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Abstract

Despite the impressive progress of multimodal generative models, generating sound
solely from text poses challenges in ensuring comprehensive scene depiction and
temporal alignment. Meanwhile, video-to-audio generation limits the flexibility
to prioritize sound synthesis for specific objects within the scene. To tackle these
challenges, we propose a novel video-and-text-to-audio generation method, called
ReWaS, where video serves as a conditional control for a text-to-audio generation
model. Especially, our method estimates the structural information of sound
(namely, energy) from the video while receiving key content cues from a user
prompt. We employ a well-performing text-to-audio model to consolidate the video
control, which is much more efficient for training multimodal diffusion models
with massive triplet-paired (audio-video-text) data. In addition, by separating the
generative components of audio, it becomes a more flexible system that allows
users to freely adjust the energy, surrounding environment, and primary sound
source according to their preferences. Experimental results demonstrate that our
method shows superiority in terms of quality, controllability, and training efficiency.
Our demo is available at https://rewas-tv2a.github.io/.

1 Introduction

Generative models have developed dramatically, making content creation easier for people, including
images, videos, and audio, based on text. Especially, text-to-video generation models such as Make-
a-Video [34] and Sora [1] show the impressive emergence of generative models in the video domain,
showing remarkable utility in film and advertising. While we are fully immersed in the video content
by watching and listening, unfortunately, these generated videos are silent. Generating the sound
aligned to a video is a challenging task requiring both a contextual and temporal understanding of the
video. Figure 1 shows an example of when text and video controls are required to generate realistic
sound for the given video. Here, the dog is growling while holding a toy in his mouth. A human can
imagine the sound of the video; the dog growls lowly, and the growling sounds like the dog is biting
something. When the person grips and pulls the toy, the dog will treat the human by growling louder.
Finally, when the dog shakes his head, the growling will become louder. If a generative model does
not understand the visual information, it will be a random growling sound, not like the dog biting
something. If audio is not controlled by text, the generated audio might be only related to the dog,
e.g., a barking sound.

Table 1 shows the recent attempts to generate an audio sample from the given video or text. There
are two major directions to generate an audio sample from the given video directly. First, there have
been studies of a sound effect (SFX) generation with short moments for video editing tasks [4, 6],
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Figure 1: An example of audio generation requiring both text and video control. The text instruction “dog
growling” is used for the text control. The video-to-audio (V2A) [33] or text-to-audio (T2A) [25] generation
methods cannot understand the detailed semantics from texts (the dog is growling, not barking) or video (the
dog is biting something, and the alignment), respectively.

known as Foley. They are restricted to the pre-defined sound effect classes and can only control
discrete information, such as onset. As another attempt, video-to-audio (V2A) generation methods
have been proposed [27, 43, 18, 33]. However, they still struggle to generate open-domain sounds
from multiple objects together. Furthermore, both SFX and V2A methods cannot take text controls,
more rich user control. Figure 1 shows the example when there is no text control; a V2A method just
generates audio of “barking” rather than “growling” by focusing on the dog in the video.

As another line of research, text-to-audio (T2A) generation has been actively studied [16, 17, 25, 26, 9].
Despite their diverse and high-quality audio generation quality, they lack a temporal understanding of
video-only information. Like the example in Figure 1, the text-only condition can make irrelevant
audio to the video (e.g., when the dog shakes heads). To tackle the problem, we may need more
controllability to the T2A model, such as AudioLDM [25]. Recently, a few studies [40, 12, 3] tried
to control the pre-trained AudioLDM more precisely based on ControlNet [46]. Although they can
control the pitch, temporal order, energy, or rhythm of the generated audio, their generation process
needs expensive timestamp-wise annotations for each control feature.

More recently, parallel to our study, SonicVisionLM [42] and Seeing&Hearing [43] incorporate
text information, providing users the freedom to generate specific sounds. Although these methods
can control audio generation with both vision and language, they still suffer from either limited
discrete control (e.g., onset) [42], or lacking timestamp-wise control [43]. Moreover, they require a
video-to-text converting process, such as video captioning or feature mapping, for use with the T2A
model. This text conversion weakens temporal alignment, leading to the loss of fine-grained temporal
details.

In this work, we propose a novel video-and-text-to-audio generation approach, named Read, Watch
and Scream (ReWaS), by integrating video as a conditional control for a well-established T2A model.
While a text prompt specifies the subject, we additionally employ a control feature extracted from
the video. More specifically, our method presents an energy adapter on AudioLDM motivated from
ControlNet [46], an efficient structure control method for text-to-image generation. Since a video
feature does not directly imply the structure of the audio, we estimate the temporal energy information,
a basic audio structural information, from the video.

The energy operates as a time-varying control to complement the sound according to the dynamics
of the given video. As shown in Figure 1, ReWaS successfully understands complex information
from both text and video. Here, we define energy as the mean of frequency in each audio frame,
which is related to visual dynamics and semantics [20, 12]. It is relatively simple to estimate from a
video rather than complex acoustic features (e.g., mel-spectrograms). Therefore, our energy control
facilitates connecting video for T2A model, reflecting strong alignment between audio and video.

We compare our method and other state-of-the-art video-to-audio generation models [6, 43, 27, 18, 33]
on two video-audio aligned datasets, VGGSound [2] and GreatestHits [28]. In the experiments,
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Table 1: Comparison of audio generation methods: Can it make a general sound? Can it take text or visual
control? and the training efficiency.

