIP (reducing 46.05%), and transfer well to un-
foreseen large vision language models like LLaVa [31] (re-
ducing 29.67%), and MiniGPT-4 [65] (reducing 16.81%).
Our approach of utilizing generative models to evaluate
model robustness is general, and shows significant poten-
tial for even greater effectiveness with future advancements
in generative models.

2. Related work

Robustness of neural networks. Neural networks have
evolved from CNN [16, 24], ViT [33, 55], to large foun-
dation models [5, 12, 54]. Previous work has investigated
neural networks robustness from multiple aspects, such as
adversarial examples [35, 36, 38, 63, 64] and out-of-domain
samples [17, 20, 22, 37]. Foundation models have shown
greater robustness on out-of-distribution samples [45]. Ro-
bust explanation has also been investigated [31, 39, 65]. To
systematically evaluate the robustness of deep models, test
sets that cover different factors are urgently needed.
Dataset for benchmarking robustness. To evaluate neu-
ral network robustness, a branch of studies source images
online, including ImageNet-A [23], Imagenet-R [22] and
ImageNet-Sketch [57]. However, they are limited to im-
ages that exist on the web. ObjectNet [3] manually col-
lects images with the help of 5982 workers, which is time-
consuming and resource-intensive.

To overcome the limitations of web images and reduce
the cost of manual collection, synthetic images are proposed
for robustness evaluation [15, 19, 58]. ImageNet-C [19]

benchmarks model robustness on low-level corruptions.
ImageNet-9 [58] generates new images by combining fore-
ground and background from different images, however,
limited by poor image fidelity. Stylized-ImageNet [15] al-
ters the textures of ImageNet images by AdalN style trans-
fer [26] or introducing texture-shape cue conflict, which
cannot control other factors like backgrounds. In this work,
we introduce a new test set ImageNet-D, which is generated
by controlling diffusion models and includes novel images
with diverse backgrounds, textures, and materials.

Image generation. Diffusion models have achieved great
success in various tasks including image generation [46, 49,
51, 62]. As a milestone work, Stable diffusion [48] enables
high-fidelity image synthesis controlled by language. In-
structPix2Pix [8] provides a more sophisticated control by
editing a given image according to human instructions. In
this paper, we build our pipeline with the standard Stable
Diffusion model, yet our algorithm is compatible with other
generative models that can be steered by language.
Enhancing perception with diffusion images. Diffusion-
generated images have been used for vision perception
tasks. A branch of studies [1, 2, 53, 59] improves classi-
fication accuracy by using synthetic images as training data
augmentation. DREAM-OOD [14] finds the outliers by de-
coding sampled latent embeddings to images. However,
their method lacks specific control over image space, which
is crucial for benchmarks like ImageNet-D. [40] identifies
under-represented attribute pairs, while our study focuses
on hard images with a single attribute. Unlike [29, 44, 56]
that modify existing datasets, our work generates new im-
ages and mines the most challenging ones as the test set,
achieving greater accuracy drop than [29, 44, 56].

3. ImageNet-D

We first present how ImageNet-D is created in Section 3.1,
followed by an overview of its statistics in Section 3.2.

3.1. Dataset design

While neural networks excel in various applications, their
robustness needs rigorous evaluation for safety. Traditional
evaluations use existing test sets, including either natural
[3, 23] or synthetic images [15, 19, 58]. Compared to man-
ual image collection, collecting a synthetic test set is more
efficient [15, 58]. However, the diversity of current syn-
thetic test sets is limited due to their reliance on existing
images for attribute extraction. These synthetic images are
also not realistic, as shown in Figure 2. ImageNet-D is in-
troduced to evaluate model robustness across various object
and nuisance combinations, addressing these limitations.
Image generation by diffusion models. To construct
ImageNet-D, diffusion models are used to create a vast im-
age pool by combining all possible object and nuisances,
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Figure 3. The ImageNet-D test set. Each group of images is generated with the same object and nuisance, such as background, texture,
and material. For each group of images, the ground truth label is color green, while the predicted categories by CLIP (ViT-L/14) on each
image are in black. Leveraging diffusion models for image generation, we can create a test set with diverse combinations of objects and
nuisances. For example, the top left corner shows a bench in the swimming pool background. Interestingly, CLIP (ViT-L/14) recognizes
the bench in this image as swimming trunks.
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Figure 4. ImageNet-D creation framework. ImageNet-D is created by first combining various object categories and nuisances, including
background, texture, and material. To make the test set challenging, we only keep the hard images from the large pool that commonly
make multiple surrogate models fail to predict the correct object label. The test set is then refined through human verification to ensure the
images are valid, single-class, and high-quality, making ImageNet-D suitable for evaluating the robustness of different neural networks.

