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ABSTRACT

Lifelong user behavior sequences, comprising up to tens of thousands of history
behaviors, are crucial for capturing user interests and predicting user responses
in modern recommendation systems. A two-stage paradigm is typically adopted
to handle these long sequences: a few relevant behaviors are first searched from
the original long sequences via an attention mechanism in the first stage and then
aggregated with the target item to construct a discriminative representation for
prediction in the second stage. In this work, we identify and characterize, for
the first time, a neglected deficiency in existing long-sequence recommendation
models: a single set of embeddings struggles with learning both attention and rep-
resentation, leading to interference between these two processes. Initial attempts
to address this issue using linear projections—a technique borrowed from lan-
guage processing—proved ineffective, shedding light on the unique challenges of
recommendation models. To overcome this, we propose the Decoupled Attention
and Representation Embeddings (DARE) model, where two distinct embedding
tables are initialized and learned separately to fully decouple attention and repre-
sentation. Extensive experiments and analysis demonstrate that DARE provides
more accurate search of correlated behaviors and outperforms baselines with AUC
gains up to 9‰ on public datasets and notable online system improvements. Fur-
thermore, decoupling embedding spaces allows us to reduce the attention embed-
ding dimension and accelerate the search procedure by 50% without significant
performance impact, enabling more efficient, high-performance online serving.

1 INTRODUCTION

In recommendation systems, content providers must deliver well-suited items to diverse users. To
enhance user engagement, the provided items should align with user interests, as evidenced by their
clicking behaviors. Thus, the Click-Through Rate (CTR) prediction for target items has become
a fundamental task. Accurate predictions rely heavily on effectively capturing user interests as
reflected in their history behaviors. Previous research has shown that longer user histories facilitate
more accurate predictions (Pi et al., 2020). Consequently, long-sequence recommendation models
have attracted significant research interest in recent years (Chen et al., 2021; Cao et al., 2022).

In online services, system response delays can severely disrupt the user experience, making effcient
handling of long sequences within a limited time crucial. A general paradigm employs a two-stage
process (Pi et al., 2020): search (a.k.a. General Search Unit) and sequence modeling (a.k.a. Ex-
act Search Unit). This method relies on two core modules: the attention module1, which measures
the target-behavior correlation, and the representation module, which generates a discriminative
representation of behaviors. The search stage uses the attention module to retrieve the top-k rele-
vant behaviors, constructing a shorter sub-sequence from the original long behavior sequence2. The
sequence modeling stage then relies on both modules to predict user responses by aggregating be-
havior representations in the sub-sequence based on their attention, thus extracting a discriminative
representation involving both behaviors and the target. Existing works widely adopt this effective
paradigm (Pi et al., 2020; Chang et al., 2023; Si et al., 2024).

1In this paper, “attention” refers to attention scores—the softmax output that weights each behavior.
2The search stage can also be “hard” selecting behaviors by category, but we focus on soft search based on

learned correlations for better user interest modeling.
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Figure 1: Overview of our work. During search, only a limited number of important behaviors
are retrieved according to their attention scores. During sequence modeling, the selected behaviors
are aggregated into a discriminative representation for prediction. Our DARE model decouples the
embeddings used in attention calculation and representation aggregation, effectively resolving their
conflict and leading to improved performance and faster inference speed. Multual Information is
introduced in E.5

Attention is critical in the long-sequence recommendation, as it not only models the importance
of each behavior for sequence modeling but, more importantly, determines which behaviors are
selected in the search stage. However, in most existing works, the attention and representation
modules share the same embeddings despite serving distinct functions—one learning correlation
scores, the other learning discriminative representations. Our analysis reveals that, unfortunately,
gradients of these shared embeddings are dominated by representation learning during training, and
more concerning, gradient directions from two modules tend to conflict with each other. As a result,
attention fails to capture behavior importance accurately, causing key behaviors to be mistakenly
filtered out during the search stage (as shown in Sec. 4.3). Furthermore, gradient conflicts also
degrade the discriminability of the representations (as shown in Sec. 4.4).

Inspired by the use of separate query, key (for attention), and value (for representation) projec-
tion matrices in the original self-attention mechanism (Vaswani et al., 2017), we experimented with
attention- and representation-specific projections in recommendation models, aiming to resolve con-
flicts between these two modules. However, this approach did not yield positive results and led to
over-confidence in attention (as shown in Sec. 2.3). Through insightful empirical analysis, we hy-
pothesize that the failure is due to the significantly lower capacity (i.e., fewer parameters) of the
projection matrices in recommendation models compared to those in natural language processing
(NLP). This limitation is difficult to overcome, as it stems from the low embedding dimension im-
posed by interaction collapse theory (Guo et al., 2023).

To address these issues, we propose the Decoupled Attention and Representation Embeddings
(DARE) model, which completely decouples these two modules at the embedding level by using
two independent embedding tables—one for attention and the other for representation. This de-
coupling allows us to fully optimize attention to capture correlation and representation to enhance
discriminability. Furthermore, by separating the embeddings, we can accelerate the search stage by
50% by reducing the attention embedding dimension to half, with minimal impact on performance.
On the public Taobao and Tmall long-sequence datasets, DARE outperforms the state-of-the-art
TWIN model across all embedding dimensions, achieving AUC improvements of up to 9‰. Online
evaluation on one of the world’s largest online advertising platforms achieves a 1.47% lift in GMV
(Gross Merchandise Value). Our contribution can be summarized as follows:

• We identify the issue of interference between attention and representation learning in ex-
isting long-sequence recommendation models and demonstrate that linear projections bor-
rowed from NLP fail to decouple these two modules effectively.

• We propose the DARE model, which uses module-specific embeddings to fully decouple
attention and representation. Our comprehensive analysis shows that our model signifi-
cantly improves attention accuracy and discriminability of representations.

• Our model achieves state-of-the-art on two public datasets and gets a 1.47% GMV lift in
one of the world’s largest recommendation systems. Additionally, our method can largely
accelerate the search stage by reducing decoupled attention embedding size.
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2 AN IN-DEPTH ANALYSIS INTO ATTENTION AND REPRESENTATION

In this section, we first review the general formulation for long-sequence recommendation. Then,
we analyze the training of shared embeddings, highlighting the domination and conflict of gradients
from the attention and representation modules. Finally, we explore why straightforward approaches
using module-specific projection matrices fail to addrese the issue.

2.1 PRELIMINARIES

Problem formulation. We consider the fundamental task, Click-Through Rate (CTR) prediction,
which aims to predict whether a user will click a specific target item based on the user’s behavior
history. This is typically formulated as binary classification, learning a predictor f : X ÞÑ r0, 1s

given a training dataset D “ tpx1, y1q, . . . , px|D|, y|D|qu, where x contains a sequence of items
representing behavior history and another single item representing the target.

