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Abstract

Natural Language Generation (NLG), and more001
generally generative AI, are among the cur-002
rently most impactful research fields. Cre-003
ative NLG, such as automatic poetry genera-004
tion, is a fascinating niche in this area. While005
most previous research has focused on forms006
of the Turing test when evaluating automatic007
poetry generation — can humans distinguish008
between automatic and human generated po-009
etry — we evaluate the diversity of automat-010
ically generated poetry, by comparing distri-011
butions of generated poetry to distributions of012
human poetry along structural, lexical, seman-013
tic and stylistic dimensions, assessing differ-014
ent model types (word vs. character-level, gen-015
eral purpose LLMs vs. poetry-specific models),016
including the very recent LLaMA3, and types017
of fine-tuning (conditioned vs. unconditioned).018
We find that current automatic poetry systems019
are considerably underdiverse along multiple020
dimensions — they often do not rhyme suffi-021
ciently, are semantically too uniform and even022
do not match the length distribution of human023
poetry. Among all models explored, character-024
level style-conditioned models perform slightly025
better. Our identified limitations may serve as026
the basis for more genuinely creative future po-027
etry generation models.028

1 Introduction029

A key aspect of creative language generation is the030

ability to create new, original and interesting text,031

cf. (Colton et al., 2012; Gatt and Krahmer, 2018;032

Yi et al., 2020; Elgammal et al., 2017). To date, ex-033

tremely little attention has been given to the eval-034

uation of originality and creativity in recent cre-035

ative text generation models such as those for auto-036

matic poetry generation, despite renewed interest037

in the context of recent LLMs (Franceschelli and038

Musolesi, 2023). In fact, existing automatic poetry039

generation models are typically not evaluated re-040

garding how different generated poems are from041

existing poems in the training set but with the Tur- 042

ing test: can humans distinguish whether a poem is 043

human authored or automatically generated (Hop- 044

kins and Kiela, 2017; Lau et al., 2018; Manjavacas 045

et al., 2019)? However, this form of Turing test and 046

other similar forms of human evaluation may con- 047

tain an overlooked risk of failure: namely, if the au- 048

tomatically generated instances are (near-)copies 049

of training data instances. 050

In this work, we fill this gap and evaluate, for 051

the first time, automatic poetry generation systems 052

for their diversity. As human evaluation is gener- 053

ally not well suited to assess diversity (Hashimoto 054

et al., 2019), we automatically measure diversity 055

by comparing distributions of generated and ex- 056

isting poems along formal, semantic and stylistic 057

dimensions. This yields much better evidence of 058

the models’ creative capabilities in contrast to be- 059

ing mere ‘stochastic parrots’. 060

Our main contributions are: (i) we conceptualize 061

diversity of poetry generation systems along differ- 062

ent dimensions: diversity on the structural, lexical, 063

semantic and stylistic level; (ii) we assess different 064

types of automatic poetry generation systems for 065

diversity: general purpose word and character-level 066

LLMs, both unconditioned and style-conditioned 067

ones, on the one hand, and poetry-specific mod- 068

els, on the other hand; (iii) we evaluate each class 069

of model for diversity across the different dimen- 070

sions, by comparing the distribution of the human 071

authored training data set to the distribution of gen- 072

erated poems. We find that on a distributional level, 073

generated poems are considerably different from 074

human ones. Character-level style-conditioned 075

general-purpose LLMs are most diverse. 076

Our work prepares the groundwork for truly 077

creative generative AI models (Veale and Pérez y 078

Pérez, 2020) and also has implications for the de- 079

tection of generative AI (Sadasivan et al., 2023). 080

We release all code upon acceptance. 081
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2 Related Work082