enabling high-fidelity image generation based on user-
defined text inputs. We use Stable Diffusion model[48] for
image generation, while our approach is compatible with
other generative models that can be steered by language.
The image generation process is formulated as follows:

Image(C, N) = Stable Diffusion(Prompt(C, N)), (1)

where C' and N refer to the object category and nuisance,
respectively. The nuisance N includes background, mate-
rial, and texture in this work. Table 1 presents an overview
of nuisances and prompts to diffusion models. Using the
backpack category as an example, we first generate images
of backpacks with various backgrounds, materials, and tex-
tures (e.g., a backpack in a wheat field), offering a broader
range of combinations than existing test sets. Each image is
labeled with its prompt category C' as ground truth for clas-
sification. An image is viewed misclassified if the model’s
predicted label does not match the ground truth C.

After creating a large image pool with all object category
and nuisance pairs, we evaluate CLIP (ViT-L/14) model on
these images in Table 2. Experimental details are reported
in Section 4.1. Table 2 shows that CLIP achieves high accu-

racy on all the test sets, with an accuracy of around 94% on
synthetic image pool. To create a challenging test set for ro-
bustness evaluation, we propose an efficient strategy to find
the hard test samples from all generated images as follows.

Hard image mining with shared perception failures.
Before introducing how to identify hard samples from syn-
thetic image pool, we first define the concept of shared per-
ception failure as follows.

Shared failure: Animage is a shared failure if it
leads multiple models to predict object’s label incorrectly.

An ideal hard test set should include images that all
tested models fail to identify. However, this is impracti-
cal due to the inaccessibility of future test models, termed
target model. Instead, we construct the test set using shared
failures of known surrogate models. If the failures of surro-
gate models lead to low accuracy in unknown models, the
test set is deemed challenging. This is defined as transfer-
able failure as follows:

Transferable failure:  Shared failures of
known surrogate models are transferable if they also result
in low accuracy for unknown target models.

To test if shared failures of surrogate models are trans-
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Table 1. Overview of nuisances and input prompts to diffusion models. During ImageNet-D construction, 468 backgrounds, 47 textures,
and 32 materials from the Broden dataset [4] are used as nuisances. Images are generated by pairing each object with all nuisances in
diffusion model prompts. This approach allows for efficient scaling of ImageNet-D with additional categories and nuisances.

Nuisance \ Nuisance number \ Prompt to diffusion models \ Prompt example

Background 468 A [category]in the [packground] | A backpack inthe wheat field
Texture 47 A [texture] [category] A knitted backpack

Material 32 A [category| made of [material] | A backpack madeof leather

Target model: CLIP (ViT-B/16)

Target model: LLaVa

Target model: MiniGPT-4
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Figure 5. Test accuracy of target models on shared failures of surrogate models. We adopt known surrogate models to identify their shared
failure images as the test set, then evaluate a new target model on this test set. We show that the shared failures of surrogate models can
also deceive a new target model, leading to low test accuracy. Increasing the number of surrogate models lowers the target models’ test

accuracy, suggesting a more difficult test set.

Table 2. Test accuracy of CLIP (ViT-L/14) on the synthetic image
pool by exhausting all the object category and nuisance combina-
tions. We show that CLIP achieves high accuracy on the synthetic
image pool. To create a challenging test set for robustness evalua-
tion, we further mine the hard samples as the final test set.