Long-sequence recommendation model. To satisfy the strictly limited inference time in online
services, current long-sequence recommendation models generally construct a short sequence first
by retrieving top-k correlated behaviors. The attention scores are measured by the scaled dot product
of behavior and target embedding. Formally, the i-th history behavior and target t is embedded
into ei and vt P Rd, and without loss of generality, 1, 2, . . . ,K “ argsortpxei,vty, i P r1, N sq,
where x¨, ¨y stands for dot product. Then the weight of each behavior wi is calculated using softmax

function: wi “ exei,vty{
?

d

řK
j“1 exej ,vty{

?
d

. Finally, the representations of retrieved behaviors are compressed

into h “
řK

i“1 wi ¨ei. TWIN (Chang et al., 2023) follows this structure and achieves state-of-the-art
performance through exquisite industrial optimization.

2.2 GRADIENT ANALYSIS OF DOMINATION AND CONFLICT
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Figure 2: The magnitude of embedding
gradients from the attention and repre-
sentation modules.
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Figure 3: The cosine angles of gradients
from two modules.

The attention and representation modules have distinct
goals: the former focuses on learning correlation scores
for behaviors, while the latter focuses on learning dis-
criminative (i.e., separable) representations in a high-
dimensional space. However, current methods use a
shared embedding for both tasks, which may prevent ei-
ther from being fully achieved. To validate this assump-
tion, we analyze the gradients from both modules on the
shared embeddings.

Experimental validation. We empirically observe the
gradients back propagated to the embeddings from the
attention and representation modules. Comparing their
norms, we find that gradients from the representation are
five times larger, dominating those from attention, as
demonstrated in Fig. 2. Then, we further explore whether
they can be consistent with each other by analyzing gradi-
ent directions. Unfortunately, results show that in nearly
two-thirds of cases, the cosine of their angles is nega-
tive, indicating the conflict between them, as shown in
Fig. 3. In summary, the attention module and representa-
tion modules optimize the embedding table towards dif-
ferent directions with varying intensities during training,
causing attention to lose correlation accuracy and repre-
sentation to fail to fully fulfill its discriminability. No-
tably, due to domination, such influence is more severe to attention, as indicated by the poor learned
correlation between categories in Sec. 4.3.

Finding 1. The embedding gradients are typically dominated by the representation module.
Furthermore, gradients from the attention and representation modules tend to conflict.
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(a) Attention in TWIN
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(b) TWIN with projection

Taobao Tmall

TWIN (2023) 0.91688
p0.00211q

0.95812
p0.00073q

TWIN (w/ proj.) 0.89642
p0.00351q

0.96152
p0.00088q

(c) AUC results of TWIN variants

Figure 4: Illustration and evaluation for adopting linear projections. (a-b) The attention module in
original TWIN and after adopting linear projections. (c) Performance of TWIN variants. Adopting
linear projections causes an AUC drop of nearly 2% on Taobao.

2.3 RECOMMENDATION MODELS CALL FOR MORE POWERFUL DECOUPLING METHODS
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Figure 5: The dispersed distribution of
attention scores in TWIN w/ proj.

Linear projections would cause dispersed distribution
of attention score. To address such conflict, a straight-
forward approach is to use separate projections for at-
tention and representation, mapping the original embed-
dings into two new decoupled spaces. This is adopted
in the standard self-attention mechanism (Vaswani et al.,
2017), which introduces query, key (for attention), and
value projection matrices (for representation). Inspired
by this, we propose a variant of TWIN that utilizes lin-
ear projections to decouple attention and representation
modules, named TWIN w/ proj.. The comparison with
the original TWIN structure is shown in Fig. 4a and 4b.
Surprisingly, linear projection, which works well in NLP,
loses efficacy in recommendation systems, leading to negative performance impact, as shown in
Tab. 4c. An analysis of attention logits distribution in Fig. 5 shows that the logits of the TWIN w/
proj have a very dispersed distribution. For more analysis, refer to Sec. 4.3.
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Figure 6: The influence of linear projec-
tions with different embedding dimen-
sions in NLP.

Larger embedding dimension makes linear projec-
tion effective in NLP. The failure of introducing pro-
jection matrices makes us wonder why it works well in
NLP but not in recommendation. One possible reason is
that the relative capacity of projection matrices regard-
ing the token numbers in NLP is usually large, e.g., with
an embedding dimension of 4096 in LLaMA3.1 (Dubey
et al., 2024), there are around 16 million parameters
(4096 ˆ 4096 “ 16, 777, 216) in each projection matrix
to map only 128,000 tokens in the vocabulary. To vali-
date our hypothesis, we conduct a synthetic experiment
in NLP using nanoGPT (Andrej) with the Shakespeare
dataset. In particular, we decrease its embedding dimen-
sion from 128 to 2 and check the performance gap be-
tween two models with/without projection matrix. As shown in Fig. 6, we observe that when the
matrix has enough capacity, i.e., the embedding dimension is larger than 16, projection leads to sig-
nificantly less loss. However, when the matrix capacity is further reduced, the gap vanishes. Our
experiment indicates that projection matrix only works with enough capacity.

Limited embedding dimension makes linear projections fail in recommendation. In contrast,
due to the interaction collapse theory (Guo et al., 2023), the embedding dimension in recommenda-
tion is usually no larger than 200, leading to only up to 40000 parameters for each matrix to map
millions to billions of IDs. Therefore, the projection matrices in recommendation never get enough
capacity, making them unable to decouple attention and representation.

Finding 2. The linear projection matrices fail to decouple attention and representation in rec-
ommendation models due to limited capacity.
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Figure 7: Architecture of the proposed DARE model. One embedding is responsible for attention,
learning the correlation between the target and history behaviors, while another is responsible for
representation, learning discriminative representations for prediction. Decoupling these two embed-
dings allows us to resolve the conflict between the two modules.

3 DARE: DECOUPLED ATTENTION AND REPRESENTATION EMBEDDINGS

In the above analysis, we find that using projection matrices is insufficient to decouple the attention
and representation. To this end, we propose to decouple these two modules at the embedding level;
that is, we employ two embedding tables, one for attention (EAtt) and another for representation
(ERepr). With gradient back propagated to different embedding tables, our method has the potential
to fully resolve the gradient domination and conflict between these two modules. We introduce our
model specifically in this section and show its advantage by experiments in the next section.

3.1 ATTENTION EMBEDDING

Attention measures the correlation between history behaviors and the target (Zhou et al., 2018).
Following the common practice, we use the scaled dot-product function (Vaswani et al., 2017).
Mathematically, the i-th history behavior i and target t, are embedded into eAtt

i ,vAtt
t „ EAtt, where

EAtt is the attention embedding table. After retrieval 1, 2, . . . ,K “ argsortpxei,vty, i P r1, N sq

their weight wi is formalized as:

wi “
exeAtt

i ,vAtt
t y{

?
|EAtt|

řK
j“1 e

xeAtt
j ,vAtt

t y{
?

|EAtt|
, (1)

where x¨, ¨y stands for dot product and |EAtt| stands for the embedding dimension.

