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Abstract

When an individual reports a negative interac-
tion with some system, how can their personal
experience be contextualized within broader pat-
terns of system behavior? We study the incident
database problem, where individual reports of
adverse events arrive sequentially, and are aggre-
gated over time. In this work, our goal is to iden-
tify whether there are subgroups—defined by any
combination of relevant features—that are dispro-
portionately likely to experience harmful interac-
tions with the system. We formalize this problem
as a sequential hypothesis test, and identify con-
ditions on reporting behavior that are sufficient
for making inferences about disparities in true
rates of harm across subgroups. We show that
algorithms for sequential hypothesis tests can be
applied to this problem with a standard multiple
testing correction. We demonstrate our method on
real-world datasets, including mortgage decisions
and vaccine side effects; on each, our method
(re-)identifies subgroups known to experience dis-
proportionate harm using only a fraction of the
data that was initially used to discover them.

1. Introduction

The impact of injustice is most acutely felt by the individual.
But if an individual experiences harm, how can they know
whether their experience is an isolated incident or part of a
larger pattern of discrimination?

Fairness work has historically focused on model develop-
ers and third-party auditors as the main actors involved in
creating fair mechanisms, motivating methods to construct
models that are fair with respect to pre-defined subgroups at
development time (e.g., as surveyed in Pessach & Shmueli
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(2022))—or in identifying unfair ones, motivating post-hoc
audits that occur after the entire decision-making process
has completed (e.g., Byun et al. (2024); Martinez & Kirch-
ner (2021)). However, in most applications where fairness
is a concern, problems with the system may only emerge
over time, and it is not necessarily obvious which subgroups
might be important. Moreover, such approaches to fairness
provide no mechanism for individuals to raise concerns.

It is exactly this question of individual agency that drives
our work. In addition to normative reasons, which suggest
that individuals ought to have a voice in expressing concerns
with their treatment (e.g., the literature on contestability of
algorithmic decisions (Vaccaro et al., 2019)), recent legis-
lation has also highlighted individual reporting as a policy
mandate for the governance of Al systems (e.g., the E.U.
Al act (European Parliament, 2023)). While such legisla-
tion has yet to see full implementation, mechanisms for
individual incident reporting already exist in a variety of
domains, including consumer finance, medical devices, and
vaccines and pharmaceuticals. A key component of report-
ing databases in the latter settings is that information from
individual reports are aggregated to build collective knowl-
edge about specific vaccines or pharmaceuticals—and, when
applicable, this aggregated information can drive down-
stream decisionmaking, such as updating vaccine guidelines
or drug treatment protocols (e.g., Oster et al. (2022)).

Fairness is an especially salient application for inci-
dent reporting systems: while individuals bear the harm,
commonly-accepted (and legally-legible) notions of fairness
are understood at an aggregate level. In fact, existing exam-
ples of (algorithmic) discrimination lawsuits (e.g., Gilbert
(2023) in hiring, or Pazanowski (2024) in housing) are of-
ten structured as class actions, even as they are initiated
by individuals based on their personal experiences. Cru-
cially, individuals themselves may not know whether their
experience with the system was inherently problematic, and
deserving of redress, until it is placed in context with the
experiences of others. On the other hand, while existing in-
cident databases do not typically analyze reporting behavior,
it may be necessary to consider reporting more carefully in
order for incident databases to be useful for fairness auditing
in more general settings, such as for algorithms that make
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Figure 1: Overview of incident database framework.

allocation decisions.

In this paper, we consider what a realistic approach to as-
sessing fairness claims from an incident database might look
like in practice. We are primarily interested in designing a
framework for the general public to report and contest large-
scale harms by leveraging reports of individual experience
to inform collective evidence of discrimination. To this end,
we propose incident databases, which allow individuals to
submit reports of negative interactions, as a new mechanism
for post-deployment fairness auditing. In particular, we iden-
tify conditions on reporting behavior and show how they
can be used to to make inferences about rates of true harm
in Section A. Our formalization of the problem allows us to
leverage known approaches to sequential hypothesis testing.
In Section B we show how to instantiate two reasonable
algorithms for our test and provide theoretical guarantees
for each. Finally, in Section C, we illustrate the usefulness
of our approach using real-world datasets, for applications
with known disparity in per-subgroup rates of harm. On
both real vaccine incident reports and on mortgage alloca-
tion decisions, our algorithm correctly identifies groups that
disproportionately experience harm—and does so using a
comparatively small number of reports.

1.1. Related work & application context

The incident database problem is at the intersection of vari-
ous challenges addressed in fairness and statistics.

Algorithmic accountability via (individual) reports.
Some recent work considers methods for learning about
fairness problems via individual reports from both theoreti-
cal (Globus-Harris et al., 2022) and practical (Agostini et al.,
2024) perspectives. However, most discussion of individual

experiences in machine learning fairness literature is limited
to contexts where the objective is to assess, appeal, contest
or seek recourse for that individual to change their individ-
ual outcomes, rather than forming a collective judgment
about the system as a whole (Sharifi-Malvajerdi et al., 2019;
Ustun et al., 2019; Karimi et al., 2022).

Work on identifying fairness-related issues via reporting
data has typically focused on learning in batch contexts,
e.g. via positive-unlabeled learning for handling disparate
reporting rates across subgroups (e.g., Shanmugam et al.
(2024); Wu & He (2022)). In other works, identifying dis-
parate reporting rates is itself is the central challenge (e.g.,
Liu & Garg (2022); Liu et al. (2024)). On the other hand,
an emerging body of literature from the human-computer
interaction community develops the concept of contestabil-
ity (e.g., Almada (2019); Vaccaro et al. (2019); Landau et al.
(2024)); though contestability is still typically understood in
terms of individual outcomes, we see our work as one pos-
sible path to implementing this ideal, with an eye towards
empowering contestability at larger scale.

Fairness auditing as hypothesis testing. Cen & Alur
(2024) make a direct connection between legal Al fair-
ness audit requirements and hypothesis testing, though they
mainly consider a post-hoc setting. Cherian & Candes
(2023) take a multiple testing approach for handling a large
number of groups, but this test is again post-hoc (or entirely
pre-deployment). Two more closely related works are that
of Chugg et al. (2024) and Feng et al. (2024), who propose
applying sequential hypothesis tests with the explicit goal
of identifying problems in deployed systems in real time.
However, as neither of these works study a reporting model,
we propose fundamentally different tests: they test equality
of means across different groups, while we compare within
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groups.

Identifying and defining subgroups. One approach to
subgroup definition, following the line of work in multicali-
bration (Hébert-Johnson et al., 2018), is to simply enumerate
over all possible combinations of covariates. For sequential
problems, per-group guarantees can be provided for sub-
groups that are learned online (Dai et al., 2024), though
these guarantees are in terms of prediction quality rather
than statistical validity. For sequential experiments, Adam
et al. (2024) propose an approach to early stopping that does
not require the experimenter to pre-specify the group expe-
riencing harm, but instead identifies those who appear to be
harmed more frequently. Though this is in spirit similar to
the idea of identifying groups that report more frequently,
their algorithm is substantially different from ours, in addi-
tion to the distinct application context.

Sequential and multiple hypothesis testing with anytime
guarantees. One of our proposed tests provides anytime-
validity guarantees by adapting the analysis of (Jamieson
et al., 2014) and (Balsubramani, 2014). Our second pro-
posed test leverages the recent literature on e-values (e.g.
(Waudby-Smith & Ramdas, 2024; Vovk & Wang, 2021)),
which can be used to construct sequential tests that have va-
lidity guarantees in finite samples. While existing literature
suggests methods for global null testing that can aggregate e-
processes (e.g., Cho et al. (2024) or Chi et al. (2022)), such
approaches are unable to provide per-hypothesis guaran-
tees. More classical approaches include Wald’s Sequential
Probability Ratio Test (SPRT) and its extensions, such as
Max-SPRT (Kulldorff et al., 2011), or a sequential general-
ization of the Holm procedure Bartroff & Song (2014).

Application & policy context. Sequential hypothesis
tests have been used for real-world monitoring of ad-
verse incidents in vaccines and medical devices (see, e.g.,
(Shimabukuro et al., 2015)). Descriptive studies have identi-
fied disparate adverse impacts in pharmaceutical (Lee et al.,
2023; Whitley & Lindsey, 2009) and vaccine settings (Oster
et al., 2022). More generally, post-market surveillance is
standard across various industries, especially as it relates to
product safety enforcement and monitoring.

In AI policy contexts, there have already been several calls
to adopt a post-market surveillance regime for Al gover-
nance (e.g., Raji et al. (2022)). The U.N. General Assem-
bly’s first Al Resolution (7 8/265 and 78/311) explicitly
encourages “the incorporation of feedback mechanisms to
allow evidence-based discovery and reporting by end-users
and third parties of [...] misuses of artificial intelligence
systems and artificial intelligence incidents” (Assembly,
2024). In the U.S., Biden’s (now repealed) Al Executive
order explicitly directs the Department of Health and Hu-

man Services (HHS) to “establish a [...] central tracking
repository for associated incidents that cause harm, includ-
ing through bias or discrimination” (Biden, 2023). In the
E.U., Chapter IX of the 2024 EU AI Act focuses on post-
market surveillance, with Articles 85 and 87 specifically
highlighting individual reporting of harms.