Method General Text Visual W/o text Efficient
sound? control? control? mapping? training?

Sound effect (SFX) generation [4, 6] ✘ ✘ ✔† ✔ ✘

Video-to-audio (V2A) [27, 18, 33] ✔‡ ✘ ✔ ✔ ✘
Text-to-audio (T2A) [16, 17, 25, 26, 9] ✔ ✔ ✘ ✔ ✘

T2A + Control [40, 12, 3] ✔ ✔ ✘ ✔ ✔

Video-to-text & T2A [42, 43] ✔ ✔ ✔†⋆ ✘ ✔
ReWaS (ours) ✔ ✔ ✔ ✔ ✔

† Unable to adjust continuous sound variations (i.e., energy). ‡ Hardly generate sounds of multiple subjects together.
⋆ Taking limited timestamp-wise visual control (e.g., requiring the full timestamp-wise onset annotations, or only able to take a few

frames)

ReWaS outperforms V2A methods in human evaluation for three categories (audio quality, relevance
to the video, and temporal alignment between audio and video) with a significant gap (almost +1 point
for every category in 5-scale MOS). Also, ReWaS shows a superior audio generation performance
quantitatively and qualitatively. Our method shows the best fidelity score (FD), structure prediction
(energy MAE), and AV-alignment score on VGGSound. Moreover, we achieve the best AP and
energy MAE on Greatest Hits without the use of reference audio samples like CondFoleyGen [6]. As
shown in the qualitative study, ReWaS can capture the challenging “short transition” of the video
when the boarder jumps into the air, and no skateboarding sound appears in the video.

2 Related work

2.1 Text-to-audio generation

Early work for audio generation was built upon GANs [24, 5], normalizing flows [21], and VAEs
[38]. Recently, several studies using diffusion models have shown promising progress on a broad
range of acoustic domains. DiffSound [44] employs a diffusion-based token decoder for the first
time to transfer text features into mel-spectrogram tokens. Make-An-Audio [17], AudioLDM [25],
AudioLDM2 [26], Tango [9] and Make-An-Audio2 [16] are well-founded in latent diffusion model
(LDM) [32], demonstrating high-quality results with large scale training. A series of LDM predicts
mel-spectrograms using a VQ-VAE decoder, and a pretrained vocoder generates raw waveforms
from the generated mel-spectrograms. While these methods successfully generate high-quality audio
samples for the given text prompt, they are only designed for taking text conditions, unable to
understand visual semantics.

Meanwhile, there have been a few attempts based on ControlNet [46], an efficient training method
for structure control for text-to-image generation. ControlNet utilizes hints (e.g., Canny edge maps,
scribbles, depth maps) to provide a structural composition to the generated images. Inspired by this,
MusicControlNet [40] showed control over melody, dynamics, and rhythm, while Guo et al. [12] built
a FusionNet between each layer of the U-Net, enabling the fusion of control embeddings for temporal
order, pitch, and energy controls. On the other hand, T-Foley [3] introduces Block-FiLM, which
generates foley sounds guided by temporal events such as vocal sounds. They have demonstrated that
incorporating control signals into the audio generative models provides more explicit and fine-grained
control over the generated audio, leading to performance improvement and adherence to the desired
characteristics.

However, designing these time-varying controls still requires costly labor for users. To address this
challenge, we predict energy control through a given video, which is a practical function for creating
SFX, post-production for filmmaking, and utilizing AI-generated silent videos.

2.2 Video-to-audio generation

Existing video-to-audio (V2A) generation methods have focused on achieving two main characteris-
tics: (i) audiovisual relevance and (ii) temporal synchronization. The first stream aims to represent
general sound by leveraging datasets such as VGGSound [2] and AudioSet [8]. Given a set of video
features, SpecVQGAN [18] learns a transformer to sample quantized representations (i.e., codebook)
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based on visual features to decode spectrogram. Im2wav [33] utilizes rich semantic representations
obtained from a pre-trained CLIP [30] as sequential visual conditioning for an audio language model,
and applies CFG [15] to steer the generation process. Recently, diffusion-based models have shown
the stunning ability to generate high-quality audio [27, 43]. DiffFoley [27] improves audiovisual
relevance by learning temporal and semantic alignment through contrastive learning. However, it
necessitates tremendous training data, such as the utilization of both VGGSound and AudioSet for
alignment training. Seeing&hearing [43] is another diffusion-based model that optimizes the genera-
tion process using ImageBind [10] which learns joint embedding space for six modalities (image,
text, audio, depth, thermal, and IMU). For V2A purpose, Seeing&hearing utilizes the text-to-audio
diffusion model, AudioLDM [25], and aligns its latent space with the video embeddings extracted
from the ImageBind Video Encoder during the reverse diffusion process. However, ImageBind Video
Encoder takes only two frames for each video sampled from 2 second, which results in lacking
timestamp-wise contol. Therefore, they often struggle to generate temporally aligned sounds at short
times in the video (e.g., dog barking, people laughing).