Our work connects to research on diversity and au-083

tomatic poetry generation, which we now discuss.084

Diversity Building systems able to generate di-085

verse output has been a long-standing concern086

in NLG research (Reiter and Sripada, 2002; van087

Deemter et al., 2005; Foster and White, 2007) and088

remains a central issue in neural NLG (Holtzman089

et al., 2019). The need for careful analysis of NLG090

systems’ diversity – beyond an assessment of the091

quality or fluency of single-best generation outputs092

– has been widely acknowledged (Gatt and Krah-093

mer, 2018; Hashimoto et al., 2019; Mahamood and094

Zembrzuski, 2019; Celikyilmaz et al., 2020; Tevet095

and Berant, 2021; Schüz et al., 2021). A well-096

known finding from this line of research is that neu-097

ral NLG systems typically face a quality-diversity098

trade-off (Ippolito et al., 2019; Caccia et al., 2020;099

Wiher et al., 2022): their outputs are either well-100

formed and fluent or diverse and variable.101

Work on evaluating diversity of NLG typically102

uses automatic metrics that quantify to what ex-103

tent different outputs by the same system vary104

(Hashimoto et al., 2019). In practice, though, eval-105

uations of diversity in NLG differ widely across106

tasks (Tevet and Berant, 2021) and even adopt dif-107

ferent notions of diversity (Zarrieß et al., 2021).108

At the same time, most of these notions focus on109

lexical or semantic aspects of diversity, e.g., lo-110

cal lexical diversity. For instance, Ippolito et al.111

(2019) compare decoding methods in dialogue112

generation and image captioning, assessing lexical113

overlaps in n-best NLG outputs for the same input.114

Chakrabarty et al. (2022) simply measure the local115

lexical diversity in automatic generated poems in116

terms of distinct unigrams. Global lexical diver-117

sity, on the other hand, measures whether the NLG118

system generates different outputs for different119

inputs. For instance, van Miltenburg et al. (2018)120

define the global diversity of image captioning sys-121

tems as their ability to generate different captions122

for a set of inputs, using metrics like the number123

of types in the output vocabulary, type-token ratio,124

and the percentage of novel descriptions. Similarly,125

Hashimoto et al. (2019) view diversity as related126

to the model’s ability to generalize beyond the127

training set, i.e., generate novel sentences.128

Besides lexical diversity, work on open-ended129

or creative text generation tasks has been inter-130

ested in diversity at a more general semantic level.131

For instance, Zhang et al. (2018) and Stasaski and132

Hearst (2022) aim at building dialogue systems 133

that generate entertaining and semantically diverse 134

responses in chit-chat dialog. Here, semantic di- 135

versity has been measured, e.g., with the help of 136

embedding-based similarity (Du and Black, 2019). 137

Chakrabarty et al. (2022) measure creativity of po- 138

ems via crowd workers: their crowd workers assess 139

which of two poems is more creative. 140

In our work on diversity in poetry generation, 141

we complement both lexical and semantic aspects 142

of diversity with aspects of formal diversity. We 143

thus explore whether automatic poetry generation 144

systems are able to capture the ‘full bandwidth’ of 145

realizations of poetry found in the data distribution 146

with which they have been trained, focusing mostly 147

on global diversity. 148

Poetry generation Automatic poetry generation 149

is a long standing dream of AI research, dating 150

back at least to the mid 20th century (e.g., Theo 151

Lutz’ Stochastische Texte). While early modern 152

systems were heavily hand-engineered (Gervás, 153

2001), more recent approaches are all trained on 154

collections of human poetry (Lau et al., 2018; Jham- 155

tani et al., 2019; Agarwal and Kann, 2020) but still 156

extensively utilize human guidance e.g. to enforce 157

formal characteristics of poetry such as rhyming 158

(Wöckener et al., 2021). Belouadi and Eger (2023) 159

have recently released a character-level decoder- 160

only LLM (ByGPT5) capable of learning style- 161

constraints such as rhyming without human involve- 162

ment in model design. 163

In our work, we explore varying poetry genera- 164

tion models with regard to diversity: poetry-specific 165

models that use hand-engineered architectures as 166

well as general purpose LLMs, including ByGPT5. 167

3 Diversity in Poetry Generation 168

We first conceptualize diversity in poetry genera- 169

tion using formal and semantic criteria. 170

Memorization. In poetry, as in other forms of 171

art, creativity (Sternberg, 1999) plays a central role. 172

A basic aspect of creativity is the models’ ability to 173

generate poems that are different from the training 174

data, i.e. have not been memorized as a whole. To 175

examine memorization, we proceed as in Belouadi 176

and Eger (2023). We apply the Ratcliff-Obershelp 177

similarity (Ratcliff et al., 1988) to compare each 178

poem in a sample with poems in the training corpus. 179

If a generated quatrain exhibits a similarity score of 180

≥0.7 with a quatrain in the training data, we clas- 181

sify it as memorized. A quatrain can be divided into 182
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4 verses or 2 couplets; thus, we also inspect mem-183

orization at the verse and couplet levels by compar-184

ing each verse or couplet in a sample to those in the185

training data. Higher thresholds for classification186

are used for these finer-grained comparison lev-187

els, as shorter texts have higher chances of being188

more similar in general. Specifically, a verse with189

a similarity score ≥0.9 or a couplet ≥0.8 is consid-190

ered as memorized. We define the memorization191

score of a sample as the proportion of memorized192

quatrains in that sample. How much LLMs mem-193

orize from their training data has been a question194

of central concern recently (McCoy et al., 2023).195

Poem length. Within a sample of generated po-196

ems, we consider differences at the level of poem197

length, i.e., their number of tokens, as a basic as-198

pect of diversity at the formal or structural level.199

We analyze to what extent the length distribution of200

generated poems differs from the distribution in the201

training data. We define the length of a quatrain as202

the number of tokens contained: we eliminate all203

punctuation symbols and split the remaining text204

by white space. We report mean length, standard205

deviation, minimal and maximal length of samples.206

We additionally deploy distance measures between207

training data distribution and generated samples, in208

particular, a metric called histogram intersection209

(Swain and Ballard, 1991), which measures the in-210

tersection area of two normalized histograms (and211

therefore returns values between 0 and 1).212

Rhyme patterns. As a more complex dimension213

of formal diversity, we consider rhyming as a cen-214

tral aspect that characterizes the structure of a poem.215

Diversity can then be assessed by comparing rhyme216

distributions between generated samples and train-217

ing data. In order to classify rhymes in our sam-218

ples, we use the same classifier used to annotate219

QuaTrain (Belouadi and Eger, 2023). We distin-220

guish between true rhymes, which involve differ-221

ent words, and repetitions, which refer to rhymes222

based on the same word.223

Lexical diversity. Lexical diversity is a standard224

aspect of diversity evaluation in NLG and is used to225

assess how generation outputs vary in their vocabu-226

lary, either at the local text level or at the global cor-227

pus level. We use the following metrics to measure228

the lexical diversity for both the training data and229

the generated samples: (i) Averaged type token230

ratio (ATTR). We calculate ATTR as the average231

of all type token ratios (Richards, 1987) (TTRs) for232

each quatrain in a sample, i.e. as a measure of local233

DE EN

QuaTrain SonNet QuaTrain SonNet

Train 253,843 72,526 181,670 51,905
Dev 28,205 8,058 20,186 5,767

Total 282,048 80,584 201,856 57,672

Table 1: Number of quatrains/sonnets in our datasets.

lexical diversity. (ii) Moving average type token 234

ratio (MATTR). The MATTR (Covington and Mc- 235

Fall, 2010) acts on the corpus level and calculates 236

a moving average by sliding through the corpus us- 237

ing a window of fixed size. We deploy this metric 238

as a measure of global lexical diversity. (iii) Mea- 239

sure of textual, lexical diversity (MTLD). The 240

MTLD (McCarthy, 2005) is calculated as the aver- 241

age length of a substring that maintains a specified 242

TTR level. MTLD is deployed to measure lexical 243

diversity on a global scale. 244

Semantic diversity. Even if a poetry genera- 245

tion system does not directly copy data from the 246

training data, the generated poems may still be 247

semantically very similar to the training data dis- 248

tribution. We employ a multilingual distilled ver- 249

sion of Sentence-BERT (SBERT) (Reimers and 250

Gurevych, 2019) as dense vector representations 251

to measure semantic similarity between poems: (i) 252

across the human train set and the generated po- 253

ems, (ii) within human and generated poems. In 254

particular, for each generated quatrain, we note 255

down the similarity value of the most similar hu- 256

man quatrain, then report the average over all those 257

maximum similarity values. We proceed analo- 258

gously within the human training data and within 259

the automatically generated poems. 260

4 Experiment Setup 261

Data We use the QuaTrain dataset published by 262

Belouadi and Eger (2023), which consists of En- 263

glish and German quatrains from different publicly 264

available poetry datasets. The dataset contains 265

human written quatrains but mixes them synthet- 266

ically: every sequence of four consecutive lines 267

from the underlying human data are included in or- 268

der to increase dataset size. Besides, it is automat- 269

ically annotated for meter and rhyme using high- 270

quality classifers (especially for rhyme). Because 271

our focus lies on the diversity of model outputs, we 272

have to avoid repetitions in the training data created 273

by the data augmentation methods used in its cre- 274

ation. To avoid lines appearing multiple times, we 275
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Class Model Smaller Larger Lang

