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ABSTRACT

Humans extract useful abstractions of the world from noisy sensory data. Serial
reproduction allows us to study how people construe the world through a paradigm
similar to the game of telephone, where one person observes a stimulus and re-
produces it for the next to form a chain of reproductions. Past serial reproduction
experiments typically employ a single sensory modality, but humans often com-
municate abstractions of the world to each other through language. To investigate
the effect language on the formation of abstractions, we implement a novel multi-
modal serial reproduction framework by asking people who receive a visual stim-
ulus to reproduce it in a linguistic format, and vice versa. We ran unimodal and
multimodal chains with both humans and GPT-4 and find that adding language as
a modality has a larger effect on human reproductions than GPT-4’s. This sug-
gests human visual and linguistic representations are more dissociable than those
of GPT-4.

Figure 1: Example Multimodal Serial Reproduction Chain in Humans. One participant sees a
stimulus and transmits a language description of the stimulus. The next participant sees a language
description and produces a stimulus matching the description. The chain alternates between vision
and language.
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1 INTRODUCTION

Abstraction is a hallmark of human intelligence that helps us make sense of our complex environ-
ment. The ability to form abstractions has been proposed as a key component of human cognition,
and necessary for artificial intelligence to exhibit the same ability to generalize from limited data
(Lake et al., 2017). Large Language Models (LLMs) are sophisticated, high-performing artificial
intelligence systems that have emergent properties some claim may rival human-level general intel-
ligence (Wei et al., 2022; Bubeck et al., 2023). However, others have pointed out inconsistencies in
their reasoning abilities (Mitchell et al., 2023). The difficulty of assessing these capacities highlights
the need to develop rigorous experimental tools for probing abstraction in humans and machines
(Lake et al., 2017; Mitchell et al., 2023; Kumar et al., 2023).

Abstraction involves capturing the essential details of incoming information that will help us gen-
eralize to future experiences while discarding less useful information (Giunchiglia & Walsh, 1992).
The choice of what to focus on and what to ignore can be a reflection of our prior beliefs or expecta-
tions. Serial reproduction (Bartlett, 1932) is a method used to elicit such priors in human perception
and memory through a telephone-game-like experiment (Xu & Griffiths, 2008). People are asked to
pass a piece of information to one another in sequence, with each person reproducing the informa-
tion from memory for the next person. Studying how the information changes as it is passed along
the chain of people can be used as a window into their prior beliefs.

When using serial reproduction to study abstraction, one must consider that abstractions are not
only a noisy compression of a stimulus, but they are also formed to communicate information to
others (Tessler & Goodman, 2019; Tessler et al., 2021). In humans this is often done through lan-
guage (Lupyan & Bergen, 2016). The extent to which our abstractions are influenced by language
is a central but unanswered question in cognitive science (Quilty-Dunn et al., 2023; Kumar et al.,
2022; Lupyan et al., 2007). Most experiments involving human participants constructing a serial
reproduction chain (e.g. (Langlois et al., 2021; Anglada-Tort et al., 2023)) employ only one sen-
sory modality. Therefore, incorporating language as a transmission modality in multimodal serial
reproduction potentially provides a way to understand its influence on human abstractions.

In this work, we explore how adding language to a visual serial reproduction chain influences the
output of that chain, comparing human participants and GPT-4 (a contemporary LLM with visual
capabilities; Achiam et al. 2023). To simulate multimodal serial reproduction, participants who
observed a visual stimulus were asked to produce a textual stimulus for the next participant and
vice versa. As a result, the multimodal serial reproduction chain alternates between the visual and
language modalities. We present a theoretical analysis showing that comparing unimodal and mul-
timodal chains can allow us to assess whether distinct priors are being used to make inferences in
different modalities.