Key definitions & clarifications. Finally, we note that for
Al systems, the term “incident database” has been used to
describe systems for monitoring the adverse impact of algo-
rithmic deployments, which often take the form of accident
catalogs that focus on one-off, large-scale events (e.g., Feffer
et al. (2023); Raji et al. (2022); McGregor (2021); Ojew-
ale et al. (2024); Turri & Dzombak (2023)). However, in
the context of our work, we are actively excluding these
accident catalog databases. Instead, we focus on reporting
databases that provide records of individual experiences of
adverse events that are tied to specific systems.

2. Model, Notation, and Preliminaries

The goal of constructing an incident database is to determine
whether some system that individuals interact with—for ex-
ample, an (algorithmic) loan decision system, or a medical
treatment—results in disproportionate harm to some mean-
ingful subgroups. For the incident database associated with
a particular system, we will use Y € {0, 1} as an indicator
variable that denotes the undesirable event corresponding
to that system. For example, in loan decisions, this could
correspond to the event that a highly-qualified individual
was denied a loan; in the medical setting, this may be an
adverse physical side effect due to the treatment.

Subgroup definitions. Individuals are characterized with
feature vectors X € X, and we index individuals as X;
(“features of individual ¢””) or X; (“features of the individual
who reports at time t”). Every individual X; “belongs to”
at least one group (G, and we will denote the event that X;
belongs to G as {X; € G}; we will use G to denote the set
of all possible groups. This set of possible groups G can be
defined arbitrarily as long as all groups can be determined
as a function of covariates X'. We allow for groups to be
overlapping—that is, we allow each individual X; to be in
multiple groups so that [{G' € G : X; € G'}| > 1. For
example, it is possible to set G := 2 as in Hébert-Johnson
etal. (2018).

Reference population. The system for which the database
is constructed naturally has a corresponding reference pop-
ulation of eligible individuals. For example, this could be
everyone who has applied for a loan, or everyone who has
been prescribed a certain medication. Thus, given a set
of groups G, we assume that it is possible to compute the
composition of the reference population.
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Assumption 2.1 (Reference population). For every G € G,
the quantity 2, := Pr[X € G] is known. Throughout this
work, we refer to the set {42 }ceg as base preponderances.

Probabilistic model of reporting. As the database admin-
istrator, the high-level goal is to determine whether there
exists some subgroup G € G where Pr[Y | X € G] is ab-
normally high. Crucially, the database does not have access
to information about every individual who interacts with the
system; instead, individuals may report to the database if
they believe that they experienced bad event Y. We thus let
R, be a random variable representing whether individual ¢
decides to report (with R; = 0 indicating no report).

Each report X, is received sequentially, and assumed to be
sampled i.i.d. from some underlying reporting distribution. '
Given a group G, we denote its corresponding mean among
reports Pr[X; € G | Ry = 1] as ug. We will sometimes
refer to {ua taeg as (reporting) preponderances, as they
represent the proportion of reports that each G comprises. A
central claim of this paper is that comparing pig to p2—i.e.,
the extent to which group G is (over)represented within the
reporting database—can be a useful signal for Pr[Y" | G] in
a wide class of applications.”

The i.i.d. model of course simplifies the analysis and ex-
position, but itself is not intrinsic to modeling the incident
reporting problem as a sequential hypothesis test. As we
will show in Section B.2, the explicit i.i.d. assumption can
be relaxed; more generally, any probabilistic model for se-
quential testing can be adapted to incident reporting.

3. Our Approach
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Figure 2: First identification of harm, over 100 random permuta-

tions of COVID-19 vaccine reports. Each point on the plot reflects
the number of trials in which a rejection has occurred by time ¢.
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We present our approach to analyzing the reports in the
appendices. A shows how to estimate disparate rates of
harm by modeling reporting rates; B gives two algorithms
for the hypothesis test and their statistical guarantees; and C
shows the performance of our algorithms on real-world data.
In particular, Figure 3 shows how quickly our algorithms
identified elevated risks of myocarditis among young men
after the COVID-19 vaccine.

4. Discussion

This work is an initial approach to using incident databases
for post-deployment auditing; we believe there is a rich
range of future work that develops the ideas in this paper,
both technically and conceptually.

On the statistical and algorithmic side, because our frame-
work allows for plugging in any existing sequential test, new
methods that control for multiple hypothesis testing both
over time and over the number of distinct hypotheses would
be directly beneficial for this application. On the other
hand, one might hope for online methods that do not require
pre-specifying hypotheses and instead develops them se-
quentially in a quasi-unsupervised fashion, or that improve
guarantees by exploiting relationships across hypotheses, as
has proven useful in multi-objective learning.

More conceptually, while the application examples in Sec-
tion C are somewhat stylized, they demonstrate that incident
databases can be promising starting points for new types
of post-deployment evaluation. For incident databases to
be practically useful, there are a plethora of additional con-
siderations to incorporate from a variety of disciplines. For
instance, if a reporting system was available, how would
individuals engage with them in theory, and in practice?
To what extent do, and should, individual incentives affect
the database, and how it is designed? How can the result
of a test (a null hypothesis rejection) be contextualized by
existing and emerging legal frameworks?

To the best of our knowledge, we are the first to propose
individual incident reporting to identify patterns of dispro-
portionate harm in interactions with a particular system;
more generally, however, one might imagine that similar re-
porting systems can be developed to provide insights about
concerns beyond fairness. In fact, while the framework
introduced in our work is not intrinsically about algorith-
mic deployments, it is one way to operationalize recent
regulatory movement in Al policy towards allowing for or
requiring individual reports. Any way to make such reports
actionable at large scale must, to some extent, aggregate of
individual reports to develop more systematic evaluations of
an underlying algorithm. We therefore see our work as one
step towards giving voice to individual experiences—and
towards having them make a difference.



From Individual Experience to Collective Evidence: A Reporting-Based Framework for Identifying Systemic Harms

Impact Statement

This work proposes individual incident reporting as a
promising approach to post-deployment evaluation for fair-
ness and performance. While we hope that the work impacts
the practice of post-deployment evaluation, we do not be-
lieve its societal impacts merit discussion beyond what is
already given in the paper and its appendices.
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A. Identifying Discrimination by Modeling Preponderance

A major challenge of assessing potentially-differential rates of harm across subgroups using only reporting data is to relate
the event that someone submits a report to the event that they experienced harm. That is, if someone did experience a
negative outcome, how likely is it for them to have reported it, and conversely, if someone submitted a report, how likely is
it to reflect “true” harm? Moreover, as is known from prior work, reporting rates themselves can vary across subgroups.

Our central proposal is to conduct a hypothesis test for each group to determine whether it is overrepresented by a factor of
(B among reports. That is, for each G € G, we test the following hypotheses:

HE : pe < Bud HE : pe > Bul. (1

In Section B, we will discuss concrete algorithms for conducting this test sequentially and their corresponding theoretical
guarantees. Before doing so, we first argue that testing for preponderance among reports, i.e., tracking j¢ in this way,
can be a meaningful way to identify discrimination, even when exact reporting behavior is unknown. In Sections A.1 and
A.2, we describe two distinct ways that this particular test can be interpreted; in Appendix D, we discuss some practical
considerations for the modeling task.

A.1. Preponderance as relative risk

The first interpretation of our test allows us to make inferences about relative risk, the ratio between the rate of harm
experienced by group GG and on average over the population. In this interpretation, the key quantity is the report-to-incidence
ratio.

Definition A.1 (Report-to-incidence ratio). We define the report-to-incidence-ratio (RIR) as p := f;ﬁﬁ‘zﬂ, and the
. . Pr[R=1|G]
group-conditional analogue as pg := By =1/

In Proposition A.2, we show that if the group-conditional RIR of some group G is at most some constant multiple of the
population-wide RIR, then we can convert a lower bound on report preponderance into a lower bound on true relative risk.

Proposition A.2. Define the relative risk of group G to be RR¢g := %. Suppose that for some group G we have

pc < b- p. Suppose that we determine that g > ﬁ,u% for some 3 > 1. Then, the true relative risk experienced by G is at
least RRg > B/b.

Proof. First, note that by definition of p, pg, and RR¢, we have

Pr[R=1|G] Pr[R = 1] PrlR=1|G] 1
<b.p = <b- — St il Bt ey
pa=op Py =1|G] = Pr[Yy = 1] RRe 2 m=1 '
By Bayes’ rule, Pr[R:ilG] — PrGIE=1] _ £& . furthermore, by assumption, we have £§ > 3. The result follows from
Pr[R=1] Pr[G] e, g
combining with the previous display. O

Suppose we take maxg re/p < b = 1.25, i.e., no group over-reports 25% more often than the population average. Then,
if a test identifies a group G for which pg > 1.75 - ul,, this implies that the true relative risk for group G is at least
RR¢g > 1.4—that is, G experiences harm 40% more frequently relative to the population average.

A.2. Preponderance as true incidence rate

We now discuss an alternate way to convert a lower bound on preponderance into a guarantee on real-world harm. In this
case, we can infer the true incidence rate of harm (that is, no longer relative to the average) if we are able to estimate—or
willing to make assumptions on—true and false reporting behavior in groups. Moreover, assumptions (or estimations) of
these reporting rates need only be made in relation to the population average reporting rate Pr[R].

