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Abstract

Medication prescribing errors remain a criti-
cal challenge in clinical practice, often stem-
ming from incomplete patient understanding,
ambiguous documentation, and suboptimal de-
cision support. In this paper, we propose
PRISMATIC !, a 3-layer multi-agent prescrip-
tion risk mitigation framework designed to gen-
erate safe, interpretable, and traceable drug reg-
imens by analyzing unstructured patient clin-
ical note texts. To enhance adaptability and
safety, PRISMATIC integrates two mechanisms:
(1) Dynamic Self-updating Weight Adjust-
ment (DSWA), which tunes risk factor weights
over time, and (2) Differential Feedback Cal-
ibration Mechanism(DFCM), which learns
from discrepancies with gold-standard prescrip-
tions to improve future outputs. Evaluated on a
curated dataset from MIMIC-IV, PRISMATIC
outperforms raw LLM outputs and prompting-
based baselines (Few-Shot, Chain-of-Thought,
ReAct, Tree-of-Thoughts) in reducing prescrip-
tion risks. These results highlight the potential
of multi-agent systems for improving clinical
medication decision support.

1 Introduction

Medication prescribing plays a pivotal role in pa-
tient care but remains complex and error-prone.
Prescribing decisions frequently arise from a syn-
thesis of clinical guidelines and individual clinician
judgment, resulting in significant variability, espe-
cially in challenging clinical contexts. As shown
by the 33 influencing factors identified by (Davari
et al., 2018), this variability can result in subop-
timal or harmful prescriptions. The problem is
widespread: (Algenae et al., 2020) reported that
nearly 1 in 5 adults experience adverse drug events
post-discharge, while (Camacho et al., 2024) es-
timated 10,000 errors per 100,000 admissions in
England, highlighting the urgent need for smarter

'Our implementation of PRISMATIC is available at
https://anonymous.4open.science/r/PRISMATIC.

Input:

A 67-year-old male patient. A history offtype 2 diabetes, atrial Fibrillation, and early-stage
Alzheimer's disease]is currently d ide, warfarin, and si ]

Chief Complaint: He started experiencing muscle pain and memory deterioration.

Family History: His brother died suddenly due tofunknown heart condition]

LLM
7 Prescription N\
Medication:

Based on the patient’s conditions,
it is appropriate to continue all
prescribed medications.

@3 Glyburide manages blood sugar,
warfarin pravents stroke due to
atrial Fibrillation, and simvastatin
controls cholesterol.

For muscle pain, ibuprofen may be

-3 recommended if symptoms persist.
Donepezil helps with memory.

X

(@ warfarin - Ibuprofen : DDI Risk
& ponepezil - a Family history of

PRISMATIC

4 Prescription

(@ Mapping and Risk Analysis:
[Past Medical History Risk]
Prohibition: Sulfonylureas,

Essential: Anticoagulation (warfarin)..
[Medication on Admissions Risk]
Glyburide: Hypoglycemia in elders...
Warfarin: Narrow therapeutic index..
[Pemographics Risk]cardiac death
Prescription Iteration:

(@ DDI detector:

Ibuprofen &3 Acetaminophen
@) DPI detector:

Donepezil & Rivastigmine

(§)Focusing and Final Prescription:
sudden cardiac desth {DPIRISK [Rosuvastatin, Warfarin, Rivastigmine,

K / Acetaminophen]

Figure 1: LLM Prescription vs. PRISMATIC Prescription

prescribing support tools.

Early prescribing support tools relied on static rules
(e.g., drug-drug interactions, contraindications) or
manual chart reviews (Segura-Bedmar et al., 2010,
2011). Recent NLP and deep learning models au-
tomate tasks like ADE detection and medication
extraction (Siegersma et al., 2022; Mashima et al.,
2022), but remain fragmented, focusing on iso-
lated tasks and lacking a holistic understanding of
nuanced, unstructured clinical narratives such as
symptoms, allergies, or evolving histories.