On the other hand, other research works [4, 42] have focused on creating simplistic SFX (e.g., stick
hits) using datasets like CountixAV [47] and GreatestHits [28], which provide fewer classes but more
precisely temporal aligned data. CondFoleyGen [6] trains a Transformer to autoregressively predict a
sequence of audio codes for a spectrogram VQGAN, conditioned on the given audiovisual example.
Syncfusion [4] predicts a discrete onset label that denotes the beginning of a sound for repetitive
actions. Recent SonicVisionLM [42] employs a large language model to utilize text as an intermediate
product that facilitates user interaction for personalized sound generation. They freeze Tango [9] and
train ControlNet with timestamp estimated by a video for 23 SFX categories exclusively, where the
video is converted to sound event timestamp and text. Although they have shown promising results
in SFX generation, their timestamp detection module is limited to a single visual object, and they
cannot implicit detailed temporal cues in visual content because they use videos to convert them into
text. our method generates sounds for various categories from the visual context at the same time.

3 Preliminary

3.1 Text-to-audio latent diffusion model

In this paper, we specifically utilize AudioLDM [25] which generates a latent of mel-spectrogram z
computed by VAE [22]. The diffusion model ϵθ of AudioLDM is trained to predict the noise added
to a given data by minimizing the objective function, Ldiff = Ez0,ϵ,t ∥ϵ− ϵθ(zt, t,Ea)∥22, where ϵ
represents the noise added at time t, zt is noisy latent induced via the forward process and Ea denotes
the embedding of the audio x obtained from the CLAP audio encoder faudio(·) [41]. Here, the model
is conditioned by Ea using classifier free guidance (CFG) [15].
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In the sampling process, the generation starts from a noise zT sampled from
N (0, I) and the text embedding Ey from the CLAP text encoder ftext(·).
The reverse process conditioned on Ey generates the audio prior z0 using the
modified noise estimation ϵ̂θ(zt, t,Ey) = (1+w)ϵθ(zt, t,Ey)−wϵθ(zt, t),
where w is a guidance weight to balance the audio condition Ea. The VAE
decoder decodes the sampled latent z to predict a mel-spectrogram. Finally,
the decoded mel-spectrogram is converted to a raw audio sample using the
HiFi-GAN vocoder [23].

Although AudioLDM enables text-conditional audio generation, it still lacks
of understanding of visual contents and their temporal information. This
study adds a visual control to the pre-trained AudioLDM. Instead of directly
using a visual feature to control, we extract more essential information from
the given video, which will be discussed in Section 3.2.

3.2 Video-to-audio with temporal alignment

We assert that a video input can bring principal temporal information that
is hard to convey with a text prompt. However, directly injecting temporal
information from visual into an audio generation model remains a signif-
icant challenge. In contrast, previous works have attempted to generate
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Figure 4: Overall architecture of ReWaS. Our model predicts energy control from a given video, and generates
sound with text prompt and control condition. Red lines are used in training only, and replaced to the video-to-
energy estimator ϕ in test time.

sound by estimating the onset [4], or audio timestamp [42] from videos to improve audiovisual
relevance. However, they are limited to producing an unnatural sound for a single object in that
discrete conditions cannot serve continuous sound variations.

In this work, we consider energy, the averaged mel-spectrogram on the frequency axis, to produce a
continuous condition. Figure 2 shows that energy is a continuous time-varying signal, including enve-
lope components of sound such as peak, attack, sustain, and decay. Energy can be obtained cheaply
and automatically by computing the frame-level magnitude of mel-spectrograms [31]. Moreover, we
empirically observe that energy can also implicitly improve the temporal alignment of the video. For
example, Figure 3 shows energy can contain continuously varying audio information.

4 Method

This paper introduces a novel sound generation method conditioned on text and video, to generate a
waveform temporally well aligned with the visual input. Our model consists of two parts: (i) control
prediction, which intermediately predicts energy control from the video. (Section 4.1) (ii) conditional
sound generation, which uses the energy control signal as a condition in the diffusion process to
generate corresponding audio outputs (Section 4.2), which are both temporally and semantically
aligned with text and video.

4.1 Control prediction from video

Energy control. ReWaS is based on AudioLDM that uses CLAP embeddings for text and audio
alignment. A naïve approach using video as a condition is to align latent space between audio-video-
text. Previous approach [27] attempted to align tri-modal embeddings in a unified space by large-scale
contrastive learning prior to training diffusion models. To more efficiently overcome this challenge,
we design an energy control as an intermediate bridge from video to audio. We speculate that energy
control brings three advantages: First, the power of audio is intuitively correlated to visual dynamics
and semantics [20, 36]. With the natural fact that people can imagine the power of sound from the
size of the instance or distance to the object, we regard audio energy as a visually correlated signal
that can be certainly obtained from video. Second, as shown in previous works [31] and [13], energy
plays as a structural condition for audio generation. Thus, it is well-suited to parameter-efficient
fine-tuning methods such as ControlNet. Finally, using temporal acoustic signals for generating audio
needs a skilled user to annotate the pitch, melody, or rhythm for every timestamp. It makes the audio
generation phase impractical and difficult for the public to control. Meanwhile, energy is highly
related to physical interactions implicated in visual signals; thus, it can be easily estimated from the
video. Our approach does not require timestamp-wise fine-grained user control, but automatically
estimating energy structure from the given video.