3.2 REPRESENTATION EMBEDDING

In the representation part, another embedding table ERepr is used, where i and t is embedded into
eRepr
i ,vRepr

t „ ERepr. Most existing methods multiply the attention weight with the representation
of each retrieved behavior and then concatenate it with the embedding of the target as the input
of Multi-Layer Perceptron (MLP): r

ř

i wiei,vts. However, it has been proved that MLP struggle
to effectively learn dot product or explicit interactions (Rendle et al., 2020; Zhai et al., 2023). To
enhance the discriminability, following TIN (Zhou et al., 2024), we adopt the target-aware repre-
sentation eRepr

i d vRepr
t , abbreviate as TR in our following paper (refer to Sec. 4.4 for empirical

evaluation of discriminability).

The overall structure of our model is shown in Fig. 7. Formally, user history h is compressed into:

h “

K
ÿ

i“1

wi ¨ peRepr
i d vRepr

t q. (2)

3.3 INFERENCE ACCELERATION

By decoupling the attention and representation embedding tables, the dimension of attention em-
beddings EAtt and the dimension of representation embeddings ERepr have more flexibility. In

5
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particular, we can reduce EAtt while keeping ERepr to accelerate the searching over the original
long sequence whilst not affecting the model’s performance. Empirical experiments in Sec. 4.5
shows that our model have the potential to speed up searching by 50% with quite little influence on
performance and even by 75% with an acceptable performance loss.

3.4 DISCUSSION

Target Item 0

Embedding

(EATT-h)

History Item i

Embedding

(EATT-t)

Embedding

(ERepr-h)
Embedding

(ERepr-t)

Attention Representation

Figure 8: Illustration of the TWIN-4E model.

Considering the superiority of decoupling the
attention and representation embeddings, one
may naturally raise an idea: we can further
decouple the embeddings of history and target
within the attention (and representation) mod-
ule, i.e. forming a TWIN with 4 Embeddings
method, or TWIN-4E in short, consisting of
attention-history (named keys in NLP) eAtt

i P

EAtt-h, attention-target (named querys in NLP)
vAtt
t P EAtt-t, representation-history (named values in NLP) eRepr

i P ERepr-h and representation-
target vRepr

t P ERepr-t. The structure of TWIN-4E is shown in Fig. 8. Compared to our DARE
model, TWIN-4E further decouples the behaviors and the target, meaning that the same category
or item has two totally independent embeddings as behavior and target. This is strongly against
two prior knowledges in recommendation system. 1. The correlation of two behaviors is similar no
matter which is target and which is behavior. 2. Behaviors with the same category should be more
correlated, which is natural in DARE since a vector’s dot product with itself tends to be bigger.

4 EXPERIMENTS

4.1 SETUP

Datasets and task. We use the publicly available Taobao (Zhu et al., 2018; 2019; Zhuo et al.,
2020) and Tmall (Tianchi, 2018) datasets, which provide users’ behavior data over specific time
periods on their platforms. Each dataset includes the items users clicked, represented by item IDs
and their corresponding category IDs. Thus, a user’s history is modeled as a sequence of item and
category IDs. The model’s input consists of a recent, continuous sub-sequence of the user’s lifelong
history, along with a target item. For positive samples, the target items are the actual items users
clicked next, and the model is expected to output “Yes.” For negative samples, the target items
are randomly sampled, and the model should output “No.” In addition to these public datasets, we
validated our performance on one of the world’s largest online advertising platforms. More datasets
information and details such as training/validation/test splits are shown in Appendix B.1.

Baselines. We compare against a variety of recommendation models, including ETA (Chen et al.,
2021), SDIM (Cao et al., 2022), DIN (Zhou et al., 2018), TWIN (Chang et al., 2023) and its variants,
as well as TWIN-V2 (Si et al., 2024). As discussed in Sec.3.2, the target-aware representation by
crossing eRepr

i d vRepr
t significantly improves representation discriminability, so we include it in our

baselines for fairness. TWIN-4E refers to the model introduced in Sec. 3.4, while TWIN (w/ proj.)
refers to the model described in Sec. 2.3. TWIN (hard) represents a variant using “hard search” in
the search stage, meaning it only retrieves behaviors from the same category as the target. TWIN
(w/o TR) refers to the original TWIN model without target-aware representation, i.e., representing
user history as h “

ř

i wi ¨ ei instead of h “
ř

i wipei d vtq.

4.2 OVERALL PERFORMANCE

In recommendation systems, it is well-recognized that even increasing AUC by 1‰ to 2‰ is more
than enough to bring online profit. As shown in Tab. 1, our model achieves AUC improvements of
1‰ and 9‰ compared to current state-of-the-art methods across all settings with various embedding
sizes. In particular, significant AUC lifts of 9‰ and 6‰ are witnessed with an embedding dimension
of 16 on Taobao and Tmall datasets, respectively.
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Table 1: Overall comparison reported by the means and standard deviations of AUC. The best
results are highlighted in bold, while the previous best model is underlined. Our model outperforms
all existing methods with obvious advantages, especially with small embedding dimensions.

Setup Embedding Dim. = 16 Embedding Dim. = 64 Embedding Dim. = 128

Dataset Taobao Tmall Taobao Tmall Taobao Tmall

ETA (2021) 0.91326
p0.00338q

0.95744
p0.00108q

0.92300
p0.00079q

0.96658
p0.00042q

0.92480
p0.00032q

0.96956
p0.00039q

SDIM (2022) 0.90430
p0.00103q

0.93516
p0.00069q

0.90854
p0.00085q

0.94110
p0.00093q

0.91108
p0.00119q

0.94298
p0.00081q

DIN (2018) 0.90442
p0.00060q

0.95894
p0.00037q

0.90912
p0.00092q

0.96194
p0.00033q

0.91078
p0.00054q

0.96428
p0.00013q

TWIN (2023) 0.91688
p0.00211q

0.95812
p0.00073q

0.92636
p0.00052q

0.96684
p0.00039q

0.93116
p0.00056q

0.97060
p0.00005q

TWIN (hard) 0.91002
p0.00053q

0.96026
p0.00024q

0.91984
p0.00048q

0.96448
p0.00042q

0.91446
p0.00055q

0.96712
p0.00019q

TWIN (w/ proj.) 0.89642
p0.00351q

0.96152
p0.00088q

0.87176
p0.00437q

0.95570
p0.00403q

0.87990
p0.02022q

0.95724
p0.00194q

TWIN (w/o TR) 0.90732
p0.00063q

0.96170
p0.00057q

0.91590
p0.00083q

0.96320
p0.00032q

0.92060
p0.00084q

0.96366
p0.00103q

TWIN-V2 (2024) 0.89434
p0.00077q

0.94714
p0.00110q

0.90170
p0.00063q

0.95378
p0.00037q

0.90586
p0.00059q

0.95732
p0.00045q

TWIN-4E 0.90414
p0.01329q

0.96124
p0.00026q

0.90356
p0.01505q

0.96372
p0.0004q

0.90946
p0.01508q

0.96016
p0.01048q

DARE (Ours) 0.92568
p0.00025q

0.96800
p0.00024q

0.92992
p0.00046q

0.97074
p0.00012q

0.93242
p0.00045q

0.97254
p0.00016q

There are also some notable findings. TWIN outperforms TWIN (w/o TR) in most cases, proving
that target-aware representation eRepr

