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Abstract

Reinforcement Learning from Human Feed-001
back (RLHF) has been a crucial component002
in the recent success of Large Language Mod-003
els. However, RLHF is know to exploit biases004
in human preferences, such as verbosity. A005
well-formatted and eloquent answer is often006
more highly rated by users, even when it is007
less helpful and objective. A number of ap-008
proaches have been developed to control those009
biases in the classical RLHF literature, but the010
problem remains relatively under-explored for011
Direct Alignment Algorithms such as Direct012
Preference Optimization (DPO). Unlike classi-013
cal RLHF, DPO does not train a separate reward014
model or use reinforcement learning directly, so015
previous approaches developed to control ver-016
bosity cannot be directly applied to this setting.017
Our work makes several contributions. For the018
first time, we study the length problem in the019
DPO setting, showing significant exploitation020
in DPO and linking it to out-of-distribution021
bootstrapping. We then develop a principled022
but simple regularization strategy that prevents023
length exploitation, while still maintaining im-024
provements in model quality. We demonstrate025
these affects across datasets on summarization026
and dialogue, where we achieve up to 20% im-027
provement in win rates when controlling for028
length, despite the GPT4 judge’s well-known029
verbosity bias.030

1 Introduction031

Recently Large Language Models (LLMs) have032

seen significant improvements in capabilities, such033

as code-generation, mathematical reasoning, and034

tool use. Importantly, they can now fluently inter-035

act with users and follow their instructions, leading036

to their widespread adoption. Fine-tuning with037

Reinforcement Learning from Human Feedback038

(RLHF) (Christiano et al., 2017; Stiennon et al.,039

2022) has been a significant component in those ad-040

vances and is now a standard part of advanced LLM041

training pipelines (Ouyang et al., 2022; Bai et al.,042

Figure 1: Average win rates versus generation length on
the Alpaca Eval benchmark (Dubois et al., 2024). While
the highest-scoring open-source models can match the
overall performance of strong closed models, they lag
significantly on length-corrected basis. Notable outliers
are the Cohere Command and GPT4 models.

2022a; Touvron et al., 2023; Jiang et al., 2024; Anil 043

et al., 2023). Currently, all the leading LLMs de- 044

ploy some sort of RLHF pipeline (Dubois et al., 045

2024; Zheng et al., 2023; Liang et al., 2023). The 046

classical approach consists of three-stages. The 047

first stage begins with a general model pre-trained 048

with next-token prediction on a large corpus of text 049

(Radford et al., 2019; Brown et al., 2020), which 050

is then further-tuned for instruction-following pur- 051

poses (Wei et al., 2022). In the second stage, the 052

model is prompted with general requests, and gen- 053

erates multiple possible answers, which are then 054

ranked by the user. These ratings are used to train 055

a reward model, which represents human prefer- 056

ences (Christiano et al., 2017; Stiennon et al., 2022; 057

Ziegler et al., 2020; Bai et al., 2022a; Touvron et al., 058

2023). In the final stage, the instruction-tuned LLM 059

is further trained to maximize expected rewards 060

from the reward model trained in the second stage 061

(a proxy for user preferences) using general pur- 062

pose reinforcement learning algorithms (Schulman 063

et al., 2017; Mnih et al., 2016). While success- 064

ful, this pipeline is quite technically complex, and 065

1



Figure 2: Distribution of response lengths of human feedback datasets, average length is marked by the dashed
line. First Column: Statistics on Anthropic’s Helpful and Harmless dialogue dataset (Bai et al., 2022b). Second
Column: Statistics on the Reddit TL;DR summarization dataset (Stiennon et al., 2022). While both datasets exhibit
a small bias in preference towards longer responses, the un-regularized DPO model produces answers twice as long
on average, with lengths significantly out of distribution of the feedback dataset. Third and Fourth Columns:
Comparison between the SFT, DPO and length-regularized DPO models on HH and TLDR respectively. While
length-regularized DPO algorithm still generates longer answers on average, it stays closer to the SFT model.