Definition A.3 (Reporting rates). Let r := Pr[R] be the average reporting rate over the full population. Let 7.} :=
1PrR, =11Y;=1,X; € G,/ :=LPr[R; =1|Y; =0, X, € G|. Finally, let IR¢; := Pr[Y’ | G] represent the true
incidence rate, i.e. the likelihood that an individual in G experiences Y.

8
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Note that r - v/} represents the (possibly group-conditional) rate at which individuals X; € G who experience Y actually
report, while r - 7ER represents the rate that individuals X; € G who do not experience Y report. Thus, 7R and 7£R represent
how much more (or less) a particular group G makes true or false reports relative to how much the whole population reports
on average (which includes both true and false reports). The following proposition makes the relationships between 72X,
vER, and our quantity of interest IR, more precise.

Proposition A.4. Suppose that, for some G, it is determined that pg > Bp, for some 3 > 1. As long as y'X > ~ER for
FR
every G € G, IRg > %
¢ e

Proof of Proposition A.4. Recall that we have defined p = Pr[G | R], and u2, = Pr[G] is known by Assumption 2.1. By
Bayes’ rule, we have g = Pr[G | R] = Pr[G}lig]R‘G] = pd PrU:‘ 9] Now, let us decompose Pr[R | G] by “true” reports
(Y = 1) and “false” reports (Y = 0). By the law of total probability, Pr[R | G] = r - (y;*IR¢ + 75 (1 — IR¢)); more

precisely,

1

“Pi[R| G = Pr[R| G,Y = 1]PrlY | G] + Pr[R| G,Y = 0](1 — Px[Y | G
=1&IRe + v (1 - IRe)
=78 +IRc(V&F — &)

rG FR
e

combining this with the Bayes’ rule computation, cancelling the % factor, gives us IRg = 7:%77“{ . The result follows from
G G

the assumption that #c/u% > 3. ]

Proposition A.4 shows that the exact computation of IR depends on reporting rates v.R and yEr. While these quantities
are not directly estimable from reporting data—in fact, estimating reporting rates is itself a distinct research challenge (see,
e.g., Liu et al. (2024))—these results can nevertheless guide qualitative interpretation of how severe IR is.

For example, suppose a test is run for 3 = 1.5. Suppose G overreports relative to the population average, with v¢&r = 1, and
ek = 2. That s, G falsely reports at the same rate as the population reports on average (which includes both true and false
reports), and submits true reports at twice the population average rate. Under these (generous) assumptions, we will have
IRg = 0.5, an extremely high incidence rate for any application—regardless of incidence rates for other groups.

Alternatively, suppose reporting rates did not vary by group (i.e., 7% = y™® and £ = 4 for all G). Then, we can lower
bound the disparities between true incidence rates across groups: if G is flagged at 8 > 1, there must be some other group
G’ with IRg — IR > % If it is further assumed that 4R = 0, then IRq — IR > 5 — 1.

B. Identifying Subgroups with High Reporting Overrepresentation

How might the test proposed in Equation (1) be carried out in practice, with reports arriving over time, and what properties
might we want for such a test? In this section, we provide two ways to instantiate this sequential hypothesis test. For each,
we provide two types of guarantees. The first is (sequential) a-validity, which, roughly speaking, guarantees correctness
of groups identified in G¥'%, More formally, we say that a sequential test is valid for a single group G at level « if
Pr[3t : HS rejected] < a when HS is true. Because we are testing for all groups in G simultaneously, we say that a
sequential test is valid with respect to all groups G if Pr[3t, 3G : HS erroneously rejected] < a.

The second type of guarantee is power, which guarantees that the test will identify a harmed group, if one exists. In particular,
we are interested in the stopping time T' of the test, which is the number of samples required for the test to reject the first
null, i.e. to raise an alarm for any group.

At a high level, our algorithms for conducting this test follow the protocol outlined in Algorithm 1. Every report X, can be
considered a binary vector indexed by the groups in G; the G component of this vector is equal to 1[X; € G]. If there was
only one group, we could run a sequential hypothesis test to determine whether y was unacceptably large. With multiple
groups, we can run |G| separate sequential hypothesis tests in parallel, one for each group, and correct the confidence levels
for multiple hypothesis testing. For each group i, we maintain a test statistic w® that is updated as reports X, are received
over time. At each time ¢, each of these test statistics are compared to a threshold 6; (), which depends on the test level «;
the null hypothesis H§ for group G is rejected if w® > 6; (). For ease of exposition, Algorithm 1 is written so that groups

9
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corresponding to rejected nulls are collected in a set GF'22; in practice, a database administrator may choose to stop the test
entirely as soon as one harmed group has been found.

Correcting for multiple hypothesis testing across groups is handled by a simple Bonferroni correction—that is, given a
particular test level o, we test each individual group G at level /|g| rather than level .. Though Bonferroni corrections
often seem onerous in non-sequential settings, we show that, for sequential problems, the Bonferroni correction incurs only
a modest increase in stopping time.

In Section B.1, we give a simple sequential Z-test-inspired approach which leverages a finite-time Law of the Iterated
Logarithm. Section B.2 presents a more complicated algorithm that leverages recent developments in anytime-valid inference.
The main differences in each algorithm lie in how they implement Lines 1 and 6 of Algorithm 1—that is, how test statistics
and thresholds are computed. For each instantiation of Algorithm 1, we show validity and power guarantees. Omitted proofs
are given in Appendix E.

Algorithm 1: General protocol for testing overrepresentation

Input: Set of groups G; base preponderances {12} cegs test level o relative strength 3
Initialize test statistic w$' for every G' € G and set threshold 6 (v);
Initialize set of rejected nulls (flagged groups) GH?¢ := (;
fort=1,2,... do
See report X;;
for G € G do
Update test statistic wS and compute threshold 6; (cv);
if ¥ > 0;() then
‘ Add G to G and take requisite action for G, if applicable.

B.1. Sequential Z-test

One simple observation that arises from the model presented in Section 2 is that if each report X} is drawn i.i.d. from some
underlying distribution, then one might expect to be able to use concentration as a tool to conduct this test, since as time
passes, the fraction of reports within the database from group GG should converge to the true mean ug. We refer to this style
of approach as a sequential Z-test, as it relies on measuring deviation from the mean.

Updating the test statistic w”. Given this intuition, the test statistic is a simple count of the number of times a report
from each group has been seen, i.e. (with w§ = 0),

w +—wi | +1[X; € G). 2)
Setting the threshold ¢;(a). Given the way that w® accumulates evidence, one natural way to construct the threshold at

each t is to use the mean under the alternative, plus a correction term for both sample complexity and repeated testing over
time. With C set to either /Sl (1 — Sul,) or 1/2, the threshold (including a Bonferroni correction) is

3

Ou() ==t - Bud + C\/2.07t In (|g|(2+1(f2(t))2).

Theoretical guarantees. Our first guarantee is a bound on the probability that any group is incorrectly flagged.

Theorem B.1 (Validity). Running Algorithm I with 0;() as in Equation (3), setting C' = 1/, and wS updated as in
Equation (2), guarantees that the probability that GF'¢ will ever contain a group G where ’HS; is true is at most «, i.e.

Pr [Elt ;3G e gFlas s ¢, 7-[8; holds] <a.

The choice of C' affects the nature of the guarantee: the true, finite-sample anytime-validity guarantee requires C' = 1/2. If
instead C' = /Bud (1 — Bu,), then, strictly speaking, the guarantee holds only asymptotically. However, a higher value
of C affects stopping time unfavorably, so the asymptotic approximation can be useful practically. In this case, care must
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be taken to ensure that the algorithm does not erroneously reject too early due to noise; one way to implement this is to
mandate a minimum stopping time.

Finally, we give a stopping time guarantee for this test.

Theorem B.2 (Power). Let T be the stopping time of Algorithm 1 with 0;() as in Equation (3), C = 1/2, and w& as in
Equation (2). Let A,x = maxgeg UG —BM%. If Apax > 0, then Pr[T < oo] = 1. Furthermore, with probability 1 —2/|g|,

In(|G])+In(1/ In(1/6
we have T < O (M) and for any § € (0, ¢/|g|), we have with probability at least 1 — § that T < o ( A2 / )).

max max

B.2. Betting-style approach

We refer to our second algorithm as a betting-style approach, due to the way we construct our test statistics (Shafer, 2021;
Waudby-Smith & Ramdas, 2024; Vovk & Wang, 2021; Chugg et al., 2024); one way to interpret this approach is that the
test “bets against” the null hypothesis ’Hg“ being true. We direct the reader to these references for more detailed technical
exposition and connection with literature on martingales, gambling, and finance. For us, these methods provide an adaptive
algorithm which find a middle ground between the two approaches in the previous section: the betting-style approach
achieves finite-sample validity but empirically terminates quickly when the null is false.
Updating the test statistic w”. As in the previous approach, we let w¢ represent some accumulated amount of evidence
against the null hypothesis H§' by time ¢, with a higher value of w¢ corresponding to greater level of evidence.* We initialize
wé; = 0, and use the update rule

wi —wi | +In (1+ X (1x,eq — Bul)), 4)

with \§, ... A¥ € [0, 1]. Note that this expression is similar to the running sum used in Section B.1. Here, the algorithm
accumulates a nonlinear function, with an adaptive parameter A that weights the influence of each new sample Our setting
of )\; is motivated by the goal of minimizing stopping time under the alternative, and thus to maximize w®. Taking \; = 0
means w remains the same regardless of what new 1nformat10n is received at time ¢. On the other hand, A\; = /842 means
that if we receive evidence in accordance with ’HG then wt will decrease substantially; but, if we instead receive evidence
against the null, i.e. X; € G, we maximally increase w. Drawing from the well-studied problem of portfolio optimization
in the online learning literature (Cover, 1991; Zinkevich, 2003; Hazan et al., 2016), we use Online Newton Step (Hazan
et al., 2007; Cutkosky & Orabona, 2018) to ensure that th is not too far from the best achievable in hindsight. This results

in the following update for {\; };>1:

G : G 2 . 2t
Ay € Bl (M + ) ©)

_ 1[X: €G] Bug N4
where z; = 1+A?(1[Xtec]_g#%) ,and Ay = 0.