i d vRepr
t do help enhance discriminability (further evidence

shown in Sec. 4.4). Our DARE model has an obvious advantage over TWIN-4E, confirming that
the prior knowledge discussed in Sec. 3.4 is well-suited for the recommendation system. ETA
and SDIM, which are based on TWIN and focus on accelerating the search stage at the expense
of performance, understandably show lower AUC scores. TWIN-V2, a domain-specific method
optimized for video recommendations, is less effective in our settings.

4.3 ATTENTION ACCURACY

Mutual information, which captures the shared information between two variables, is a powerful
tool for understanding relationships in data. We calculate the mutual information between behaviors
and the target as the ground truth correlation, following (Zhou et al., 2024). The learned attention
score reflects model’s measurement of the importance of each behavior. Therefore, we compare the
attention distribution with mutual information in Fig. 9.

In particular, Fig. 9a presents the mutual information between a target category and behaviors with
top-10 categories and their target-relative positions (i.e., how close to the target is the behavior across
time). We observe a strong semantic-temporal correlation: behaviors from the same category as the
target (5th row) are generally more correlated, with a noticeable temporal decay pattern. Fig. 9b
presents TWIN’s learned attention scores, which show a decent temporal decay pattern but over-
estimate the semantic correlation of behaviors across different categories, making it too sensitive
to recent behaviors, even those from unrelated categories. In contrast, our proposed DARE can
effectively capture both the temporal decaying and semantic patterns.

The retrieval in the search stage relies entirely on attention scores. Thus, we further investigate the
retrieval results on the test dataset, which provide a more intuitive reflection of attention quality.
Behaviors with top-k mutual information are considered the ground truth for optimal retrieval, and
we evaluate model performance using normalized discounted cumulative gain (NDCG) (Järvelin &
Kekäläinen, 2002). The results, along with case studies, are presented in Fig. 10. We find that:

• DARE achieves significantly better retrieval. As shown in Fig. 10a, the NDCG of our
model is substantially higher than all baselines, with a 46.5% increase (0.8124 vs. 0.5545)
compared to TWIN and a 27.3% increase (0.8124 vs. 0.6382) compared to DIN.

• TWIN is overly sensitive to temporal information. As discussed, TWIN tends to select re-
cent behaviors regardless of their categories, against the ground truth, due to overestimated
correlations between different categories, as shown in Fig. 10b and 10c.
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(c) DARE learned correlation

Figure 9: The ground truth (GT) and learned correlation between history behaviors of top-10 fre-
quent categories (y-axis) at various positions (x-axis), with category 15 as the target. Our correlation
scores are noticeably closer to the ground truth.
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(c) Case study 2

Figure 10: Retrieval in the search stage. (a) Our model can retrieve more correlated behaviors. (b-c)
Two showcases where the x-axis is the categories of recent ten behaviors.

• TWIN with projection performs unstably. As shown in Sec. 2.3, the TWIN variant with
projection has a highly dispersed attention logits distribution, with maximum logits often
exceeding 10. This excessive “confidence” can be a double-edged sword. In some cases,
like Fig. 10b, it performs exceptionally well; but in others, like Fig. 10c, it fails due to an
“overconfident misjudgment” of an unimportant behavior.

Result 1. DARE succeeds in capturing the semantic-temporal correlation of behaviors and
retaining correlated behaviors during the search stage, while other methods fail to do so.

4.4 REPRESENTATION DISCRIMINABILITY

We then analyze the discriminability of learned representation. Specifically, on test datasets, we take
the compressed representation of user history h “

řK
i“1 wi ¨peidvtq, which forms a vector for each

test sample. Using K-means, we quantize these vectors, mapping each h to a cluster Qphq. Then,
the mutual information (MI) between the discrete variable Qphq and label Y (whether the target was
clicked or not) reflects the discriminability of the representation can then reflect the representation’s
discriminability. Mathematically, Discriminabilityph, Y q “ MIpQphq, Y q.

As shown in Fig. 11a, across various numbers of clusters, our DARE model outperforms the state-of-
the-art TWIN model, demonstrating that decoupling improves representation discriminability. There
are also other notable findings. Although DIN achieves more accurate retrieval in the search stage (as
evidenced by a higher NDCG in Fig. 10a), its representation discriminability is obviously lower than
TWIN, especially on Taobao dataset, which explains its lower overall performance. TWIN-4E shows
comparable discriminability to our DARE model, further confirming that its poorer performance is
due to inaccurate attention caused by the lack of recommendation-specific prior knowledge.

To fully demonstrate the effectiveness of ei d vt, we compare it with the classical concatenation
rΣiei,vts. As shown in Fig. 11c, a huge gap (in orange) is caused by the target-aware representation,
while smaller gaps (in blue and green) result from decoupling. Notably, our DARE model also
outperforms TWIN even when using concatenation.
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Figure 11: Representation discriminability of different models, measured by the mutual information
between the quantized representations and labels.
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Figure 12: Efficiency during training and inference. (a-b) Our model performs obviously better
with fewer training data. (c-d) Reducing the search embedding dimension, a key factor of online
inference speed, has little influence on our model, while TWIN suffers an obvious performance loss.

Result 2. In the DARE model, the form of target-aware representation and embedding decou-
pling both improve the discriminability of representation significantly.

4.5 CONVERGENCE AND EFFICIENCY

Faster convergence during training. In recommendation systems, faster learning speed means
the model can achieve strong performance with less training data, which is especially crucial for
online services. We track accuracy on the validation dataset during training, shown in Fig. 12a.
Our DARE model converges significantly faster. For example, on the Tmall dataset, TWIN reaches
90% accuracy after more than 1300 iterations. In contrast, our DARE model achieves comparable
performance in only about 450 iterations—one-third of the time required by TWIN.

