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Abstract

Decision making under uncertainty is challenging since the data-generating pro-
cess (DGP) is often unknown. Bayesian inference proceeds by estimating the DGP
through posterior beliefs about the model’s parameters. However, minimising the
expected risk under these posterior beliefs can lead to sub-optimal decisions due
to model uncertainty or limited, noisy observations. To address this, we intro-
duce Distributionally Robust Optimisation with Bayesian Ambiguity Sets (DRO-
BAS) which hedges against uncertainty in the model by optimising the worst-
case risk over a posterior-informed ambiguity set. We show that our method ad-
mits a closed-form dual representation for many exponential family members and
showcase its improved out-of-sample robustness against existing Bayesian DRO
methodology in the Newsvendor problem.

1 Introduction

Decision-makers are regularly confronted with the problem of optimising an objective under un-
certainty. Let 2 € R? be a decision-making variable that minimises a stochastic objective function
f:R¥xZ — R, where Z is the data space and let P* € P(Z) be the data-generating process (DGP)
where P(E) is the space of Borel distributions over Z. In practice, we do not have access to P* but
to n independently and identically distributed (i.i.d.) observations D := &;.,, ~ P*. Without knowl-
edge of the DGP, model-based inference considers a family of models Pg := {Pg : € O} C P(E)
where each Py has probability density function p(¢|6) for parameter space © C R”. In a Bayesian
framework, data D is combined with a prior 7(6) to obtain posterior beliefs about 6 through I1(6|D).
Bayesian Risk Optimisation (Wu et al., 2018) then solves a stochastic optimisation problem:

min Eoiop) [Ee~e, [f(2, S]] M

However, our Bayesian estimator is likely different from the true DGP due to model and data un-
certainty: the number of observations may be small; the data noisy; or the prior or model may be
misspecified. The optimisation problem (1) inherits any estimation error, and leads to overly opti-
mistic decisions on out-of-sample scenarios even if the estimator is unbiased: this phenomenon is
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Figure 1: Illustration of the construction of the BDRO and DRO-BAS optimisation problems for
three i.i.d. posterior samples 61, 62,6035 ~ II(6 | D). BDRO seeks the decision that minimises the
average worst-case risk between the three ambiguity sets shown in figure (a) whereas DRO-BAS
targets the decision minimising the worst-case risk over the ambiguity set shown in (b).

called the optimiser’s curse (Kuhn et al., 2019). For example, if the number of observations is small
and the prior is overly concentrated, then the decision is likely to be overly optimistic.

To hedge against the uncertainty of the estimated distribution, the field of Distributionally Robust
Optimisation (DRO) minimises the expected objective function under the worst-case distribution
that lies in an ambiguity set U C P(ZE). Discrepancy-based ambiguity sets contain distributions that
are close to a nominal distribution in the sense of some discrepancy measure such as the Kullback-
Leibler (KL) divergence (Hu and Hong, 2013), Wasserstein distance (Kuhn et al., 2019) or Max-
imum Mean Discrepancy (Staib and Jegelka, 2019). For example, some model-based methods
(Iyengar et al., 2023; Michel et al., 2021, 2022) consider a family of parametric models and cre-
ate discrepancy-based ambiguity sets centered on the fitted model. However, uncertainty about the
parameters is not captured in these works, which can lead to a nominal distribution far away from
the DGP when the data is limited. The established framework for capturing such uncertainty is
Bayesian inference.

The closest work to ours, using parametric Bayesian inference to inform the optimisation problem,
is Bayesian DRO (BDRO) by Shapiro et al. (2023). BDRO constructs discrepancy-based ambiguity
sets with the KL divergence and takes an expected worst-case approach, under the posterior distribu-
tion. More specifically, let U, (Py) := {Q € P(2) : dx(Q||Pg) < €} be the ambiguity set centered
on distribution Py with parameter € € [0, c0) controlling the size of the ambiguity set. Under the
expected value of the posterior, Bayesian DRO solves:

min Egonpy | sup  Eewglf(z,6)]], 2)
rERY QEU.(Py)

where Eg i) [Y] := [ Y (9)II(0 | D) df denotes the expectation of random variable Y : © —
R with respect to II(¢ | D). A decision maker is often interested in protecting against and quanti-
fying the worst-case risk, but BDRO does not correspond to a worst-case risk analysis. Moreover,
the BDRO dual problem is a two-stage stochastic problem that involves a double expectation over
the posterior and likelihood. To get a good approximation of the dual problem, a large number of
samples are required, which increases the solve time of the dual problem.