Test Set  ImageNet ObjectNet Synthetic image pool
Background Texture  Material
Acc (%) 74.64 66.91 95.79 94.02 93.75

ferable for diffusion-generated images, we evaluate test sets
created with shared failures from 1 to 8 surrogate mod-
els in Figure 5. We evaluate the accuracy of three target
models that are not used during test set construction, in-
cluding CLIP(ViT-B/16), LLaVa, and MiniGPT-4. Figure 5
shows that target model accuracy decreases as more surro-
gate models are used. The test sets are created with diverse
backgrounds, while experiments for texture and material
show the same trend. This trend demonstrates that failure
images of multiple surrogate models can form a challeng-
ing test set for unseen new models. Notably, the accuracy
decrease slows when the number of surrogate models ex-
ceeds four.

Quality control by human-in-the-loop. The above pro-
cess allows us to automatically find a challenging test set
to unseen models. However, generative models can pro-
duce incorrect images not matching the prompt category.
We resort to human annotation to ensure the ImageNet-
D images are simultaneously valid, single-class, and high-
quality. After first-round annotation by graduate students,

we use Amazon Mechanical Turk [11, 22, 47] to evaluate
labeling quality. We ask the workers to select the images
that they can either recognize the main object or the main
object can be used functionally as the ground truth cate-
gory. Moreover, we design sentinels to ensure high-quality
responses, including positive, negative and consistent sen-
tinels. We report details of the labeling task in the appendix.
A total of 679 qualified workers participated in 1540 label-
ing tasks, achieving an agreement of 91.09%. Figure 3 dis-
plays images from ImageNet-D, demonstrating high fidelity
and diversity in object and nuisance pairs. We summarize
the framework of creating ImageNet-D in Figure 4.

3.2. Dataset statistics

ImageNet-D includes 113 overlapping categories between
ImageNet and ObjectNet, and 547 nuisances candidates
from the Broden dataset [4](see Table 1), resulting in 4835
hard images featuring diverse backgrounds (3,764), tex-
tures (498), and materials (573). Our pipeline to create
ImageNet-D is general and efficient, allowing easy addition
of new categories and nuisances. ImageNet-D’s category
distribution exhibits a natural long-tail pattern, as shown in
Figure 6. The sparse and non-uniform category-attribute
distribution in Figure 7 shows the necessity of exhausting
all category and nuisance pairs in test set creation.

4. Experiments

We evaluate various models on ImageNet-D benchmark.
We find that ImageNet-D significantly decreases all mod-
els’ accuracy by up to 60%. We then show whether prior
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Figure 6. Histogram of the image frequency per category in our test set, following a natural long-tail distribution.
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Figure 7. Frequency of object category and nuisance pairs. Each dot indicates a pair, while the x-axis and y-axis indicate the nuisance
and category, respectively. As shown in Table 1, we adopt 468 backgrounds, 47 textures, and 32 materials from the Broden dataset [4],
leading to different widths of Figure (a) (b) (c). A darker color indicates more samples. The sparse and non-uniform distribution shows the
necessity of exhausting all category and nuisance pairs in ImageNet-D creation.

advancements could improve ImageNet-D robustness, such
as data augmentation. Lastly, we discuss ImageNet-D from
various aspects, such as nearest neighbor retrieval.

4.1. Experimental setups

Test set construction setups. We use Stable Diffusion [48]
to create ImageNet-D, and adopt the pretrained weight of
version stable-diffusion-2-1 from Hugging Face. To find
the hard images, we finalize ImageNet-D with shared fail-
ures of 4 surrogate models, including CLIP [45] (ViT-
L/14, ViT-L/14-336px and ResNet50), and vision model
(ResNet50 [16]). The candidate set of surrogate models in
Figure 5 also includes CLIP (Resnet101,ViT-B/32) and vi-
sion model (ViT-L/16 [13] and VGG16 [52]).

Evaluation of classification models. Robustness on
ImageNet-D is measured by top-1 accuracy in object recog-
nition, the ratio of correctly classified images to total im-
ages. We evaluate classification models with the open-
source pretrained weights. For CLIP [45], we follow the
original paper [45] to adopt A photo of a [category] as the
text template. The zero-shot accuracy of CLIP is reported.