On the other hand, Large Language Models
(LLMs) have recently shown human-level capa-
bilities in reasoning and planning, spurring interest
in healthcare applications (Thirunavukarasu et al.,
2023). Studies have applied LLMs to streamline
clinical workflows (Low et al., 2025), assist with
prescribing and diagnosis (Kim et al., 2024; Chen
et al., 2025a; Pan et al., 2025), and improve patient
comprehension (Hsu et al., 2025; Hao et al., 2024).
However, the use of LLM for drug prescribing sup-
port, a domain characterized by complex reasoning
over dynamic patient-specific data, remains rela-
tively underexplored. As agent-based system de-
sign evolves, it becomes increasingly feasible to
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envision collaborative, LLM-powered multi-agent
workflows that more effectively integrate diverse
patient data and clinical knowledge to improve pre-
scribing accuracy, safety, and personalization.
Inspired by the above, in this paper, we introduced
PRISMATIC, a collaborative multi-agent architec-
ture leveraging patient statements, drug instruc-
tions, and clinical knowledge for prescription risk
inspection.

We evaluate PRISMATIC on the combined MIMIC-
IV Note (Johnson et al., 2023) and MIMIC-
IV Hosp (Johnson et al., 2024) datasets against
raw LLM outputs and strong prompting baselines
(Few-Shot, Chain-of-Thought (CoT)(Wei et al.,
2023), ReAct(Yao et al., 2023b), Tree-of-Thoughts
(ToT)(Yao et al., 2023a)). Empirical results (Fig-
ure 1) show that PRISMATIC consistently outper-
forms all baselines in resolving prescribing con-
flicts while enhancing safety, interpretability, and
traceability.

To summarize, our main contributions are as fol-
lows:

* We introduce a multi-agent system,
PRISMATIC, that leverages patient clini-
cal text and clinical knowledge to perform
prescription risk checks, assist in drug
decision-making, and generate safer,
lower-risk prescriptions.

* We introduce two mechanisms: Dynamic
Self-updating Weight Adjustment (DSWA)
and Difference Feedback Calibration Mech-
anism (DFCM) for self-adaptive risk model-
ing and iterative refinement.

» Through experiments, we demonstrate the de-
cent performance of the PRISMATIC system in
detecting and resolving prescription conflicts
compared to both raw LLM outputs and state-
of-the-art prompting engineering baselines.

2 Related Works

2.1 Multi-Agent System in Medications

Multi-agent systems have long been explored in
healthcare due to their decentralized, modular na-
ture, which enables distribution of specialized tasks
and supports dynamic decision-making in complex
clinical settings.

As one of the early explorations nearly two decades
ago, (Rodriguez et al., 2005) proposed a rule-based
agent framework to support doctor—patient collab-
oration and personalized hospital assistance. A
decade later, (Benhajji et al., 2015) introduced a

multi-agent system for managing patient flow and
hospital resource allocation.

More recently, with the rapid advancement of Al
and large language models (LLMs),multi-agent
systems have evolved significantly, overcoming
prior limitations in perception and interaction (Li
et al.,, 2024). Recent systems leverage LLMs
to enhance clinical decision-making (Chen et al.,
2025b), support surgical workflows with chain-
of-thought reasoning (Low et al., 2025), and en-
able collaborative diagnostic reasoning among doc-
tor agents (Chen et al., 2025a). Others incorpo-
rate verified knowledge tools (Gao et al., 2025) or
adaptive frameworks mimicking real-world clinical
decision-making (Kim et al., 2024). These develop-
ments underscore the growing sophistication and
promise of LLM-powered multi-agent systems in
improving healthcare delivery.

These advancements highlight the increasing so-
phistication of LLM-based multi-agent systems
in healthcare, demonstrating their potential to en-
hance decision-making processes and improve clin-
ical outcomes across various medical domains.

2.2 Retrieval-Augmented Generation (RAG)
in Medication Recommendation

Retrieval-Augmented Generation (RAG) enhances
large language models (LLMs) by retrieving rel-
evant knowledge from external sources to inform
generation, improving factual accuracy, explain-
ability, and reducing hallucinations (Lewis et al.,
2021; Gao et al., 2024; Shuster et al., 2021).
Considering the medical domain, where accuracy
and reliability are paramount, RAG has shown
promise in clinical question answering, guideline-
based support, and evidence-grounded summariza-
tion (Sohn et al., 2024; Lu et al., 2024; Lopez et al.,
2025). Several studies have used structured sources,
such as drug labels, clinical guidelines, and biomed-
ical literature, to enhance generation. For example,
MedRAG (Zhao et al., 2025) integrates LLMs with
DrugBank, UMLS, and PubMed to improve the
safety and factual precision of medical recommen-
dations.

