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Abstract001

Medication prescribing errors remain a criti-002
cal challenge in clinical practice, often stem-003
ming from incomplete patient understanding,004
ambiguous documentation, and suboptimal de-005
cision support. In this paper, we propose006
PRISMATIC 1, a 3-layer multi-agent prescrip-007
tion risk mitigation framework designed to gen-008
erate safe, interpretable, and traceable drug reg-009
imens by analyzing unstructured patient clin-010
ical note texts. To enhance adaptability and011
safety, PRISMATIC integrates two mechanisms:012
(1) Dynamic Self-updating Weight Adjust-013
ment (DSWA), which tunes risk factor weights014
over time, and (2) Differential Feedback Cal-015
ibration Mechanism(DFCM), which learns016
from discrepancies with gold-standard prescrip-017
tions to improve future outputs. Evaluated on a018
curated dataset from MIMIC-IV, PRISMATIC019
outperforms raw LLM outputs and prompting-020
based baselines (Few-Shot, Chain-of-Thought,021
ReAct, Tree-of-Thoughts) in reducing prescrip-022
tion risks. These results highlight the potential023
of multi-agent systems for improving clinical024
medication decision support.025

1 Introduction026

Medication prescribing plays a pivotal role in pa-027

tient care but remains complex and error-prone.028

Prescribing decisions frequently arise from a syn-029

thesis of clinical guidelines and individual clinician030

judgment, resulting in significant variability, espe-031

cially in challenging clinical contexts. As shown032

by the 33 influencing factors identified by (Davari033

et al., 2018), this variability can result in subop-034

timal or harmful prescriptions. The problem is035

widespread: (Alqenae et al., 2020) reported that036

nearly 1 in 5 adults experience adverse drug events037

post-discharge, while (Camacho et al., 2024) es-038

timated 10,000 errors per 100,000 admissions in039

England, highlighting the urgent need for smarter040

1Our implementation of PRISMATIC is available at
https://anonymous.4open.science/r/PRISMATIC.

Figure 1: LLM Prescription vs. PRISMATIC Prescription

prescribing support tools. 041

Early prescribing support tools relied on static rules 042

(e.g., drug-drug interactions, contraindications) or 043

manual chart reviews (Segura-Bedmar et al., 2010, 044

2011). Recent NLP and deep learning models au- 045

tomate tasks like ADE detection and medication 046

extraction (Siegersma et al., 2022; Mashima et al., 047

2022), but remain fragmented, focusing on iso- 048

lated tasks and lacking a holistic understanding of 049

nuanced, unstructured clinical narratives such as 050

symptoms, allergies, or evolving histories. 051

On the other hand, Large Language Models 052

(LLMs) have recently shown human-level capa- 053

bilities in reasoning and planning, spurring interest 054

in healthcare applications (Thirunavukarasu et al., 055

2023). Studies have applied LLMs to streamline 056

clinical workflows (Low et al., 2025), assist with 057

prescribing and diagnosis (Kim et al., 2024; Chen 058

et al., 2025a; Pan et al., 2025), and improve patient 059

comprehension (Hsu et al., 2025; Hao et al., 2024). 060

However, the use of LLM for drug prescribing sup- 061

port, a domain characterized by complex reasoning 062

over dynamic patient-specific data, remains rela- 063

tively underexplored. As agent-based system de- 064

sign evolves, it becomes increasingly feasible to 065
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envision collaborative, LLM-powered multi-agent066