To establish this comparison, we collected data from both human participants and GPT-4 in two se-
rial reproduction paradigms, one unimodal and one multimodal. This allows us to compare emergent
distributions from vision-only vs. hybrid vision-language chains to see the impact of transmission
through multiple modalities. Our results show that transmission through both language and vision
has a significant impact on the level of abstraction demonstrated within human participants’ chains
but does not have as significant impact on GPT-4, suggesting that GPT-4, unlike humans, naturally
relies on language representations by default even in a vision-only paradigm.

2 METHODS

2.1 THEORETICAL FRAMEWORK

Bartlett 1932 proposed serial reproduction to study how bias from people’s previous experiences
influences how they perceive new experiences. In a unimodal serial reproduction study, the original
stimulus is presented to the first participant, who then reproduces it for the second participant, and so
on. Formally, serial reproduction can be interpreted as a Markov chain over a pair of variables (x, µ)
where x represents the distribution of stimuli in the world and µ represents the abstractions people
infer from those stimuli, · · ·xt → µt → xt+1 → µt+1 → · · · . A mathematical interpretation of this
process used by Xu & Griffiths 2010 treats xt as a noisy stimulus, and assumes humans share a prior
distribution pS(µ) about the world. To reconstruct the observed stimulus xt, humans try to estimate
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Figure 2: Serial Reproduction Chains Across Modalities. Five example human and GPT-4 chains
for each paradigm.

the true state of the world µt by sampling the posterior distribution p(µt|xt), and the next stimulus
is then sampled from the likelihood pS(xt+1|µt). Under this assumption and ergodicity (i.e., that
there is a finite probability for reaching any one state from another), the stationary distribution of the
Markov chain over µ converges to the prior pS(µ). Related analyses for this paradigm offer similar
conclusions (Jacoby & McDermott, 2017).

Consider next a serial reproduction process in which information is transmitted bimodally, e.g.,
through images x and language ℓ. The process unfolds as follows: at a given iteration t, a human
participant observes a stimulus xt and forms an abstraction µt about its content which they then use
to form a text description ℓt+1/2. The text description is then read by another participant who in
turn forms an abstraction µt+1/2 and uses that abstraction to produce a new stimulus xt+1. In other
words, we are concerned with the Markov process · · · → xt → µt → ℓt+1/2 → µt+1/2 → xt+1 →
· · · and want to characterize the stationary distribution of p(xt+1|xt). Following Xu & Griffiths
2010, we assume the agents are Bayesian and that they use some prior knowledge to form abstrac-
tions from language and stimuli, namely p(µ|x) ∝ pS(x|µ)pS(µ) and p(µ|ℓ) ∝ pL(ℓ|µ)pL(µ)
where S and L indicate stimulus and language, respectively. The stimulus and language priors over
abstractions need not be the same (the likelihoods are by definition different because they are defined
on different input). If, however, they were aligned, i.e. pS(µ) = pL(µ) for all µ, then propagation
through the additional linguistic modality does not alter the stationary distribution over stimuli x.
This can be verified by checking that the prior predictive distribution p̂(x) =

∫
pS(x|µ)pS(µ)dµ

satisfies the stationarity condition
∫
p(xt+1|xt)p̂(xt)dxt = p̂(xt+1), similar to the unimodal case

of Xu & Griffiths 2010. Discrepancies in the stationary distribution over stimuli x between the uni-
modal and multimodal serial reproduction chains in this theoretical setup would reflect a difference
in priors pL(µ) and pS(µ). This suggests that comparison of the stationary distributions produced
by unimodal and multimodal chains is an effective way of discovering differences in the way that
agents construe the world across different modalities.

2.2 HUMAN EXPERIMENTS

We recruited N = 348 participants from Prolific. Participants were required to be native English
speakers to ensure high textual data quality, and they provided informed consent prior to participa-
tion in accordance with an approved institional review board (IRB) protocol.