Video embedding. To predict the energy control from video input, we extract features from the
pretrained SynchFormer [19] video encoder. We empirically observe that the image encoder (e.g.,
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CLIP [30]) is limited to V2A generation, especially from a temporal alignment perspective. We finally
take video embedding Ev ∈ RS×C , where S is the number of segments and C is the dimension of
latent. The implementation details for this process are described in Appendix.

Training energy control from video. Similar to Ren et al. [31], we calculate the energy from the
mel-spectrogram by averaging the frequency bins and further smoothing the time-sequential energy
information. We first transform the raw waveform to the mel-spectrogram, mel ∈ RD×W , where
D represents the number of mel-frequency bins, and W is the width of the spectrogram following
AudioLDM [25]. However, we empirically observe that the computed energy fluctuates a lot for
each temporal window, which hinders stable training. We resolve the issue by taking a smoothing
operator. The energy of audio e ∈ RW is defined as ea = Smoothing

(
1
D

∑D
d=1 melw,d

)
. We use

the second-order Savitzky-Golay filter [39] with a window length of 9 for smoothing.

We estimate ê by using a shallow projection module ϕ from the video encoder output (See Figure 4
“Control Prediction”). For efficient training, we resize ea by taking the nearest-neighbor interpolation
to have the same number of segments S as the visual representations. We also can apply the same
resize method to video embeddings at inference time. Now, we train our energy control prediction
module ϕ by minimizing the following loss function Le = ||ϕ(Ev)− Resize(e)||22.

The output ê of the projection module is used for energy control at inference time. We train ϕ
separately to diffusion models for training efficiency. In addition, our energy estimation module is
not specialized for generation models, thus our energy control can be utilized in other ways.

4.2 Conditional sound generation

Adding control signal. To reflect the energy control signal, we train the energy adapter following
the framework of ControlNet [46]. The weights of the energy adapter are initialized from pretrained
parameters of diffusion models, and connected to AudioLDM with zero convolution layers. Compared
to training audiovisual alignment into the latent space in diffusion model [27, 43], our adapter takes
the benefit of robust fine-tuning speed (e.g., [27] uses 8 A100 GPUs for 140 hours for feature
alignment and LDM tuning, whereas we use 4 V100 GPUs for total 33 hours). To add the control
feature for zt, the energy control ea is duplicated by the number of mel-filterbanks, and transferred
to the VAE encoder for the purpose of encoding, followed by a fully-connected layer and SiLU [7].
This latent control feature ce is added to the z0, where z0 is an audio prior obtained from the VAE
encoder. Thus, given a text embedding Ey and latent control feature ce, we train energy adapter
by optimizing the following objective: Lc = Ez0,t,Ey,ce,ϵ∼N (0,1)∥ϵ − ϵθ(zt, t,Ey, ce)∥22. During
training, we randomly drop Ey with the probability 0.3 for better controls. We denote that Lc and Le

are optimized separately.

Sound generation. We use DDIM [35] to generate sound from the noise. The reverse sampling
process is conditioned on both text and video. We replace e to ê = ϕ(Ev) at inference. Once
mel-spectrogram is generated by the VAE decoder, it can be transformed into a raw waveform using
the pre-trained vocoder [23] as explained in Section 3.1.

5 Experiments

5.1 Experimental settings

Datasets. For a fair comparison with existing baselines, we train the control prediction module
and the adapter in the conditional sound generation module on VGGSound [2]. VGGSound is a
large-scale dataset containing ≈200k video clips, accompanied by corresponding audio tracks. The
dataset covers 309 classes of general sounds, roughly categorizing them into acoustic events, music,
and people. The videos are sourced from YouTube, providing a diverse and realistic corpus. Since the
VGGSound includes plentiful general sound examples, ReWaS trained on the VGGSound enables
general-purpose sound generation for real-world scenarios. We randomly sampled 3K videos to
construct VGGSound test subset. To evaluate temporal alignment accuracy, we use Greatest Hits [28]
test set including the videos of hitting a drumstick with materials. Since Greatest Hits samples have a
distinct audio property compared to the other audio samples, we fine-tune ReWaS on the Greatest
Hits training samples.
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Table 2: Performance comparison on VGGSound [2] with reproduced five seconds audio samples. “Energy”
and “TP” denote energy MAE and number of the trainable parameters.

Model FD↓ FAD↓ MKL↓ CLAP↑ MAE↓ AV-align↑ # TP↓
SpecVQGAN 26.63 5.57 3.30 0.1336 0.1422 0.2851 379M
Im2wav 16.87 5.94 2.53 0.4001 0.1310 0.2763 365M
Diff-Foley 21.96 6.46 3.15 0.4010 0.1571 0.2059 859M
Seeing&Hearing 20.72 6.58 2.34 0.5805 0.1668 0.1858 -

ReWaS (Ours) 15.24 2.16 2.78 0.4353 0.1149 0.3008 204M

Baselines. We compare ReWaS against open-source V2A generation approaches in priority, SpecVQ-
GAN [18], Im2wav [33] and Diff-Foley [27], which are trained on the VGGSound and AudioSet
datasets. Furthermore, we compare Seeing&Hearing [43], which optimizes a pre-trained AudioLDM
during the inference stages by aligning the latent space using ImageBind. For a fair comparison, we
take the following steps: We first generate the full-length audio by each method, and use a common
5-second clip for evaluation. In the temporal alignment evaluation, we consider CondFoleyGen [6] as
a main baseline, which is trained on the Greatest Hits dataset.