Efficient search during inference. By decoupling the attention embedding space ei,vt P RKA

and representation embedding space ei,vt P RKR , we can assign different dimensions for these
two spaces. Empirically, we find that the attention module performs comparably well with smaller
embedding dimensions, allowing us to reduce the size of the attention space (KA ! KR) and
significantly accelerate the search stage, as its complexity is OpKANq where N is the length of
the user history. Using KA “ 128 as a baseline (“1”), we normalize the complexity of smaller
embedding dimensions. Fig. 12c shows that our model can accelerate the searching speed by 50%
with quite little influence on performance and even by 75% with an acceptable performance loss,
offering more flexible options for practical use. In contrast, TWIN experiences a significant AUC
drop when reducing the embedding dimension.

Result 3. Embedding decoupling leads to faster model training convergence and at least 50%
inference acceleration without significantly influencing the AUC by reducing the dimension of
attention embeddings.

4.6 ONLINE A/B TESTING AND DEPLOYMENTS

We apply our methods to one of the world’s largest online advertising platforms. In online adver-
tising, users’ behaviors on ads are sparse, making the sequence length relatively shorter than the
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content recommendation scenario. To this end, we involve the user’s behavior sequence from our ar-
ticle and the micro-video recommendation scenario. Specifically, the user’s ad and content behaviors
in the last two years are introduced. Before the search, the maximal length of the ads and content
sequence is 4000 and 6000, respectively, while the average length is 170 and 1500, respectively.
After searching using the proposed DARE, the sequence length is reduced to less than 500.

Regarding sequence features (side info), we choose the category ID, behavior type ID, scenario
ID, and two target-aware temporal encodings, i.e., position relative to the target, and time interval
relative to the target (with discretization). There are about 1.0 billion training samples per day.
During the 5-day online A/B test in September 2024, the proposed DARE method achieves 0.57%
cost, and 1.47% GMV (Gross Merchandize Value) lift over the production baseline of TWIN. This
would lead to hundreds of millions of dollars in revenue lift per year.

4.7 SHORT-SEQUENCE MODELING

We have also tried our method in the short-sequence modeling, using the Amazon dataset (He &
McAuley, 2016; McAuley et al., 2015) with the same setup as the state-of-the-art TIN model (Zhou
et al., 2024). However, the performance improvement is marginal (TIN: 0.86291˘0.0015 AUC
vs. DARE: 0.86309˘0.0004 AUC). This is likely because, unlike long-sequence modeling, short-
sequence modeling lacks a search stage. As shown by Zhou et al. (2024), representation is more
critical than attention in short-sequence settings, so the dominance of representation doesn’t sig-
nificantly impact performance as long as all behaviors are preserved In contrast, in long-sequence
modeling, representation dominance affects retrieval during the search stage, causing some corre-
lated behaviors to be filtered out and their representation lost.

5 RELATED WORK

Click-through rate prediction and long-sequence modeling. CTR prediction is fundamental
in recommendation systems, as user interest is often reflected in their clicking behaviors. Deep
Interest Network (DIN) (Zhou et al., 2018) introduces target-aware attention, using an MLP to learn
attentive weights of each history behavior regarding a specific target. This framework has been
extended by models like DIEN (Zhou et al., 2019), DSIN (Feng et al., 2019), and BST (Chen et al.,
2019) to capture user interests better. Research has proved that longer user histories lead to more
accurate predictions, bringing long-sequence modeling under the spotlight. SIM (Pi et al., 2020)
introduces a search stage (GSU), greatly accelerating the sequence modeling stage (ESU). Models
like ETA (Chen et al., 2021) and SDIM (Cao et al., 2022) further improve this framework. Notably,
TWIN (Chang et al., 2023) and TWIN-V2 (Si et al., 2024) unify the target-aware attention metrics
used in both stages, significantly improving search quality. However, as pointed out in Sec. 2.2,
in all these methods, attention learning is often dominated by representation learning, creating a
significant gap between the learned and actual behavior correlations.

Attention. The attention mechanism, first introduced in Transformers (Vaswani et al., 2017), has
proven highly effective and is widely used for correlation measurement. Transformers employ Q,
K (attention projection), and V (representation projection) matrices to generate queries, keys, and
values for each item. The scaled dot product of query and key serves as the correlation score, while
the value serves as the representation. This structure is widely used in many domains, including
natural language processing (Brown, 2020) and computer vision (Dosovitskiy, 2020). However, in
recommendation systems, due to the interaction-collapse theory pointed out by Guo et al. (2023),
the small embedding dimension would make linear projections completely lose effectiveness, as
discussed in Sec. 2.3. Thus, proper adjustment is needed in this specific domain.

6 CONCLUSION

This paper focuses on long-sequence recommendation, starting with an analysis of gradient domina-
tion and conflict on the embeddings. We then propose a novel Decoupled Attention and Representa-
tion Embeddings (DARE) model, which fully decouples attention and representation using separate
embedding tables. Both offline and online experiments demonstrate DARE’s potential, with com-
prehensive analysis highlighting its advantages in attention accuracy, representation discriminability,
and faster inference speed.
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A IMPLEMENTATION DETAILS

A.1 HYPER-PARAMETERS AND MODEL DETAILS

The hyper-parameters we use are listed as follows:

Parameter Value

Retrieve number 20
Epoch 2

Batch size 2048
Learning rate 0.01
Weight decay 1e-6

Besides, we use the Adam optimizer. Layers of the Multi-layer Perceptron (MLP) are set as 200 ˆ

80 ˆ 2, which is the same as Zhou et al. (2024).

These settings remain the same in all our experiments.

A.2 BASELINE IMPLEMENTATION

Many current methods are not open-source and may focus on a certain domain. Thus, we followed
their idea and implemented their method according to our task setting. Some notable details are
shown as follows:

• DIN is a short-sequence modeling method, so we introduced the search stage and aligned
it with long-sequence models. To be specific, the original DIN will aggregate all history
behaviors based on a learned weight, so we let DIN also select top-K behaviors like other
methods according to its learned weight. Note that the original DIN is not practical in
long-sequence modeling, since aggregating such a long history is unacceptable due to the
too high time complexity.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

• TWIN-V2 is specially designed for Kuaishou, a short video-sharing app, capturing video-
specific features to make certain optimization, so we retained their core ideas and adjusted
to our scenarios. We made some necessary adjustments, e.g., TWIN-V2 would first group
the items based on the proportion a video is played, which does not have a corresponding
feature in our datasets. So, we first group user history based on temporal information.

B DATA PROCESSING

B.1 DATASET DETAILS

Dataset information. Some detailed information is shown in Table 2. We use Taobao (Zhu et al.,
2018; 2019; Zhuo et al., 2020) and Tmall (Tianchi, 2018) datasets in our experiments. The propor-
tion of active users in these two datasets is more than 60%, which is relatively more satisfying. Note
that Taobao is relatively more complex, with more categories and more items, which is a higher
challenge for model capacity.

Table 2: Some basic information of public datasets (active user: User with more than 50 behaviors).