Setting the threshold 0;(«). Unlike the sequential Z-test, we use the same threshold for all timesteps. Including a
Bonferroni correction, we use 6, () := In(I91/a) for all ¢; the motivation for this setting will become clear in our discussion
of Theorem B.3.

Theoretical guarantees. We first give a validity guarantee that is essentially identical to the Sequential Z-test.

Theorem B.3 (Validity). Running Algorithm 1 with 0;(c!) = In (19/a) and wE updated as per Equations (4) and (5)
guarantees that the probability that GF“¢ will ever contains a group G where H(Cf is true is at most q, i.e.

r[3t: 3G € G s.t. HE holds] < .

This result follows directly from the prior work referenced at the beginning of this section. At a high level, every sequence
{exp(wf)}+>1 is a non-negative super-martingale under A{'; informally, this means that under the null hypothesis, the
sequence {exp(wf)}¢>1 should be non-increasing, in expectation. This allows us to apply Ville’s inequality, which
guarantees that it is unlikely that exp(th ) ever becomes too large under Hg . More specifically, for any « € (0, 1), under

3The quantity exp(th ) can also be referred to as an e-value (Vovk & Wang, 2021), a measure of evidence against a null hypothesis
similar to a p-value.

“The constant is due to Cutkosky & Orabona (2018), who give a tighter version of ONS than in Hazan et al. (2007).

2= 1n(s)
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Asymptotic Z-test Finite-sample Z-test Betting-style test
(M, 18-29) M, 12-17) (M, 18-29) M, 12-17) (M, 18-29) M, 12-17)
B8 =2.0 | 34 (Feb. 22) 256 (May 10) | 69 (Mar. 28) 530 (May 30) | 61 (Mar. 23) 241 (May 8)
B8 =25 |49 Mar. 10) 302 (May 15) | 74 (Mar. 31) 546 (Jun. 1) 69 (Mar. 28) 259 (May 11)
B8 =3.0 | 70 (Mar. 30) 324 (May 18) | 111 (Apr. 20) 612 (Jun. 6) 80 (Apr. 5) 302 (May 15)

Table 1: On real historical sequence of myocarditis reports, time to identification of harmed groups. In each cell, we report the number of
total reports to the rejection of the hypothesis corresponding to (M, 18-29) and the number of total reports corresponding to (M, 12-17). In
all tests, the (M, 18-29) group is identified first—vaccines were authorized for the 12-15 age group only in May.

the null, Pr[3t : exp(w®) > 1/a] < a. Thus, maintaining a threshold of §;(a) = In(I9//a) is sufficient to provide a
per-hypothesis ¢/|g|-validity guarantee, and thus «-validity overall.

We also provide the following bound on stopping time; see Appendix E.2 for additional discussion of the w, notion of gap.

Theorem B.4 (Power). Let T be the stopping time of Algorithm 1 with 0;(c)) = In(|G|/a) and w& updated as per
Equations (4) and (5). If maxgeg pig — ,Bu% > 0, then, we have that Pr[T < oo] = 1. Furthermore,
1

L In(|G]) + ln(l/a))

w? Wy

Mﬂg@(

where w, == maxgeg refo,1) E[In(1 4+ M(1x,ec — Bul))] is the maximal expected one-step increase in w over all groups

and choices of \.

We conclude this section with two further remarks on Theorems B.2 and B.4 in the context of our test. First, our modeling
in Section A measures severity of harm via a multiplicative factor of overrepresentation. However, both notions of gap in
Theorems B.2 and B.4 also on the absolute size of the group ji. Thus, for two groups G and G’ with identical multiplicative
gaps, i.e. #o/u2, = rar/ul,, the test would stop faster in expectation for G if and only if u > u2,. That is, if two groups
are “harmed” to the same extent, both algorithms will identify the larger one first.

Second, for both tests, the Bonferroni correction results in only an additive factor (In(191)/a2,_ _in Theorem B.1, and In(I191)/u,
in Theorem B.3) in stopping time over the scenario where we had only been testing the one group with the largest gap. This
means that, in terms of worst-case guarantee on stopping time, the contribution of the Bonferroni correction is small relative
to the contribution of the test level « and, especially, to the gap. In fact, the impact of Bonferroni on real-world data appears

to be much smaller even than this additive term.

C. Real-World Examples

To demonstrate the applicability of our approach, we apply our framework to two real-world datasets. We begin by showing
that our approach correctly and quickly identifies that young men experience myocarditis after the COVID-19 vaccine; then,
on mortgage allocation data, we show that we identify known instances of discrimination under several reasonable reporting
models. Code for all experiments, including instructions for data download and pre-processing, is available TODO.

C.1. Myocarditis from COVID-19 vaccines

It is by now well-known that COVID-19 vaccines induce an elevated risk of myocarditis among young men. While initial
suspicions of elevated myocarditis risk relied on case studies (e.g., Mouch et al. (2021); Larson et al. (2021); Marshall
et al. (2021)), a more systematic understanding—including the pattern of disproportionate impact—was made possible by
post-hoc analysis of reports from incident databases. Barda et al. (2021) appears to be the first analysis based on a database of
reports, but did not disaggregate by demographic subgroups; the confirmation of young men as the most drastically-impacted
group came in later studies (e.g., Witberg et al. (2021); Oster et al. (2022)).

In the U.S., these reports are collected inthe Vaccine Adverse Event Reporting System (VAERS). If we had been able to run
the hypothesis tests proposed in the preceding sections on the reports collected in VAERS, would we have correctly identified
this problem—and if so, how quickly? Concretely, we let Y; be the event that individual ¢ experiences myocarditis after
receiving a COVID-19 vaccine, and run the test with the end-goal of identifying elevated incidence rate Pr[Y; | X; € G| for
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group(s) G corresponding to adolescent men (ages 12-17 and 18-29).

Data sources. The Vaccine Adverse Event Reporting System (VAERS) is a national adverse event incident database
for U.S.-licensed vaccines, co-managed by the Centers for Disease Control and Prevention (CDC) and the U.S. Food and
Drug Administration (FDA) (Chen et al., 1994; Shimabukuro et al., 2015). The database is a combination of voluntary
reports from patients that have received the vaccine, as well as mandatory reports from vaccine manufacturers and healthcare
professionals. For this case study, we filter the set of publicly-available reports from VAERS to reports about the COVID-19
vaccine with a complaint keyword including “myocarditis.” As for how a database administrator would have known to focus
on myocarditis a priori, one might imagine, for example, that the series of case studies found in early 2021 raised the alarm
that more systematic analysis was warranted for myocarditis in particular.

To determine per-demographic base rates, i.e. to compute {12 }geg, we utilize VaxView, a government dataset tracking
national vaccine coverage (publicly accessible here), managed by the CDC. VaxView does not track vaccination rates
by granular subgroups, only providing coverage rates disaggregated by age, gender, and ethnicity separately. We thus
impute the vaccination rates for intersections of subgroups (e.g., “12-17, M”) by multiplying the known marginal rates (i.e.,

M((J12—17,M) = N?12—17) 'N((JM))'

Defining G.  We consider (intersections of) sex and age buckets to be the subgroups of interest.> Age buckets are discretized
into 0-4, 5-11, 12-17, 18-29, 30-39, 40-49, 50-64, 65-74, and 75+; the sex categories represented in the data are (binary)
male and female. After removing groups for which no vaccines were recorded, G contains 29 groups.

Setting 5. For this application, absolute incidence rate (that is, Pr[Y = 1 | G]) is the quantity of interest to use for
determining (3. As suggested by Proposition A.4, setting /3 requires considering three quantities of interest: the threshold on
an “unacceptable” incidence rate, the relative rates of true reporting v\, and the relative rates of false reporting v¢. Then,
we can set 8 = maxg (7R — 7ER) - IR + 7ER).