Evaluation metrics. Following the implementation of AudioLDM, we employ Fréchet distance
(FD) [14], Fréchet audio distance (FAD) [37], and the mean of KL divergence (MKL) [18]. We also
measure the alignment between the generated audio and sound categories with CLAP score [17]
in VGGSound. However above metrics are limited to evaluating audio-visual temporal alignment,
so we employ AV-align [45, 43] based on detecting energy peaks in audio-visual modalities. In the
Greatest Hits experiment, we report onset accuracy (Acc) and average precision (AP), following
the evaluation protocol introduced by CondFoleyGen [6]. The onset of sound events is a discrete
signal obtained by the thresholding of the amplitude gradient. Therefore, relatively quiet sound
effects (e.g., scratching leather, touching the leaves) or natural sounds can be excluded from the
evaluation. To address this issue, we report the mean absolute error (MAE) [12] of the energy signals
from real and generated sounds for the first time in the sound generation task conditioned on video.
Although these evaluation metrics can evaluate different properties of the generated audio, most of
them measure the difference between the generated audio and the “ground truth” audio corresponding
to the original video. However, one video can sound differently (e.g., human’s voice can vary);
existing quantitative evaluation metrics have challenges in measuring whether the generated audio is
truly suited to the given video. To tackle the issue, we conduct a user study to evaluate the quality
and temporal alignment of the generated audio samples.

5.2 Results

Quantitative results. Table 2 shows the quantitative comparisons on the VGGSound. We note
that category classes are used as text prompts in the VGGSound. We train 22M parameters for
video projection to audio conditional control, and 182M parameters for fine-tuning the AudioLDM
with our energy adapter. Since Seeing&Hearing is an optimization-based generation method, we
did not report the training parameters. However, they consume twice the time for inference than
ReWaS. Our ReWaS achieve the best performance on FD, FAD, energy MAE, and AV-align, showing
competitive results in terms of MKL and CLAP scores. Especially, while we use only a quarter
of training parameters compared to Diff-Foley, our method outperforms Diff-Foley on all metrics.

Table 3: Performance comparison on Greatest
Hits [28]. We use material types as text prompts,
while CondFoleyGen uses both reference audio
and video as inputs.

Model Acc↑ AP↑ MAE↓
CondFoleyGen 23.94 60.24 0.1520
ReWaS (Ours) 19.15 63.28 0.1398

CLAP scores illustrate the importance of text prompts
for semantic alignment. Seeing&Hearing outper-
forms ReWaS in terms of MKL and CLAP score.
However, we argue that Seeing&Hearing is heavily
dependent on text prompt, since our method outper-
forms in terms of MAE and AV-align scores by a
large margin. This achieved MAE score result by
ReWaS also demonstrates the accuracy of our control
prediction module, and generated outputs from ReWaS are most temporally closer to the real audio
content.

In addition, we evaluate how the generated audio and the condition video are temporally aligned
on Greatest Hits. The dataset distribution of Greatest Hits highly differs from the general audio
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Table 5: Impact of the energy control’s quality on VGGSound. (1) Text and the ground-truth audio energy
with AudioLDM backbone (upper bound), (2) Text and the estimated energy from the video with AudioLDM
backbone (our approach) and (3) Text and the estimated energy from the video with Make-An-Audio backbone.

Control Backbone FD↓ FAD↓ KL↓ CLAP↑ MAE ↓
T & GT E from A AudioLDM-M 13.93 2.65 2.15 0.4497 0.1195
T & Est. E from V AudioLDM-M 15.24 2.16 2.78 0.4170 0.1149
T & Est. E from V Make-An-Audio 13.89 10.91 2.93 0.4237 0.1368

samples; hence, we fine-tune ReWaS on the Greatest Hits training samples. Table 3 shows the results.
ReWaS achieves the best AP and MAE, although ReWaS is not specially designed for Foley like
CondFoleyGen.

Table 4: Human evaluation of V2A methods on audio
quality, audiovisual relevance, and temporal alignment
with 5-scale MOS.

Model Audio Quality ↑ Relevance ↑ Temporal Alignment ↑

SpecVQGAN 2.76 2.50 2.64
Im2wav 2.97 3.18 3.01
Diff-Foley 2.89 2.97 2.98

ReWaS (Ours) 3.70 4.04 3.68

User study. The quantitative results are limited
to measuring how the generated audio sounds
realistic and aligned to the given video. To
complement it, we conduct a human evaluation
study to assess the subjective quality of the gen-
erated audio concerning the input video. We ask
the human evaluators to evaluate the quality of
the audio samples generated by SpecVQGAN,
Im2wav, Diff-Foley, and ReWaS. Since Seeing&Hearing shows vulnerable performance in audio-
visual alignment, we exclude it from the user study.

We use three evaluation criteria: audio quality, relevance between audio and video, and temporal
alignment. Detailed user instructions are in the Appendix. We use a five-point Likert scale to measure
mean opinion score (MOS), where an ideal video with its ideal audio receives a rating of 5 across all
criteria. We recruit human annotators via two separate channels: Amazon Mechanical Turk (AMT)
and local hiring. We recruit 50 AMT annotators for each criterion, and each annotator evaluates five
generated samples for each method (i.e., each annotator evaluates 20 audios). For 23 locally hired
annotators, we ask them to evaluate 20 generated samples for each method and criterion. Surprisingly,
ReWaS achieves the best in all categories with large margins as shown in Table 4. This subjective
result is consistent with our quantitative and qualitative findings, further validating the effectiveness
of ReWaS in generating high-quality, relevant, and temporally synchronized audio for the given
video.