We collected 100 chains of 10 visual steps of both unimodal and multimodal serial reproduction.
Both conditions were intitialzed with the same set of randomly sampled boards. Although 10 it-
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erations can be considered on the short side, sampling-based chains with people tend to converge
much faster than their theoretical counterparts (Sanborn & Griffiths, 2007; Harrison et al., 2020). To
compensate for the chain length, we run many different chains (Harrison et al., 2020).

In this work, we use a simple stimulus space of binary 7 × 7 grid patterns (Fig. 1), which has
previously been used to study abstraction in humans and machines (Kumar et al., 2021; 2022; 2023)
due to having a nice balance between being rich enough to elicit interesting abstractions but small
enough to enable rigorous experimentation.

Unimodal Serial Reproduction: To implement unimodal serial reproduction in humans, at each
step, the participant is asked to memorize a stimulus board for 5 seconds and tasked with reproducing
the board afterwards. The new board serves as the stimulus for the next iteration of the chain. After
running all the unimodal chains, we then collected language descriptions of all boards produced
post-hoc by having a separate set of participants give board descriptions. Each participant completed
up to 10 trials and was allowed to visit each chain only once (to reduce trial dependence within
chains).

Multimodal Serial Reproduction: In multimodal serial reproduction, a participant can be shown
either a stimulus board, or a string of textual description. If shown a board, then they are asked to
provide an accurate textual description of the board such that the board can be reconstructed from
it. If shown a string of textual descriptions, then they are asked to reproduce a board that most
accurately illustrates the textual description. The new board or text will serve as the stimulus for
the next iteration in the chain. Here too participants completed up to 10 trials and were allowed to
participate in a given chain once.

2.3 MACHINE EXPERIMENTS

To study machine priors, we use GPT-4 vision (Achiam et al., 2023), a Large Language Model
(LLM) with multimodal capabilities. We implement the serial reproduction chains with GPT-4 to
be as close to the human experiments as possible. Just like the human experiments, we ran 100
unimodal and multimodal chains of 10 iterations.

Unimodal Serial Reproduction: To implement unimodal serial reproduction in GPT-4, we present
it an image of a 7×7 binary grid and ask it to produce the grid in matrix form, with 1 corresponding
to red tiles and 0 corresponding to white tiles. We then use the matrix GPT-4 produced for the next
iteration’s input.

Multimodal Serial Reproduction: In multimodal serial reproduction, GPT-4 can be shown either
a stimulus board, or a string of textual description. If shown a board, then it is asked to provide an
accurate textual description of the board. If shown a textual description, then it is asked to reproduce
a board that most accurately illustrates the textual description. The new board or text will serve as the
stimulus for the next iteration in the chain. We used the same prompt given to human participants.

2.4 MEASURES OF BOARD COMPLEXITY

The process of human abstraction aims to compress complex stimuli or inputs to simpler repre-
sentations that enable generalization (Giunchiglia & Walsh, 1992; Kumar et al., 2022). Therefore,
measuring the compressibility of the stimuli that emerge from the serial reproduction chains can be
informative of the underlying abstract priors that generate them. There are many measures of board
complexity, so we utilize three measures from the work of Nath et al. 2023, which are specifically
tailored to binary grid stimuli:

1. Kolmogorov Complexity (KC): a measure formalized through algorithmic information
theory, defined as the length of the shortest computer program that can produce the desired
stimulus. The exact computation is intractable, so most empirical methods estimate an
upper bound. Nath et al. 2023 use the Block Decomposition Method (Zenil et al., 2018),
which breaks the grid stimulus into 4× 4 blocks and uses theoretically defined complexity
measures of each binary 4× 4 block.

2. Shannon Entropy: a measure of the information content/complexity (Shannon, 1948)
of the grids using its distribution of red and white tiles: −(P (red) log2 P (red) +
P (white) log2 P (white))
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3. Local Spatial Complexity (LSC): the mean information gain of tiles having the same color
or different colors in their adjacent tiles. This takes into account the local probabilistic spa-
tial distribution of tiles. It is defined as − 1

8

∑8
d=1

∑1
s1=0

∑1
s2=0 P (s1, s2)d log2 P (s1|s2)

where s1 and s2 are adjacent tiles whose spatial relation is defined through d. There are
eight possible values for d corresponding to the four cardinal directions as well as four
diagonals.