We will choose 0 as the threshold on an “unacceptable” incidence rate.® It is therefore sufficient to set f = maxg (YER).
While this is quantity cannot be determined from report data alone, a conservative assumption could be that any group
erroneously reports at most twice the average reporting rate over the population, with y&r = 2.0. If the algorithm is first run
with 6 = 2.0, stopping and flagging a group very quickly, the test may be re-run with increasing values of /3, as a higher /3
corresponds to a more severe true incidence rate; thus, we also show results for 5 = 2.5 and 5 = 37

Results. We begin by running our algorithms on the actual sequence of reports in chronological order, as received in
VAERS. In particular, we consider Algorithm 1 instantiated with w¢ updated according to Equation (2) and ;(c) as in (3) and
C = 1/2 (Finite-sample Z-test); with wS updated according to Equation (2) and 6;(«) as in (3) and C = /Bu2 (1 — Bu%)
(Asymptotic Z-test); and with w¢ updated according to Equations (4) and (5), and 0; () = In(I9!/a) (Betting-style test). For
the asymptotically-valid Z-test, we require a minimum stopping time of ¢ = 25, to prevent early rejections. We run all
experiments for o = 0.1.

In Table 1, we report the stopping time—that is, the number of reports it takes for the first null hypothesis to be rejected—of
each algorithm for various values of 3, as well as the corresponding date by which an alarm would have been triggered.
Note that, in all tests, the (M, 18-19) group is identified first. This is consistent with the timeline of regulatory approvals:
vaccines were authorized for ages 12-15 only by May 10 (Lovelace, 2021).

To explore the robustness of these results, we also run synthetic experiments, permuting the ordering of reports to get a
sense of possible variance in the stopping time. We run 100 random permutations of the full set of reports. Figure 3 tracks
the number of reports it takes for each algorithm to reject the null hypothesis for any group—that is, a scenario when the test
is stopped and an alarm is raised as soon as one harmed group is identified. Each point on these plots reflects the number of
trials (out of 100) in which a rejection has occurred by time ¢, when tests are run at § = 2.

>While in principle it would have been interesting to also consider race/ethnicity, we are limited by the availability (and granularity) of
the data given in VAERS, which does not include information on ethnicity/race in reports.

0ne might follow existing practice and use the per-group expected rate of myocarditis to benchmark an unacceptable incidence rate
(e.g. as provided in Table 2 of Oster et al. (2022), which suggests at most 2 cases per million doses). However, in addition to this expected
incidence rate being very small (and, for any practical purposes, being vastly dominated by the other reporting terms), it also implicitly
relies on reports so that the benchmark quantities are r - IR, rather than just IR, and thus depend on the unknown reporting rate 7.

"Re-using this data is statistically valid due to the equivalence between one-sided hypothesis testing and confidence sequences.
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Time to first alarm (8= 2)
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Figure 3: Number of reports (¢) it takes for each
u algorithm to reject the null hypothesis for any
% 60 group (i.e. first identification of harm), over
5 100 random permutations of COVID-19 vaccine
% report database. Tests are run with 5 = 2. Each
2 a0 point on the plot reflects the number of trials
; (out of 100) in which a rejection has occured by
time ¢.
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t (# of reports received) at which first alarm was triggered

In Figure 3, we compare the performance of the three algorithms. To interpret the figure, by time ¢ = 100, the asymptotically-
valid z-test had already identified harm in all 100 permutations; the betting-style test identified harm in around 80
permutations; and the finite-sample z-test had only identified harm in around 20 permutations. Figure 3 shows a clear
ordering in terms of how quickly each algorithm tends to identify harm: the asymptotically-valid sequential z-test (dashed,
red) is faster than the betting-style algorithm (solid, purple), which is faster than the finite-sample z-test (dotted, yellow).

We also explore the impact of Bonferroni correction for multiple hypothesis testing on stopping time. In Figure 5, we show
the same axes—number of reports to first alarm on the x-axis, vs. number of permutations in which an alarm was triggered
on the y-axis—for the three algorithms at 5 = 2. As expected, the invalid version of the test, which has a lower threshold
for rejecting each null, stops more quickly for all three algorithms (dashed, lighter). The difference between the invalid
version and the valid version (solid, darker) is relatively minor, though the impact varies across algorithms.

Time to first alarm (Asymptotic Z-test, 8 =2) Time to first alarm (Finite-sample Z-test, B = 2) Time to first alarm (Betting-style test, B=2)
100 100

100

# of permutations
# of permutations
# of permutations

Multiple hypothesis correction Multiple hypothesis correction Multiple hypothesis correction
Invalid (no Bonferroni) Invalid (no Bonferroni) Invalid (no Bonferroni)
0 —— valid (with Bonferroni) 0 —— valid (with Bonferroni) 0 —— valid (with Bonferroni)
40 60 80 100 0 50 100 150 200 250 300 350 25 50 75 100 125 150 175
t (# of reports received) at which first alarm was triggered t (# of reports received) at which first alarm was triggered t (# of reports received) at which first alarm was triggered

Figure 4: Impact of multiple hypothesis correction on stopping time across algorithms. As in Figure 3, each point on the plot reflects the
number of trials (out of 100) in which a rejection has occurred by time ¢. In all plots, the lighter, dashed line reflects stopping time of the
invalid test that does not correct for multiple testing; the dark, solid line reflects stopping time of the valid test including a Bonferroni
correction.

Overall, our experimental results suggest that our proposed tests would in fact have been effective in determining that young
men were disproportionately affected by myocarditis. Moreover, though it is difficult to determine exact timelines and the
nature of clinical practice during early phases of the vaccine rollout, it is possible that such a test could have identified
problems using less data—that is, more quickly—than was actually used for this finding.

C.2. Mortgage Allocations

In 2021, Martinez & Kirchner (2021) found that, based on publicly-released data from the Home Mortgage Disclosure
Act (HMDA), substantial racial disparities in 2019 loan approvals persisted even after controlling for financial status of
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applicants—most notably, healthy debt-to-income ratios (DTI). If loan applicants had been able to submit reports when they
believed they had experienced unfavorable outcomes, could those reports have been used to identify this discrimination? If
0, how accurately, and how quickly?

We are interested primarily in disparity among applicants with healthy DTI, even though all loan applicants would have been
eligible to submit reports. Concretely, we let A; = 0 be the event that a loan is not made to applicant 7, and Z; = 1 be the
event that applicant ¢ has a healthy debt-to-income ratio. Then, we let Y; = {A; = 0, Z; = 1} be the event that individual i
has a healthy DTI and did not receive a loan, and run the test with the end-goal of identifying groups that have relatively

high rates of loan denials for applicants with healthy DTI, i.e. Pr[giﬁ’f&:zl,,‘f{]@] .

Data sources. We use the data (and preprocessing code) of Martinez & Kirchner (2021), which uses 2019 data from
the HMDA..8 The analysis of Martinez & Kirchner (2021) used the full year of data from 2019; we reduce the dataset to
applications for conventional loans at three of the largest lending institutions, from applicants who have positive income. We
assume that reports will only come from applicants whose loans were denied; in all, there are 183k applicants which satisfy
these criteria.

Defining G. While Martinez & Kirchner (2021) analyzed disparities with respect to race, we define groups as all possible
intersections of demographic features across gender, race, and age. The available race categories include Native, Asian,
Black, Pacific Islander, White, and Latino; sex categories include female, male, and unknown/nonbinary; and age categories
include <25, 25-34, 35-44, 45-54, 55-64, and 65+. In total, after removing groups which comprise less than 0.1% of all loan
applicants, G contains 115 groups.

Setting 5. In this application, the quantity of interest is relative risk, so we draw on Proposition A.2 to inform our setting
of 5. We will set our relative risk threshold to be 1.2—that is, we want our algorithm to raise an alarm when any group
experiences event Y 20% more frequently than average over the population. Recall Definition A.1 and Proposition A.2: to
flag relative risk at 1.2, 8 should be set to 1.2 - b where b = maxg £c/p, with pg = % gf{ﬁzﬂ ;thatis, b
is the extent to which the group-conditional report-to-incidence ratio for any group deviates from the population average
report-to-incidence ratio.

and p =

As before, we can first test at 3 = 1.2, then re-test for higher values of 3; in this case, we will also test 3 = {1.4,1.6,1.8}.
Setting 5 = 1.2 corresponds to assuming b = 1, i.e., no variance in report-to-incidence ratios across groups; the additional
values of 3 suggest possible values of b = 7/6,4/3, and 3/2, respectively.

Reporting models. The existence of verifiable disparities in this dataset allows us to evaluate the efficacy of our methods
under varying models of reporting—that is, whether our algorithms identify groups that do in fact have high rates of healthy
DTI denials, even if it is not the case that every report X; corresponds to Y; actually occurring. The dataset gives several
levels of financial health as measured by DTI—in ascending order, are“Struggling”, “Unmanageable,” “Manageable,” and
“Healthy.” Modeling the idea that reporting behavior may be related to financial health, we use these categories to simulate

the following possible patterns of reporting.

(1) Correlated: The likelihood of reporting increases with financial health. That is, “Healthy” denials report with
probability 0.9, “Manageable” with probability 0.5, “Unmanageable” with probability 0.3, and “Struggling” with
probability 0.1. Under this reporting model, the 95th-percentile (among all groups) rc/p is 1.2, and maxg re/p = 1.4.

(2) All Denials: All denials submit reports regardless of financial health. Under this reporting model, the 95th-percentile
rc/pis 1.5, and maxq ra/p = 2.3.

(3) Anti-Correlated: The (unlikely) case where individuals with worse financial health are more likely to report, i.e.
“Healthy” denials report with probability 0.1, “Manageable” with probability 0.5, “Unmanageable” with probability 0.7,
and “Struggling” with probability 0.9. Under this reporting model, the 95th-percentile rc/p is 1.8, and maxg re/p =
2.7.