Poetry-
specific

DeepSpeare - - de/en
SA - - de/en

Unconditioned
/ Conditioned

LLMs

ByGPT5 140m 290m de/en
GPT2 117m 774m de/en

GPTNeo 125m 1.3b en
LLaMA2 7b 13b de/en
LLaMA3 8b de/en

Table 2: Models used in this work. The ‘Smaller’ and
‘Larger’ columns display the sizes of the models consid-
ered. The ‘Lang’ column indicates for which languages
the models were trained.

first parse the dataset sequentially, eliminating qua-276

trains that overlap the preceding one. Because this277

method does not eliminate all overlaps, we then278

use a heuristic, deleting the ten percent of the qua-279

trains which have the biggest overlap with other280

quatrains until there is no overlap remaining. We281

refer to the resulting dataset (again) as QuaTrain.282

QuaTrain is split into train and dev sets using a283

ratio of 9:1; we do not keep a test set since no held-284

out human data is needed for generation or evalu-285

ation. Further, as some models used in this work286

are designed to process sonnets and/or limerick287

data, we create pseudo sonnets for them, denoted288

as SonNet. Specifically, for each sonnet, we ran-289

domly draw three quatrains and one couplet from290

the corresponding data split of QuaTrain, ensuring291

that each comes from a different original quatrain.292

Table 1 provides the data sizes.293

Models We use 2 different model classes:294

• Poetry-specific Models: We select two models295

that integrate LSTM language models with ad-296

ditional components to generate quatrains with297

rhymes. DeepSpeare (Lau et al., 2018) utilizes298

a pentameter model to learn iambic meter and299

a rhyme model to distinguish between rhyming300

and non-rhyming words. Structured Adversary301

(SA) (Jhamtani et al., 2019) learns to rhyme in an302

adversary setup, where a language model aims303

to generate poems misclassified by the discrim-304

inator, while a discriminator is trained to differ-305

entiate between generated and real poems. Both306

models can take sonnets as input during training307

and output quatrains during inference. For more308

detailed model descriptions, see Appendix A.1.309

• General Purpose LLMs: We consider several310

decoder-only transformer-based models, encom-311

passing both (sub)word- and character-level mod-312

els, as well as older and very recent models. 313

We choose two model families from the GPT 314

series, GPT2 (Radford et al., 2019) and GPT- 315

Neo (Black et al., 2022) (a replicated version of 316

GPT3 by EleutherAI1), two from the LLaMA 317

series, LLaMA2 (Touvron et al., 2023) and 318

LLaMA3 (AI@Meta, 2024), and the character- 319

level ByGPT5 (Belouadi and Eger, 2023). Except 320

for LLaMA3, we consider one smaller and one 321

larger variant within each model family based on 322

model size. We train each model in both uncon- 323

ditioned and conditioned manners, with rhymes 324

and meters exposed during training in the latter 325

case. For all LLMs, we employ consistent decod- 326

ing strategies for generation: we use the default 327

settings of the LLaMA2 chat models on Hugging 328

Face2 but limit the number of newly generated 329

tokens to 100 for the word-level models and 300 330

for the character-level ByGPT5 models. 331

We end up with a total of 36 models for Ger- 332

man and English, categorized into three groups: 1) 333

poetry specific LSTM-based models, 2) uncondi- 334

tioned LLMs, and 3) conditioned LLMs, as sum- 335

marized in Table 2. SonNet is used for training 1), 336

while QuaTrain is used for 2) and 3), separately 337

for each language. We train all models using early 338

stopping based on the perplexity/loss observed in 339

the dev sets (details see Appendix A.2), as overfit- 340

ting may negatively bias certain metrics like mem- 341

orization rates. To distinguish between the differ- 342

ent sizes and training manners of the LLMs, we 343

use the following notation: a subscript of S/L indi- 344

cates whether it is a smaller/larger version, and a 345

superscript of “con” stands for conditioned train- 346

ing. E.g., GPT2S and GPT2con
S represent the uncon- 347

ditioned and conditioned trained GPT2 small mod- 348

els, respectively. 349

5 Evaluation 350

From each model, we randomly draw 1000 gen- 351

erated poems. Whenever we do a direct compari- 352

son between training and generated data (e.g. when 353

comparing lexical diversity), we randomly draw 10 354

samples of size 1000 (matching the sample size) 355

from the train set and use mean results as repre- 356

sentatives. We deploy this strategy to mitigate the 357

large discrepancy in size between human data and 358

generated poems. 359

1https://www.eleuther.ai/
2https://huggingface.co/spaces/

huggingface-projects/llama-2-7b-chat
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DE EN
verse couplet verse couplet

DeepSpeare 0.83% 0.83%
SA 0.40% 0.10%

ByGPT5L 1.30%∗ 1.23%∗

ByGPT5S 1.23% 0.93%
GPT2L 6.85% 0.10% 3.90% 0.10%
GPT2S 8.70%∗ 0.10% 4.03%∗ 0.10%
GPTNeoL - 5.60%∗ 0.05%
GPTNeoS - 4.73% 0.10%∗

LLaMA2L 4.65% 3.45%∗ 0.05%∗

LLaMA2S 5.45%∗ 2.48%
LLaMA3 3.60% 2.88% 0.05%

ByGPT5con
L 0.90%∗ 0.58%

ByGPT5con
S 0.68% 0.75%∗

GPT2con
L 4.38% 0.15%∗ 2.33%∗ 0.10%∗

GPT2con
S 6.90%∗ 0.10% 2.03%

GPTNeocon
L - 3.88%∗ 0.05%∗

GPTNeocon
S - 3.50%

LLaMA2con
L 4.03%∗ 0.05%∗ 2.23%∗

LLaMA2con
S 0.70% 0.55%

LLaMA3con 2.33% 1.65%

Table 3: Verse- and Couplet-level memorization rates
(lower rates are better). Only non-zero entries are dis-
played. We underline the higher ones between the same
models with different training methods, and mark those
between the same models of varying sizes with ∗. The
best results in each dimension are bold.