3 Preliminary

3.1 Problem Definition

We consider the task of generating a safe and in-
terpretable prescription from unstructured clinical
text.

Input: Clinical Statement where each t; denotes a
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Figure 2: PRISMATIC Multi-Agent System Framework

segment of the patient’s unstructured clinical notes
(e.g., medications on admission, family history).

T ={t1,ta,...,tn}

Output: Prescription
P = {(dzv Uiy T, 67:)}1']\;1

Here, d; € D denotes a selected drug from the for-
mulary, u; is its dosage plan, r; is the administra-
tion route, and e; is a human-readable explanation.
To solve this problem, the following core factors
must be introduced to control risks and enhance the
rationality and safety of drug use:

1. Interactions between drugs: DDI(d;, d;)

2. Interactions between drugs and patient infor-
mation: DPI(d;, T)

3. Validation of dosage, route and explanation:
Check,,,/Check,,/Check,,

To mitigate prescription risks and prevent med-
ication errors, our system is designed to generate
prescriptions that are safe, interpretable, and trace-
able. To this end, we propose that each generated
prescription must satisfy the following criteria:
* Safety:
Vi#j: DDI(d;,dj) =0
Vi: DPI(d;,T) = 0.

* Interpretability:
Vi: Checke, =0
Each explanation e; must compliant with rele-
vant clinical guidelines and clearly articulate
the rationale for selecting d;.

* Traceability:
Vi: Check,, =0,Vi: Check,, =0
Dosage u; and administration route r; must
be verifiable, and the entire decision-making
process must be logged for audit.

3.2 LLM-based Prescription Generation

As a baseline, we implement a direct LLM-based
approach, where the entire process is treated as
an end-to-end mapping without any intermediate
analysis or structured reasoning. Formally, this can
be represented as:

F:T — P

The input clinical text T is provided to a general-
purpose language model in the form of a prompt,
and the final prescription P is generated directly.
Various prompt engineering techniques and rea-
soning strategies (e.g., CoT, ToT) are applied to
optimize the output.

4 Proposed Approach — PRISMATIC

To reduce prescription risks and prevent medication
errors in clinical adjuvant drug decision-making,
we propose PRISMATIC, a three-layer multi-agent
tactical interaction system, as illustrated in Figure 2.
The system is inspired by the behavior of a prism:
just as a prism decomposes white light into distinct
spectral components and then recombines them
into a coherent beam, PRISMATIC decomposes clin-
ical input into specialized dimensions, refines each
through agent interactions, and integrates the re-
sults to produce a safe and informed prescription.
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Figure 3: PRISMATIC Multi-Agent System Workflow

The prism mapping layer decomposes unstruc-
tured clinical notes into multiple safety-critical
aspects, including demographics, allergic history,
medication history, and medications on admissions.
Then each aspect is analyzed by specialized agents
through parallel reasoning. In the refraction itera-
tion layer, these agents continuously interact with
the prescribing agent, refining their recommenda-
tions in an iterative process that mirrors light re-
fraction, gradually reducing prescription risk and
improving decision quality. Once the aggregated
safety score (analogous to a refractive index) ex-
ceeds a predefined threshold, the system proceeds
to the prism focusing layer, where the refined out-
puts are synthesized into a final, interpretable, and
traceable prescription, much like refracted light
converging into a coherent beam. Formally, let the
input be

T = {t1,ta, ...t}

where each ¢; denotes different aspects of the pa-
tient’s unstructured clinical notes.

Our goal is to learn through a mapping layer, an
iteration layer, and a focusing layer:

Fmapping T — A= {al, ag, ... ,an},Pini

Fiteration : A, Pini — Phn
]:focusing :Pun — Prnal

where the multiple facets that affect the safety of
the prescription is defined as:

A:{al,CLQ,...

,Qn }

the output prescription Pg, ., is defined as:
k
7Dﬁnal — {(d’m Uiy Tg, ei)}i:l

Here, d; € D denotes a selected drug from the for-
mulary, u; is its dosage plan, r; is the administra-
tion route, and e; is a human-readable explanation.