Evaluation of visual question answering (VQA) mod-
els. We evaluate the accuracy of the state-of-the-art open-
source VQA models on ImageNet-D, including LLaVa [31],
and MiniGPT-4 [65]. Given an input image, VQA models
output answers based on input text prompt. However, the
textual output of VQA models is not limited to a certain
template, thus may not include the category name in pre-
defined category list of object recognition tasks. This makes
it hard to assess the accuracy based on diverse answers.

A common prompt that asks VQA models to rec-
ognize the object is: What is the main object
in this image? To make VQA models choose
from pre-defined category list, we ask VQA models as
follows: What is the main object in this
image? Choose from the following list:
[GT category|, [failure category]. GT cate-
gory refers to the image’s ground truth category. As for
the failure category, we adopt the category that achieves
the highest CLIP (ViT-L/14) confidence among all wrong
categories. With this prompt, we find that both MiniGPT-4
and LLaVa can choose from provided category list in their
output. If the model chooses ground truth category, this
image is viewed to be correctly recognized. Therefore, we
can compute the accuracy of VQA models.

4.2. Robustness evaluation

Quantitative results. We evaluate ImageNet-D on 25 mod-
els, and plot test accuracy trend in Figure 8. The horizontal
axis and vertical axis indicate the test accuracy on ImageNet
and ImageNet-D, respectively. Figure 8 shows that as Im-
ageNet accuracy increases, ImageNet-D accuracy also gets
higher. ImageNet-D accuracy is much lower than ImageNet
accuracy for all models, indicated by the lower distribution
below the y = x reference line. We report the accuracy
of 14 models on different test sets in Table 3, and all mod-
els’ accuracy in appendix. Table 3 shows that ImageNet-
D achieves the lowest test accuracy for all models, except
for the comparable result on Stylized-ImageNet for VQA
models. Note that ImageNet-D achieves higher image fi-
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Figure 8. Model accuracy on ImageNet vs. ImageNet-D. Each data point corresponds to one tested model. The plots reveal that there is a
significant accuracy drop from ImageNet to our new test set ImageNet-D. As the model’s accuracy on ImageNet increases, the accuracy on
ImageNet-D is also higher. These results show the effectiveness of ImageNet-D to evaluate the robustness of neural networks. We report
the exact number of 14 models of this figure in Table 3, and the results for all models can be found in the appendix.

Table 3. Test accuracy of vision models and large foundation models (%). We show the test accuracy for the vision models and large
foundation models (rows) on different test sets (columns). The numbers in green refer to the accuracy drop of ImageNet-D compared to
ImageNet. For MiniGPT-4 and LLaVa, ImageNet-D reduces the accuracy by 16.81% and 29.67% compared to the ImageNet, respectively.
Our results show that ImageNet-D is effective to evaluate the robustness of neural networks.