workflows that more effectively integrate diverse067

patient data and clinical knowledge to improve pre-068

scribing accuracy, safety, and personalization.069

Inspired by the above, in this paper, we introduced070

PRISMATIC, a collaborative multi-agent architec-071

ture leveraging patient statements, drug instruc-072

tions, and clinical knowledge for prescription risk073

inspection.074

We evaluate PRISMATIC on the combined MIMIC-075

IV Note (Johnson et al., 2023) and MIMIC-076

IV Hosp (Johnson et al., 2024) datasets against077

raw LLM outputs and strong prompting baselines078

(Few-Shot, Chain-of-Thought (CoT)(Wei et al.,079

2023), ReAct(Yao et al., 2023b), Tree-of-Thoughts080

(ToT)(Yao et al., 2023a)). Empirical results (Fig-081

ure 1) show that PRISMATIC consistently outper-082

forms all baselines in resolving prescribing con-083

flicts while enhancing safety, interpretability, and084

traceability.085

To summarize, our main contributions are as fol-086

lows:087

• We introduce a multi-agent system,088

PRISMATIC, that leverages patient clini-089

cal text and clinical knowledge to perform090

prescription risk checks, assist in drug091

decision-making, and generate safer,092

lower-risk prescriptions.093

• We introduce two mechanisms: Dynamic094

Self-updating Weight Adjustment (DSWA)095

and Difference Feedback Calibration Mech-096

anism (DFCM) for self-adaptive risk model-097

ing and iterative refinement.098

• Through experiments, we demonstrate the de-099

cent performance of the PRISMATIC system in100

detecting and resolving prescription conflicts101

compared to both raw LLM outputs and state-102

of-the-art prompting engineering baselines.103

2 Related Works104

2.1 Multi-Agent System in Medications105

Multi-agent systems have long been explored in106

healthcare due to their decentralized, modular na-107

ture, which enables distribution of specialized tasks108

and supports dynamic decision-making in complex109

clinical settings.110

As one of the early explorations nearly two decades111

ago, (Rodríguez et al., 2005) proposed a rule-based112

agent framework to support doctor–patient collab-113

oration and personalized hospital assistance. A114

decade later, (Benhajji et al., 2015) introduced a115

multi-agent system for managing patient flow and 116

hospital resource allocation. 117

More recently, with the rapid advancement of AI 118

and large language models (LLMs),multi-agent 119

systems have evolved significantly, overcoming 120

prior limitations in perception and interaction (Li 121

et al., 2024). Recent systems leverage LLMs 122

to enhance clinical decision-making (Chen et al., 123

2025b), support surgical workflows with chain- 124

of-thought reasoning (Low et al., 2025), and en- 125

able collaborative diagnostic reasoning among doc- 126

tor agents (Chen et al., 2025a). Others incorpo- 127

rate verified knowledge tools (Gao et al., 2025) or 128

adaptive frameworks mimicking real-world clinical 129

decision-making (Kim et al., 2024). These develop- 130

ments underscore the growing sophistication and 131

promise of LLM-powered multi-agent systems in 132

improving healthcare delivery. 133

These advancements highlight the increasing so- 134

phistication of LLM-based multi-agent systems 135

in healthcare, demonstrating their potential to en- 136

hance decision-making processes and improve clin- 137

ical outcomes across various medical domains. 138

2.2 Retrieval-Augmented Generation (RAG) 139

in Medication Recommendation 140

Retrieval-Augmented Generation (RAG) enhances 141

large language models (LLMs) by retrieving rel- 142

evant knowledge from external sources to inform 143

generation, improving factual accuracy, explain- 144

ability, and reducing hallucinations (Lewis et al., 145

2021; Gao et al., 2024; Shuster et al., 2021). 146

Considering the medical domain, where accuracy 147

and reliability are paramount, RAG has shown 148

promise in clinical question answering, guideline- 149

based support, and evidence-grounded summariza- 150

tion (Sohn et al., 2024; Lu et al., 2024; Lopez et al., 151

2025). Several studies have used structured sources, 152

such as drug labels, clinical guidelines, and biomed- 153

ical literature, to enhance generation. For example, 154

MedRAG (Zhao et al., 2025) integrates LLMs with 155

DrugBank, UMLS, and PubMed to improve the 156

safety and factual precision of medical recommen- 157

dations. 158

3 Preliminary 159

3.1 Problem Definition 160

We consider the task of generating a safe and in- 161

terpretable prescription from unstructured clinical 162

text. 163

Input: Clinical Statement where each ti denotes a 164
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Figure 2: PRISMATIC Multi-Agent System Framework