computationally expensive, mainly due to the final066

stage of RL optimization.067

The quality of the learned reward model is068

crucial for the RLHF process (Touvron et al.,069

2023). However, prior works have demonstrated070

that reward models can be exploited (Casper et al.,071

2023; Gao et al., 2023) due to a Goodhart’s law072

effect (Clark and Amodei, 2016; Manheim and073

Garrabrant, 2019; Skalse et al., 2022; Lambert074

and Calandra, 2023). Under this phenomenon, the075

model can achieve high rewards during the RL076

training while generating undesirable behaviours077

(Gao et al., 2023; Dubois et al., 2024). A particu-078

lar case of the reward exploitation phenomenon is079

the well-known verbosity issue - models fine-tuned080

with RLHF generate significantly longer answers,081

without necessarily improving the actual quality082

(Singhal et al., 2023; Kabir et al., 2023). This083

has been linked to an explicit bias in the prefer-084

ence data towards longer responses (Singhal et al.,085

2023), however, the statistical increase in verbosity086

of RLHF-trained models significantly outmatches087

the the difference of distribution lengths between088

the preferred and rejected answers. This effect is089

even observed in in strong propriety models, such090

as GPT4 (John Schulman et al., 2022), which is 091

now frequently used to evaluate the performance 092

of other LLMs (Dubois et al., 2024; Zheng et al., 093

2023; Zeng et al., 2023). However, even as an eval- 094

uator GPT4, exhibits strong preferences for length. 095

Prior work (Wang et al., 2023) has noted that when 096

evaluating 13B parameter models in head-to-head 097

comparisons with the Davinci-003 model, win rates 098

and the average number of unique tokens in the 099

model’s response have correlation of 0.96. 100

Recently Direct Preference Optimization 101

(Rafailov et al., 2023) has emerged as an alter- 102

native to the standard RLHF pipeline. The key 103

observation of DPO is that the reward model can 104

directly be re-parameterized through the optimal 105

LLM policy obtained in the reinforcement learning 106

stage. This allows us to directly train the language 107

model through the reward learning pipeline, 108

eliminating the need for the reinforcement learning 109

stage. This algorithm has become widely used, 110

since it can train completely offline, yielding better 111

simplicity of tuning, speed and resource efficiency, 112

while maintaining performance (Dubois et al., 113

2024; Jiang et al., 2024). For these reasons it 114

has also been widely adopted by the open-source 115
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community. At the time of this writing, 9 out of116