8The Consumer Financial Protection Bureau (CFPB) collects and publishes this data from financial institutions annually, with a
two-year lag; the report (and our work) uses 2019 data which is finalized as of Dec. 31, 2022. The most recent year for which data is
available is 2022, though it is available for edits through 2025.
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Reporting model Asymptotic Z-test Finite-sample Z-test Betting-style test
Stopping time  Rel. risk | Stopping time Rel. risk | Stopping time Rel. risk
Correlated 85 1.62 2002 1.67 638 1.70
B =12 All Denials 69 1.59 1546 1.60 519 1.65
Anti-Corr. 60 1.50 1065 1.53 403 1.65
Correlated 316 1.69 4306 1.73 1542 1.77
B=14 All Denials 163 1.62 3214 1.72 1073 1.72
Anti-Corr. 95 1.47 2215 1.66 718 1.68
Correlated 886 1.68 11755 1.73 4157 1.82
8=156 All Denials 586 1.69 7410 1.72 2714 1.75
Anti-Corr. 271 1.05 4668 1.72 1688 1.71
Correlated 4959 1.74 I — 164252 1.98
5=138 All Denials 2703 1.72 297513 1.73 9977 1.89
Anti-Corr. 935 1.58 14072 1.73 4629 1.76

Table 2: Average stopping times (i.e. time to first alarm) and true relative risk (i.e., Pr[gi[::i’fglei‘f{]eol

random permutations, for varying (3, across algorithms and reporting models. For 5 = 1.8, some combinations of algorithm/reporting
model failed to stop within 40,000 steps for some trials: *stopped in 0/100 trials, *stopped in 99/100 trials, ®stopped in 76/100 trials.

) of first-identified group over 100

Note that the ground-truth ratios rc/» would have been unknown at the time that a practitioner sets 3; we are able to
determine these only because we have full information about the dataset and control over the reporting model. However,
these computations suggest that the assumptions on reporting rates implied by the settings of 5 = {1.2,1.4,1.6,1.8} are
generally reasonable, especially after considering outliers—note the disparity between the 95th-percentile vs max ratios of
rc/p, especially for the All Denials and Anti-Correlated models.

Results. We run all three algorithms discussed in Section B at o = 0.1, for all four reporting models discussed above, and
for 8 = {1.2,1.4,1.6,1.8}. For the asymptotically-valid Z-test, we (heuristically) choose a higher minimum stopping time
of 50, to reflect the more challenging problem instance compared to the vaccine reporting problem. For each algorithm,
reporting model, and 3, we again run 100 random permutations. (Since we are simulating reporting, there is no “true”
historical sequence of reports to run an algorithm on, unlike in Table 1.)

One important question for this application is the extent to which our tests identify the type of harm we are interested in,
across various reporting models: while the algorithms guarantee statistical validity in terms of overrepresentation (i.e., in
terms of whether g > 8 u%), they cannot intrinsically guarantee that reports themselves reflect true harm. With the benefit
of hindsight (and access to the full dataset), we are able to calculate “ground truth” relative risks; the hope for our algorithms
is that they identify groups that actually do experience elevated relative risk.

Our results suggest that this is indeed generally the case, although the actual behavior varies by algorithm and reporting
model. Table 2 shows report the average stopping times and average true relative risks of the first-identified group for 100
permutations. Across all algorithms and values of 3, the stopping time under the Correlated reporting model is the longest,
followed by the All Denials and Anti-Correlated reporting models. On the other hand, the relative risk of the group that is
first identified in each of these settings follows the same ordering, with the Correlated model having the highest relative risk.
That is, more “favorable” reporting behavior required a test to run longer, but the group identified is more severely harmed,
whereas more “adversarial” reporting behavior raised an alarm sooner, but identified a less severely-harmed group.

Similar tradeoffs arise when comparing algorithms: the asymptotically-valid Z-test stops far more quickly, but appears to
identify less severely-harmed groups. On the other hand, while the betting-style test and the finite-sample Z-test tend to
identify similarly-harmed groups, the latter stops much faster than the former; overall, it appears that the betting-style test is
a reasonable approach to balancing fast identification with confidence in the severity of harm.

While overall trends across algorithms and reporting models are consistent across values of 3, seeing these results for
different 3 highlights an additional insight. While it is to be expected that stopping times (and the ground-truth relative
risks) should increase with 3, the increase in stopping time is dramatic—by sometimes by orders of magnitude—even for
what appear to be relatively small changes in 8. Moreover, the disparity in stopping time across reporting models also
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increases dramatically with /3. In fact, for 5 = 1.8, some combinations of reporting and algorithm do not stop within 40,000
steps in at least one trial.

Practical takeaways. Altogether, these results highlight several potentially non-obvious insights about conducting the
type of tests that we propose. While the algorithms appeared fairly similar in the vaccine case study, this mortgage
allocation setting is more challenging in various ways: the presence of reporting behavior where some reports do not actually
correspond to “true”” harm; 115 total groups compared to 29; and much smaller numerical gaps, i.e. smaller group sizes,
both for base preponderances p, and reporting rates yc:. These additional challenges reveal some practical takeaways for
conducting these tests.

The first consideration is in the choice of algorithm. It appears that the betting-style test most effectively balances stopping
time with identifying highly-risky groups—though it tends to stop more slowly than the asymptotically-valid Z-test, it also
identifies groups that are more severely harmed (while also preserving true statistical validity). On the other hand, though
the finite-sample Z-test appears to have similar theoretical guarantees as the betting-style test, it stops more slowly and in
general appears to be much more likely to fail when gaps are smaller. This leads to the second consideration, which is
the choice of 5. Because it is statistically valid to retest with increasing values of (3, these results suggest that the initial 3
should be fairly small, and increased over time—especially as these tests tend to be fairly conservative.

D. Practical Considerations

Choosing G. In our experiments in Section C, we choose to define subgroups as all possible combinations of available
demographic characteristics. That said, a practitioner may seek to define G more carefully in accordance with their
application. For instance, if the goal is to illustrate discrimination in a legal sense, G should be defined with respect to
(protected) demographic features, rather than arbitrary combinations of covariates. On the other hand, groups need not be
solely demographic, which allows our approach to test for safety rather than solely fairness. For example, G could include
which batch of a medication an individual received; our tests could then help identify whether some batches were improperly
manufactured.

Baseline rates {10 }ceg. A natural question that arises from the modeling in this section is how {u%}ceg can be
determined, or if Assumption 2.1 is strictly necessary. Practically speaking, these base preponderances may be estimated,
possibly with some amount of noise; however, the estimation problem can be addressed with standard techniques and
is not core to our contribution. Similarly, in practice these baseline preponderances may change over time (e.g. if some
subgroups increased uptake of a vaccine, or applied for loans more frequently, over time); however, such situations are
relatively straightforward to handle under our algorithmic frameworks (see, e.g., the variants discussed in Chugg et al.
(2024)). We therefore focus on the case where we have access to the true, underlying values of {u2 }ceg for ease and clarity
of exposition.

Note that testing against base preponderances of the reference population (i.e., to compare pi to 4%) is a new test proposed
by this work, and the analysis in Sections A.1 and A.2 is specific to this test. Existing approaches to monitoring in incident
databases compare to different baselines, most commonly the historical overall incidence rate for the specific symptom,
sometimes by subgroup (Shimabukuro et al., 2015; Kulldorff et al., 2011; Oster et al., 2022). These baselines could, in
principle, be plugged into the algorithms in Section B, but new analysis for (possibly group-varying) reporting rates would be
necessary to draw inferences about analogous quantities of interest (e.g., RR or IR), as current approaches do not generally
consider reporting behavior. In contrast, our modeling allows us to identify what quantities may affect the true incidence
rate even if they may be unmeasurable.

Setting 5. Finally, to run the test proposed in Equation (1), it is necessary to determine how to set the value of 3. As we
will see in Section B, when £ is set too high, then the test may never identify problematic groups, or identify them more
slowly; on the other hand, as is clear from the previous subsections, rejecting the null hypothesis for a smaller S requires
more stringent assumptions on reporting behavior. Thus, we suggest a procedure to set 5 as follows: (1) choose a relative
risk or incidence rate threshold where it would be problematic for any group if RR¢ or IR surpassed that threshold; (2)
make the corresponding assumptions about reporting behavior; (3) use these quantities to compute a reasonable 3. We give
some example computations in Section C. Due to an equivalence between hypothesis testing and confidence intervals, it is
statistically valid to rerun tests with different Ss once data collection has begun. Thus, it may be prudent to begin by setting
the lowest /3 that reporting assumptions would allow; then, if the tests appear to be stopping very quickly, to re-run them at
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higher s, which would allow a practitioner to get a better sense of the severity of the harm.

E. Omitted Proofs

E.1. Omitted proofs for Sequential Z-test

We prove Theorem B.1, restated below.

Theorem B.1 (Validity). Running Algorithm 1 with 6;(«) as in Equation (3), setting C = 1/2, and w updated as in
Equation (2), guarantees that the probability that GF'¢ will ever contain a group G where H(? is true is at most «, i.e.

Pr [3t: 3G € 6" s.t. HT holds] < a.