4.1 PRISMATIC Framework

4.1.1 Prism Mapping Layer

Input Structuring and Analyzing. The prism
mapping layer is used to extend the mapping of
the patient’s input information to each structured
factor edge and analyze the potential medication
risks that each factor may cause. There are two
agents in this layer:

* Information Cleaner Agent(IC). IC cleans
the patient information and classifies it into
various dimensions. In our architecture, we
classify the text information into four dimen-
sions:

Fic: T — T ={tppr,tam,tpyu, troal

Basic Demographics Information (BDI)

Allergic History (AH)

Past Medical History (PMH)

Medications on Admission (MOA)

* Information Analyst Agent(IA). IA analyzes
the categorized information 7' and output the
different aspects .A of potential risks and dan-
gerous conflicts that each type of information
may trigger for reference in the subsequent



agent analysis.

Fin: T = {tpr1,tAam,tpymm, throa}

— A ={aBpr,aAn, apnmm, AMOA}

4.1.2 Refraction Iteration Layer

Prescription Generation and Conflict Inspec-
tion. Using the structured profile 7" and risk R
as input, this layer iteratively constructs, evalu-
ates, and refines candidate prescriptions by sim-
ulating multi-agent interactions. The goal is to
resolve all known drug-drug and drug-patient con-
flicts through iterative feedback. Agents tactically
collaborate through repeated “refraction” cycles,
until a stable, safe solution is reached. Key agents
include:
¢ Prescription Generator (PG). Given the
multi-dimensional patient profiles from the
mapping layer, PG prescribes through the
guidance of clinical guidelines and rule
databases. The Guidance Database (GD)
is updated from the content generated by each
round of backtracking and reflection.

Fec: T /RSP

* DDI/DPI Detector (DDI/DPI). DDI/DPI
detect potential risks in drug—drug interac-
tions (DDI) and drug—patient interactions
(DPI). We use Retrieval-Augmented Gen-
eration(RAG) to leverage the instructions of
the drugs in DrugBank Knowledge files. It re-
turns a detailed conflict report, including risk
levels and explanations.

FDpUDPI

AG
Pn R—> Rconﬂict = {(du dja Sij, eij)}

— Reconflict =
* d;, dj: Interaction drugs
* s;;: Interaction level
* e;;: Explanation for interaction

4.1.3 Prism Focusing Layer

Once the Refraction Iteration Layer produces a
regimen whose safety score meets or exceeds the
convergence criterion, the Prism Focusing Layer
performs final validation and convergence of the
prescription, ensuring all checks passed and ex-
planations attached. It employs two specialized
agents:

» Safety Checker (SC). SC conducts the final
evaluation of the prescription P, scoring it
across drug conflict score, dosage score, drug
duplication score, patient information score,
administration routes score, and drug cover-
age score, six risk dimensions using the Dy-
namic Self-updating Weight Adjustment
(DSWA) mechanism (see Section 4.2):

The SC function is defined as:

Fsc : P+ Score

’ e’
W= =g

DY j=1€%
The detailed dynamic self-updating algorithm
is displayed in Algorithm 1.

fori=1,...,6

* Retrospection Agent (RA). RA reviews the
generation process using the Differential
Feedback Calibration Mechanism (DFCM)
(see Section 4.3), comparing the final output
Piina with the ground-truth Py, analyzing dif-
ferences, and updating the guidance database
to refine future outputs from the Prescription
Generator (PG).

By “focusing” the multi-faceted outputs of the pre-
ceding layers, the Prism Focusing Layer produces
a single, optimized prescription that is safe, inter-
pretable, and fully traceable from initial input to
final recommendation.

4.2 Dynamic Self-updating Weight
Adjustment (DSWA)

To enable adaptive learning and stable conver-
gence in multi-agent collaboration, we propose
a Dynamic Self-updating Weight Adjustment
(DSWA) mechanism. DSWA allows agents to iter-
atively adjust their influence based on prescription
risk signals and performance feedback.