We first investigate structural properties of the360

generated poems (repetition of instances on a sur-361

face level, length distributions, rhyming), then con-362

sider lexical and semantic properties.363

Memorization Table 3 showcases the couplet-364

and verse level memorization rates. Since all mod-365

els exhibit zero memorization rates on quatrain-366

level, we omit them in the table.367

Considering couplet-level memorization, 23 out368

of 36 models show zero memorization, while 13369

models display scores between 0.05% and 0.15%.370

The poetry-specific models, SA and DeepSpeare, as371

well as the character-level ByGPT5 models, exhibit372

no memorization; in contrast, GPT2 and GPTNeo373

models show the highest rates on average (up to374

0.15% for German and 0.10% for English). When375

comparing models of the same architecture and376

training methods but varying sizes, differences are377

found in 6 out of 14 cases. In 5 cases, larger mod-378

els have 0.05%-0.10% higher absolute memoriza-379

tion scores than their smaller counterparts (the Ger-380

man GPT2con and LLaMA2con models, and the381

English GPT2con, GPTNeocon, LLaMA2 models);382

the only exception is the English GPTNeo models,383

where the smaller one has a 0.05% higher memo-384

rization rate. On the other hand, conditioned mod-385

els mostly outperform their unconditioned counter- 386

parts: in 4 out of 6 cases where discrepancies in 387

memorization rates exist, the conditioned ones ex- 388

hibit lower memorization rates, with absolute de- 389

clines of 0.05%-0.10%. 390

In the verse-level evaluation, the poetry-specific 391

models perform best overall (0.4%-0.83% for Ger- 392

man and 0.1%-0.83% for English), followed by 393

the ByGPT5 models (0.68%-1.3% for German and 394

0.58%-1.23% for English). SA is the best individ- 395

ual model, obtaining memorization rates of 0.4% 396

for German and 0.1% for English. Again, GPT2 is 397

worst for German, exhibiting memorization rates 398

of 4.38%-8.7%, whereas, for English, GPTNeo ex- 399

hibits the highest rates, ranging from 3.5%-5.6%. 400

Concerning different model sizes, we again see that 401

larger models memorize more than their smaller 402

counterparts: in 9 out of 14 cases, larger models 403

show higher memorization rates, with an average 404

absolute increase of 0.15%. Here, each conditioned 405

model exhibits a strictly lower memorization rate 406

compared to its unconditioned counterpart, with 407

an absolute decrease of 1.47% on average. 408

In summary: (1) No models exhibit severe mem- 409

orization issues, such as copying entire poems or 410

large portions of poem snippets from the train- 411

ing data. In terms of memorization, (2) among 412

model groups, the poetry-specific and character- 413

level models are more diverse; SA is the best indi- 414

vidual one. (3) Larger models are less diverse com- 415

pared to their smaller versions. (4) Conditional 416

training enhances model diversity. 417

Length Table 6 (appendix) reports statistics on 418

the length of poems, both human and automati- 419

cally generated. The mean length of human writ- 420

ten poems is 28 in English and 24 in German. His- 421

togram intersection values between samples gen- 422

erated by the models and the human written data 423

range from 0.61 to 0.88 in German (LLaMA2L and 424

SA) and from 0.48 to 0.92 in English (GPTNeoL 425

and SA). While the SA models fit the distribution of 426

the human written poems the best, the character- 427

level ByGPT5 models also perform well consis- 428

tently with histogram intersection values between 429

0.77 and 0.85. The poems generated by German 430

LLaMA2L and English GPTNeoL are too short and 431

not diverse enough (in terms of standard devia- 432

tion). The poetry-specific DeepSpeare models do 433

not match the human distribution very well either, 434

with intersection values of 0.63 and 0.57 for Ger- 435

man and English, respectively. Here, too, poem 436

lengths are too short and not diverse enough. Con- 437
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(a) Human (b) SA (c) GPTNeoL

Figure 1: Length distribution of human poems (left), Structured Adversary (middle) and GPTneo-xl (right) for
English.