the top 10 models on the HuggingFace Open LLM117

Leaderboard use DPO as part of their training118

pipeline.119

While the question of length exploitation has120

been extensively studied in the classical RLHF121

pipeline, it has not been explored in the DPO set-122

ting before. Moreover, recently concerns have been123

raised that open-source models have not improved124

significantly across automated benchmarks, but in-125

stead have been exploiting the verbosity bias of the126

evaluator (Liu, 2024). These statistics are demon-127

strated in Figure 1, as open-source models can128

match the overall performance of proprietary ones,129

but lag significantly on length-corrected basis.130

We make several contributions in our work:131

First we study the length exploitation problem in132

the DPO setting and and show it is quite persistent,133

which we empirically link to out-of-distribution134

bootstrapping. Next, we derive a simple but ef-135

ficient regularization approach, which we show136

can effectively control verbosity, without impact-137

ing model performance, even when evaluated by a138

biased judge, such as GPT4.139

2 Preliminaries140

In this section we will outline the core components141

of the standard RLHF pipeline Ziegler et al.; Stien-142

non et al.; Bai et al.; Ouyang et al.) and the Direct143

Preference Optimization algorithm (Rafailov et al.,144

2023), which is central to our analysis and regular-145

ization derivations.146

2.1 Reinforcement Learning From Human147

Feedback148

The standard RLHF pipeline consists of three149

stages: 1) We first pre-train a general LLM for150

instruction-following purposes with supervised151

fine-tuning (SFT); the Reward Modelling stage152

consists of gathering human feedback and train-153

ing a parameterized reward model; finally during154

the final Reinforcement Learning stage, we further155

optimize the LLM in a reinforcement learning loop,156

uing the trained reward model from the previous157

stage.158

SFT: During this stage, we use a dataset of prompts159

x and high-quality answers y to train an LLM with160

next-token prediction to obtain a model πSFT(y|x).161

In our notation we treat the entire prompt and an-162

swer strings as a single variable.163

Reward Modelling Phase: In the second phase164

the instruction-tuned model is given prompts x and 165

produce pairs of answers (y1,y2) ∼ πSFT(y|x). 166

Users then rank the answers, denoted as yw ≻ 167

yl | x where yw and yl are the preferred and dis- 168

preferred answer respectively. The rankings are 169

usually assumed to be generated by the Bradley- 170

Terry (BT) (Bradley and Terry, 1952), in which the 171

preference distribution p is assumed to be driven 172

by an unobserved latent reward r(x,y) and the 173

following parameterization: 174

p(y1 ≻ y2 | x) =
exp (r(x,y1))

exp (r(x,y1)) + exp (r(x,y2))
.

(1) 175

Then given a dataset of user rankings D = 176{
x(i),y

(i)
w ,y

(i)
l

}N

i=1
, we can train a parameterized 177

reward model rϕ(x,y) using maximum likelihood: 178

LR(rϕ,D) = 179

−E(x,yw,yl)∼D
[
log σ(rϕ(x,yw)− rϕ(x,yl))

]
(2)

180

where σ is the logistic function. 181

Reinforcement Learning Phase: During the final 182

phase, we use the learned reward function in an 183

RL loop to where the LLM is treated as a policy. 184

The most common optimization objective is the 185

following: 186

max
πθ

Ex∼D,y∼πθ(y|x)
[
rϕ(x,y)

]
− 187

βDKL
[
πθ(y | x) || πref(y|x)

]
(3)

188

where πref(y|x) is a reference distribution (usually 189

taken to be πref(y|x)) and β is a hyper-parameter. 190

This objective trades-off maximizing the reward 191

rϕ(x,y) and a divergence term from a fixed refer- 192

ence distribution. The second term acts as a regu- 193

larizer to prevent the policy πθ from drifting too far 194

away from the initialization πref(y|x). This objec- 195

tive is then optimized using a general purpose RL 196

algorithm, such as PPO (Schulman et al., 2017). 197

2.2 Direct Preference Optimization 198

Direct Preference Optimization (Rafailov et al., 199

2023) starts with the same objective as Eq. 3. How- 200

ever, DPO assumes we have access to the ground 201

truth reward r(x,y) and derives an analytical trans- 202

formation between the optimal reward and optimal 203

policy. This can be substituted back into the reward 204

optimization objective in Eq. 2, which allows us 205
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to train the optimal model directly on the feedback206

data using the following objective:207

LDPO (πθ;πref) =208

−E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

−209

β log
πθ (yl | x)
πref (yl | x)

)]
(4)210

Here the parameter β is the same as in Eq. 3 and211

similarly controls the trade-off between expected212

reward and divergence from the model initializa-213

tion. The DPO objective is attractive as it allows214

us to recover the optimal model using a standard215

classification loss, without the need for on-policy216

sampling or significant amount of hyper-parameter217

tuning. Eq. 4 resembles the reward modelling218

objective in Eq. 2 under the parameterization219

rθ(x,y) = β log
πθ (y | x)
πref (y | x)

(5)220

We will refer to this as the DPO "implicit re-221

ward". Theorem 1 in (Rafailov et al., 2023) shows222

that this is indeed a valid parameterization of a223

reward model without loss of generality. If we sub-224

stitute this form of rθ(x,y) into the RL objective225

3 we can obtain the optimal solution in a closed226

form, which happens to be πθ. We will return to the227

interpretation of DPO as an implicit reward func-228

tion later on in our analysis of out-of-distribution229

bootstrapping.230

3 Building in Explicit Regularization in231

DPO232

Prior works have explicitly considered length-233

regularization in the classical RLHF pipeline (Sing-234

hal et al., 2023), however these methods do not235

transfer directly to direct alignment algorithms,236

such as DPO. We will derive a length-regularized237

version of the algorithm from first principles, by238

adding a regularized term in the RL problem in239

Eq. 3. The below considerations hold for a gen-240

eral regularizer, but we will focus on a length term241

α|y|, where α is a hyper-parameter and |y| denotes242

the token-length of the answer y. We then formu-243

late the regularized RL problems in the following244

objective:245

max
πθ

Ex∼D,y∼πθ(y|x)
[
r(x,y)