Prescription risks are grouped into six dimensions:
drug conflict, dosage, duplication, clinical context,
administration route, and insurance coverage. Each
is initially weighted based on empirical frequency
and clinical severity from (Friedman et al., 2007):

w((]) _ | Weconflict; Wdosage; Wduplication

Weontexts Wadministrations Wcoverage

= [0.35, 0.26, 0.15, 0.10, 0.12, 0.02]

This initial weight vector guides the Safety Checker
(SC) in evaluating risk dimensions. Based on feed-
back from intermediate prescriptions and identified



risk patterns, DSWA then updates these weights
iteratively. The adjustment process takes into ac-
count the marginal contribution of each dimension
to overall risk, enabling the system to self-correct
and better prioritize critical issues. The following
is the detailed algorithm:

Algorithm 1 Dynamic Self-updating Weight Ad-
justment

Require: Current weights w(®), scores s, smooth-
ing «, temperature (3
Ensure: Updated weights w(t*1)
1: Step 1: Compute raw weights via softmax

fori =1to6do

@; < exp (6 si)
end for
Z Z?‘:l wj
fori=1to6do

wlr-l W W; / VA
end for
Step 2: Exponential smoothing fusion
fori =1to6do

wgtﬂ) — ozwl(t) +(1
. end for
. Return w1 =0

R A A S

,_
e

— o) wiew

—_— = =
w N =

4.3 Differential Feedback Calibration
Mechanism (DFCM)

To better align with clinical standards and improve
prescription quality, we propose the Differential
Feedback Calibration Mechanism (DFCM). At
each iteration, the system compares its output Psys
with the gold-standard hospital prescription Pgt.
DFCM identifies discrepancies in drug choice,
dosage, and administration, traces their root causes,
and encodes corrective heuristics into a centralized
Guidance Database (GD). These rules refine the
Prescription Generator in future rounds, reducing
repeated errors and guiding convergence toward
clinically approved patterns.

S Experiments

5.1 Experiment Setup

Evaluation Datasets. We evaluate PRISMATIC

using a custom clinical note—prescription dataset
built from MIMIC-IV:

¢ Data Filtering and Linking. We link the

mimiciv_note and mimiciv_hosp tables via

the unique patient identifier subject_id, en-

suring that each clinical note is matched with

the corresponding hospital record. From the
diagnoses_icd table (ICD-10 version), we
select hospital admissions with 3-8 chronic
conditions (from diagnoses_icd) and 5-20
medications (from prescriptions) to ensure
moderate case complexity. admissions with 3-
8 chronic conditions to ensure moderate com-
plexity of the patient’s condition.

* Note—Prescription Pairing. Drug names are
normalized using RxNav with RxNorm terms
(U.S. National Library of Medicine, 2025)
into RxCUI. Discharge summaries are then
paired with prescriptions via subject_id and
hadm_id. That forms the CCM Dataset
(Compound Condition Medication Dataset).

* Dataset final results.

— subject_id: Patient’s unique identifier.
— text: Unstructured patient clinical text.
— prescriptions: A ground-truth list of
drugs, including drug RXCUI code,
dosage and administration route.
The final CCM Dataset includes 5,375 matched
note—prescription pairs for evaluation. Evaluation
Metrics We consider evaluating the performance
with the following metrics.

* Overlap Rate (OR). The overlap rate mea-
sures the degree of coverage between the out-
put prescription drug array P; and the ground
truth prescription label Py;i. For the i-th case:

OR = nz

* Precision (Prec.). The accuracy rate mea-
sures what proportion of the prescription drug
array P; actually need to be prescribed. For
the i-th case:

Prec. = Z ’P ﬂPgtz{
=1 ‘P}

* Exact Match Ratio (EM). The degree of per-
fect match refers to the percentage of com-
pletely correct prescriptions in the total cases.

|P; NPyl
[Py

P, correct

n

EM =

Baseline Methods.
» Zero-Shot: A single general-purpose LLM
without prompt engineering, framework, or
external knowledge.



» Few-Shot: Uses a few in-context examples
to guide the model in task understanding and
execution.

* ReAct: Integrates reasoning and action, allow-
ing the model to think first and then action.

* Chain-of-Thought: Promotes step-by-step rea-
soning before reaching a final answer.

* Tree-of-Thought:  Builds on Chain-of-
Thought by enabling exploration of multiple
reasoning paths in a tree structure.