We introduce DRO with Bayesian Ambiguity Sets (DRO-BAS), an alternative optimisation objec-
tive for Bayesian decision-making under uncertainty, based on a posterior-informed ambiguity set.
The resulting problem corresponds to a worst-case risk minimisation over distributions with small
expected deviation from the candidate model. We go beyond ball-based ambiguity sets, which are
dependent on a single nominal distribution, by allowing the shape of the ambiguity set to be in-
formed by the posterior. For many exponential family models, we show that the dual formulation of
DRO-BAS is an efficient single-stage stochastic program.



2 DRO with Bayesian Ambiguity Sets

We propose the following DRO-BAS objective:

min su E¢ =(&)],

wER @:EGNH[D(%,M)]S e [f=(¢) ®)
where Q € P(Z) is a distribution in the ambiguity set, f,(£) := f(x,&) is the objective function,
D : P(E) x P(E) — Ris adivergence, and € € [0,00) is a tolerance level. The ambiguity set is
informed by the posterior distribution IT by considering all probability measures Q € P (=) which
are e-away from [Py in expectation, with e dictating the desired amount of risk in the decision.

The shape of our ambiguity set is flexible and driven by the posterior distribution. This is contrary to
standard ambiguity sets which correspond to a ball around a fixed nominal distribution. The DRO-
BAS problem (3) is still a worst-case approach, keeping with DRO tradition, instead of BDRO’s
expected worst-case formulation (2), see Figure 1.

The Bayesian posterior I1(# | D) targets the KL minimiser between the model family and P*
(Walker, 2013), hence it is natural to choose D(Q,Py) to be the KL divergence of Q with re-
spect to Py denoted by dk(Q|Pg). This means that as n — oo the posterior collapses to
6o := argming.g dxi (P*,Py) and the ambiguity set is just a KL-ball around Py,. Using the KL
divergence in the DRO-BAS problem in (3), it is straight-forward to obtain an upper bound of the
worst-case risk for general models (see Appendix B.1 for a proof):

sup Eeglfz(§)] < iI;f ~ve + Egom1 {7 InE¢.p, {exp (fm(f))” ) 4
720 vy

Q:Eg~ni[drr(Q[|Po)]<e

Exact closed-form solutions of DRO-BAS can be obtained for a wide range of exponential family
models with conjugate priors. When the likelihood distribution is a member of the exponential
family, a conjugate prior also belongs to the exponential family (Gelman et al., 1995, Ch. 4.2). In
this setting, before we prove the main result, we start with an important Lemma.

Lemma 1. Let p(€ | 0) be an exponential family likelihood and 7 (6), IL(6 | D) a conjugate prior-
posterior pair, also members of the exponential family. Let 1,7, € T be hyperparameters of the
prior and posterior respectively, where T is the hyperparameter space. Let 6,, € © depend upon T,
and let G : T — R be a function of the hyperparameters. If the following identity holds:

Eot [lnp(& | )] = np(€ | 0,) — G(7a), 5)
then the expected KL-divergence can be written as:
Egm [dx(Q[[P)] = dxr(Q, Py, ) + G(7n)- (6)

The condition in (5) is a natural property of many exponential family models, some of which are
showcased in Table 1. Future work aims to prove this for all exponential family models. It is straight-
forward to establish the minimum tolerance level €,,,;,, required to obtain a non-empty ambiguity set.
Since the KL divergence is non-negative, under the condition of Lemma 1, for any Q € P(Z):

EQNH[dKL(Q”]PQH = dKL(QJP)g") + G(Tn) 2 G(Tn) = emin(n). (7)
We are now ready to prove our main result.
Theorem 1. Suppose the conditions of Lemma 1 hold and € > €pin(n) as in (7). Let 7, € T,