]
− α|y|−246

βDKL
[
πθ(y | x) || πref(y|x)

]
(6)

247

where we assume that r(x,y) is still the same la- 248

tent reward driving human preferences. We can fol- 249

low the same derivations in (Rafailov et al., 2023) 250

for the reward function r(x,y)
]
− α|y| and obtain 251

the optimal solution to Eq. 6 as 252

π∗(y|x) = 1

Z(x)
πrefe

1
β
(r(x,y)−α|y|) (7) 253

where Z(x) =
∑

y πrefe
1
β
(r(x,y)−α|y|). With some 254

simple algebra, we can then obtain the equivalent 255

regularized reward re-formulation: 256

r(x,y) = β log
π∗(y|x)
πref(y|x)

+ β logZ(x)− α|y|
(8) 257

We can then plug in Eq. 8 into the reward mod- 258

elling stage in Eq. 2, which yields the following 259

regularized DPO objective: 260

LR−DPO (πθ;πref) = 261

−E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | y)
πref (yw | x)

− 262

β log
πθ (yl | x)
πref (yl | x)

− 263

(α|yw| − α|yl|)
)]

(9) 264

This is similar to the standard DPO objective, ex- 265

cept for the an additional regularization term within 266

α|yw|−α|yl| in the logit of the binary classification 267

loss. 268

Concurrent work (Chen et al., 2024) also con- 269

sider the length exploitation problem in the classi- 270

cal RLHF pipeline. They suggest a similar regu- 271

larization in the reward modelling stage in Eq. 2 272

to disentangle the answer’s quality from the length 273

bias and show meaningful improvement in length- 274

controlled model performance. Our derivations can 275

be seen as the DPO implicit reward counterpart to 276

that classical RLHF approach, explicitly linking 277

the regularized reward modelling problem to an 278

equivalent regularized RL setup. 279

Similar to the original DPO formulation, the reg- 280

ularized objective still aims to increase the likeli- 281

hood along the preferred answer, while decreasing 282

the likelihood along the dis-preferred answer, mod- 283

ulated by a weighting term. This term is equivalent 284

to the original DPO formulation with the addition 285

of the regularization margin α|yw| −α|yl|. We can 286

interpret this as an additional per-example learn- 287

ing rate, which up-weighs the gradient on feedback 288

pairs, in which the selected answer is shorter and 289
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Dataset Preferred Length Dispreferred Length
Mean Median Std. Mean Median Std.

Anthropic RLHF HH 79.6 57.0 74.0 75.7 51.0 73.3
Reddit TL;DR 37.9 36.0 13.9 35.2 34.0 13.4

Table 1: Summary statistics across preference datasets. Bold indicates maximum between preferred and dispreferred
statistic for a particular dataset. Statistics do not exclude long tails.

Figure 3: Sampled lengths vs. GPT4 winrates for HH and TLDR test sets. 256 samples evaluated for length and
winrates. gpt4-0613 used as judge with prompt similar to (Rafailov et al., 2023), with random position flipping.