segment of the patient’s unstructured clinical notes165

(e.g., medications on admission, family history).166

T = {t1, t2, . . . , tn}167

Output: Prescription168

P = {(di, ui, ri, ei)}Ni=1169

Here, di ∈ D denotes a selected drug from the for-170

mulary, ui is its dosage plan, ri is the administra-171

tion route, and ei is a human-readable explanation.172

To solve this problem, the following core factors173

must be introduced to control risks and enhance the174

rationality and safety of drug use:175

1. Interactions between drugs: DDI(di, dj)176

2. Interactions between drugs and patient infor-177

mation: DPI(di, T )178

3. Validation of dosage, route and explanation:179

Checkui /Checkri /Checkei180

To mitigate prescription risks and prevent med-181

ication errors, our system is designed to generate182

prescriptions that are safe, interpretable, and trace-183

able. To this end, we propose that each generated184

prescription must satisfy the following criteria:185

• Safety:186

∀ i ̸= j : DDI(di, dj) = 0187

∀ i : DPI(di, T ) = 0.188

• Interpretability:189

∀ i : Checkei = 0190

Each explanation ei must compliant with rele-191

vant clinical guidelines and clearly articulate192

the rationale for selecting di.193

• Traceability: 194

∀ i : Checkui = 0, ∀ i : Checkri = 0 195

Dosage ui and administration route ri must 196

be verifiable, and the entire decision-making 197

process must be logged for audit. 198

3.2 LLM-based Prescription Generation 199

As a baseline, we implement a direct LLM-based 200

approach, where the entire process is treated as 201

an end-to-end mapping without any intermediate 202

analysis or structured reasoning. Formally, this can 203

be represented as: 204

F : T 7−→ P 205

The input clinical text T is provided to a general- 206

purpose language model in the form of a prompt, 207

and the final prescription P is generated directly. 208

Various prompt engineering techniques and rea- 209

soning strategies (e.g., CoT, ToT) are applied to 210

optimize the output. 211

4 Proposed Approach – PRISMATIC 212

To reduce prescription risks and prevent medication 213

errors in clinical adjuvant drug decision-making, 214

we propose PRISMATIC, a three-layer multi-agent 215

tactical interaction system, as illustrated in Figure 2. 216

The system is inspired by the behavior of a prism: 217

just as a prism decomposes white light into distinct 218

spectral components and then recombines them 219

into a coherent beam, PRISMATIC decomposes clin- 220

ical input into specialized dimensions, refines each 221

through agent interactions, and integrates the re- 222

sults to produce a safe and informed prescription. 223
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Figure 3: PRISMATIC Multi-Agent System Workflow

The prism mapping layer decomposes unstruc-224

tured clinical notes into multiple safety-critical225

aspects, including demographics, allergic history,226

medication history, and medications on admissions.227

Then each aspect is analyzed by specialized agents228

through parallel reasoning. In the refraction itera-229

tion layer, these agents continuously interact with230

the prescribing agent, refining their recommenda-231

tions in an iterative process that mirrors light re-232

fraction, gradually reducing prescription risk and233

improving decision quality. Once the aggregated234

safety score (analogous to a refractive index) ex-235

ceeds a predefined threshold, the system proceeds236

to the prism focusing layer, where the refined out-237

puts are synthesized into a final, interpretable, and238

traceable prescription, much like refracted light239

converging into a coherent beam. Formally, let the240

input be241

T = {t1, t2, . . . , tn}242

where each ti denotes different aspects of the pa-243

tient’s unstructured clinical notes.244

Our goal is to learn through a mapping layer, an245

iteration layer, and a focusing layer:246

Fmapping : T 7−→ A = {a1, a2, . . . , an},Pini247

248
Fiteration : A,Pini 7−→ Pn249

250

Ffocusing : Pn 7−→ Pfinal251

where the multiple facets that affect the safety of252

the prescription is defined as:253

A = {a1, a2, . . . , an}254

the output prescription Pfinal is defined as: 255

Pfinal = {(di, ui, ri, ei)}ki=1 256

Here, di ∈ D denotes a selected drug from the for- 257

mulary, ui is its dosage plan, ri is the administra- 258

tion route, and ei is a human-readable explanation. 259

4.1 PRISMATIC Framework 260

4.1.1 Prism Mapping Layer 261

Input Structuring and Analyzing. The prism 262

mapping layer is used to extend the mapping of 263

the patient’s input information to each structured 264

factor edge and analyze the potential medication 265

risks that each factor may cause. There are two 266

agents in this layer: 267

• Information Cleaner Agent(IC). IC cleans 268

the patient information and classifies it into 269

various dimensions. In our architecture, we 270

classify the text information into four dimen- 271

sions: 272

FIC : T 7−→ T ′ = {tBDI , tAH , tPMH , tMOA} 273

– Basic Demographics Information (BDI) 274

– Allergic History (AH) 275

– Past Medical History (PMH) 276

– Medications on Admission (MOA) 277

• Information Analyst Agent(IA). IA analyzes 278

the categorized information T ′ and output the 279

different aspects A of potential risks and dan- 280

gerous conflicts that each type of information 281

may trigger for reference in the subsequent 282
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agent analysis.283