Model | Method OR Prec. EM
| Zero-Shot 29.11 2572 205

CoT 37.40 4430 5.51

GPT-40 ToT 42.81 5054 722
ReAcT 38.63 41.11 5.12

Few-Shot 31.61 29.09 2.57

‘ PRISMATIC (Ours) 56.81 60.11 13.58

‘ Zero-Shot 2450 28.10 223

CoT 3240 3022 4.89
Llama-3.1-8B | ToT 45.86 49.03 7.66
ReAcT 39.63 41.98 7.81

Few-Shot 26.61 32.09 538

‘ PRISMATIC (Ours) 5140 56.70 10.44

Table 1: Comparison of Different Methods on GPT-40
and Llama-3.1-8B-Instruct

5.2 Main Results

The main results of our experiments on the CCM
dataset using two models (GPT-40 and Llama-3.1-
8B-Instruct) are shown in Table 1. Several key
findings emerge: First, the proposed PRISMATIC
framework consistently achieves the best perfor-
mance across all metrics and both models. In
particular, with GPT-40, it attains an overlap rate
of 56.81%, a precision of 60.11%, and an exact
match (EM) of 13.58%. Similar trends are ob-
served with Llama-3.1-8B-Instruct, confirming the
model-agnostic advantage of our multi-agent ap-
proach. Second, among baseline methods, Tree-of-
Thought performs best. Its strategy of generating
and evaluating multiple prescription plans yields
higher medication diversity and quantity, leading
to improved coverage and overlap metrics. Third,
all methods exhibit low EM scores, with the best
reaching only 14%, underscoring the persistent
gap between LLM-generated prescriptions and hu-
man clinical standards. These results demonstrate
that PRISMATIC significantly enhances prescription
generation performance over standard prompting
methods (Zero-Shot, CoT, ToT, ReAct, Few-Shot).

5.3 Quantitative Analysis

Task Complexity. To further understand the per-
formance limitations, we assess prescription ac-
curacy as patient complexity increases along two
axes—number of chronic conditions and number
of ground-truth drugs—shown in Figure 4 and Fig-
ure 5. Using PRISMATIC with GPT-40 as an exam-
ple, we observe several consistent patterns.

—=— Overlap Rate(OR)
—e— Precision(Prec.)
[ . —+— Exact Match Ratio(EM)

Performance (%)

—=— Overlap Rate(OR)
—e— Precision(Prec.)
Exact Match(EM)

/‘

Performance (%)

4
’
/

L N S Y
Number of Prescription Drugs

(b) Performance vs. Number of Prescription Drugs

Figure 4: Performance trends of different methods
across varying levels of patient and prescription com-
plexity. (a) Performance versus the number of chronic
conditions per patient. (b) Performance versus the No.
medications in the ground-truth prescription.

Precision > Overlap Rate. Across all complexity
levels, precision consistently exceeds overlap Rate.
This suggests that when a drug is recommended by
the system, it is often correct. However, the model
frequently fails to cover all necessary medications,
indicating limited recall or incomplete coverage of
the full prescription.

Performance Declines with Complexity. As ei-
ther the number of chronic conditions or the num-

Precision Heatmap
Chronic Disease Count vs. Prescription Medication Count

&
Overlap Rate (%)

4 5 6 7
Number of Chronic Diseases

Number of Prescription Drugs Range

Figure 5: Heatmap of precision across varying chronic
disease and prescription complexities.



ber of target drugs increases, model performance
declines across all metrics. This reflects increased
clinical complexity, where more comorbidities and
therapeutic demands lead to more difficult prescrip-
tion decisions.

Exact Match is Rare. When prescriptions include
over 10 drugs, achieving a complete match be-
comes nearly impossible.

5.4 Ablation Study

To assess the contributions of key components in
our framework, we conduct an ablation study on
four modules: DSWA, DFCM, and the DDI/DPI
detectors. Removing DSWA and DFCM—used
in the Safety Checker and Retrospector—leads to
noticeable drops in Precision and Overlap Rate.
Disabling DDI/DPI detectors results in a more
substantial performance decline and a sharp rise
in potential risk cases. These detectors, powered
by DrugBank via RAG, are critical for aligning
prescriptions with safety standards. As shown in
Table 2, PRISMATIC consistently outperforms the
ablated variants, underscoring the importance of
both interaction detection and iterative refinement.