down-weights the gradient on pairs in which the290

selected answer is longer, proportional to the dif-291

ference in length.292

4 Experiments293

In this section we will empirically investigate the294

verbosity exploitation issues in DPO, the effective-295

ness of our regularization strategy and the potential296

causes of these effects. We beging with a descrip-297

tion of our evaluation tasks and models.298

4.1 Datasets and Models299

We utilize three different setups in our experimen-300

tal setting based on summarization, dialogue and301

general instruction-following.302

Summarization We use the standard Reddit303

TL;DR (TL;DR) summarization dataset from (Sti-304

ennon et al., 2022), which consists of a Reddit post305

and several short summaries, judged for quality and306

informativeness by human evaluators.307

Dialogue: For our dialogue experiment we use308

the Anthropic Helpful and Harmless (HH) datasets309

(Bai et al., 2022b), which consists of general con-310

versations with a language model assistants, which311

are also ranked by human annotators.312

Datasets statistics are included in Table 1 where313

exhibit a small length bias in the preferred re-314

sponse. Following (Rafailov et al., 2023) we use315

the Pythia 2.8B (Biderman et al., 2023) for both316

the dialogue and summarization tasks and carry out 317

full-parameter fine-tuning, using the DPO original 318

codebase1 with default hyperparameters, except 319

when noted otherwise. All experiments were car- 320

ried out on 4 A40 GPUs for a total of about 2000 321

GPU hours. 322

4.2 Length Exploitation in DPO and 323

Effectiveness of Regularization 324

We first consider the Anthropic Helpful and Harm- 325

less and Reddit TL;DR datasets. For both tasks, 326

we train models with three parameter values β ∈ 327

[0.5, 0.1, 0.05] and then sample 256 answers using 328

prompts fron the evaluation dataset. The length 329

histograms are shown in Fig. 2. The first two 330

columns show the answer length distribution for 331

the set of preferred, rejected and DPO-generated 332

answer, with each row corresponding to a different 333

value of the β parameter. We see that the DPO 334

generated answers are, on average, significantly 335

longer than both the preferred and rejected answers. 336

Models trained with smaller values of β generate 337

longer responses on average, which is expected as 338

this parameter controls the deviation from the ini- 339

tial policy. Not only does the DPO model generate 340

longer answers, it also generates answers that are 341

significantly out-of-distribution in terms of length 342

1https://github.com/eric-mitchell/direct-preference-
optimization
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Figure 4: KL divergence vs. sampled lengths for HH and TL;DR, where KL divergence is calculated as the expected
reward across the 256 samples generated from the test prompts in both datasets. At most 512 new tokens sampled.