FIA : T ′ = {tBDI , tAH , tPMH , tMOA}
7−→ A = {aBDI , aAH , aPMH , aMOA}

284

4.1.2 Refraction Iteration Layer285

Prescription Generation and Conflict Inspec-286

tion. Using the structured profile T ′ and risk R287

as input, this layer iteratively constructs, evalu-288

ates, and refines candidate prescriptions by sim-289

ulating multi-agent interactions. The goal is to290

resolve all known drug-drug and drug-patient con-291

flicts through iterative feedback. Agents tactically292

collaborate through repeated “refraction” cycles,293

until a stable, safe solution is reached. Key agents294

include:295

• Prescription Generator (PG). Given the296

multi-dimensional patient profiles from the297

mapping layer, PG prescribes through the298

guidance of clinical guidelines and rule299

databases. The Guidance Database (GD)300

is updated from the content generated by each301

round of backtracking and reflection.302

FPG : T ′/R GD−−→ P303

• DDI/DPI Detector (DDI/DPI). DDI/DPI304

detect potential risks in drug–drug interac-305

tions (DDI) and drug–patient interactions306

(DPI). We use Retrieval-Augmented Gen-307

eration(RAG) to leverage the instructions of308

the drugs in DrugBank Knowledge files. It re-309

turns a detailed conflict report, including risk310

levels and explanations.311

FDDI/DPI :

Pn
RAG−−−→ Rconflict = {(di, dj , sij , eij)}
7−→ Pn+1

312

– Rconflict =313

* di, dj : Interaction drugs314

* sij : Interaction level315

* eij : Explanation for interaction316

4.1.3 Prism Focusing Layer317

Once the Refraction Iteration Layer produces a318

regimen whose safety score meets or exceeds the319

convergence criterion, the Prism Focusing Layer320

performs final validation and convergence of the321

prescription, ensuring all checks passed and ex-322

planations attached. It employs two specialized323

agents:324

• Safety Checker (SC). SC conducts the final 325

evaluation of the prescription P , scoring it 326

across drug conflict score, dosage score, drug 327

duplication score, patient information score, 328

administration routes score, and drug cover- 329

age score, six risk dimensions using the Dy- 330

namic Self-updating Weight Adjustment 331

(DSWA) mechanism (see Section 4.2): 332

The SC function is defined as: 333

FSC : P 7−→ Score 334
335

w′
i =

esi∑6
j=1 e

sj
, for i = 1, . . . , 6 336

The detailed dynamic self-updating algorithm 337

is displayed in Algorithm 1. 338

339

• Retrospection Agent (RA). RA reviews the 340

generation process using the Differential 341

Feedback Calibration Mechanism (DFCM) 342

(see Section 4.3), comparing the final output 343

Pfinal with the ground-truth Pgt, analyzing dif- 344

ferences, and updating the guidance database 345

to refine future outputs from the Prescription 346

Generator (PG). 347

By “focusing” the multi-faceted outputs of the pre- 348

ceding layers, the Prism Focusing Layer produces 349

a single, optimized prescription that is safe, inter- 350

pretable, and fully traceable from initial input to 351

final recommendation. 352

4.2 Dynamic Self-updating Weight 353

Adjustment (DSWA) 354

To enable adaptive learning and stable conver- 355

gence in multi-agent collaboration, we propose 356

a Dynamic Self-updating Weight Adjustment 357

(DSWA) mechanism. DSWA allows agents to iter- 358

atively adjust their influence based on prescription 359

risk signals and performance feedback. 360

Prescription risks are grouped into six dimensions: 361

drug conflict, dosage, duplication, clinical context, 362

administration route, and insurance coverage. Each 363

is initially weighted based on empirical frequency 364

and clinical severity from (Friedman et al., 2007): 365

ω(0) =

[
ωconflict, ωdosage, ωduplication,
ωcontext, ωadministration, ωcoverage

]
=

[
0.35, 0.26, 0.15, 0.10, 0.12, 0.02

] 366

367

This initial weight vector guides the Safety Checker 368

(SC) in evaluating risk dimensions. Based on feed- 369

back from intermediate prescriptions and identified 370
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risk patterns, DSWA then updates these weights371

iteratively. The adjustment process takes into ac-372

count the marginal contribution of each dimension373

to overall risk, enabling the system to self-correct374

and better prioritize critical issues. The following375

is the detailed algorithm:

Algorithm 1 Dynamic Self-updating Weight Ad-
justment

Require: Current weights ω(t), scores s, smooth-
ing α, temperature β

Ensure: Updated weights ω(t+1)

1: Step 1: Compute raw weights via softmax
2: for i = 1 to 6 do
3: ω̃i ← exp

(
β si

)
4: end for
5: Z ←

∑6
j=1 ω̃j

6: for i = 1 to 6 do
7: ωnew

i ← ω̃i/Z
8: end for
9: Step 2: Exponential smoothing fusion

10: for i = 1 to 6 do
11: ω

(t+1)
i ← αω

(t)
i + (1− α)ωnew

i

12: end for
13: Return ω(t+1) =0

376

4.3 Differential Feedback Calibration377

Mechanism (DFCM)378

To better align with clinical standards and improve379

prescription quality, we propose the Differential380

Feedback Calibration Mechanism (DFCM). At381

each iteration, the system compares its output Psys382

with the gold-standard hospital prescription Pgt.383

DFCM identifies discrepancies in drug choice,384

dosage, and administration, traces their root causes,385

and encodes corrective heuristics into a centralized386

Guidance Database (GD). These rules refine the387

Prescription Generator in future rounds, reducing388

repeated errors and guiding convergence toward389

clinically approved patterns.390

5 Experiments391

5.1 Experiment Setup392

Evaluation Datasets. We evaluate PRISMATIC393

using a custom clinical note–prescription dataset394

built from MIMIC-IV:395

• Data Filtering and Linking. We link the396

mimiciv_note and mimiciv_hosp tables via397

the unique patient identifier subject_id, en-398

suring that each clinical note is matched with399

the corresponding hospital record. From the 400

diagnoses_icd table (ICD-10 version), we 401

select hospital admissions with 3–8 chronic 402

conditions (from diagnoses_icd) and 5–20 403

medications (from prescriptions) to ensure 404

moderate case complexity. admissions with 3- 405

8 chronic conditions to ensure moderate com- 406

plexity of the patient’s condition. 407

• Note–Prescription Pairing. Drug names are 408

normalized using RxNav with RxNorm terms 409

(U.S. National Library of Medicine, 2025) 410

into RxCUI. Discharge summaries are then 411

paired with prescriptions via subject_id and 412

hadm_id. That forms the CCM Dataset 413

(Compound Condition Medication Dataset). 414

• Dataset final results. 415

– subject_id: Patient’s unique identifier. 416

– text: Unstructured patient clinical text. 417

– prescriptions: A ground-truth list of 418

drugs, including drug RXCUI code, 419

dosage and administration route. 420

The final CCM Dataset includes 5,375 matched 421

note–prescription pairs for evaluation. Evaluation 422

Metrics We consider evaluating the performance 423

with the following metrics. 424

• Overlap Rate (OR). The overlap rate mea- 425

sures the degree of coverage between the out- 426

put prescription drug array Pi and the ground 427

truth prescription label Pgti. For the i-th case: 428

OR =
1

n

n∑
i=1

∣∣Pi ∩ Pgti
∣∣∣∣Pgti

∣∣ 429

• Precision (Prec.). The accuracy rate mea- 430

sures what proportion of the prescription drug 431

array Pi actually need to be prescribed. For 432

the i-th case: 433

Prec. =
1

n

n∑
i=1

∣∣Pi ∩ Pgti
∣∣∣∣Pi

∣∣ 434

• Exact Match Ratio (EM). The degree of per- 435

fect match refers to the percentage of com- 436

pletely correct prescriptions in the total cases. 437

EM =
Pcorrect

n
438

439

440

Baseline Methods. 441

• Zero-Shot: A single general-purpose LLM 442

without prompt engineering, framework, or 443

external knowledge. 444
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• Few-Shot: Uses a few in-context examples445

to guide the model in task understanding and446

execution.447

• ReAct: Integrates reasoning and action, allow-448

ing the model to think first and then action.449

• Chain-of-Thought: Promotes step-by-step rea-450

soning before reaching a final answer.451

• Tree-of-Thought: Builds on Chain-of-452

Thought by enabling exploration of multiple453

reasoning paths in a tree structure.454

Model Method OR Prec. EM

GPT-4o

Zero-Shot 29.11 25.72 2.05

CoT 37.40 44.30 5.51
ToT 42.81 50.54 7.22
ReAcT 38.63 41.11 5.12
Few-Shot 31.61 29.09 2.57