Framework OR Prec. EM
w/o DSWA 48.55 55.11 11.56
w/o DFCM 49.56 59.22 13.42

w/o DDI detector | 41.25 50.22 8.56
w/o DPI detector | 44.13  49.65 7.33
PRISMATIC [ 56.81 60.11 13.58

Table 2: Ablation study of PRISMATIC by removing
each module individually.

5.5 Error Analysis

Our Safety Checker Agent (SC) generates a reflec-
tion document after each assessment, identifying
safety issues in the final prescription based on four
error categories: Basic Demographic Information
(BDI), Allergic History (AH), Past Medical History
(PMH), and Medications on Admission (MOA), as
shown in Figure 6.

Among these, allergy-related risks were minimal,

Error Distribution by Category

e - ) - )

PMH BDI AH MOA

Figure 6: Error Distribution by Category

indicating effective handling of AH. In contrast,
errors related to PMH and MOA were most fre-

quent. PMH errors highlight the need for thor-
ough review of conditions such as heart failure,
liver, or kidney disease, which critically influence
drug choice and risk of interactions. BDI also
plays an important role in customizing treatment,
with family history occasionally revealing hidden
risks. MOA errors: including omissions, du-
plications, or inappropriate continuations, reflect
challenges in accurate medication reconciliation,
further underscoring the value of traceable and
context-aware prescription generation. ?? shows
how weights adjust over iterations across six risk
dimensions. While initial rankings are mostly rea-
sonable, dosage gradually becomes the most criti-
cal factor, overtaking drug—drug interactions. This
suggests that dosage errors may play a larger role
in real-world prescription safety.

Weight Value

6 7

®

3 4 5
Round (Every 500 Cases)

Figure 7: Evolution of risk weights across six dimen-
sions in the DSWA mechanism. Every 500 cases per
iteration round. The line graph illustrates how weights
dynamically adjust over time.

6 Conclusion

In this work, we introduced PRISMATIC, a multi-
agent collaboration system to generate safe, inter-
pretable, and traceable drug regimens based on
patient clinical note texts. By integrating dynamic
feedback mechanisms: DSWA and DFCM, our
system iteratively refines its knowledge base and
prescription quality. Through layered agent col-
laboration, from data extraction to safety valida-
tion and final prescription, PRISMATIC creates
a closed-loop learning process that bridges auto-
mated reasoning with clinical guidelines. Tested on
MIMIC-1IV dataset shows our agent system consis-
tently outperforms raw LL.Ms and standard prompt-
ing methods, showcasing its effectiveness and ap-
plicability.

7 Limitations

This study has several limitations that define its
scope and suggest future research directions:



¢ Incomplete Clinical Scope: he ground truth
prescriptions used as references often include
preemptive, supportive, or prognostic medica-
tions that address comorbidities, complication
prevention, or long-term patient management.
These prescriptions reflect complex clinical
judgments extending beyond the primary diag-
nosis. However, our system primarily focuses
on generating prescriptions directly related
to the diagnosed condition, which may omit
such broader therapeutic considerations rou-
tinely made by clinicians. This gap limits the
system’s ability to fully capture the holistic
medication strategies used in real-world prac-
tice.
Limited Prescription Accuracy and Gen-
eralizability: Although the system incorpo-
rates advanced mechanisms such as dynamic
self-updating weights and differential feed-
back calibration to iteratively improve perfor-
mance, the overall accuracy and alignment
with expert prescriptions remain suboptimal,
especially in complex cases involving mul-
tiple conditions and medications. The pre-
scription generator currently struggles to pre-
cisely select optimal drugs, dosages, and ad-
ministration routes in diverse clinical scenar-
ios. Moreover, the system’s performance is
constrained by the scope and richness of the
medical knowledge integrated. Enhancing do-
main coverage with more comprehensive clin-
ical guidelines, drug databases, and real-world
practice patterns is necessary to increase ro-
bustness and clinical applicability.

* Evaluation Constraints: Our evaluation re-
lies heavily on retrospective datasets and ref-
erence prescriptions, which may not fully rep-
resent real-time clinical decision-making dy-
namics or patient-specific nuances. The ab-
sence of prospective validation in live clinical
settings restricts our ability to assess the sys-
tem’s practical utility and safety in everyday
healthcare environments.
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