ditioned models seem to fit the training data better438

across the board, the only exceptions being Ger-439

man ByGPT5S and English LLaMA2S. Figure 1 il-440

lustrates the length distribution of human written441

poems, SA and GPTNeoL for English.442

Rhyme Figures 2 (a) and 3 (a) show the dis-443

tributions of rhyme schemes in our human train-444

ing datasets for German and English, respectively.445

For both languages, less than 15% of all quatrains446

in training do not rhyme at all (rhyme scheme447

ABCD). Excluding ABCD, the top 3 dominant448

rhyme schemes by appearance are ABAB, AABB449

and ABCB for both datasets, with a total share of450

approximately 60% in each language. German has451

a higher proportion of ABAB (above 35%), while452

English has ABAB and AABB in roughly equal453

proportions (25%). Table 7 (appendix) reports the454

entropy of all rhyme distributions and the distance455

between the human distribution and model distribu-456

tions, measured in KL divergence. The best, worst457

and an average model, in terms of KL divergence,458

are shown in Figures 2 and 3.459

Poetry-specific models: Figure 4 (appendix)460

shows the distributional plots for DeepSpeare and461

SA. We observe that DeepSpeare has a very low ra-462

tio of ABCD, considerably lower than human po-463

ems (less than 5% for both languages). The three464

dominating patterns are AABB, ABAB, and ABBA465

which (only) partially agrees with the dominating466

patterns in the human data. Nonetheless, DeepS-467

peare has the best fit of all models in terms of KL468

divergence, ranking first for German and second469

for English. SA has a much worse fit and produces470

considerably too many ABCD patterns (close to or471

above 30% in both languages). It has one of the472

worst fits to the human rhyme distributions across473

all models.474

Figures 5 and 6 (appendix) show the distribu- 475

tions of rhyme patterns for unconditioned LLMs. 476

Except for LLaMA3, all models of this kind have a 477

high distribution of ABCD and consequently a high 478

likelihood of producing non-rhyming poems. Thus, 479

they have the worst fit to the human distribution, 480

on average, among all model classes considered. 481

Style-conditioned LLMs are shown in Figures 482

7 and 8 (appendix). In general, this model class 483

matches the human distribution closest in terms of 484

KL divergence. However, no model produces a 485

lot of AABB rhyme pattern which abound in our 486

human training data. Across all models in this class, 487

the fit to the human data is still mediocre at best. 488

Overall, most models have clearly higher 489

ABCD rhyming schemes than the human data, thus 490

are underdiverse concerning rhyming. The best 491

model class are style-conditioned LLMs, how- 492

ever the poetry-specific DeepSpeare model can 493

be considered the best individual model in terms 494

of matching the human rhyme distribution. The 495

character-level ByGPT5 models perform worse 496

than word-level models without style-conditioning, 497

but with style-conditioning, they outperform the 498

word-level models in terms of match with human 499

rhyme distribution. 500

Lexical Diversity. Table 4 shows the lexical di- 501

versity results for English and German. For local 502

diversity (ATTR), most of the models are close to 503

the diversity in human-written poems, with the tra- 504

ditional models (DeepSpeare, SA) and the LLaMA 505

exceeding the ATTR values of human-written po- 506

ems. For German, the least locally diverse poems 507

are generated by GPT2S, in the un/conditioned case, 508

respectively. For English, the least locally diverse 509

models is GPTNeoS, in the un/conditioned case, re- 510

spectively. The global diversity metrics (MATTR, 511
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(b) Best: DeepSpeare
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(c) Worst: SA
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Figure 2: Distribution of rhyme schemes in (a) the human data, and the samples from the (b) best, (c) worst, and (d)
average models based on their KL divergence from the human distribution for German.
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(c) Worst: GPTNeoL
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Figure 3: Distribution of rhyme schemes in (a) the human data, and the samples from the (b) best, (c) worst, and (d)
average models based on their KL divergence from the human distribution for English.

MTLD) show different trends than ATTR, though.512

The MATTR metric suggests that most models do513

not generally achieve the level of diversity found514

in human poems: in English, only SA matches and515

slightly exceeds human diversity, in German, only516

the LLaMA2con
S and LLaMA3con model exceeds hu-517

man diversity. According to the MTLD metric,518

all models generate severely under-diverse output519

at the sample level. Here, the best model in En-520

glish and German is SA, but even SA does not come521

close to the human level of global diversity. Ac-522

cording to MTLD, style-conditioned LLMs consis-523

tently outperform their non-conditioned counter-524

parts, with the English LlaMA2 models being the525

only exceptions here. Moreover, we observe that526

model size affects all three lexical diversity metrics,527

whereby larger models are more diverse than their528

smaller counterparts. The effect of size is most529

pronounced for GPT2, where ATTR, MATTR and530

MTLD substantially improve from the small to the531

larger model variant. It is also noteworthy, though,532

that the more classical models, DeepSpeare and SA,533

generally perform on par with recent transformers534

and sometimes even outperform them, as in the535

case of SA for global diversity. This shows that un-536

conditional LLMs avoid repetitions at a local level537

whereas, at the sample level, they generate poems538

that are lexically much more similar to each other539

than poems within the human sample. Generally, 540

the MTLD results suggest more pronounced differ- 541

ences between models as well as humans and mod- 542

els than MATTR. This confirms prior studies show- 543

ing that MTLD does not correlate strongly with 544

TTR-based metrics, capturing different aspects of 545

lexical diversity (McCarthy and Jarvis, 2010). 546

Semantic Similarity Table 5 presents results 547

for the semantic (cosine) similarity of quatrains: 548

(i) within human and model-generated samples, 549

and (ii) across generated samples and the human 550

data. These results generally confirm the trends 551

for global lexical diversity discussed above. None 552

of the models generates a sample of poems with a 553

within-sample diversity as low as the human with- 554

sample diversity. SA is the model that achieves 555

the lowest within-sample similarity and the low- 556

est across-sample similarity, suggesting that it de- 557

viates most from the patterns in the human training 558

data. Note that SA also achieved the best results 559

in global lexical diversity (MATTR and MTLD in 560

Table 4). Moreover, the results on semantic simi- 561

larity confirm the trends we observed with model 562

size for lexical diversity, but disconfirm the trends 563

for the effect of conditioning. Thus, we do not see 564

a consistent trend for conditioned models generat- 565

ing samples with lower similarity/higher diversity. 566
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Model ATTR (%) MATTR (%) MTLD

HUMAN 91.6 / 87.7 90.6 / 87.3 283.1 / 183.4

DeepSpeare 92.6 / 89.1 87.9 / 84.8 110.0 / 89.7
SA 93.0 / 88.9 91.0 / 87.8 215.6 / 162.2

ByGPT5S 89.7 / 81.5 86.9 / 79.7 135.4 / 66.5
ByGPT5L 91.2 / 82.5 88.1 / 80.5 151.6 / 69.9
GPT2S 86.2 / 79.4 81.2 / 76.4 64.1 / 46.0
GPT2L 94.2 / 87.6 89.5 / 83.5 131.8 / 81.6
GPTNeoS - / 78.3 - / 74.9 - / 40.1
GPTNeoL - / 86.8 - / 81.3 - / 61.7
LLaMA2S 92.8 / 89.6 87.7 / 86.8 120.7 / 106.8
LLaMA2L 94.8 / 90.2 90.2 / 85.7 150.1 / 96.0
LLaMA3 94.4 / 92.7 89.3 / 87.4 128.0 / 108.1

ByGPT5con
S 92.2 / 85.1 89.5 / 83.1 187.1 / 94.6

ByGPT5con
L 93.0 / 85.9 90.0 / 83.9 192.6 / 102.5

GPT2con
S 89.2 / 84.0 84.2 / 81.9 82.0 / 70.3

GPT2con
L 94.2 / 88.0 90.0 / 85.3 137.4 / 90.7

GPTNeocon
S - / 83.1 - / 80.2 - / 61.2

GPTNeocon
L - / 87.0 - / 82.1 - / 69.4

LLaMA2con
S 91.1 / 90.0 86.8 / 88.2 104.4 / 109.3

LLaMA2con
L 91.9 / 90.8 86.5 / 87.2 100.2 / 101.0

LLaMA3con 93.5 / 91.7 89.1 / 88.3 128.5 / 116.3

Table 4: Lexical diversity metrics for German (first
entry) and English (second entry) models. Best results
in each dimension are underlined; best among models
are in bold.