Model Architecture ImageNet ObjectNet ImageNet-9 Stylized ImageNet-D ImageNet-D
Background Texture Material Total
Vision model (CNN)  VGG19 62.77 27.19 74.84 16.25 9.8(-52.97) 11.45(-51.32)  12.39(-50.38) 10.28(-52.49)
ResNet101 67.66 32.34 81.85 22.66 12.38(-55.28) 13.65(-54.01) 13.44(-54.22) 12.64(-55.02)
Densenet161 66.99 31.86 84.91 225 11.34(-55.65)  14.06(-52.93)  13.26(-53.73) 11.85(-55.14)
Wideresnet101 69.2 34.37 82.17 21.48 10.55(-58.65)  13.05(-56.15)  12.04(-57.16) 10.98(-58.22)
Vision model (ViT) ViT-B/32 65.02 27.59 77.51 42.34 6.64(-58.38) 12.25(-52.77) 13.79(-51.23) 8.07(-56.95)
ViT-B/16 72.14 34.79 82.49 31.02 10.49(-61.65)  16.87(-55.27)  17.63(-54.51) 12.0(-60.14)
ViT-L/16 68.67 32.7 78.91 29.38 7.68(-60.99)  14.06(-54.61)  15.53(-53.14) | 9.27(-59.40)
CLIP RN101 62.48 42.89 83.09 22.58 21.47(-41.01)  21.29(-41.19)  25.83(-36.65) | 21.96(-40.52)
ViT-B/32 64.06 43.67 79.56 44.22 18.73(-45.33)  33.33(-30.73)  30.37(-33.69) | 21.61(-42.45)
ViT-B/16 67.95 54.87 85.16 40.62 20.64(-47.31) 22.89(-45.06) 29.32(-38.63) 21.9(-46.05)
MiniGPT-4 Vicuna 13B 88.77 71.57 89.46 69.88 71.81(-16.96)  72.48(-16.29) 72.5(-16.27) 71.96(-16.81)
LLaVa Vicuna 13B 79.32 76.02 90.84 61.94 52.89(-26.43)  40.53(-38.79)  36.28(-43.04) | 49.65(-29.67)
LLaVa-1.5 Vicuna 13B 89.08 78.66 93.88 64.14 73.31(-15.77)  67.27(-21.81)  67.08(-22.00) | 71.95(-17.13)
LLaVa-NeXT Hermes-Yi-34B 85.83 77.54 90.52 57.98 68.77(-17.06)  46.67(-39.16)  54.11(-31.72) | 64.76(-21.07)

delity than Stylized-ImageNet as shown in Figure 2. Al-
though ObjectNet changes multiple attributes for each im-
age, it still results in higher accuracy than ImageNet-D that
specifies only one attribute per image. Compared to Ima-
geNet, ImageNet-D yields a test accuracy drop of more than
16% for all models, including LLaVa (reducing 29.67%)
and MiniGPT-4 (reducing 16.81%). Our ImageNet-D can
also cause significant accuracy drop of the latest LLaVa-
1.5 and LLaVa-NeXT. Although LLaVa-NeXT outperforms
LLaVa-1.5 on benchmarks like MMMU [61], it achieves
lower accuracy on ImageNet-D, demonstrating the unique-
ness of ImageNet-D. For vision models, the accuracy drop
is even close to 50% to 60%. The results in Figure 8 and
Table 3 show the effectiveness of ImageNet-D in evaluating
the robustness of neural networks.

Visualization results. Figure 3 displays image exam-
ples from ImageNet-D, demonstrating high quality. Al-
though humans can easily recognize the main object, CLIP
(ViT-L/14) mistakenly classifies these images into a wrong
category. Figure 9 shows conversations with MiniGPT-
4 and LLaVa-1.5 on ImageNet-D images, indicating that

MiniGPT-4 and LLaVa-1.5 can also fail to recognize the
main object from ImageNet-D.

4.3. Robustness improvement

Data augmentation. Prior studies reveal that data aug-
mentation is effective to improve model robustness, such
as on ImageNet-C [19]. We evaluate data augmentation
methods on ImageNet-D, including SIN [15], AugMix [21],
ANT [50] and DeepAugment [22]. Table 4 shows the re-
sults with ResNet50 backbone for all methods. We report
test accuracy for ImageNet and ImageNet-D, mean Corrup-
tion Error (mCE) for ImageNet-C following [19, 21, 22,
50]. Although these methods improve ImageNet-C robust-
ness (lower mCE) than baseline model, Table 4 shows that
their ImageNet-D robustness is comparable or even worse
than baseline. This suggests that current benchmarks like
ImageNet-C do not accurately represent real robustness of
neural networks in our setting, making ImageNet-D a nec-
essary benchmark for robustness evaluation.