Dataset #Category #Item #User # Active User

Taobao 9407 4,068,790 984,114 603,176
Tmall 1492 1,080,666 423,862 246,477

Training-validation-test split. We sequentially number history behaviors from one (the most re-
cent behavior) to T (the most ancient behavior) according to the time step. The test dataset contains
predictions of the first behaviors, while the second behaviors are used as the validation dataset. For
the training dataset, we use the p3 ` 5i, 0 ď i ď 18qth behavior. Models would finish predicting
the jth behavior based on j ´ 200 to j ´ 1 behaviors (padding if history length is not long enough).
Only active users with behavior sequences longer than 210 will be reserved.

We make such settings to balance the amount and quality of training data. In our setting, each
selected user would contribute 20 pieces of data visible to our model in the training process. Besides,
we can guarantee that each piece of test data would contain no less than 200 behaviors, making our
results more reliable. To some degree, we break the “independent identical distribution” principle
because we sample more than one piece of data from one user. However, it’s unavoidable since the
dataset is not large enough due to the feature of the recommendation system (item number is usually
several times bigger than user number), so we sample with interval 5, using the pp3` 5iqth, 0 ď i ď

18q behaviors as the training dataset.

C THE RESEARCH PROCESS LEADING TO DARE

C.1 OTHER DECOUPLING METHODS

Besides linear projection, we have tried many other decoupling methods before we came up with
the final DARE model. Their structures are illustrated in Figure 13. Specifically:

• Linear projection. This is the structure referred to as TWIN (w/ proj.) in this paragraph,
applying linear projection to try to address the conflict.

• Item/Category/Time linear projection. Item, category, and time features exhibit signifi-
cant differences, for instance, the number of items is approximately 1,000 times larger than
that of categories. So we tested the effectiveness of linear projections when applied to each
feature individually.

• Cate. and time linear projection. The number of items is too large, making it too chal-
lenging to project millions of item embeddings into another space using linear projection.
So we designed this model and only use linear projection on category and time.
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(e) Cate. and time linear projection
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Figure 13: Eight other methods we tried before we came up with DARE.

• Larger embedding. To enhance the capacity of linear projection while maintaining the
feature dimension, we used a larger embedding dimension while keeping the output di-
mension of linear projection the same as other models.

• MLP projection. We replace the linear projection with Multilayer Perceptron (MLP),
which has much stronger capacity. This experiment examines the impact of projection
capacity on model performance.

• Avoid domination. Basing on the original TWIN model, whenever the gradient is back
propagated to the embedding (we have demonstrated in Section 2.2 that gradient from
representation is about five times larger than that from attention), we manually scale the
gradient from attention to make its 2-norm the same as representation, which can solve the
problem of domination.

C.2 AUC RESULT

We evaluated the models on the Taobao and Tmall datasets, with the results presented in Table 3.
Among the other eight models except DARE, none of them achieved consistent and significant im-
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Table 3: The performance of other models we tried reported by the means and standard deviations
of AUC. Only DARE achieved satisfying result. Each model’s comparison with the original TWIN
is highlighted: improvements are marked in green, while deteriorations are marked in red.

Setup Taobao Tmall

TWIN (2021) 0.91688 ˘ 0.00211 0.95812 ˘ 0.00073
Linear projection 0.89642 ˘ 0.00351

p´0.02046q

0.96152 ˘ 0.00088
p0.00988q

Item linear projection 0.90886 ˘ 0.00218
p´0.00802q

0.96032 ˘ 0.00119
p0.0022q

Category linear projection 0.91738 ˘ 0.00099
p0.00050q

0.96658 ˘ 0.00068
p0.00846q

Time linear projection 0.91354 ˘ 0.00046
p´0.00334q

0.95758 ˘ 0.00116
p´0.00054q

Cate. and time linear projection 0.91202 ˘ 0.00340
p´0.00486q

0.96604 ˘ 0.00038
p0.00792q

Larger embedding 0.91348 ˘ 0.00247
p´0.00340q

0.96348 ˘ 0.00057
p0.00536q

MLP projection 0.86960 ˘ 0.04013
p´0.04728q

0.95678 ˘ 0.00066
p´0.00134q

Avoid domination 0.91976 ˘ 0.00052
p0.00288q

0.93887 ˘ 0.00127
p´0.01925q

DARE (Ours) 0.92568 ˘ 0.00025
p0.0088q

0.96800 ˘ 0.00024
p0.00988q

provements across both datasets. The Taobao dataset is notably more complex, containing nearly
nine times the number of categories as Tmall. Thus, some decoupling methods showed improve-
ments on the simpler Tmall dataset but lost effectiveness on the more complex Taobao dataset.
Interestingly, while the “MLP projection” model theoretically offers greater capacity, it failed to
outperform the simpler linear projection, which captured our attention. To investigate further, we
examined the gradient behavior of these models.

C.3 GRADIENT CONFLICT IN THESE MODELS

We then observed whether these model have the potential to resolve gradient conflict. For each
category, we observed the gradients from attention and representation at every iteration and
calculated the percentage of iterations in which the gradient for that category exhibited conflict.
Results are shown in Figure 14. As demonstrated in this figure, we can find that:

• In the original TWIN, most category (80.91%) experienced gradient conflict in more than
half of the iterations.

• Some decoupling methods (like Item linear projection) can, to some degree, solve the
conflict, but that’s far from enough. Some methods even worsen the conflict (like Larger
embedding).

• MLP projection solves the conflict best, although still 30% categories reporting conflict
in more than half of iterations, this model outperforms other projection-based decoupling
method. However, MLP projection performs poorly bad. To understand this discrepancy,
we further analyzed its performance during training, and results is shown in Figure 15.
Though resolving conflict better than some other models, MLP projection struggle to opti-
mize in the training process due to more parameters and higher complexity. For example,
after 100 iteration, the accuracy of DARE is 82.44%, while that of MLP projection is only
74.87%.

C.4 CONCLUSION

We explored various decoupling methods, but none could fully resolve gradient conflicts, or may
introduce optimization issues. All the results call for a more effective decoupling method, that is,
back-propagating the gradient to different embedding tables, which can completely solve whatever
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(a) Linear projection (62.34%)
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(b) Item linear projection (72.13%)
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(c) Category linear projection
(78.47%)
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(d) Time linear projection (69.26%)
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(e) Cate. and time linear projection
(84.8%)
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(f) Larger embedding (88.29%)
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(g) MLP projection (30.96%)
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(h) Avoid domination (71.51%)
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(i) TWIN (80.91%)

Figure 14: Analysis of gradient conflict on the original TWIN and eight other models we tried. The
number after model name means the ratio of categories falling on the right side of the red
line (meaning that the category reported gradient conflict in more than half iterations). Most
models fail to resolve gradient conflict well.
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Figure 15: Comparison of MLP projection and DARE models during training. DARE can achieve
82.44% accuracy after 100 iterations, while MLP projection can only achieve 74.87% at that time.
MLP projection struggle to optimize in the training process.

problems like domination and conflict, since attention and representation will each have a exclusive
embedding table now. This insight led to the development of DARE.
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Figure 16: On both datasets, when the number of retrieved behaviors increase from 1 to 25, models
first perform better then keep the same performance. DARE outperforms TWIN at any settings,
achieving even 5.7% higher AUC on Taobao when retrieving 1 behavior.