0, €0,and G : T — R. Then

| L0
oD Bl (6] = inf 9(e = Glr) + 1 Eenyqn,y e ()] )

To guarantee that the DRO-BAS objective upper bounds the expected risk under the DGP, the
decision-maker aims to choose ¢ large enough so that P* is contained in the ambiguity set. The
condition in (5) yields a closed-form expression for the optimal radius €* by noting that:

" = Egni[dir (P*[|Pg)] = dir (P*, Py, ) + G(74). )
If the model is well-specified, and hence P* and IP5 belong to the same exponential family, it is
straightforward to obtain €* based on the prior, posterior and true parameter values. We give exam-
ples in Appendix A. In practice, since the true parameter values are unknown, we can approximate
€* using the observed samples. It follows that for any € > €* > €in(n):

Eep[f(2,€)] < sup Eenq[fz(§)]-

Q:Eg~m[drL(Q|Pg)]<e



Table 1: Examples for Theorem 1 of the parameter 6,, and the function G(7,,) for different likeli-
hoods p(§ | 0) with conjugate posterior IT1(6 | 7,,) and posterior hyperparameters 7,,. The normal,
normal-gamma, exponential, and gamma distributions are denoted N, NG, Exp, and Ga respec-
tively. See the supplementary material for the definitions of 7,, and the derivations of 8,, and G(7,,).
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Figure 2: The out-of-sample mean-variance tradeoff (in bold) while varying ¢ for DRO-BAS and
BDRO when the total number of samples from the model is 25 (left), 100 (middle), and 900 (right).

3 The Newsvendor Problem

Experiment setup. We evaluate DRO-BAS against the BDRO framework on a univariate
Newsvendor problem with a well-specified univariate Gaussian likelihood with unknown mean
and variance (Appendix D showcases a misspecified setting). The goal is to choose an inventory
level 0 < z < 50 of a perishable product with unknown customer demand £ € R that minimises the
cost function f(x,€&) = hmax(0,x — &) + bmax(0,£ — x), where h and b are the holding cost and
backorder cost per unit of the product respectively. We let P* be a univariate Gaussian A/ (14, 02)

with p, = 25 and 02 = 100. For random seed j = 1,...,200, the training dataset Dg ) contains

n = 20 observations and the test dataset D%) contains m = 50 observations. The conjugate prior
and posterior are normal-gamma distributions (Appendix A.2). N is the total number of samples
from each model. For each seed j, we run DRO-BAS and BDRO with N = 25,100, 900 and across
21 different values of e ranging from 0.05 to 3. For DRO-BAS, N is the number of samples from
p(€ | 0,) and for BDRO, N = Ny x N¢ where Ny is the number of posterior samples and N¢ likeli-
hood samples due to the double expectation present; we set Ng = IN¢ to compare models on an equal
N total samples regime. For a given €, we calculate the out-of-sample mean m () and variance v(e)

of the objective function f(xgj), fl) over all fz € D%) and over all seeds j = 1, ..., 200, where xgj)
is the optimal solution on training dataset Df«f ) (see Appendix C).

Analysis. Figure 2 shows that, for small sample size N = 25,100, our framework dominates
BDRO in the sense that DRO-BAS forms a Pareto front for the out-of-sample mean-variance tradeoff
of the objective function f. That is, for any €1, let mppro(€1) and vppro(€1) be the out-of-sample
mean and variance respectively of BDRO: then there exists e with out-of-sample mean mpas(€2)
and variance vgas (62) of BAS-DRO such that mBAs(Eg) < mBDRO(€1) and vpas (62) < UBDRo(el).
When N = 900, Figure 2 shows DRO-BAS and BDRO lie roughly on the same Pareto front. To
summarise, BDRO requires more samples N than DRO-BAS for good out-of-sample performance,



likely because BDRO must evaluate a double expectation over the posterior and likelihood, whilst
DRO-BAS only samples from p(¢ | 6,,). For fixed N, the solve times for DRO-BAS and BDRO are
broadly comparable (see Appendix C).