Model architecture. We compare ImageNet-D robust-
ness of different model architectures in Figure 11. When
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[ v Ground Truth Category 2 Human ‘E:,x MiniGPT-4 i‘ LLaVa-1.5 ]
(\/ Spatula ) ( What is the main object in this image? Choose from the following list: spatula, tennis racket. 2_)

‘é; The main object in this image is a tennis racket. ‘é Tennis racket.
(a) ( Why do you think the main object in this image is a tennis racket? 2_)

Because the image shows a tennis court, and the object in the

The main object in this image is a tennis racket because it is the

7 1 @ center of the court appears to be a tennis racket. The racket is the & central focus of the scene, and it is the only object that is clearly
— BWREE & main tool used in the sport of tennis for hitting the ball over the net == visible and described in detail. The tennis racket is described as
- and into the opponent’s court. The presence of the racket in the being white and blue, and it is positioned in the foreground,
{__X Tennis Racket ] center of the court suggests that it is the main object in the image. with the tennis court in the background.
What is the main object in this image? Choose from the following list: band aid, tray. 2 ’
The main object in this image is the tray. 'ﬁz Tray.
Why do you think the main object in this image is a tray? 2 ’

Because the image shows four wooden combs arranged in a row,
and a tray is a flat, usually rectangular, container that is often used
for serving food or holding objects. The combs appear to be placed
on the tray, making it the most likely main object in the image.

The main object in this image is a tray because it is described as a close-
+ up of a tray with three combs on it. The presence of the combs on the
Ztray suggests that it is a functional object used for organizing and
storing the combs. The tray is placed on a table, which further supports
the idea that it is the main object in the image.

(\/ Weight Scale ) ( What is the main object in this image? Choose from the following list: weight scale, desk lamp. 2 ’
i
‘é; The main object in the image is the desk lamp. 'ﬁ; Desk lamp.
(C) ( Why do you think the main object in this image is a desk lamp? 2 ’

X Desk Lamp J

rather than a weight scale or a plant.

The main object in the image is a desk lamp because it is clearly
b visible in the foreground of the image, with the other objects in the
“,i'-,‘,l background. Additionally, the lamp has a sleek, modern design and
appears to be made of metal, which suggests that it is a desk lamp

The main object in the image is a desk lamp because it is
prominently featured in the foreground, with a close-up view of
the lamp and its base. The lamp is turned on, which further
emphasizes its presence and function. Additionally, the lamp is
placed on a table, which is a common location for desk lamps.

b

Figure 9. Failure cases of MiniGPT-4 and LLaVa-1.5 from ImageNet-D.We ask MiniGPT-4 and LLaVa-1.5 for the category of the input
image and the reason for their predictions. Figure (a) to (c) are images with different background, texture and material, respectively. Our
results show that images from ImageNet-D can also make the state-of-the-art foundation models fail.

Table 4. Robustness of different augmentation methods. De-
spite superior ImageNet-C robustness, these methods fail to im-
prove ImageNet-D robustness, demonstrating the uniqueness of
ImageNet-D from ImageNet-C.

Model | ImageNet () | ImageNet-C(nCE)(]) | ImageNet-D(1)
Baseline 65.82 81.74 10.22

SIN 63.42(-2.40) 78.45(-3.29) 8.81(-1.41)
Augmix 66.88(+1.06) 74.7(-7.04) 8.75(-1.47)
ANT 65.95(+0.13) 76.74(-5.00) 10.09(-0.13)
DeepAugment 66.54(+0.72) 70.31(-11.43) 9.37(-0.85)

we change the model from ViT to Swin Transformer [33]
and ConvNeXt [34], the test accuracy on both ImageNet-D
(Background) and ImageNet improve. However, the robust-
ness on Texture and Material test set even decreases slightly.
These results show the difficulty of improving ImageNet-D
robustness by model architecture.

Pretraining with more data. Pretraining on a large data
set is effective to improves model performance, such as Im-
ageNet accuracy [18]. Figure 11 compares ConvNext, that
is trained directly on ImageNet-1K, with ConvNext (Pre-
trained) which is first pretrained on ImageNet-22K. We find
that ConvNext (Pretrained) achieves higher robustness than
ConvNext on all three sets of ImageNet-D, especially for

the Background set. These results show that pretraining on
a large data set helps improve robustness on ImageNet-D.

4.4. Further discussions

Can CLIP find the correct neighbors of ImageNet-D im-
ages? CLIP model [45] shows potential in nearest neigh-
bor search tasks. With ImageNet-D images as query, we
retrieve the most similar images from ImageNet to investi-
gate whether CLIP can find correct neighbors, as shown in
Figure 10. Take Background for example, retrieved images
may either have a similar background to the query image
(Figure 10(a)) or include the object that is related to the
query image’s background(Figure 10(b)).Our results show
that ImageNet-D can find the failure cases of neural net-
works in nearest neighbor retrieval.