D INFLUENCE OF HYPER-PARAMETERS

D.1 EFFECTS OF RETRIEVAL NUMBER IN THE SEARCH STAGE

The number of retrieved behaviors, K in this paper, is a crucial hyper-parameter in the two-stage
method. We varied this parameter, and the results are presented in Figure 16. Key findings include:

• On Taobao dataset, TWIN must retrieve more than 15 behaviors to fulfill its potential,
while DARE can achieve best performance when retrieving more than 10 behaviors. This
indicates that DARE can retrieve those important behaviors more accurately, while TWIN
must retrieve more behaviors to avoid missing important ones.

• DARE consistently outperforms TWIN across all settings, especially with fewer retrieval
numbers. On Taobao dataset, when retrieving only one behavior, DARE can outperform
TWIN with an AUC increase of 5.7% (noting that even a 0.1% AUC increase is considered
significant).

• In all our other experiments, the retrieve number is set to 20 to ensure all models perform at
their best. Our advantage over TWIN would only be more obvious in some other settings.

D.2 EFFECTS OF SEQUENCE LENGTH

In short sequence modeling, the performance improvement is marginal. To investigate this, we
analyzed the impact of sequence length and identified scenarios where the DARE model exhibits a
more significant advantage. Results are shown in Figure 17. Some notable finding are:

• Reduced Advantage with Shorter Sequences: DARE’s advantage over TWIN dimin-
ishes as the sequence length decreases. Shorter sequences make it easier to model user
history, reducing the impact of inaccuracies in measuring behavior importance. Under
these conditions, TWIN achieves performance comparable to DARE.

• Superior Performance with Longer Sequences: DARE excels with longer sequences.
On the Tmall dataset with embedding dimension=16, however, TWIN performs worse
with a sequence length of 200 compared to 120. This suggests that DARE effectively
captures the importance of each behavior and leverages long user histories at any setting,
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Figure 17: With shorter sequence length, the advantage of our DARE model over TWIN becomes
smaller. DARE can performs better with longer sequence length, indicating its potential to select
important behaviors in the long user history. However, on Tmall dataset, TWIN works better with
sequence length 120 than 160 or 200, indicating that TWIN relies on larger embedding dimension
to become effective.

while TWIN relies heavily on embedding dimension and would struggles with an abun-
dance of historical behaviors when embedding dimension is small.

• Relevance to Modern Recommendation Systems: It is worth noting that modeling longer
user histories is a growing trend in recommendation systems (Pi et al., 2020). Contem-
porary online systems increasingly incorporate extended user histories, making short se-
quence modeling less important. As this trend continues, the advantages of the DARE
model will become more pronounced in today and future online systems.

D.3 EFFECTS OF ATTENTION AND REPRESENTATION EMBEDDING DIMENSION

In general, increasing the embedding dimension improves model performance. However, in practice,
limitations such as the interaction collapse theory (Guo et al., 2023) or strict time constraints make
it impractical to use arbitrarily large embeddings.To address this, we analyzed various attention-
representation dimension combinations, offering insights that could guide future implementations.
The results are presented in Figures18. A key observation is that the representation embedding
dimension has a stronger impact on model performance compared to the attention embedding di-
mension. This suggests that a balanced approach–using a smaller attention embedding for faster
online processing and a larger representation embedding for enhanced performance–could be an
optimal strategy.

E EXTENDED EXPERIMENTAL RESULTS

E.1 GAUC AND LOGLOSS

We also evaluated model performance using additional metrics, including GAUC (group area under
the curve, grouped by category in our experiments) and Logloss (test loss). The results are presented
in Tables 4 and 5. Our findings reveal that AUC and GAUC trends are consistent across all models.
Logloss results largely follow the same trend, with the exception of two models: SDIM and TWIN-
V2. Further analysis indicates that these two models tend to be “conservative.” Let p` represent
the probability of a positive outcome predicted by the model and p´ represent the probability of a
negative outcome. The average value of maxp`, p´ is 89.55% for DARE, compared to 85.90% for
SDIM and 86.78% for TWIN-V2. Notably, the other eight models exhibit similar confidence levels
in their predictions, whereas SDIM and TWIN-V2 appear more conservative. This conservatism
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Figure 18: The influence of attention and representation embeddings on AUC.

Table 4: Overall comparison reported by the means and standard deviations of GAUC (grouped by
category). The best results are highlighted in bold, while the previous best model is underlined.

Setup Embedding Dim. = 16 Embedding Dim. = 64 Embedding Dim. = 128

Dataset Taobao Tmall Taobao Tmall Taobao Tmall

ETA (2021) 0.89900
p0.00372q

0.94908
p0.00121q

0.90980
p0.00084q

0.95918
p0.00046q

0.91144
p0.00050q

0.96230
p0.00054q

SDIM (2022) 0.89128
p0.00097q

0.92408
p0.00084q

0.89496
p0.00088q

0.93320
p0.00067q

0.89780
p0.00098q

0.93062
p0.00112q

DIN (2018) 0.88748
p0.00054q

0.94998
p0.00039q

0.89300
p0.00098q

0.95350
p0.00039q

0.89566
p0.00049q

0.95628
p0.00021q

TWIN (2023) 0.90364
p0.00209q

0.94998
p0.00088q

0.91374
p0.00065q

0.95952
p0.00048q

0.91880
p0.00068q

0.96370
p0.00006q

TWIN (hard) 0.89386
p0.00039q

0.95216
p0.00037q

0.90588
p0.00049q

0.95698
p0.00063q

0.90008
p0.00066q

0.95908
p0.00021q

TWIN (w/ proj.) 0.88038
p0.00405q

0.95012
p0.00079q

0.85372
p0.00427q

0.94618
p0.00497q

0.84696
p0.01012q

0.94794
p0.00235q

TWIN (w/o TR) 0.89190
p0.00081q

0.95340
p0.00053q

0.90098
p0.00081q

0.95524
p0.00036q

0.90628
p0.00095q

0.95570
p0.00115q

TWIN-V2 (2024) 0.87954
p0.00067q

0.93772
p0.00118q

0.88758
p0.00050q

0.94510
p0.00038q

0.89164
p0.00063q

0.94894
p0.00056q

TWIN-4E 0.88864
p0.01365q

0.95278
p0.00031q

0.88810
p0.01560q

0.95570
p0.00051q

0.89448
p0.01595q

0.95148
p0.01229q

DARE (Ours) 0.91240
p0.00036q

0.96062
p0.00021q

0.91712
p0.00052q

0.96392
p0.00012q

0.91966
p0.00033q

0.96582
p0.00013q

may help reduce their loss due to the characteristics of cross-entropy loss, but offers no tangible
benefit for prediction accuracy or practical performance.