4 Discussion

We proposed a novel approach to Bayesian decision-making under uncertainty through a DRO ob-
jective based on posterior-informed Bayesian ambiguity sets. The resulting optimisation problem is
a single-stage stochastic program with closed-form formulation for a variety of exponential-family
models. The suggested methodology has good out-of-sample performance, as showcased in Fig-
ure 2. In our recent work (Dellaporta et al., 2024), we have also extended DRO-BAS to a gen-
eral formulation for exponential family models and investigated alternative Bayesian ambiguity sets
based on the posterior predictive distribution. Finally, whilst DRO-BAS offers protection against
distributional ambiguity, the dependence of DRO-BAS on the Bayesian posterior makes it vulnera-
ble to model misspecification. Future work will explore robust Bayesian ambiguity sets that address
model misspecification through robust posteriors and discrepancies.
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Supplementary Material

The Supplementary Material is organised as follows: Appendix A provides details for all the expo-
nential family models discussed in Table 1, while Appendix B contains the proofs of all mathemat-
ical results appearing in the main text. Appendix C provides additional experimental details for the
Newsvendor problem in Section 3. Finally, in Appendix D we present experimental results for the
newsvendor problem example with a misspecified model.

A Special cases

We derive the values of G(7,,) and @, for different likelihoods and conjugate prior/posterior in
Table 1. Each subsection contains a corollary with the result in Table 1.

A.1 Gaussian model with unknown mean and known variance

Let the random variable & be univariate and have continuous support. We assume the variance o2
of ¢ is known. We estimate the mean of a univariate Gaussian distribution with known variance o2.
The example can be found in (Bishop, 2006, Section 2.3.6). We define our parameter 6 to be the

unknown mean p and we place a Gaussian prior () over it.

Definition 1 (Gaussian with unknown mean and known variance). The likelihood is p(§ | p) =

N (u, 02), the prior over pis w(p) = N (o, 03), and the conjugate posterioris (u | D) = N (1 |
2

tn,O7), where

. o2 n nag . 1._1+n A'_lif
Hn = n0§+02'u0 nongJQM o2 g2 2 'u'_nizl v

Lemma 2. Let p, € Rand 0,0, € Ry. Then

2
0-1’7,
E,LLNN(,U«n,JEL) [IOgN(M702)] = IOgN(Mvu 02) - 252

Proof. The result is a special case of (Stratos, 2023, Lemma H.10). O

Corollary 1. When the likelihood is a Gaussian distribution with unknown mean and known vari-

ance o2 and the prior and posterior are Gaussian distributions (see Definition 1), then Theorem 1
2

holds with 0,, = i, and G(T,,) = %
Proof. Lemma 2 shows that the condition (5) in Lemma 1 holds, thus Theorem 1 follows. ]

Tolerance level € In the well-specified case, where we assume that P* := P} for some 6* € ©, it
is easy to obtain the required size of the ambiguity set exactly. Let §* := p* and P* := N (u*, 0?).
By Corollary 1 it follows that:

(1 — 1) +0n

Egm N (pn,02) [dxL(P*,Pg)] = 902

(10)

So for a fixed finite sample €1, ~ P*, if € > ¢ = UC=M2)"F% it follows that DRO-BAS
upper-bounds the target optimisation objective:

EEN]P’* [fz(g)] < Sup Eﬁ’v@[fw(g)]

B Q:Egri(.jey.,,) [dxr(Q || Po)]<e

In practice, since p* is unknown, €* can be approximated by using the sample mean.



A.2 Gaussian Model with Unknown Mean and Variance

In this section, we consider a Bayesian model that estimates the unknown mean and variance of a
uni-variate Gaussian distribution. We define our model in Definition 2, then prove some preliminary
results for the normal-gamma distribution, before proving our main result in Lemma 4.

Definition 2 (Unknown mean and variance of a Gaussian). Following (Murphy, 2023, Chap-
ter 3.4.3), we place a normal-gamma prior over the mean . and precision A\ = o~2. The normal-
gamma prior is the conjugate to a Gaussian likelihood and results in a normal-gamma posterior
distribution.