PRISMATIC (Ours) 56.81 60.11 13.58

Llama-3.1-8B

Zero-Shot 24.50 28.10 2.23

CoT 32.40 30.22 4.89
ToT 45.86 49.03 7.66
ReAcT 39.63 41.98 7.81
Few-Shot 26.61 32.09 5.38

PRISMATIC (Ours) 51.40 56.70 10.44

Table 1: Comparison of Different Methods on GPT-4o
and Llama-3.1-8B-Instruct

5.2 Main Results455

The main results of our experiments on the CCM456

dataset using two models (GPT-4o and Llama-3.1-457

8B-Instruct) are shown in Table 1. Several key458

findings emerge: First, the proposed PRISMATIC459

framework consistently achieves the best perfor-460

mance across all metrics and both models. In461

particular, with GPT-4o, it attains an overlap rate462

of 56.81%, a precision of 60.11%, and an exact463

match (EM) of 13.58%. Similar trends are ob-464

served with Llama-3.1-8B-Instruct, confirming the465

model-agnostic advantage of our multi-agent ap-466

proach. Second, among baseline methods, Tree-of-467

Thought performs best. Its strategy of generating468

and evaluating multiple prescription plans yields469

higher medication diversity and quantity, leading470

to improved coverage and overlap metrics. Third,471

all methods exhibit low EM scores, with the best472

reaching only 14%, underscoring the persistent473

gap between LLM-generated prescriptions and hu-474

man clinical standards. These results demonstrate475

that PRISMATIC significantly enhances prescription476

generation performance over standard prompting477

methods (Zero-Shot, CoT, ToT, ReAct, Few-Shot).478

5.3 Quantitative Analysis 479

Task Complexity. To further understand the per- 480

formance limitations, we assess prescription ac- 481

curacy as patient complexity increases along two 482

axes—number of chronic conditions and number 483

of ground-truth drugs—shown in Figure 4 and Fig- 484

ure 5. Using PRISMATIC with GPT-4o as an exam- 485

ple, we observe several consistent patterns. 486

(a) Performance vs. Number of Chronic Diseases

(b) Performance vs. Number of Prescription Drugs

Figure 4: Performance trends of different methods
across varying levels of patient and prescription com-
plexity. (a) Performance versus the number of chronic
conditions per patient. (b) Performance versus the No.
medications in the ground-truth prescription.

487

Precision > Overlap Rate. Across all complexity 488

levels, precision consistently exceeds overlap Rate. 489

This suggests that when a drug is recommended by 490

the system, it is often correct. However, the model 491

frequently fails to cover all necessary medications, 492

indicating limited recall or incomplete coverage of 493

the full prescription. 494

495

Performance Declines with Complexity. As ei- 496

ther the number of chronic conditions or the num- 497

Figure 5: Heatmap of precision across varying chronic
disease and prescription complexities.
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ber of target drugs increases, model performance498

declines across all metrics. This reflects increased499

clinical complexity, where more comorbidities and500

therapeutic demands lead to more difficult prescrip-501

tion decisions.502

Exact Match is Rare. When prescriptions include503

over 10 drugs, achieving a complete match be-504

comes nearly impossible.505

5.4 Ablation Study506

To assess the contributions of key components in507

our framework, we conduct an ablation study on508

four modules: DSWA, DFCM, and the DDI/DPI509

detectors. Removing DSWA and DFCM—used510

in the Safety Checker and Retrospector—leads to511

noticeable drops in Precision and Overlap Rate.512

Disabling DDI/DPI detectors results in a more513

substantial performance decline and a sharp rise514

in potential risk cases. These detectors, powered515

by DrugBank via RAG, are critical for aligning516

prescriptions with safety standards. As shown in517

Table 2, PRISMATIC consistently outperforms the518

ablated variants, underscoring the importance of519

both interaction detection and iterative refinement.520

Framework OR Prec. EM
w/o DSWA 48.55 55.11 11.56
w/o DFCM 49.56 59.22 13.42

w/o DDI detector 41.25 50.22 8.56
w/o DPI detector 44.13 49.65 7.33

PRISMATIC 56.81 60.11 13.58

Table 2: Ablation study of PRISMATIC by removing
each module individually.