Each of these measures provide a slightly different window into the complexity of a board. For
example, Kolmogorov Complexity is the only measure taking into account the algorithimic com-
plexity of the board (e.g. algorithms to generate the patterns). Shannon Entropy formally measures
the information-theoretic content based on the distribution of tile colors, but does not take into ac-
count spatial information. Local Spatial Complexity is an information theory measure more sensitive
to spatial information because it looks at the local distribution of a tile’s nearest neighbors.

3 RESULTS

3.1 QUALITATIVE BOARD DISTRIBUTION
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Figure 3: Most Frequent Boards Across Conditions. Numbers indicate the frequency of the board
below it.

Fig. 3 shows the most frequent boards across the four conditions. Because there is more variance
across different human participants’ responses than GPT-4 responses, the largest frequencies of
GPT-4 are typically higher than humans. The most frequent human multimodal boards seem to
be patterns that are most easily identifiable by language, e.g., checkerboard, square shapes, and
stripes (the checkerboard pattern, in particular, seems to only show up in multimodal chains for both
humans and GPT-4) whereas unimodal boards are patterns that are harder to describe in language.
However, in the case of GPT-4, both unimodal and multimodal patterns are more easily describable
through language.
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3.2 CHAIN DYNAMICS

Fig. 4 shows the mean distance traveled between consecutive timesteps in each of the four types of
serial reproduction chains. This can be thought of as a measure of instantaneous velocity since it
measures distance traveled within consecutive timesteps (dt = 1).
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Figure 4: Mean Chain Velocity We computed mean instantaneous velocity of each chain by com-
puting the hamming distance traveled between boards of consecutive timesteps. Error bars denote
95% confidence intervals across chains.

We see that multimodal chains have significantly higher velocity than unimodal chains in both con-
ditions (human: t(198) = 4.05, p < 0.0001; GPT-4: t(198) = −7.01, p < 0.0001). Since the chief
difference between these conditions is the addition of language as a bottleneck between state tran-
sitions in the chain, this shows that transmitting through language further accelerates the sampling
of the abstraction space more. GPT-4 has significantly higher chain velocity than humans in both
conditions (unimodal: t(198) = 6.97, p < 0.0001; GPT-4: t(198) = 10.87, p < 0.0001), which
may suggest that GPT-4, by default, relies more on language representations than humans do.

3.3 BOARD COMPLEXITY ANALYSES

We looked at the distribution of complexities across human and machine chains for different con-
ditions (Fig. 5A). Qualitatively, running a multimodal serial reproduction chain seems to have a
bigger effect on mean board complexity for humans than for GPT-4 (signified by the red line having
a larger slope than the blue line). To statistically evaluate this, for each complexity measure, we
ran a two-way ANOVA with subject (human or GPT-4) and modality (unimodal and multimodal) as
factors that account for the mean complexity of the boards (Table 1).

We find all two-way interaction effects between the subject (human and GPT-4) vs. modality (uni-
modal vs. multimodal) to be consistent in direction and statistically significant. As seen in Fig. 5A,
this effect is driven by a tendency for there to be a greater difference between human unimodal
and multimodal board complexity than GPT-4 unimodal vs. multimodal board complexity. We also
found significant one-way effects of subject. The direction of this effect was consistent in all mea-
sures — GPT-4 tends to have a higher mean board complexity than humans. In addition, we also
find significant one-way effects of modality (unimodal vs. multimodal), suggesting that additionally
transmitting through language decreases board complexity.
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Figure 5: Transmitting through language has a larger effect on humans than GPT-4 (A). 95%
confidence intervals for complexity measures across humans and GPT-4 for both types of chains.
GPT-4 boards typically have higher complexity. Multimodal serial reproduction typically reduces
complexity, and this reduction is more pronounced in humans than GPT-4. (B). Decoding (R2) per-
formance for predicting board complexity from the corresponding language description’s sentence
embeddings. Higher performance suggests that the complexity of the boards can be represented in
language. Decoding performance increases from unimodal to multimodal chains and GPT-4 boards
have higher decoding performance than human boards.