SpecVQGAN

Im2wav

Diff-Foley

Ours

Video Frames

GT

Seeing&Hearing

Figure 5: Qualitative comparison on VGGSound. Surprisingly,
when the skateboarder jumps, only ReWaS succeded in detecting
short transition (yellow box). Text prompt in is “skateboarding”.

Qualitative results. Figure 5 shows
qualitative results in baselines and Re-
WaS. Given the skateboarding video,
SpecVQGAN and Diff-Foley fail to gen-
erate the sound of skate wheels rolling
on the floor. Although Im2wav gener-
ates that sound, it cannot capture a short
transition. We also demonstrate the ef-
fectiveness of the text prompt in Fig-
ure 6 with CLAP similarity, when diffi-
cult or redundant frames exist. In this
case, V2A methods also struggle to gen-
erate corresponding sound. However,
ReWaS can effectively calibrate the se-
mantics by user text prompt. Note that
the prompt can also be longer and more general if desired by users. (e.g., “rally car swiftly navigates
a turn on the racetrack.") More results can be found in the Appendix and demo page.

5.3 Discussion

The impact of the quality of the energy control. To verify the robustness of the energy prediction
module, we compare the control by our video-to-energy prediction module and the energy directly
extracted from the ground truth audio. Table 5 demonstrates that although we use the estimated
energy, the quality of the generated audio is very similar to the audio samples controlled by the
ground truth audio energy. (See the first row and second row of Table 5) It supports the idea that
energy information is highly related to visual information, and is easy to estimate solely using video.
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SpecVQGAN
CLAP: 0.0024

Im2wav
CLAP: 0.0029

Diff-Foley
CLAP: -0.0529

GT
CLAP: 0.3844

ReWaS (Ours)
CLAP: 0.3499

Video 
Frames

Seeing&Hearing
CLAP: 0.2062

(a)

SpecVQGAN
CLAP: 0.2749

Im2wav
CLAP: 0.2823

Diff-Foley
CLAP: -0.0023

GT
CLAP: 0.5547

Video 
Frames

ReWaS (Ours)
CLAP: 0.4076

Seeing&Hearing
CLAP: 0.0850

(b)
Figure 6: Effectiveness of text prompt. Videos in the real world are sometimes noisy. For example, when videos
(a) are hard to distinguish the semantics or (b) contain redundant frames, text prompts used in ReWaS calibrate
the results. Text prompt in (a) is “raining”, and (b) is “chicken clucking”.
We also compare the qualitative results of estimated energy controls with ground truth energy in the
Appendix.

T2A Framework. We replace the AudioLDM-M [25] backbone with Make-An-Audio [17], which
has fewer parameters than AudioLDM to validate the flexibility of our approach. Details can be found
in the Appendix. Table 5 shows the results of the two backbones on VGGSound. Interestingly, ReWaS
built upon Make-An-Audio achieves comparable performance to its AudioLDM-M counterpart (See
the second row and third row of Table 5). The results demonstrate the robustness of our framework to
the choice of the backbone model, and explain our framework has the potential to develop further
with advanced T2A models.

Video Frames

Prompt: In an ornate, historical hall, a massive tidal wave peaks and begins to 
crash. Two surfers, seizing the moment, skillfully navigate the face of the wave.

Ours

AudioLDM

Seeing&Hearing

Figure 7: Audio generation with general text prompts.

General text prompts. To examine the
capability of ReWaS with more general
text prompts, we generate audio sam-
ples with generative videos by KLING3.
As shown in Figure 7, only our method
can capture the visual information of the
wave, namely, the sound getting louder
as the wave crashes. We include more
samples in the Appendix.

Effectiveness of visual condition. In the Appendix, we show examples when energy control
complementing temporal information. While AudioLDM suffers from inferior temporal alignment
and limited sound generation that is mentioned in text prompts but not generated, ReWaS not only
generates video-related sounds hidden in the text but also aligns the sound with the frames. This
demonstrates the effectiveness of visual condition by ReWaS.

Limitation Although our approach successfully leverages the text and video control simultaneously,
our method shares the limitation of AudioLDM, namely, hallucination in generated samples. For
example, for a given “basketball bounce” video, ReWaS generates a squeaking sound, even if the
player is standing still. This problem might be mitigated if we can use a better AudioLDM model.

6 Conclusion

This paper proposes ReWaS, a novel video-and-text-to-sound generation framework. Our main
contribution is that audio structural condition, namely energy, is inferred from video to efficiently
and effectively input visual condition to the robust T2A model. Therefore, ReWaS can generate
complex sounds in the real world without the need for a difficult control design. Quantitative results
on VGGSound and Greatest Hits datasets, subjective human study, and qualitative results consistently
support that ReWaS can generate natural, temporally well-aligned, and relevant audio for the given
video by employing text and video as control.