E.2 GRADIENT CONFLICT ON TWIN

To better illustrate the universality of gradient conflict, we analyzed conflicts on a per-category basis.
Specifically, each category has its own embedding (a row in the embedding table), we observed the
gradient from attention and representation on this category-wise embedding. We calculated the
percentage of iterations in which a conflict was reported for each category, with the results shown
in Figure 19. Notably, 80.91% of categories experienced conflicts in more than half of the iterations.

To explore whether conclusions like ”popular categories are more likely to experience conflict”
exists, we further examined the relationship between category-wise conflict ratio and category fre-
quency. To do this, we grouped categories based on their conflict ratios and calculated the av-
erage category popularity (measured as the probability of a category appearing in a batch) within
each group. The results are presented in Table 19b.The differences observed are largely due to sta-
tistical instability for categories that appear infrequently (for example, those categories appearing
only once would have either 0% or 100% conflict ratio). However, there is no clear trend indicat-
ing that popular categories are either more or less prone to conflicts. This finding underscores the
universality of gradient conflict in the TWIN model.
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Table 5: Overall comparison reported by the means and standard deviations of Logloss.

Setup Embedding Dim. = 16 Embedding Dim. = 64 Embedding Dim. = 128

Dataset Taobao Tmall Taobao Tmall Taobao Tmall

ETA (2021) 0.69203
p0.01410q

0.50732
p0.00724q

0.64648
p0.00546q

0.44156
p0.00509q

0.64268
p0.00692q

0.41796
p0.00399q

SDIM (2022) 0.35402
p0.00183q

0.29586
p0.00262q

0.34250
p0.00289q

0.29016
p0.00270q

0.33376
p0.00220q

0.29238
p0.00447q

DIN (2018) 0.70362
p0.00321q

0.46560
p0.00314q

0.68712
p0.00370q

0.44864
p0.00287q

0.68368
p0.00852q

0.42956
p0.00454q

TWIN (2023) 0.67436
p0.00596q

0.49232
p0.00450q

0.68712
p0.00370q

0.43828
p0.00245q

0.61176
p0.00574q

0.40152
p0.00284q

TWIN (hard) 0.66888
p0.00145q

0.47248
p0.00303q

0.64324
p0.00339q

0.44020
p0.00188q

0.63956
p0.00344q

0.40956
p0.00166q

TWIN (w/ proj.) 0.75762
p0.00854q

0.48282
p0.00266q

0.80758
p0.01286q

0.50514
p0.02384q

0.82670
p0.02353q

0.49166
p0.01193q

TWIN (w/o TR) 0.71484
p0.00368q

0.48388
p0.00785q

0.67618
p0.00223q

0.47148
p0.00716q

0.65368
p0.00542q

0.45886
p0.00225q

TWIN-V2 (2024) 0.37096
p0.00198q

0.27066
p0.00194q

0.35412
p0.00134q

0.24926
p0.00187q

0.34526
p0.00185q

0.23646
p0.00139q

TWIN-4E 0.71226
p0.03604q

0.48144
p0.00234q

0.70654
p0.04449q

0.46276
p0.00164q

0.68412
p0.04719q

0.47432
p0.05169q

DARE (Ours) 0.61922
p0.00257q

0.41826
p0.00181q

0.60132
p0.00341q

0.39548
p0.00289q

0.58960
p0.00411q

0.38204
p0.00142q
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(a) Category-wise conflict in TWIN

Conflict Ratio (%) Average Category Frequency (%)

0„10 1.63
10„20 6.04
20„30 24.15
30„40 45.61
40„50 46.11
50„60 64.81
60„70 62.61
70„80 38.83
80„90 14.52

90„100 2.54

(b) Divide categories into groups by conflict ratio. This table
shows the average category frequency in each group.

Figure 19: Conflict analysis on TWIN. The category frequency is measured by the probability that
a category appears in a batch.

E.3 LEARNED ATTENTION

More cases of comparison between ground truth mutual information and learn attention score are
shown in Figure 20a. Each line contains three pictures, where the first picture is the ground truth
mutual information, while the second and third line is the learned attention score of TWIN and
DARE. Our DARE model is closer to the ground truth in all cases.

E.4 RETRIEVAL PERFORMANCE DURING SEARCH

More case studies of the retrieval result in the search stage are shown if Figure 21a:

E.5 DEFINITION OF MUTUAL INFORMATION

Mutual Information (MI) is a measure of the amount of information that two random variables
share. It quantifies the reduction in uncertainty about one variable given knowledge of another. In
our paper, we use the standard definition of MI:

IpX;Y q “ Σppx, yqlog
ppxqppyq

ppx, yq

where ppxq, ppyq and ppx, yq are computed based on the statistical result of the training data.
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Figure 20: Comapration of learned attention

(a) GT mutual information

1 2 3 4 5 6 7 8 9 10
Target-relative Position

16
11

9
87

15
1

19
18

12
20

To
p-

10
 A

pp
ea

re
d 

C
at

eg
or

ie
s

1 0.87 0.72 0.65 0.57 0.53 0.48 0.44 0.42 0.39

0 0 0 0 0 0 0 0 0 0

0.01 0.01 0.01 0 0 0 0 0 0 0

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0 0 0 0 0 0 0 0 0 0

0.01 0.01 0.01 0.01 0.01 0 0.01 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0.01 0.01 0 0 0 0 0 0 0 0

Category-wise Target-aware Correlation

(b) TWIN learned correlation
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(c) DARE learned correlation
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(a) GT mutual information
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(b) TWIN learned correlation
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(c) DARE learned correlation

F LIMITATION.

There are also some limitations. We empirically find that linear projection only works with higher
embedding dimensions, and small embedding dimensions would cause a dispersed distribution of
attention logits. However, we still can’t completely find out how this happen or what the underlying
reasons are causing this strange phenomenon, which is left to future work. Besides, our AUC result
in Section 4.2 indicates that target-aware representation benefits model performance in most cases,
leading to an AUC increase of more than 1% on the Taobao dataset. But on the Tmall dataset with
embedding dimension = 16, TWIN (w/o TR) outperforms TWIN, which is out of our expectations.
This is possibly due to some features of the Tmall dataset (e.g. fewer items), but we could not
explain this result convincingly, which is also left to future work.
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(a) GT mutual information
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(b) TWIN learned correlation
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(c) DARE learned correlation
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(a) GT mutual information
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(b) TWIN learned correlation
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(c) DARE learned correlation

Figure 21: Case studies of search stage
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