5.5 Error Analysis521

Our Safety Checker Agent (SC) generates a reflec-522

tion document after each assessment, identifying523

safety issues in the final prescription based on four524

error categories: Basic Demographic Information525

(BDI), Allergic History (AH), Past Medical History526

(PMH), and Medications on Admission (MOA), as527

shown in Figure 6.528

Among these, allergy-related risks were minimal,

Figure 6: Error Distribution by Category

529
indicating effective handling of AH. In contrast,530

errors related to PMH and MOA were most fre-531

quent. PMH errors highlight the need for thor- 532

ough review of conditions such as heart failure, 533

liver, or kidney disease, which critically influence 534

drug choice and risk of interactions. BDI also 535

plays an important role in customizing treatment, 536

with family history occasionally revealing hidden 537

risks. MOA errors: including omissions, du- 538

plications, or inappropriate continuations, reflect 539

challenges in accurate medication reconciliation, 540

further underscoring the value of traceable and 541

context-aware prescription generation. ?? shows 542

how weights adjust over iterations across six risk 543

dimensions. While initial rankings are mostly rea- 544

sonable, dosage gradually becomes the most criti- 545

cal factor, overtaking drug–drug interactions. This 546

suggests that dosage errors may play a larger role 547

in real-world prescription safety. 548

Figure 7: Evolution of risk weights across six dimen-
sions in the DSWA mechanism. Every 500 cases per
iteration round. The line graph illustrates how weights
dynamically adjust over time.

6 Conclusion 549

In this work, we introduced PRISMATIC, a multi- 550

agent collaboration system to generate safe, inter- 551

pretable, and traceable drug regimens based on 552

patient clinical note texts. By integrating dynamic 553

feedback mechanisms: DSWA and DFCM, our 554

system iteratively refines its knowledge base and 555

prescription quality. Through layered agent col- 556

laboration, from data extraction to safety valida- 557

tion and final prescription, PRISMATIC creates 558

a closed-loop learning process that bridges auto- 559

mated reasoning with clinical guidelines. Tested on 560

MIMIC-IV dataset shows our agent system consis- 561

tently outperforms raw LLMs and standard prompt- 562

ing methods, showcasing its effectiveness and ap- 563

plicability. 564

7 Limitations 565

This study has several limitations that define its 566

scope and suggest future research directions: 567
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• Incomplete Clinical Scope: he ground truth568

prescriptions used as references often include569

preemptive, supportive, or prognostic medica-570

tions that address comorbidities, complication571

prevention, or long-term patient management.572

These prescriptions reflect complex clinical573

judgments extending beyond the primary diag-574

nosis. However, our system primarily focuses575

on generating prescriptions directly related576

to the diagnosed condition, which may omit577

such broader therapeutic considerations rou-578

tinely made by clinicians. This gap limits the579

system’s ability to fully capture the holistic580

medication strategies used in real-world prac-581

tice.582

• Limited Prescription Accuracy and Gen-583

eralizability: Although the system incorpo-584

rates advanced mechanisms such as dynamic585

self-updating weights and differential feed-586

back calibration to iteratively improve perfor-587

mance, the overall accuracy and alignment588

with expert prescriptions remain suboptimal,589

especially in complex cases involving mul-590

tiple conditions and medications. The pre-591

scription generator currently struggles to pre-592

cisely select optimal drugs, dosages, and ad-593

ministration routes in diverse clinical scenar-594

ios. Moreover, the system’s performance is595

constrained by the scope and richness of the596

medical knowledge integrated. Enhancing do-597

main coverage with more comprehensive clin-598

ical guidelines, drug databases, and real-world599

practice patterns is necessary to increase ro-600

bustness and clinical applicability.601

• Evaluation Constraints: Our evaluation re-602

lies heavily on retrospective datasets and ref-603

erence prescriptions, which may not fully rep-604

resent real-time clinical decision-making dy-605

namics or patient-specific nuances. The ab-606

sence of prospective validation in live clinical607

settings restricts our ability to assess the sys-608

tem’s practical utility and safety in everyday609

healthcare environments.610
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