from the offline preference dataset.343

The third and fourth column in Fig .2 show re-344

sults for the SFT, DPO the length-regularized DPO345

model introduced in Section 3. We use parame-346

ters of α = 0.01 and α = 0.05 for the Anthropic347

Helpful and Harmless and Reddit TL;DR datasets348

respectively. While the length-regularized mod-349

els still show mild increase in average length, they350

match the SFT model much more closely. More-351

over, they do not generate answers with signifi-352

cantly out-of-distribution lengths. This indicates353

that the proposed algorithm can efficiently regular-354

ize the verbosity of the trained model.355

4.3 Length Versus Quality Trade-Offs356

In this section we evaluate the length versus qual-357

ity model trade-offs. For the Anthropic Helpful358

and Harmless and Reddit TL;DR datasets we use359

the answers generated in the previous section and360

compare them head-to-head against the dataset pre-361

ferred answer, using GPT 4 as an evaluator. For362

the UltraFeedback dataset, we evaluate the model363

on MTBench (Zheng et al., 2023), which also uses364

GPT 4 to directly provide numerical scores to the365

model-generated answers. Our main results are366

shown in Fig. 3, which plots model win rates367

against average answer length, with 90% confi-368

dence intervals. We again evaluate three different369

values for the beta parameter β ∈ [0.05, 0.1.0.5370

and three values of α with α ∈ [0, 0.005, 0.01] for371

HH and α ∈ [0, 0.2, 0.5] for TL;DR respectively372

(α = 0 is the standard DPO algorithm). Similar373

to before, we see that the length-regularized train-374

ing can efficiently control verbosity, significantly375

decreasing the average length of the answers as376

compared to the standard DPO training. Moreover,377

on the HH task, regularization also leads to mild378

improvement in win rates, but a slight decrease 379

on TL;DR although both of these are not statisti- 380

cally significant. These results are quite promis- 381

ing, as GPT4 is known to have a significant length 382

bias in its preferences (Wang et al., 2023; Sing- 383

hal et al., 2023). On both the HH and TL;DR, 384

the length-regularized experiments with β = 0.05 385

and beta = 0.01 match the average lengths of the 386

corresponding β = 0.5 runs, but achieve statis- 387

tically significant higher corresponding win rates 388

with close to 20% improvement on HH and 15% 389

improvement on TL;DR. 390

4.4 Is Length a Proxy for KL-Divergence? 391

In the constrained RL problem in Eq. 3 and the cor- 392

responding DPO objective in Eq. 4, the β parame- 393

ter controls the degree of policy divergence from 394

the initial reference model. In Fig. 2 and Fig. 3, 395

we see that average length of the model generated 396

answers is inversely proportional to the β parame- 397

ter. In this section, we investigate the relationship 398

between the length-regularized DPO objective in 399

Eq. 9 and the KL divergence from the initial policy. 400

In Fig .4, we plot the trained policy KL divergence 401

from the initialization πref for the different values 402

of β and α parameters. We see only a weak corre- 403

lation between KL divergence and length. For both 404

HH and TL;DR, length-regularized models trained 405

with β = 0.05 and β = 0.01 match the average 406

length of train runs with β = 0.5 (Fig. 3). At the 407

same time, these runs have statistically significant 408

higher KL divergences and win rates as shown in 409

Fig. 3. We hypothesize that this indicates the exis- 410

tence of different factors driving human preference, 411

with length being only a partial one. 412
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Figure 5: Evolution of HH sample length, GPT4 winrates, and KL divergence along equally-spaced intervals within
one epoch (170K steps) of DPO training. Error bars indicate 90% confidence intervals.