3https://kling.kuaishou.com/en
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A Appendix

A.1 Data Preprocessing

During training, we randomly extract 5-second segments from the VGGSound dataset [2] and 2-
second segments from the Greatest Hits dataset. However, during the testing phase, we extract video
clips ranging from 2 to 7 seconds in duration for the VGGSound dataset, and from 0 to 2 seconds for
the Greatest Hits dataset [28]. Video frames are uniformly sampled at 25 fps. Since ReWaS generates
audio based on 5-second videos, we duplicated frames from the Greatest Hits dataset to match the
length of these 5-second videos. Subsequently, we trimmed the generated audio to a duration of 2
seconds.

For comparison with baselines, SpecVQGAN [18], Diff-Foley [27] and Seeing&Hearing [43] (10s,
8s, and 10s, respectively) for the test videos. Then, we extract the 5-second clip corresponding to the
same video frames used in our method. Since Im2wav [33] is designed to generate sound with a fixed
length of 4 seconds, we first generate the initial 4 seconds and extend it by generating an additional 1
second, resulting in a 5-second audio clip.

A.2 Feature Extraction

Video features. We employ SynchFormer [19] trained on VGGSound [2] for the sparse syn-
chronized setting as a video encoder. The video encoder employed in SynchFormer is based on
Motionformer [29] pre-trained on Something-Something v2 [11], and fine-tuned on VGGSound
and AudioSet [8]. Therefore, the video encoder is strong enough to encode motion dynamics and
semantics. We freeze the parameters in the video encoder, and solely train a projection module to
estimate energy control. We extract a video feature in the short video clip (0.64 sec). Thus we use
a total of 112 length visual embeddings for a 5s video. We note that, for a fair comparison, RGB
frames are only used in all methods including ReWaS.

Audio features. Audios of all videos used in our experiments are resampled to 16kHz sampling rate.
We follow the default setting of AudioLDM to compute the mel-spectrogram. Specifically, we use
64-bin mel-spectrograms with 1024 window length. While fmin and fmax are 0 and 8000 respectively,
the hop size is 160 and the FFT size is 1024.

A.3 Architecture and training details

Test Dataset. For our experiments, we leverage a subset of 160k videos from VGGSound [2] due to
the availability of public videos at the time of training. We split the train data list into training and
validation subsets following SpecVQGAN [18].

Energy signal. To encode a video feature into 1-dimensional energy, a projection module ϕ consists
of a linear layer, two transformer blocks, and MLPs consisting of four FC layers. We use 768 hidden
dimensions for the first linear layer and transformer blocks, and the four FC layers’ output dimensions
are 128, 64, 16, and 1. The total parameter of ϕ is 22M. We choose AudioLDM-M4, and the number
of training parameters for fine-tuning AudioLDM [25] with our energy adapter is 182M. ReWaS is
optimized by AdamW and the learning rate is fixed to 3e-5 during training. We train ReWaS with 4
V100 GPUs for 33 hours on VGGSound, and 1 hour on Greatest Hits [28] respectively.

Details of Make-An-Audio Backbone Framework. The video encoder used in Make-An-Audio [17]
is re-trained to predict the appropriate energy scale of mel-spectogram, which is configured with
80 frequency bins and a hop size of 256 samples, different from the AudioLDM-M configuration.
Make-An-Audio is notable for its parameter efficiency, requiring significantly fewer parameters than
AudioLDM. This reduction in model complexity translates to substantially shorter training times,
with the entire model converging in less than one day.

A.4 User study

Figure A.1, Figure A.2, and Figure A.3 show the user instructions used in our human evaluation.
Before launching Amazon MTurk (AMT), we first conducted an in-lab study with 23 participants;

4weights in https://github.com/haoheliu/AudioLDM
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each participant evaluated 20 audio samples for each method and each criterion, namely, they
evaluated 240 (20 × 4 × 3) generated audio samples. Based on the observation from the in-lab study,
we have set the compensation level for each HIT to $0.45 so that a worker can earn $15 per hour. At
the same time, we observed that a number of participants had trouble keeping focus on the evaluation
with 240 samples (each sample takes five seconds). To prevent the low-quality responses from MTurk
annotators, we split each evaluation Human Intelligence Task (HIT) on a smaller scale. Each AMT
annotator evaluates five audio samples for each method and one additional ground truth audio to
prevent random guessing. We published 50 HITs for each criterion, and 150 responses were collected.
Finally, we observe that many AMT annotators consistently score high for all questions (e.g., 4 or
5). To ignore noisy responses, we omit responses having an average score larger than 4.0 for 21
questions. 55 responses were omitted after this filtering process.

Instruction 1

How natural is this audio recording?

Please focus on examining the audio quality and naturalness (noise, timbre, sound
clarity, and high-frequency details).

1. Listen to the sample (Click **Play** button to listen audio samples)
2. Select an option

• Excellent: 5 (Completely natural audio)
• Good: 4 (Mostly natural audio)
• Fair: 3 (Equally natural and unnatural audio)
• Poor: 2 (Mostly unnatural audio)
• Bad: 1 (Completely unnatural audio)

Figure A.1: User instruction for audio quality (naturalness) test.

Instruction 2

How much is the sound related to the object or material in video?

Please focus on examining the relevance between video and audio, not considering
the quality and temporal alignment (i.e. sound timing).