Likelihood: p(& | pu, \) = N (€ | p, A™1)
Prior: (1, A) = NG(p, A | o, Ko, @0, Bo) = N (1 | o, (kX)) - Ga(A | e, Bo)
Posterior: (i, A | D) = NG(pty A | fin, Kny Oy Br) = N (| pns (M) ™) - Ga(X | o, Br)

where

Kol —|—n§ n — E f
(0720} n + =
“n = 7KI’ K}n = I‘io + TL, an . 040 27 61’7, n 4 )

’ion(gn - ,UO)2
Bn =B+ = Z §n W

In Lemma 4, we derive condition Equation (5) for a Gaussian model with unknown mean and un-
known variance. Before proceeding, we need to define the gamma and digamma functions and recall
the moments of the normal-gamma distribution.

Definition 3. The gamma function T : N — R and digamma function ) : N — R are

I'(z) :=(z—1)! P(z) = ilnF(z:).

dz
Lemma 3. Let NG(u, A | fin, in, On, Br) be a normal-gamma distribution with parameters ji,, €
R and Ky, oy, B € Ry. The moments of the normal-gamma distribution are

2 On

EnclIn A = ¢(an) —InBn, EncN = =%, Enc[M Enc[M?] = —+un T

(79
= Hn—7,
B " Bn
where 1) : N — R is the digamma function from Definition 3.
Lemma 4. Let j1,, € R and k., auyy,, B € Ry Then

N\ 171
ENG(,LL,M#W,,Rn,an,ﬁn) [IDN(f ‘ 12 )‘_1)] = lnN (5 | Hns g) - 5 (I{ +In Qp — ¢(C¥n)>

n

where 1) : N — R is the digamma function from Definition 3.

Proof. First, observe that the natural logarithm of the Gaussian distribution may be re-written as

In <(;ﬂ exp (—g@ - m?))

1 1 A )
1 1 1., 1.,
= 21n)\ 21n27r 2)\£ + Aué 2)\,u.

A€ ] p, A7)

In what follows, for shorthand, we denote the expectation En G (u,\jun,rn,an,8x) 88 Eua~NG:



Epaone [IMN(E ] p,A™h]
(3) 1 1 1., 1. 5
ZE NG |=InA—=In27 — = -
UA~NG [2 nai 5 In2m 2/\5 + Mg 2>\u

i) 1 1 1 1
@ 3 In 27 + §]EH,A~NG [lnA] — 552 Eupone N+ & Eunone M — Epaona [M?]

2

(ii5) 1 1 1 50m a, 1/1 9 Olp
=" —=In2 a n -1 n) = 5 n, o\ -

g In2m g (lan) =) =t a b =5 iy TG,
(iv) 1 1 1 (079 2
2 2w+ = — By — — ) — —2 (¢ -

n2n g (Ve ~ g~ L) < 2 (e )
) 1 1

1 1
= —§1n277 ~3 (lnﬁn —Ina, +Ina, —¥(ay,) + K) + Inexp <_2/3n (€ — Hn)2>

n
Qn

w1 1\ 1 (. B 1 )
= =3 (lnan w(an)Jrﬁ > 2ln <27ra + Inexp 2% (& — pn)

n n

(vid) 1 1 1 1 1 2
= -3 Ia - 1 - — Mn

(veti) 7% <ln04n —(an) + Kl) +InN <£ | fin, 6")

n an

where in equation (i) we take the expectation over the normal-gamma distribution; (ii) we apply
linearity of expectation; (iii) we use the moment-generating functions from Lemma 3; (iv) we com-
plete the square; (v) we add and subtract In «,,; (vi) and (vii) we re-arrange and apply log identities;
and finally in (viii) we use the definition of a Gaussian probability density function. O

Corollary 2. When the likelihood is a Gaussian distribution with unknown mean and variance, and
the conjugate prior and posterior are normal-gamma distributions (see Definition 2), then Theo-

rem 1 holds with 0, = (i, 22) and G(r,,) = } (m an — blan) + %)

Proof. Lemma 4 shows that the condition (5) in Lemma 1 holds, thus Theorem 1 follows. O

Tolerance level ¢ In the well-specified case, where we assume that P* := [P} for some 0* € O,
it is easy to obtain the required size of the ambiguity set exactly. Let 6* := (u*, )\*_1) and P* :=
N (u*, \*~1). Using Corollary 2 we obtain:

E/L,ANNG(/L,)\Wn,K,n,(xn,ﬂn) [dKL(P*vN(g | My )‘71))]

= dKL (P* H N (Mna ?)) + % (K:l + lnan - 1/J(04n)>

_ B\ N mpn)? 111
111( /\an + 2% 2+2 Kn+lnozn Y(ay)

_ % (h’l ()‘*Bn) n )\*_1 + (/J* _ /ffn)Q) — 14 i _ ¢(an)> .