Table 1: Two-way ANOVAs for Board Complexity

Measure Effect F p
KC Modality 6.99 0.009
KC Subject 65.39 <0.001
KC Interaction 4.08 0.044
Entropy Modality 65.94 <0.001
Entropy Subject 43.68 <0.001
Entropy Interaction 8.09 0.005
LSC Modality 151.49 <0.001
LSC Subject 24.09 <0.001
LSC Interaction 14.63 <0.001

Since the chief difference between the modality conditions (unimodal vs. multimodal) is explicit
transmission through a language description, the fact that these conditions have a significantly larger
effect on humans than GPT-4 may suggest that GPT-4 relies more on language-compatible repre-
sentations than humans, leading to a lesser effect when explicitly forcing it to transmit through
a language bottleneck. Equivalently, this may suggest that humans’ abstract vision and language
priors have less overlap than GPT-4’s vision and language priors.

3.4 DECODING BOARD COMPLEXITY FROM LANGUAGE

We now employ an analysis to see if the complexity within each of these boards measured in Fig. 5A
is the kind of complexity that can be represented in language (Fig. 5B). To do this, we obtained pre-
trained LLM sentence embeddings of each board’s corresponding language description using the
SentenceTransformers package (https://www.sbert.net/, based on Reimers & Gurevych
2019). The pretrained model we used was Microsoft’s MPNet (Song et al., 2020). The Sentence-
Transformers model maps text into a 768 dimensional dense semantically meaningful vector space.
Reimers & Gurevych 2019 do this by using a contrastive objective on a dataset of semantically-
paired text where embeddings from the same pair are pushed closer and embeddings from different
pairs are pushed further apart.
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Table 2: Two-way ANOVAs for Language Decoding

Measure Effect F p
KC Modality 19.28 0.005
KC Subject 225.70 <0.001
KC Interaction 65.67 <0.001
Entropy Modality 11.14 0.004
Entropy Subject 10.24 0.006
Entropy Interaction 1.12 0.31
LSC Modality 35.75 <0.001
LSC Subject 8.84 0.009
LSC Interaction 1.45 0.25

In multimodal boards, we use the language description that was obtained by a participant (or GPT-4)
who viewed the board and wrote the description (see Fig. 1). In unimodal boards, we repeated this
process post-hoc after the chains were completed by showing a separate set of participants (or GPT-
4) each unimodal board and asked them to write a language description (using the same prompt as
the participants who wrote descriptions in the multimodal chain condition).

We then take these embeddings and train a Ridge Regression model to predict board complexities
from its corresponding sentence embedding (Fig. 5B). We use five-fold cross validation and report
mean prediction accuracy (R2) on the held-out test set across all five folds. The regularization pa-
rameter is tuned using a nested five-fold cross validation procedure within the training set (so, for
each outer fold, the regularization parameter is tuned before the test set is ever seen). Qualitatively,
we see that there is a general upward trend (more pronounced in humans than GPT-4) in decoding
performance from unimodal to multimodal boards. To quantify this effect, we repeated the two-way
ANOVA analyses employed in the last section, with subject (human vs. GPT-4) and modality (uni-
modal vs. multimodal) as factors that influence the decoding performance of the Ridge Regression
model. Results are shown in Table 2.