1. Watch the sample (Click **Play** button to watch video samples)
2. Select an option

• Excellent: 5 (Completely relevant audio)
• Good: 4 (Mostly relevant audio)
• Fair: 3 (Equally relevant and irrelevant audio)
• Poor: 2 (Mostly irrelevant audio)
• Bad: 1 (Completely irrelevant audio)

Figure A.2: User instruction for video-audio relevance test
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Instruction 3

How much is the sound temporally aligned to the movements of objects or material in video?

Please focus on examining the temporal alignment between video and audio, not
considering audio quality and naturalness.

1. Watch the sample (Click **Play** button to watch video samples)
2. Select an option

• Excellent: 5 (Completely aligned audio)
• Good: 4 (Mostly aligned audio)
• Fair: 3 (Equally aligned and non-aligned audio)
• Poor: 2 (Mostly non-aligned audio)
• Bad: 1 (Completely non-aligned audio)

Figure A.3: User instruction for temporal alignment test.

A.5 More qualitative results

Energy controls from Videos. We illustrate estimated energy from video in Figure A.4. The results
show the correlation between our energy control generated from video and GT energy obtained from
reference audio.

Effectiveness of the text prompt. As shown in Figure A.5, if there are redundant frames, ReWaS
can only successfully calibrate the semantics with textual prompt but also it generates “silent" audio
sounds when there is a scene change. In contrast, other baseline models such as SpecVQGAN [18],
Im2wav [33] and Diff-Foley [27] fail to produce the corresponding sound (e.g., alarm clock ringing)
due to misaligned visual and sound contexts, often generating unintended sounds or remaining
silent when they should produce sound. Although Seeing&Hearing [43] can produce corresponding
sounds, it fails to generate “silent" audio when there is a change in visual scenes. This suggests that
baseline models may either resort to generating random sounds when faced with a scene change
due to misaligned visual and sound contexts, or they produce sound when they should remain silent,
ignoring the visual context.

Effectiveness of visual control. Figure A.6 and Figure A.7 are examples when energy signal serving
additional temporal information. As shown in Figure A.6, when a person talking and playing a dart
game in an input video, the original AudioLDM [25] generates only the sound of talking, ignoring
‘dart’ prompt. Additionally, aligning generated sound with video is challenging in AudioLDM.
In comparison, ReWaS not only generates both the sound of talking and dart but also aligns the
sound with the frames. Figure A.7 presents another example. Unlike AudioLDM, which repeatedly
generates the same spray and car engine sounds, ReWaS accurately captures the spray sound at the
right moment thanks to the visual control without additional text prompt ‘spray’. Furthermore, the
result demonstrates the limitation of T2A methods for automatic Foley synthesis, because they cannot
watch a video. This demonstrates the effectiveness of visual control by ReWaS.

Subtle Visual Movements. Figure A.8 and Figure A.9 demonstrate the effectiveness of ReWaS in
aligning sound with corresponding frames, achieving temporal alignment by accurately capturing
small object movements, such as lip synchronization. As illustrated in Figure A.8, the the intensity
of growling sound increases as the lion opens its mouth. In another example of Figure A.9, ReWaS
also produces temporally synchronized sounds with mouth movements, underscoring its overall
effectiveness.

General text prompt Figure A.10 provides an example that evaluates the capability of ReWaS
using more general text prompts. We generate audio samples with another generated video from
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GT Energy GT Energy GT Energy

Video Energy Video Energy Video Energy

Figure A.4: Examples of energy controls from input videos.

KLING5. Our method is the only one that captures the increasing intensity of the sound as the onions
are cut from the edge to the center. Both the T2A model, AudioLDM, and the V2T&V2A model,
Seeing&Hearing, can generate corresponding sounds, but they lack visual temporal alignment in the
generated results.

5https://kling.kuaishou.com/en
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ReWaS
(Ours)

Video

GT

Alarm clock ringing

Im2wav

SpecVQGAN

Diff-Foley

ReWaS
(Ours)

Video

GT

Alarm clock ringing

Im2wav

SpecVQGAN

Diff-FoleySeeing&Hearing

Figure A.5: Example of audio sound from misaligned visual input. ReWaS can make the desired
sound and make the silent moment like ground-truth sound.

Talking Dart Talking or Silence

GT

ReWaS
(ours)

Video

<Energy>

Prompt: “dart”

talking talking talking

talking talkingdart

dart

AudioLDM only talking

Prompt: ”talking and dart”

GT

AudioLDM

ReWaS (Ours)

Figure A.6: Effectiveness of video input. In ReWaS, energy control from video input transfers
additional temporal information.
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Car Engine Spray Car Engine

Prompt: “car engine”

Car engine spray Car engine

sprayCar engine Car engine

Prompt: “car engine and spray”
sprayspray

Car engine

GT

ReWaS
(ours)

Video

AudioLDM

<Energy>

GT

AudioLDM

ReWaS (Ours)

Figure A.7: Additional example of effectiveness of video input.

ReWaS
(Ours)

Video

GT

Figure A.8: Example of audio with improved synchronization, capturing small movements (e.g., a
lion’s lip synchronization).
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Zebra braying

ReWaS (Ours)

Video

GT

Cat caterwauling

ReWaS (Ours)

Video

GT

Figure A.9: Examples of generated audio sounds demonstrating the capability of temporal synchro-
nization.

Ours

Prompt: A chef is cutting onions in a kitchen, preparing for the dish.

Video Frames

AudioLDM

Seeing&Hearing

Figure A.10: Example of general user prompt.
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