To prove this result, we will use a foundational result known as Ville’s inequality (Ville, 1939).

Theorem E.1 (Ville’s inequality). Let {M;};cn+ be a non-negative supermartingale, i.e. for all t, My > 0, and E[M;41 |
Fi] < My, where Fy is the filtration (history) of all realizations of randomness up to and including time t. Then, for any
x € (0,1), we have Pr[3t : M; > ElMol/z] < .

The central thrust of our proof of Theorem B.1 is due to Koolen (2017) (which itself draws from Balsubramani (2014),
and is a refinement of Jamieson et al. (2014)); we reproduce the argument in the context of our work below, though we
emphasize that we do not claim the proof technique as ours.

Proof of Theorem B.1. Tt is sufficient to show that for any group G where H§' holds, we have Pr[3t : G € G™¢] < o/|g|;
the statement of the theorem follows from the Bonferroni correction over all |G| hypotheses.

Ville’s inequality (Theorem E.1) appears similar in form to the statement we hope to prove; we therefore seek to transform
our test statistic w® = Y os €[] 1[X; € G] into a quantity that can be interpreted as a (non-negative) supermartingale.
Although {w&},cx+ is by itself clearly not a non-negative supermartingale, each w¢ is the sum of ¢ Bernoulli trials with
mean /i, and Bernoulli random variables are sub-Gaussian with variance parameter /4. Each w¢ therefore satisfies the
property that E[exp(n(wy’ — E[wf])] < exp(°/8).

This holds for any 7, so we will construct a distribution ¢ on 7 and use it to construct a martingale M. In particular, note that
under HS, Elw{] < t-Bud. Thus, we let S; == w’ —E[wf] = w —tBu,. We willlet My = [ ¢(n) exp(nSi —tn?/8)dn.
Then, for any distribution ¢, { M, };cn+ is a non-negative supermartingale with respect to the randomness in realizations of
reports X;. To see this, we have

E[My1 | Fe] =E {/ ¢(n) exp (n(St +1[Xs41 € G — Bug) — %) dn ’ ft}
= /¢(77) exp (Ust - %) E {GXP (W(l[XtH € Gl - Bug) — %) ’]:t} dn

< /¢(77) exp (nSt - %) dn
= My,

where the inequality is due to %E[w? ] < Bu?, and subgaussianity. It thus remains to use this martingale to compute an

appropriate threshold 6; () on w¢.

M, will satisfy the conditions of Theorem E.1 for any choice of ¢, including one which puts point mass of 1 on 7 = r’ and
0 elsewhere, i.e. ¢(n') = 1 and ¢(n) = 0 for any i # n’. One path towards establishing the threshold 6;(«) is to simply
pick one value of 7; however, such an n cannot depend on ¢ and would thus result in a suboptimal threshold. Instead, we
will construct ¢ such that it is a discrete distribution, indexed by 7 € N, so that 7 takes values 71, . . ., 7; with probability
@1, ..., ®;; this allows each n; to depend on ¢ and therefore more finer-grained optimization of the threshold. Before
committing to the exact distribution ¢, we first illustrate how ¢; and 7; will be used in the threshold.

Note that My = Y-, -+ @i exp(1:Sy — tn7 /8) > max; ¢; exp(1;Sy — tn? /8), so for any J, we have

(M, > 16} 2 {max s exp(;S: — tn2/8) > 1/6} = {St > min (tg ol 5) } ,
v g i i
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and thus, picking 0;(«) = tBul + min; (t;“ + i ln ) would guarantee that Pr[3t : wf > 6;(a)] < o/|g).

u/|g\

Finally, we must commit to ¢;, 7;, then optimize for ¢. Let ¢, = (note that Z ¢; = 1, so this is a valid

D
distribution), 7; = 2 M and ¢ = |log,(¢)]. For i = log,(t) (without rounding), this would have yielded
0 o= 2\/2ln((logz(tHl)(log"‘(t))/(”/'g‘)) and 0,(o) = 1./2tIn((log, t)(logy t + 1)//|g|). The statement follows from
handling the numerical impact of rounding. O

Remark E.2. A key constant in the proof of the version of the algorithm that is valid in finite samples is the subgaussian
variance parameter, for which we used 1/4 (and which propagates to a multiplicative factor of \/m = 1/2 on the threshold).
This is because the variance any Bernoulli is at most 1/4; however, this also motivates the choice of constant for the
asymptotically-valid version of the test, which instead uses the variance parameter Su% (1 — Bud).

We now prove the power result.

Theorem B.2 (Power). Let T be the stopping time of Algorithm 1 with ;() as in Equation (3), C = 1/2, and w& as in
Equation (2). Let A,x = maxgeg UG —5/%. If Apax > 0, then Pr[T < oo] = 1. Furthermore, with probability 1 — /|G|,

In(|G])+In(1/« In(1/6
we have T < O (M) and for any § € (0, ¢/|g|), we have with probability at least 1 — § that T < o ( A2 / )).

max max

Proof. Let G* = argmaxgeg pc — Bud and let A == pg« — Bul.. Without loss of generality, we can consider only the
test corresponding to G* (while still testing at level ¢/|g|). Recall that for this instantiation of Algorithm 1, the test statistic
wf Y= s cit] 1[X, € G*] is simply the number of all reports belonging to G* by time ¢, and that stopping time T is the

first time where wS" surpasses the threshold 6;(«), i.e., T == inf;en+ wS > tBud. + é\/Q.OGt In (|Q|M) For
ease of notation, we will denote C; = %\/ 2.06 = 0.718 within this proof.

For the first claim, it is sufficient to show lim inf; ., Pr[T" > t] = 0.2 Recall that, by our modeling, we can consider th " to

be the sum of ¢ i.i.d. Bernoulli trials with parameter pc+. Applying Hoeffding’s inequality to this sum yields for any ¢ that

Pr[T > 1] = Pr lwtc* < tBud. + Cl\/t ‘In <|g|(2+1‘;52(t))2>]

< exp (2 <A2t — 2A01\/t ‘1n (|g|(2+l‘f2(t))2>>> .

— 0; it can thus be seen that lim;_, o Pr[T > ¢] = lim;_, o, exp(—t) = 1.

Note that w

For the second claim, we apply Hoeffding’s inequality again to see that for all ¢,
. 2 + log,(t))? . . t 1
Prl G <]E[wf}cl\/t1n <(+°5g2())) Wi <Ef] -y /5 <5>] <5

Thus, with probability at least 1 — §, for all ¢ simultaneously, th "> tug — Ch \/ tln (w). The algorithm stops

< Pr

at time ¢ if and only if

thas — C1\/t1n <(2+l?2(t))2) > tBug. —|—C1\/t1n <(2+i(/’|<‘§g2@)2>

t Ch

(24108, ()2 TN
(/i (22t 4 (om0

“For a simple proof of this fact, see the solution to Problem 1.13 in Bertsekas & Tsitsiklis (2008).

Rearranging, we have
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2
Note that we can can upper bound the denominator of the left hand side as (\/ In (M) + \/ In (W)) <

/161
I 2 . .
41n (%) . Setting W > &4 and rearranging gives
min(%/[G][,8)
t S 4C4 In(max(2/|g|, 1/9) ©)
1+ In((2 +1logy(t))2) — A2

Thus, with probability 1 — 4§, the algorithm terminates at the smallest ¢ satisfying Equation (6). The statement of the theorem
follows from separating the two cases for 6 < ¢/|g| and § > ¢/|g|, and noting that O notation suppresses the (negligible)
log-log factor. O

E.2. Omitted proofs for betting-style algorithm

We first prove Theorem B.3, restated for the sake of presentation.
Theorem B.3 (Validity). Running Algorithm 1 with 0;(a)) = In (19/a) and wE updated as per Equations (4) and (5)
guarantees that the probability that G''¢ will ever contains a group G where H§ is true is at most o, i.e.

Pr[3t: 3G € G s.t. HT holds| < a.

Proof. First note that for any G for which H§' holds, the sequence {exp(wS)};>¢ is a non-negative super-martingale. The
non-negative property follows directly from the quantity being an exponential of a real (albeit possibly negative) number,
while the fact that it is a super-martingale follows from the computations below:

Elexp(wf’)|F] = Elexp(wi 1 + In(14 A{ (1x,ea — Bud)))|F
= exp(wi’y) - (1+ Af (B[Lx,cclFi] — Bu))

= exp(wi’y) - (14 Af (ne — Bug))

<exp(wily) - (1+ A7 (Bug — Bpé))

(wi™

exp th 1)

where the first equality follows by Eq. 4, the second by re-arranging and noting that all quantities except 1x,cq are
completely determined by F.'°, and the third by definition (see Section 2). Finally, the inequality follows because
pe < Bud under H§ and AY > 0.

Next, for any group G such that ’Hg holds, we can apply Ville’s inequality (Theorem E.1), plugging in the super-martingale
{exp(wf) }+>0 and taking z to be ;(a) = log (|G| /). This yields the following guarantee:

Pr[3t : w& > log(|G|/a)] = Pr[3t : exp(w) > |G|/a]

< Elexp(w§)] - /|G|
= a/‘g|a

where the final line follows because w§' is initialized as 0 and hence exp(wf’) is equal to 1.