The one-way effect of subject (human vs. GPT-4) was significant across all three measures and
was consistent in direction — GPT-4 decoding performance is higher. Additionally, the one-way
effect of modality (unimodal vs. multimodal) was also significant across all three measures, showing
that multimodal boards have higher decoding performance than unimodal boards. The interaction
(subject + modality) effect was only significant in one measure, Kolmogorov Complexity.

These results suggest two main findings. First, decoding performance of complexity from language
embeddings is generally higher in multimodal chains than in unimodal chains. This suggests that
the complexity of the multimodal boards, compared to unimodal boards, is more the kind of com-
plexity that can be accounted for by language representations. Second, GPT-4 generally has a higher
decoding performance than humans. Although the complexity of GPT-4 boards are generally higher
than those of humans (see previous section and Fig. 5A), this complexity is the kind of complexity
that is decodable by language representations.

4 DISCUSSION

In this work, we explored abstractions in humans and GPT-4 using a framework involving serial
reproduction within a simple yet rich stimulus space of binary grid boards (Fig. 1). Previously, serial
reproduction has been used to elicit human priors (e.g., Langlois et al. 2021). Humans often share
abstractions of their sensory experience with each other through language (Tessler & Goodman,
2019). However, the abstractions humans build of the world can be represented through multiple
modalities (Hawkins et al., 2023), and serial reproduction and similar iterative methods typically
only employ a single modality. This paper presents a novel multimodal serial reproduction paradigm,
in which people alternate between transmitting through both vision and language. This provides a
way to determine the extent to which priors are shared across modalities.

We ran both unimodal and multimodal serial reproduction chains for both humans and GPT-4
(Fig. 2). Qualitatively, for humans, we found that multimodal chain samples seem much easier
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to describe in language (Fig. 3). Quantitatively, we found evidence that the addition of transmis-
sion through language leads to the emergence of more compressible (and, therefore, more abstract)
stimuli in the stationary distribution (Fig. 5A). Additionally, language representations are more pre-
dictive of the complexity of human multimodal boards than that of unimodal boards (Fig. 5B),
suggesting that, in humans, a purely unimodal paradigm does not tap into abstractions that can be
shared with language as much as a multimodal paradigm. In contrast, GPT-4 unimodal and mul-
timodal boards both qualitatively seem easy to describe in language (Fig. 3). Quantitatively, the
change in complexity across unimodal and multimodal boards is significantly less in GPT-4 than the
corresponding change in humans (Fig. 5A). Language representations are more predictive of GPT-4
board complexities than human representations (Fig. 5B).

This evidence suggests that GPT-4 abstract visual representations are much closer to linguistic repre-
sentations than those of humans. This may have resulted from the training paradigm for GPT-4. Al-
though the information on how GPT-4 was trained is not fully public, many similar vision-language
models are trained on large amounts of text data and jointly match images with their language
descriptions during training(Radford et al., 2021), leading to a tight coupling between vision and
language representations. The fact that human unimodal and multimodal boards have a signifi-
cantly greater difference than those of GPT-4 (Figs. 3 and 5) suggests that humans, in contrast, have
more dissociable representations between vision and language. This may be because the human
visual system was first evolutionarily refined to support embodied sensation and movement within
the environment (Cisek, 2019) before communicating sensory experience to other humans through
language.

One limitation of this work is that we use a fairly constrained domain of two-dimensional binary
grids. It is possible results could differ on more realistic visual inputs for humans as well as GPT-4’s.
Our multimodal serial reproduction framework can easily be extended to more realistic-looking vi-
sual domains, potentially using drawing to transmit images from language (Mukherjee et al., 2023).
Likewise, our chains were relatively short, and longer chains could be useful as a control for the
initial effect of mixing. This can be easily addressed by deploying larger online experiments.

It is also possible to extend our work to run hybrid serial reproduction chains with both humans and
machines. This could help us see what concepts arise from joint shared abstractions between humans
and machines, which will become increasingly relevant as AI systems become further incorporated
into our daily lives (Brinkmann et al., 2023).
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