For model size, on the other hand, we observe a567

general trend towards larger models outperform-568

ing their smaller counterparts.569

Which is the most diverse model? We have570

seen that unconditioned LLMs exhibit poor results571

across various dimensions of diversity: they often572

do not rhyme, are lexically underdiverse and do573

not show sufficient semantic variation. However,574

character-level models are more diverse than word575

level models. Style-conditioned models perform576

better regarding memorization, rhyming, and lexi-577

cal variation, while deviating less from human po-578

ems according to the distribution match of length579

and rhymes. On the other hand, larger LLMs often580

outperform their smaller counterparts in semantic581

and lexical diversity, but they also tend to memo-582

rize more from the training data. Character-level583

style-conditioned LLMs produce overall best di-584

versity results and do not deteriorate as a function585

of model/training data size. In Appendix A.3, we586

calculate the average ranks of the models across587

all 5 dimensions, finding that indeed, for both lan-588

guages, the conditioned trained ByGPT5 models589

perform overall best among all models, ranking as590

the first and second places for German and the first591

and third places for English. In terms of diversity,592

poetry-specific SA and DeepSpeare overall lag only593

slightly behind character-level LLMs but require594

Model Within (%) Across (%)

HUMAN 55.0 / 48.2 -

DeepSpeare 59.5 / 52.2 67.8 / 60.8
SA 55.8 / 49.6 65.9 / 59.4

ByGPT5S 58.4 / 53.2 68.1 / 61.5
ByGPT5L 58.2 / 52.7 67.9 / 61.6
GPT2S 64.5 / 59.5 69.3 / 63.9
GPT2L 63.6 / 57.6 70.1 / 63.3
GPTNeoS - / 62.2 - / 63.8
GPTNeoL - / 60.9 - / 63.9
LLaMA2S 61.0 / 59.4 68.5 / 64.2
LLaMA2L 62.3 / 58.0 68.9 / 62.9
LLaMA3 61.2 / 58.4 69.1 / 63.8

ByGPT5con
S 58.4 / 52.2 67.7 / 60.8

ByGPT5con
L 57.9 / 50.9 67.6 / 60.3

GPT2con
S 64.3 / 59.2 70.1 / 64.3

GPT2con
L 62.6 / 57.4 69.7 / 63.1

GPTNeocon
S - / 58.9 - / 64.0

GPTNeocon
L - / 60.3 - / 62.9

LLaMA2con
S 66.9 / 57.3 69.3 / 64.0

LLaMA2con
L 63.3 / 58.5 69.5 / 62.9

LLaMA3con 59.6 / 58.2 68 / 62.3

Table 5: Average maximum semantic similarity values
for German (first entry) and English (second entry):
(i) within models including the training data (left) and
(ii) across models and humans (middle). We bold the
best result in each dimension (Lower similarity means
higher/better diversity).

more modeling effort from human experts (e.g., 595

in developing rhyming components). The largest 596

word-level LLMs explored in this work, LLaMA2 597

and LLaMA3, generally perform best among the 598

word-level models; however, they do not exhibit su- 599

periority over the style-conditioned character-level 600

models and poetry-specific models as well. 601

6 Conclusion 602

Our work is the first and most comprehensive auto- 603

matic evaluation of poetry diversity, yielding sev- 604

eral interesting observations. It shows that an auto- 605

matic assessment of the diversity of generated po- 606

ems covers an important blind spot of existing stud- 607

ies. Our evaluations shed light on the fact that none 608

of the state-of-the-art poetry generators is able to 609

match the level of diversity in human poems. Our 610

study also adds a new dimensions to previous work 611

on diversity, by showing that diversity on the level 612

of rhyming is particularly hard to achieve for neu- 613

ral generators and interacts with other dimensions 614

of diversity in poetry generation, i.e., style condi- 615

tioned LLMs do not only achieve a better match 616

with human rhyme and length distributions, but 617

also higher lexical diversity and lower memoriza- 618

tion degree. 619

8



7 Limitations620

Our work evaluates a range of existing state-of-the-621

art approaches, such as poetry-specific models like622

Deepspeare or pretrained LLMs. These models dif-623

fer in various ways, with respect to their architec-624

ture, training scheme, pretraining, and the type of625

data they expect during training and/or finetuning.626

In light of these differences, it is difficult to isolate627

exactly how different aspects of a poetry generator628

impact on the diversity of its outputs. While our629

work investigated the influence of the model archi-630

tecture on a high level (character vs. word), further631

aspects — and in particular pre-training — may be632

worth investigating in future work.633

Due to the hardware constraints and time limita-634

tions, we did not run experiments multiple times to635

take the averages or optimize the training hyperpa-636

rameters, which may have introduced a degree of637

randomness in our results. Indeed, sometimes there638

have been models behaving inconsistently with oth-639

ers. We expect that a more rigorous training process640

could increase the consistency in model behaviors641

and thereby enhance the robustness of our findings.642

In our initial experiments, we trained GPT2 mod-643

els with a slightly different setting. Compared to644

the GPT2 models we mainly reported, these mod-645

els behave slightly differently. E.g., they exhibit646

better lexical diversity, as shown by an increase647

in ATTR from 0.87 to 0.89, MATTR from 0.84 to648

0.86, and MTLD from 88 to 101 on average. Sim-649

ilarly, they are also more diverse according to the650

semantic similarity metrics, which are on average651

∼0.02-0.03 lower. In contrast, these models per-652

form worse in rhyming; they have a ∼10% lower653

chance of producing rhymed quatrains, and their654

rhyme distributions are more distant from human655

distributions (0.27 higher KL divergence). Despite656

these differences, our findings are generally robust.657

For instance, conditioned LLMs are still more di-658

verse than their unconditioned counterparts, and659

larger LLMs are more diverse than their smaller660

versions, concerning lexical diversity.661

8 Ethics Statement662

Often, the discussion of creative AI systems in pub-663

lic discourse is surrounded by misconceptions, hy-664

pes and even myths (Veale, 2012). Our work con-665

tributes to a careful operationalization and objec-666

tive assessment of the creative capbalities of AI667

systems in the area of poetry generation.668

All the datasets, models and code used in this669

work are publicly available or will be made avail- 670

able upon publication. We have not collected pri- 671

vate or sensitive data and have only used language 672

models with free access, such that our experiments 673

can be fully replicated by anyone. 674

Generally, our work is concerned with the eval- 675

uation of NLG systems; evaluation methods and 676

evaluation metrics (Zhao et al., 2019; Zhang et al., 677

2020; Yuan et al., 2021; Chen and Eger, 2023; 678

Peyrard et al., 2021) are a well-known and notori- 679

ous issue in this research field. While a lot of recent 680

work has aimed at improving common practices in 681

human evaluation (Belz et al., 2023) or advancing 682

the study of metrics for quality or fluency of NLG 683

outputs, the evaluation of diversity is comparatively 684

under-researched. In this work, we aimed at provid- 685

ing a range of metrics assessing different aspects 686

of diversity, but could not cover all potentially in- 687

teresting ways of measuring diversity. Here, future 688

work could look at further aspects of formal and 689

structural diversity (e.g. at the level of syntax, or 690

meter), or other aspects of semantic diversity (e.g. 691

topical diversity, rhetorical figures). Future work 692

could also consider more (diverse) languages and 693

other genres and datasets for poetry. 694
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A Appendix 1001