Finally, by union bound we get the desired guarantee:

Pr(3t: 3G € ™= st HG holds] < Y Pr[Ft:wf > log(|G]/a)]
G s.t. H§ holds

< |G s.t. HS holds| - o/|G|
< a.

Before proving Theorem B.4, we first state and prove some helper results.

1In particular, it is imposed that A be "predictable’ which precisely implies that it is fixed given F;.
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Claim E.3. Forany T > 4 and group G, we have that the expected value over the randomness in the realizations of each
X; of wqq defined as per Equations (4) and (5) can be lower bounded as

EwS > E A)| —2InT.
wf] > Lrg[%ﬁ]w( >} n

where we define WS (\) to be the quantity obtained by applying Equation (4) with A == X for all t € [T).

Proof. By the definition of regret we have that maxy¢o,1 wg(A\) — w§ < Ry. Rearranging and taking expectations, we
have
Ewf] > E [ max wg()\)} — E[Ry).
A€[0,1]
Next, it can be verified that Equation (5) implements the Online Newton Step algorithm for In(1 + A (1x,eq — Bud)) (see
Appendix C of Cutkosky & Orabona (2018)). We therefore have that Ry < ﬁn(d) In(T + 1) in general, and Ry < 21In(T)
for T' > 4. The statement of the claim plugging this into the expression above. O

pe — Bpd
Bud (1 — Bud)

The resulting expected log-wealth at time T' (had A\{, been used at every time t) is equal to

Lemma E.4. For each group G, taking \% = Proj [0,1] [ } maximizes expected log-wealth (at every step t).
E[wf(\)] =T wf

where we denote wS = E[In(1 + \5(1x,ec — Bud)| the expected one-step wealth change under the bet N,

Proof. For a fixed A, the log-wealth at time 7 is given by
WE(N) = Nrln (14 (1= Bud)) + (T — Ny)In (1 — AGud),
where Ny = ZtT:l 1x,ec. Taking expectations, we have that E[N7] = T - ug and therefore
E[wfN] =T [ueIn(1+ A1 = Bug)) + (1 = pe) In (1 = ABug)] - )

To maximize (7), we only need to find A\f, € [0, 1] that maximizes the expressions in the square brackets. Taking the
derivative we see that the function is concave, and, therefore, we can solve for Af; by setting the derivative to 0 and then

projecting the resulting value to [0, 1]. This yields A}, = Proj [0,1] [ﬂ/‘ﬁc(zi%} . Plugging this back into (7) we get
k] LG - LG

E[w§(\G)] =T [nen(1+A5(1 = Bug)) + (1 — pe) In (1 = AgBud)]
=T -E[ln(1+ A\s(1x,ec — Bug)]

::T—wf.

Remark E.5. Note that we can explicitly compute

G _ Ag _ _Ag
Wy = peln (1 + Bu"c(l—uc)) +1n (1 1—5H%) ’
where Ag = pg — B ,u%, but this quantity is difficult to analyze, and it is not clear that w< can be explicitly lower bounded
as O(Ag).
We now prove Theorem B.4, which we restate below.

Theorem B.4 (Power). Let T be the stopping time of Algorithm 1 with 0;(a)) = In(|G|/) and w& updated as per
Equations (4) and (5). If maxgeg g — Bu% > 0, then, we have that Pr[T < oo] = 1. Furthermore,

1 N In(|G)) +1n(1/a)>

w2 Wy

Mﬂgo(

where w, == maxgeg refo,1] E[In(1 4+ M(1x,cc — Bul))] is the maximal expected one-step increase in w* over all groups

and choices of \.
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Proof. Let G* := arg maxg wS and denote the corresponding one-step wealth change w, = wf*. Note that under the
alternative this will correspond to a strictly positive quantity and is equivalent to the definition in the theorem statement. We
can analyze the likelihood that its null has not been rejected by time ¢ as follows:

Pr [wf* < 1n(|g\/a)} — Pr [wf* — E[wE’] < In(I9)/a) — E[wf*]]
<Pr {wta* —EwE"] < In(I6l/a) — (t - w, — 21nt)} ,

where the inequality follows by Claim E.3 and Lemma E.4, and the fact that E[maxye[o 1y wf (A)] > Elwf (AF")] = t-w,.

Whenever ¢ is large enough such that @ < %, we have

PriwS” < In(19//a)] < Pr [wf’* — Elwf"] < In(19l/a) — 2(t - w*)} . ®)

Since v/t > Int for all ¢t € N*, this is satisfied in particular by taking t > 2 Further, note that In(191/a) < t'Z’* whenever

wi
22.1n (161/a

2
t > %ig\/a) So, for t > max{z—z, o )}, we have

Priwf < n(19//a)] < Pr [wf" —Blw] < —(t-w,)] .

Now, note that since A& € [0, 1], we have that each In(1 + A\ (1 x,c¢ — Bud)) liesin [In (1 — Bu%),In (2 — Bul)] and is
1

therefore sub-Gaussian with parameter o = % In (1 + 15T
G

; then, Hoeffding’s inequality gives

* * * * 1
Pr [%G —Elwf] < —3(t- W*)} =Pr | Y In(1+ A (Ix,ecr — Bug-)) — Elwf ] < 5t ws
1€[t]

(3t w.)?
Sexp 7ltln2(l+;)
2 1_5#%*
= eX — w%
P 21n2(1 + ﬁ)
G*
1— 0* 2
< exp (—(iﬂc)wuf-t).

where for the last inequality we used In (1 + z) < 2. Now we are ready to analyze the stopping time 7" of Algorithm 1.
Test of power one. Let E; be the event that we stop at time ¢, i.e. E; = {3G such that w® > 19//a}. We have that

Pr[T = o0] = Pr | lim ﬂsgt—'Et]

t—o0

= lim Pr[ﬂs<t‘|Et]
t—o0 -

IN

lim Pr[—FE]
t—o0

. a /e,
tlggo PrVG, wy < In(19//)]

. a* l/e
< tlgglo Pr [Wt < In(I5l/ )}
1— 02
< lim exp (_(BMG) ~wf ~t>
t—o0 2
=0.
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Expected Stopping Time. Since 7' is a positive integer, we can express the expected stopping time as

— 3 PeVG, wf < In(1Gl/a)
< iPr [(JJtG* < 1n(|g‘/a)}

4 9 o 0 2
2 “l'g/“} Zexp< (= Brg.)” -w2~t> ©

(= LS
924 92 In(I9/a) 1
- max{w?’ o } o (1= Bl )% /2) — 1
924 92 In(I9/a) 9
< max{w2, o } + = Bl Pe? (10)
. (9( 1 (g|/a)>
w? Wy

where (9) follows from the upper bound on Pr [wf" < In(I9//a)] for t > max { 2! M} derived in (8), and (10)

Wi

follows from exp(x) > 1 + x. O

F. Supplemental Material for Experimental Results
F.1. Supplemental material for vaccine side effect experiments

Data sources. The Vaccine Adverse Event Reporting System (VAERS) is a national adverse event incident database for
U.S.-licensed vaccines, co-managed by the Centers for Disease Control and Prevention (CDC) and the U.S. Food and Drug
Administration (FDA) (Chen et al., 1994; Shimabukuro et al., 2015). The database is a combination of voluntary reports
from patients that have received the vaccine, as well as mandatory reports from vaccine manufacturers and healthcare
professionals. For this case study, we filter the set of publicly-available reports from VAERS to reports about the COVID-19
vaccine with a complaint keyword including “myocarditis.” As for how a database administrator would have known to focus
on myocarditis a priori, one might imagine, for example, that the series of case studies found in early 2021 raised the alarm
that more systematic analysis was warranted for myocarditis in particular.

To determine per-demographic base rates, i.e. to compute {12 }geg, we utilize VaxView, a government dataset tracking
national vaccine coverage (publicly accessible here), managed by the CDC. VaxView does not track vaccination rates
by granular subgroups, only providing coverage rates disaggregated by age, gender, and ethnicity separately. We thus
impute the vaccination rates for intersections of subgroups (e.g., “12-17, M”) by multiplying the known marginal rates (i.e.,
M((J12717,M) = N?12717) 'N((JM))'

Additional results: Impact of Bonferroni correction. In Figure 5, we show the same axes as in Figure 3—number of
reports to first alarm on the x-axis, vs. number of permutations in which an alarm was triggered on the y-axis—for the three
algorithms at 8 = 2. Here, we show the impact of Bonferroni correction for multiple hypothesis testing on stopping time.
As expected, the invalid version of the test, which has a lower threshold for rejecting each null, stops more quickly for
all three algorithms (dashed, lighter). The difference between the invalid version and the valid version (solid, darker) is
relatively minor, though the impact varies across algorithms.
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Time to first alarm (Asymptotic Z-test, 8 =2) Time to first alarm (Finite-sample Z-test, f =2) Time to first alarm (Betting-style test, = 2)
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Figure 5: Impact of multiple hypothesis correction on stopping time across algorithms. As in Figure 3, each point on the plot reflects the
number of trials (out of 100) in which a rejection has occurred by time ¢. In all plots, the lighter, dashed line reflects stopping time of the
invalid test that does not correct for multiple testing; the dark, solid line reflects stopping time of the valid test including a Bonferroni
correction.

F.2. Supplemental material for mortgage allocation experiments
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