9 8u Kn
Qp
A.3 Exponential likelihood with conjugate gamma prior

Definition 4. The likelihood p(§ | 0) is an exponential distribution Exp(§ | 0) where 0 > 0 is the
rate parameter. The prior w(0) is a gamma distribution Ga(0 | ag, Bo) with shape g > 0 and
rate By > 0. The parameters o, By, of the posterior w(6 | D) = Ga(0 | an,S,) are given by
ay, = oo +n and ﬂn = BO + Z&ED €i~



Lemma 5. When the likelihood is an exponential distribution with gamma prior and posterior (see
Definition 4), then

Ega(9|a,,8,) I Exp(§ | 8)] = In Exp <§ | a") + () — In oy,

n

Proof. Starting from the left-hand side, we take the log of the PDF of the exponential distribu-
tion, then use the logarithm expectation of the gamma distribution, and finally re-arrange using log
identities:

Ecaolan.8,) M EXD(E | )] = Ega(ola,,8,) 6 — 6¢]

= () —nf, - g—g

=Y(ap) —lna, +1n On _ %5

Brn  Bn
=Y(ap) —lna, +1n (ZZ exp <—g: ))

= ¢Y(an) — Inay, + InExp (§ \ ?) .

The last line follows by the definition of the PDF of the exponential distribution. O

Corollary 3. When the likelihood is an exponential distribution with gamma prior and posterior,
then Theorem 1 holds with 0, = 5= and G(7,) = () — Incuy,.

Proof. Lemma 5 shows that the condition (5) in Lemma 1 holds, thus Theorem 1 follows. O

Tolerance level € In the well-specified case, where we assume that P* := P} for some 6* € ©, it
is easy to obtain the required size of the ambiguity set exactly. Let 6* be the true rate parameter, i.e.
P* := Exp(#*). Using Corollary 3 we obtain:

EGa(|an,,) [dxL (P, Exp(0)]

— dw <1P>* | Exp (;‘")) + P(0m) — In(an)
* Qp, Qp,
=In(6*) — In (571) + v 1+ ¢Y(ay) — In(ay).

B Proofs of Theoretical Results

B.1 Proofs of DRO-BAS upper bound in Equation (4)

Before proving the required upper bound, we recall the definition of the KL divergence and its
convex conjugate.

Definition 5 (KL-divergence). Let i, v € P(Z) and assume p is absolutely continuous with respect
tov (u K v). The K L-divergence of i, with respect to v is defined as:

)= [ (455 ) utae)

Lemma 6 (Conjugate of the KL-divergence). Let v € P(Z) be non-negative and finite. The convex
conjugate d¥; (-||v) of dgr(-||v) is

i) = ([ expyar).
Proof. See Proposition 28 and Example 7 in Agrawal and Horel (2021). 0
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Proof of Equation 4. The result follows from a standard Lagrangian duality argument and an appli-
cation of Jensen’s inequality. More specifically, we introduce a Lagrangian variable v > 0 for the
expected-ball constraint on the left-hand side of (4) as follows:

(@)

sup Eq[f:] < inf  sup Eq[f.] + ve — vEn [dke (Q||Pg)]
Q:Egrri[di. (Q[IPo)] <e 720 gep(E)
Wint ye+ sup  Eqlfe] — En [vdk(QPy)]
720 QeP(E)

2 iuf e+ (B b ([B)])" (£2)

(iv)
< inf e+ En [(ydxe([B0))" (f:)]

© 1nf ve+ En [fylnElps {exp({;)” .
V>

Inequality (i) holds by weak duality. Equality (ii) holds by linearity of expectation and a simple
rearrangement. Equality (iii) holds by the definition of the conjugate function. Inequality (iv) holds
by Jensen’s inequality (E[-])* < E[(-)*] because the conjugate is a convex function. Equality (v)
holds by Lemma 6 and the fact that for v > 0 and function ¢, (v¢)*(y) = v¢*(y/7)-