A.1 DeepSpeare and SA 1002

Deepspeare (Lau et al., 2018) is specifically de- 1003

signed for poetry generation. Its core architecture 1004

consists of an LSTM language model, a pentameter 1005

model (specifically designed to learn iambic me- 1006

ter) and a rhyme model. During training, it takes 1007

sonnets as input data (three quatrains followed by 1008

a couplet) but ultimately processes the contained 1009

quatrains by splitting any given sonnet. The rhyme 1010

model processes ending words of quatrain verses 1011

and uses a margin-based loss to discriminate be- 1012

tween rhyming and non-rhyming words. It is not 1013

limited to specific rhyme patterns but assumes that 1014

rhymes exist in the data. At inference time, Deeps- 1015

peare generates quatrains. 1016

Structured Adversary. Like Deepspeare, Struc- 1017

tured Adversary (SA) (Jhamtani et al., 2019) incor- 1018

porates different components: an LSTM language 1019

model and a discriminator used to decide whether 1020

line endings are typical for poetry. Both compo- 1021

nents are organized in an adversarial setup, where 1022

the language model acts as a generator, trying to 1023

generate poems that are misclassified by the dis- 1024

criminator, while the discriminator is trained to dis- 1025

tinguish generated poems from real ones. SA is 1026

trained with sonnets as input data. At inference 1027

time, it generates quatrains. 1028

A.2 Training 1029

DeepSpeare DeepSpeare (Lau et al., 2018) lever- 1030

ages pretrained static word vectors. We use 1031

QuaTrain and SonNet to train our own Word2vec 1032

embeddings (Mikolov et al., 2013) and the final 1033

sonnet models respectively. For the sonnet model 1034

training, we use a batch size of 128 and apply early 1035

stopping with a patience of 5 epochs; default set- 1036

tings are maintained for the other hyperparameters. 1037

SA We use the same word vectors and training 1038

data splits as for DeepSpeare. Training SA involves 1039

1) pretraining the discriminator’s encoder using a 1040

publicly available pronouncing dictionary ; 2) train- 1041

ing the LM component; 3) training a final aggre- 1042

gated model in a generative adversarial setup. We 1043

train the discriminators with a batch size of 128, the 1044

LMs with a batch size of 64, and the final sonnet 1045

models with a batch size of 128; here, we also im- 1046

plement early stopping with a patience of 5 epochs. 1047
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Style-un/conditioned LLMs We train all LLMs1048

on our train set using the paged AdamW optimizer1049

with weight decay of 0.001, a learning rate 4e-051050

for 50 epochs, and a cosine learning rate decay with1051

a 3% warmup ratio, early stopping with a patience1052

of 5 epochs. As we run experiments on GPUs with1053

varying memory capacities ranging from 12GB to1054

80GB, and with models that drastically differ in1055

size. To achieve as much consistency as possible,1056

we either train models with a batch size of 128 or1057

accumulate the batches to reach a size of 128. For1058

LLaMA, we use 4-bit quantization and LORA (Hu1059

et al., 2021); the corresponding parameters are list1060

below:1061

• target modules: q_proj, v_proj, k_proj, o_proj,1062

embedded_tokens1063

• lora alpha: 161064

• lora dropout: 0.051065

• r: 161066

A.3 Evaluation Results1067

Length Table 6 displays the length related statis-1068

tics.1069

Rhyme Table 7 shows the entropy of the rhyme1070

distributions in each sample as well as the distances1071

of the distributions to that in the human data, mea-1072

sured by KL divergence. Figure 3 demonstrates the1073

human rhyme distribution as well as the best, worst,1074

and an average fit distributions in terms of KL di-1075

vergence. Figures 4, 5/6, and 7/8 demonstrate the1076

rhyme distributions for the poetry specific models,1077

unconditioned and conditioned LLMs, respectively.1078

Best model We rank the models for each dimen-1079

sion and then average the ranks across the five di-1080

mensions to determine the overall rankings. For di-1081

mensions with multiple metrics, such as the three1082

memorization metrics (due to different evaluation1083

levels) and the three lexical metrics (measuring lo-1084

cal or global lexical diversity), we first rank the1085

models according to each metric and then average1086

these ranks to represent that dimension. The results1087

are shown in Table 8 and 9 for German and English1088

respectively.1089
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L model h m M µ σ std

de HUMAN 1.00 4 65 24.40 23 6.39
de DeepSpeare 0.63 14 30 21.69 22 2.45
de SA 0.88 10 44 24.44 24 5.36
de ByGPT5S 0.84 9 43 22.11 22 4.86
de ByGPT5L 0.79 9 40 21.09 21 4.59
de GPT2S 0.59 9 32 19.18 19 3.54
de GPT2L 0.73 13 41 21.98 22 3.55
de LLaMA2S 0.57 9 31 18.84 19 3.29
de LLaMA2L 0.55 9 30 18.73 19 3.17
de LLaMA3 0.74 12 40 21.39 21 3.99
de ByGPT5con

S 0.82 11 47 22.38 22 4.98
de ByGPT5con

L 0.81 9 45 21.78 21 5.17
de GPT2con

S 0.70 11 37 20.68 20 3.56
de GPT2con

L 0.79 14 45 24.14 24 4.38
de LLaMA2con

S 0.83 12 49 24.22 23 5.41
de LLaMA2con

L 0.62 12 34 20.18 20 2.84
de LLaMA3con 0.76 10 47 21.69 21 4.14

en HUMAN 1.00 4 67 28.06 28 6.26
en DeepSpeare 0.57 15 33 23.85 24 2.85
en SA 0.92 12 52 27.36 27 5.38
en ByGPT5S 0.80 12 44 25.30 25 5.09
en ByGPT5L 0.77 11 47 24.97 25 4.87
en GPT2S 0.69 13 55 24.11 24 4.48
en GPT2L 0.72 13 56 24.74 24 4.94
en GPTNeoS 0.55 11 55 22.67 22 3.89
en GPTNeoL 0.48 13 34 21.93 22 3.16
en LLaMA2S 0.87 15 75 28.60 27 7.52
en LLaMA2L 0.67 12 54 23.95 24 4.50
en LLaMA3 0.59 14 60 23.20 23 4.23
en ByGPT5con