4.5 DPO and Early Convergence413

In (Rafailov et al., 2023), the authors show early414

convergence of the DPO algorithm on the HH415

dataset. DPO achieves its best performance within416

a few hundred gradient steps, and does not improve417

with further training. Similar observations have418

also been made within the open-source community.419

We claim that this effect is likely due to length-420

exploitation and the biased GPT4 evaluator. In421

Fig. 6, we consider the training progression on the422

HH dataset with β = 0.1. We compare the regu-423

lar DPO run (α = 0) with the length-regularized424

one α = 0.1. We train for a single epoch and425

evaluate intermediate checkpoints on the same set426

of prompts for average answer length, win rates,427

and KL divergence. We see that already within428

the first 10% of the epoch, the standard DPO run429

produces answers almost twice as long as the SFT430

model. Unregularized DPO achieves its highest431

win rate here, with only KL divergence and aver-432

age length increasing steadily with further training.433

In contrast, the length-regularized run sees little434

to no intermediate increase in length, but steady435

improvement in win rates throughout training and436

slow increases in divergence from the reference pol-437

icy. We hypothesize that the regular DPO training438

quickly increases length, which exploits the evalu-439

ator’s bias, but does not capture the more complex440

features of preferences. On the other hand, the441

length-regularized training run is able to disentan-442

gle the verbosity component and fit other, more443

difficult quality features over a longer training pe-444

riod.445

4.6 What Drives Length Exploitation?446

Excessive model verbosity (John Schulman et al.,447

2022) has been well understood under classical448

RLHF as a reward exploitation problem (Gao et al.,449

2023; Casper et al., 2023; Lambert and Calandra, 450

2023) driven by a bias in the feedback datasets 451

for longer answers. In particular, in the classical 452

RLHF pipeline as outlined in Section 2.1, the re- 453

ward model is continuously queried on new data 454

generated by the model, which can create an out-of- 455

distribution robustness issue. These results do not 456

directly transfer to the DPO algorithm, as it does 457

not train a separate reward model and only uses the 458

offline feedback dataset for training. Surprisingly 459

we find that the exploding length issue in DPO 460

training is similarly driven by out-of-distribution 461

exploitation. We consider the DPO algorithm as 462

an implicit reward training method, as outlined in 463

Section 2.2. We investigate the behaviour of the 464

implicit reward rθ as defined in Eq. 5. Since the 465

DPO policy πθ is the optimal solution to the con- 466

strained RL problem in Eq. 3 corresponding to rθ, 467

any exploitation behaviour from the policy must 468

be driven by the reward function. We evaluate rθ 469

trained with β = 0.1 and different α parameters 470

on the offline feedback dataset (within its training 471

distribution) and on answers generated by the cor- 472

responding DPO policy (out of distribution). Sur- 473

prisingly, within distribution, the corresponding 474

implicit reward models exhibit weak to no length 475

correlation (and even negative length correlation 476

with strong α regularization). However, they all 477

show significant length bias on out-of-distribution 478

samples, with length explaining 0.3-0.46 of the 479

reward variance. 480

5 Related Work 481

Reward Exploitation in RLHF: RLHF reward ex- 482

ploitation, also known as reward over-optimization, 483

is a well-known issue (Skalse et al., 2022; Pan et al., 484

2022; Casper et al., 2023; Lambert and Calandra, 485

2023) in which during the reinforcement learning 486
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Figure 6: Evaluation of the DPO implicit reward model as defined in Section 2.2 on in-distribution preffered (blue)
and rejected (red) answers, as well as OOD answers generated from the corresponding policy. The reward model
exhibits little to no length bias in distribution, but significant length correlation outside its training distribution.

stage, the expected reward keeps improving, but487

the quality of the model begins to degrade after488

some point. These effects were confirmed analyti-489

cally in controlled experiments (Gao et al., 2023),490

as well as empirically in user studies (Dubois et al.,491

2024). Increased model verbosity has been explic-492

itly linked to this phenomenon (John Schulman493

et al., 2022). A number approaches have been pro-494

posed to mitigate this issue, such as penalizing epis-495

temic uncertainty (Coste et al., 2023; Zhai et al.,496

2023) or using mixture reward models (Moskovitz497

et al., 2023), but they do not explicitly target the498

length issue.499

Mitigating Length Biases in RLHF: A number of500

works have sought to explicitly address length bi-501

ases in RLHF policies. (Ramamurthy et al., 2023)502

suggest setting a simple discount factor, which503

improves naturalness of the generated language,504

(Singhal et al., 2023) carry out an extensive study505

of length correlations in classical RLHF and sug-506

gest a number of mitigating approaches. The closes507

to our approach are the works of (Shen et al., 2023)508

and the concurrent work of (Chen et al., 2024),509

which propose to disentangle length-biases from510

quality during the reward modelling stage. Our511

work can be seen as a DPO equivalent counter-part512

to these approaches.513

As far as we are aware, this is the first work to514

study the length exploitation problem for direct515

alignment algorithms, such as DPO.516

6 Limitations 517

Our work addresses the particular issue of length 518

exploitation in Direct Preference Optimization. 519

Our regularization objective requires explicit 520

penalty function (such as length) and may not be 521

suitable to avoid general exploitation issues along 522

axes separate from verbosity. Furthermore, we only 523

study the DPO objective, which might behave dif- 524

ferently from other direct alignment algorithms, 525

which use different objective functions. 526

7 Conclusion 527

In this work, we study the problem of length ex- 528

ploitation in the Direct Preference Optimization al- 529

gorithm for the first time. On two standard human 530

feedback datasets, we empirically show that DPO 531

exhibits significant length hacking across a range 532

of hyperparameters. We then link this phenomenon 533

to out-of-distribution bootstrapping. We derive an 534

analytical length-regularized version of the DPO al- 535

gorithm and show empirically that we can maintain 536

model performance, as evaluated by GPT4 without 537

significant increases in verbosity, boosting length- 538

corrected win rates by up to 15-20%. Given the 539

strong length bias in public feedback datasets and 540

the prominence of DPO in the open source com- 541

munity, we hypothesize that a lot of open source 542

models suffer from similar length-exploitation is- 543

sues, driving the observations of Fig. 1. Our re- 544

sults are encouraging, suggesting that open-source 545

models could match proprietary ones on automated 546

evaluations on a length corrected basis as well. 547
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