B.2 Proof of Lemma 1

Starting from the left-hand side, we have

[dKL(QHPO)] Eew(em) { HQ(i) In (p{??&)) df}

(44)

= Eg~r(oD) [
(

\

(60 4(6) ~ 4(©) n € | 9) e
(m)/ q(&)1In (q(€)) — q(&) - EgNﬂ(e\D) [In (p(¢ ] 0))]dg
- /:q(&) I (¢(€)) = 4(&) - (0 p(€ | ) = G(7w)) d€

@ q<s>1n( <5(|; ))dg+ JRGRECAEE

Y 4k (QIIP5, ) + EglG(7)]
di((€)[P(€ | 0,)) + Glr)-

(vn)

where (i) is by the definition of the KL-divergence; (ii) follows by log properties; (iii) holds by
linearity of expectation; (iv) holds by condition (5) in Lemma 1; (v) holds by rearrangement and
properties of log; (vi) holds by the definition of the KL-divergence and the definition of Eq; and
(vii) holds by the expected value of a constant.

B.3 Proof of Theorem 1

We begin by restating the Lagrangian dual from the proof of Equation (4), but with the added claim
that strong duality holds between the primal and dual problems:

sup Eglf:] = inf  sup Eq[fz] +ve — vEn [d(Q|Py)] - (11)
Q:Eo~rr[dxe(QIPo)]< 720 Qep(8)
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Proof. The conditions under which our claim of strong duality holds will be proved later. Next, we
substitute the right-hand side of equation (vi) above into the dual problem in (11):

sup Eenq[fz(£)]
Q:Eg~n[dkL(Q || Po)]<e

= inf ve+ sup /_ fo(©)q(€) A€ — v (dx (Q || p(€ | 6)) + G(7))

720 QePE®) Jz
= inf e —1G(m) + (v (- | p(E | 02)))" (fa(©))

inf v(e — G(m)) + vYInE¢peia,.) [exp (fwv(ﬁ))} ,

v=>0

where the second and third equality holds by the definition of the conjugate of the KL-divergence
and by Lemma 6.

Finally, it remains to argue that strong duality holds. First, note that the primal problem is a concave
optimisation problem with respect to distribution Q. Second, when ¢ > G(7,,), then distribution
Q = p(& | 0,,) is a strictly feasible point to the primal constraint because

Eon|dk (Q || Pg)] = 0 < € — G(mn).

C Newsvendor Problem - Additional Details

We provide additional details about our Newsvendor experiment in Section 3 when P* is a Gaussian
distribution with y, = 25 and o2 = 100.

Hyperparameters. The prior and posterior are normal-gamma distributions. We set the prior
hyperparameters to be o = 0 and kg, ag, So = 1. The derivation of the hyperparameters can be
found in Definition 2.

Values of ¢,,;, and ¢*. From Table 1 and equation (7), the value of €,;, is 0.047. From equa-
tion (9), the average value of €* over all J seeds is 0.089 with standard deviation 0.048.

Implementation. We implemented the dual problems for DRO-BAS (Theorem 1) and BDRO
(Shapiro et al., 2023) in Python using CVXPY version 1.5.2 and the MOSEK solver version 10.1.28.
Our implementation uses disciplined parametrized programming (Agrawal et al., 2019) which - after

an initial warm start for seed j = 1 - allows us to solve subsequent seeds j = 2, ..., J rapidly (see
Table 2). We used a 12-core Dual Intel Xeon E5-2643 v3 @ 3.4 Ghz with 128GB RAM.

Out-of-sample mean and variance. For a given € and seed j, let the optimal solution be 2(/) (¢).
We calculate the out-of-sample mean m()(¢) = E 0 [f (29 (€), )] and variance vU)(¢) =

Var,_s0) [f(29)(e), &)] of the objective under the empirical test distribution P Fora given ¢, the
out-of-sample mean m(¢) and variance v(¢) across all seeds is

J 1 4 )
Z v (€) + 51 Z (mm(e) — m(e)) .