S 0.85 13 42 26.21 26 4.96
en ByGPT5con

L 0.84 14 42 25.85 25 4.84
en GPT2con

S 0.86 17 61 28.37 27 6.18
en GPT2con

L 0.83 16 70 27.82 27 6.15
en GPTNeocon

S 0.74 16 49 25.13 24 4.47
en GPTNeocon

L 0.53 12 35 22.26 22 3.36
en LLaMA2con

S 0.70 17 74 33.55 32 7.83
en LLaMA2con

L 0.81 15 56 26.92 26 5.80
en LLaMA3con 0.78 16 65 27.12 26 5.35

Table 6: Reported statistical and distance measures regarding the length of training data and generated quatrains.
h = histogram intersection score between sample and training data, µ = mean length, σ = median, std = standard
deviation, m = minimal length, M = maximal length.
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DE EN

Model Entropy KL Divergence Entropy KL Divergence

HUMAN 2.90 0.00 3.10 0.00

DeepSpeare 2.97 0.55 3.16 0.48
SA 3.14 1.43 3.22 1.17

ByGPT5L 2.89 1.23 2.92 1.08
ByGPT5S 3.13 1.09 2.91 1.13
GPT2L 2.86 1.26 2.97 1.06
GPT2S 3.16 1.13 2.99 1.03
GPTNeoL - - 2.80 1.18
GPTNeoS - - 3.16 0.96
LLaMA2L 2.93 1.18 3.24 0.71
LLaMA2S 3.18 1.04 3.24 0.71
LLaMA3 3.27 0.83 3.45 0.56

ByGPT5con
L 3.17 0.67 3.22 0.83

ByGPT5con
S 3.16 0.58 3.38 0.54

GPT2con
L 2.98 0.99 3.41 0.61

GPT2con
S 3.11 1.04 3.22 0.85

GPTNeocon
L - - 3.43 0.45

GPTNeocon
S - - 3.29 0.83

LLaMA2con
L 2.69 1.33 2.89 0.95

LLaMA2con
S 3.11 0.71 2.67 1.07

LLaMA3con 2.98 1.06 2.58 0.94

Table 7: Entropy and KL divergence of rhyme distributions. We bold the lowest and underline the highest KL
divergence from human to model distributions.
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Figure 4: Distribution of rhyme schemes in the samples from DeepSpeare and SA models for German and English.
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Figure 5: Rhyme distribution plots for samples generated by German unconditioned large language models.
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Figure 6: Rhyme distribution plots for samples generated by English unconditioned large language models.
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Figure 7: Rhyme distribution plots for samples generated by German conditioned large language models.
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Figure 8: Rhyme distribution plots for samples generated by English conditioned large language models.
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Language Model Size Conditioned semantic lexical length rhyme memorization avg_rank

de BYGPT5 L TRUE 2.0 4.0 5.0 3.0 1.7 3.1
de BYGPT5 S TRUE 3.5 6.0 4.0 2.0 1.3 3.4
de 2SA - - 1.0 2.7 1.0 16.0 2.0 4.5
de 1DS - - 5.0 10.3 12.0 1.0 1.0 5.9
de BYGPT5 S FALSE 6.0 11.0 2.0 10.0 2.7 6.3
de BYGPT5 L FALSE 4.0 8.3 6.0 13.0 3.0 6.9
de LLAMA3 - FALSE 9.5 6.3 9.0 5.0 6.0 7.2
de LLAMA3 - TRUE 6.5 7.3 8.0 9.0 5.7 7.3
de LLAMA2 S TRUE 13.5 13.0 3.0 4.0 4.0 7.5
de GPT2 L TRUE 12.5 4.7 7.0 6.0 8.3 7.7
de LLAMA2 L FALSE 9.5 2.7 16.0 12.0 5.3 9.1
de LLAMA2 S FALSE 8.0 10.0 15.0 8.0 5.0 9.2
de GPT2 L FALSE 14.0 5.7 10.0 14.0 8.7 10.5
de GPT2 S TRUE 15.0 15.0 11.0 7.0 6.3 10.9
de LLAMA2 L TRUE 12.5 13.0 13.0 15.0 8.0 12.3
de GPT2 S FALSE 13.5 16.0 14.0 11.0 7.7 12.4

Table 8: Ranking of German models for each dimension, as well as the average ranks across all dimensions.

Language Model Size Conditioned semantic lexical length rhyme memorization avg_rank

en BYGPT5 S TRUE 3.5 11.7 4.0 3.0 2.0 4.8
en 2SA - - 1.0 4.0 1.0 19.0 1.0 5.2
en BYGPT5 L TRUE 2.0 9.7 5.0 9.0 1.7 5.5
en 1DS - - 3.5 9.0 17.0 2.0 2.3 6.8
en LLAMA2 S FALSE 17.5 5.7 2.0 6.0 4.7 7.2
en LLAMA3 - TRUE 12.0 1.7 9.0 11.0 3.3 7.4
en GPT2 L TRUE 9.0 9.0 6.0 5.0 9.3 7.7
en LLAMA2 L TRUE 12.0 5.0 7.0 12.0 4.0 8.0
en LLAMA2 S TRUE 7.0 3.3 13.0 16.0 1.3 8.1
en LLAMA3 - FALSE 13.0 3.0 16.0 4.0 9.0 9.0
en LLAMA2 L FALSE 9.0 6.3 15.0 7.0 10.3 9.5
en GPT2 S TRUE 17.5 14.0 3.0 10.0 3.7 9.6
en BYGPT5 L FALSE 5.5 15.7 10.0 17.0 3.0 10.2
en BYGPT5 S FALSE 5.5 17.3 8.0 18.0 2.7 10.3
en GPTNEO L TRUE 13.5 13.0 19.0 1.0 10.0 11.3
en GPTNEO S TRUE 16.0 17.0 11.0 8.0 5.7 11.5
en GPT2 L FALSE 10.5 11.0 12.0 15.0 11.3 12.0
en GPT2 S FALSE 17.0 19.0 14.0 14.0 11.7 15.1
en GPTNEO S FALSE 17.5 20.0 18.0 13.0 12.0 16.1
en GPTNEO L FALSE 17.5 14.7 20.0 20.0 11.3 16.7

Table 9: Ranking of English models for each dimension, as well as the average ranks across all dimensions.
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