Can ImageNet-D match natural test sets in failure
transferability? Section 3.1 defines transferable
failure and finalize ImageNet-D with shared failures
of surrogate models. We conduct the same experiment on
ImageNet, introducing ImageNet (Failure) with the shared
failure images of surrogate models. Table 5 show that
ImageNet-D achieves similar accuracy to ImageNet (Fail-
ure), indicating that that synthetic images can achieve sim-
ilar failure transferability as natural images. In contrast to
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Figure 10. Visualizations of nearest neighbor images. We visualize the nearest neighbor images from ImageNet with ImageNet-D image
as the query image. Instead of following the same object category as the query image, the nearest neighbor images either follow a
similar background or follow another object category that is highly correlated with the background of query image. Our results show that
ImageNet-D can find the failure cases of neural networks in nearest neighbor retrieval.
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Figure 11. Test accuracy of different architectures and training data. Each data point corresponds to one tested model. Apart from the
ConvNeXt (Pretrained), all other models are trained on ImageNet-1K. The plots show that pretraining achieves higher robustness on all
three subsets, while changing model architectures only improves on ImageNet-D (Background).

Table 5. Results of failure transferability. We create ImageNet ent training sets in Table 6. Table 6 shows that training on
(Failure) with shared failures of surrogate models from original Synthetic-easy significantly improves ImageNet-D robust-
ImageNet, achieving comparable accuracy to ImageNet-D. These ness by 19.26%. Remarkably, model C outperforms model
results shqw that t.hat our synthetllc images achieve similar ability B in ObjectNet accuracy by 1.34%, indicating model C’s
to natural images in finding the failures of new models. . . . . .
superior generalization. These results imply that diffusion-
generated images with diverse object and nuisance pairs

MiniGPT-4  Vicuna 13B 88.77 65.22 71.96

Model Architecture ‘ ImageNet ‘ ImageNet (Failure) ‘ ImageNet-D o
CLIP VITB/16 67.95 11.09 219 could enhance model robustness as training samples.
LLaVa Vicuna 13B | 79.32 41.43 49.65

5. Conclusion

Table 6. Test accuracy of models finetuned on synthetic data. We In this paper, we introduce a test set ImageNet-D and es-

finetune a pretrained ResNet18 model on ImageNet-1K together tablish a rigourous benchmark for visual perception robust-
with different extra training data. Training on synthetic images ness. Capitalizing the image generation ability of diffusion
achieves highest robustness on both ImageNet-D and ObjectNet. models, ImageNet-D includes images with diverse factors
including background, texture and material. Experimen-

Model | Extratrainingdata | ImageNet | ObjectNet | ImageNet-D tal results show that ImageNet-D significantly decreases
g - g/eNet “ 7585(.35 o | 2 7281(.3; - 104?;61 ) the accuracy of various mode.ls, including CLIP (r.ed.ucing

c Synthetic-easy | 56.56(+0.88) | 26.12(+4.61) | 27.86(+19.26) 46.05%), LLaVa [31] (reducing 29.67%), and MiniGPT-

4 [65] (reducing 16.81%), demonstrating the effectiveness
in model evaluation. Our work makes a step forward in im-
proving synthetic test sets, and will create more diverse and
challenging test images as generative models improve.
Acknowledgments: This work was supported by
Institute of Information & communications Technology

natural datasets like ImageNet, ImageNet-D enjoys a lower
cost in data collection and can be scaled efficiently.

Training on diffusion-generated images. By contrast

to shz'lred failure images in .ImageNet-D, we term gener- Planning & Evaluation (II'TP) grant funded by the Korea
ated images correctly classified by surrogate models as government (MSIT) (No.2022-0-00951, Development of
Synthetic-easy, and investigate their influence as training Uncertainty-Aware Agents Learning by Asking Questions).

data. We finetune a pre-trained ResNet18 model on differ-
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