The out-of-sample variance v(¢) is equal to the mean of the variances v\/)(¢) plus the variance of
the means m ) (¢) (Gotoh et al., 2021).

~l =

L~ )
(CRS DML

Solve time. On the initial warm-start seed j = 1, for each N, DRO-BAS solves the dual prob-
lem from Theorem 1 faster than the BDRO dual problem. For example, when N = 900, DRO-
BAS solves problems in (.27 seconds on average, whilst BDRO solves problem in 5.56 sec-
onds. These results suggest that, for fixed NN, if the solve is started from scratch with no warm
start, then DRO-BAS will solve instances faster than BDRO. For seeds j = 2,...,.J, disciplined
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Table 2: Average (AVG) and standard deviation (STD) of the solve time for initial warm start on

seed j = 1 and for subsequent seeds j = 2. .., J. Distribution P* is a Gaussian A/ (25, 100).

Solve time in seconds AVG (STD)

j=1 j=2,...,J
N DRO-BAS BDRO DRO-BAS BDRO
25  0.02(0.00) 0.07 (0.02) 0.01 (0.00) 0.01 (0.00)
100  0.03 (0.00) 0.15(0.03) 0.02 (0.00) 0.03 (0.00)
900 0.27 (0.02) 5.56 (0.05) 0.40 (0.11)  0.23 (0.02)
25 samples 100 samples 900 samples
--e: BAS-DRO 3.¢°
40 —=— BDRO 1 1 !.f
<38
g 36
34 0 5(', E %O
S o 1,0.05
(190 @ 0.0 5@
3] 0.T '-~....0A.0_5_

475 500 525 550 575 600 625 650 675475 500 525 550 575 600 625 650 675475 500 525 550 575 600 625 650 675
out-of-sample variance out-of-sample variance out-of-sample variance

Figure 3: The out-of-sample mean-variance tradeoff on the truncated-normal dataset when varying
the radius e for DRO-BAS and BDRO when the total number of samples from the model is 25 (left),
100 (middle), and 900 (right).

parametrized programming (DPP) significantly speeds up the solve for BDRO: the average solve
time for seeds j = 2,...,J is 0.40 seconds when N = 900. In contrast, DPP does not speed up
the solve for DRO-BAS: the average solve time for seeds j = 2,...,J is 0.40 when N = 900.
We conjecture that the speed up for BDRO using DPP is because BDRO has Ny Lagrangian dual
variables compared to DRO-BAS having exactly one Lagrangian dual variable. BDRO then benefits
from the warm start because it can reuse the presolve effort spent on the Ny dual variables spent
during the warm start.

D Misspecified Supplementary Experiments - Truncated Normal

In this section, we present additional experiments when the data-generating process P* is a truncated
normal distribution. The truncated normal has mean g, = 10 and variance 02 = 100. The likelihood
is a Gaussian distribution, so our model is misspecified. The conjugate prior and posterior are still
normal-gamma distributions with the same hyperparameters as Section 3. The experimental setup is
also the same as Section 3: the values of €, N, n, m, and J are all specified the same.

Analysis. When the likelihood is misspecified, Figure 3 shows the out-of-sample mean-variance
tradeoff is again a Pareto front. This is the same conclusion as the well-specified case in Section 3.
Furthermore, when N = 900, DRO-BAS has a small advantage on the mean-variance tradeoff.

Solve time. Table 3 shows the same conclusions about the solve time from Appendix C can be
made about the solve time for the truncated normal data-generating process.
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Table 3: Average (AVG) and standard deviation (STD) of the solve time for initial warm start on
seed j = 1 and for subsequent seeds j = 2. .., J. Distribution P* is a truncated normal.

Solve time in seconds AVG (STD)
ji=1 i=2,...,J
N DRO-BAS BDRO DRO-BAS BDRO
25  0.03(0.00) 0.07 (0.02) 0.01 (0.00) 0.01 (0.00)

100 0.03 (0.00) 0.14 (0.02) 0.02 (0.01)  0.03 (0.00)
900 0.27 (0.02) 5.54 (0.04) 0.40 (0.11)  0.23 (0.01)
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