
Under review as a conference paper at ICLR 2023

BRAIN SIGNAL GENERATION AND DATA AUGMENTA-
TION WITH A SINGLE-STEP DIFFUSION PROBABILIS-
TIC MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Brain-computer interfaces based on deep learning rely on large amounts of high-
quality data. Finding publicly available brain signal datasets that meet all require-
ments is a challenge. However, brain signals synthesized with generative models
may provide a solution to this problem. Our work builds on diffusion probabilistic
models (DPMs) and aims to generate brain signals that have the properties needed
to develop further classification models based on deep learning. We show that
our DPM can generate high-quality event-related potentials (ERPs) and motor im-
agery (MI) signals. Furthermore, with the progressive distillation of the model,
subject-specific data can be produced in a one-step reverse process. We augment
publicly available datasets and demonstrate the impact of the generated signals on
a deep learning classification model. DPMs are versatile models, and this work
shows that brain signal processing is one of many other tasks in which these mod-
els can be useful.

1 INTRODUCTION

Electroencephalography (EEG) is undoubtedly one of the most popular brain mapping technologies,
which is widely used in research and clinical diagnosis (de Aguiar Neto & Rosa (2019), van Mierlo
et al. (2020), Wang et al. (2020)). EEG records the neural activity of the brain in a non-invasive
manner. (Biasiucci et al. (2019)) EEG is less complex and cheaper than other brain imaging tech-
nologies. EEG has one of the best temporal resolutions. However, the spatial resolution of the
technology is quite poor due to its heavy dependence on the number of electrodes used for signal
recording and non-invasiveness. (Craik et al. (2019b))

Brain-computer interfaces (BCIs) connect the brain and external processing devices, making it pos-
sible to perform tasks using only brain signals. BCIs can help in everyday life for people with
limited movement and communication abilities (Pandarinath et al. (2017)). BCIs are also applied in
many other fields from healthcare (Galán et al. (2008), Vilela & Hochberg (2020)) to entertainment
(Finke et al. (2009)). BCIs are often based on EEG due to the ability of the technology to measure
signals with only a couple of milliseconds difference and its relatively low cost and more comfort.
The measurements are then processed by a decoder unit in the BCI that turns the recorded temporal
and frequency patterns into actions. (Lotte et al. (2018))

In recent years, deep learning (DL) algorithms have become more and more commonly used in
EEG signal processing (Roy et al. (2019), Craik et al. (2019a), Kotowski et al. (2020)). DL models
can decode brain signals with high accuracy. However, developing DL models requires a large
amount of high-quality data. The size and quality of publicly available data sets are limited, also
often insufficient and imbalanced. Recording a new data set can be highly resource-consuming
and requires professionals to check the measurements. Another option to augment data sets is data
synthesis. (Lashgari et al. (2020))

Score-based models (Tashiro et al. (2021), Song et al. (2021)), diffusion probabilistic models
(DPMs) (Ho et al. (2020), Luo & Hu (2021)) and generative adversarial networks (GANs) (Liu
et al. (2021), Chan et al. (2021)) hold the state-of-the-art in deep-learning-based generative mod-
elling. The recent advances show the performance and effectiveness DPMs over GANs in both
image (Dhariwal & Nichol (2021)) and audio generation (Kong et al. (2021)). There are a handful

1



Under review as a conference paper at ICLR 2023

of works for brain signal generation with GANs (Xu et al. (2022), Hartmann et al. (2018), Fahimi
et al. (2019), Panwar et al. (2020)). To the best of our knowledge, there are no works examining the
capabilities of DPMs or score-based models in multi-channel EEG signal generation tasks.

The structure of this work is as follows: in Section 2 we present the background on the DPM
framework that we used in this paper, followed by a brief description of the progressive distillation
process in Section 3. Our EEGWave architecture is presented in Section 4. The description of the
experiments with the used datasets and procedures are given in Section 5. Finally, we conclude our
work and thoughts in Section 6.

2 CONTINUOUS-TIME DIFFUSION MODELS

The distribution of the training data set is given as p(x). Let x ∈ RE×L, where E is the number
of electrodes (or EEG channels) and L is the length of the recorded sequence. In a continuous-time
diffusion framework (Kingma et al. (2021)), in the forward and reverse diffusion processes, there
are latent variables that are denoted by zt. For every time step, where t ∈ [0, 1], the latent variables
have the same shape as the training data samples (zt ∈ RE×L).

The forward diffusion process, which is a Gaussian process in continuous time can be given as:

q(zt|x) = N (zt;αtx, σ
2
t I) (1)

,where αt and σ2
t are smooth, differentiable, positive scalar-valued functions. With αt and σ2

t the
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t /σ
2
t ), which decreases strictly monotonically as

t → 1. For any 0 ≤ s ≤ t ≤ 1, the following Gaussian conditional distribution can be given:

q(zt|zs) = N (zt;
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The reverse process is based on the a posteriori distribution:

q(zs|zt, x) = N (zs; µ̃s|t(zt, x), σ̃
2
s|tI) (3)

, where s ≤ t and

µ̃s|t(zt, x) = eλt−λs
αs

αt
zt + (1− eλt−λs)αsx, σ̃2

s|t = (1− eλt−λs)σ2
s (4)

In this framework, x in the reverse process is predicted by the neural network x̃θ(zt, λt) with the
parameter set θ.

Data inference is done by sampling a latent white noise variable z1 at t = 1, setting a noise control-
ling γ factor and iteratively applying the following, until t = 0 (Salimans & Ho (2022)):

zs = µ̃s|t(zt, x̃θ(zt, λt)) +
√
(σ̃2

s|t)
1−γ(σ̃2

t|s)
γϵ, ϵ ∼ N (0, I) (5)

During training, the model is aimed to maximize the variational lower bound (ELBO) on the log-
likelihood of the data. However, with a re-parameterization, the weighted ELBO can be given as the
weighted mean squared error objective:

min
θ

L(θ) = Eϵ,t

[
ω(λt)∥x− x̃θ(zt, λt)∥22

]
(6)

, where ω(λt) weighting is choosable, however it is ω(λt) = max(
α2

t

σ2
t
, 1) in our approach. Salimans

& Ho (2022)

3 PROGRESSIVE DISTILLATION

Diffusion models need many iterations during sampling to synthesize data, making them signifi-
cantly slower than GANs. Recent studies (Luhman & Luhman (2021), Kong & Ping (2021)) pre-
sented multiple ways to fasten the inference from which we applied progressive distillation (Sali-
mans & Ho (2022)) as we found this approach the most efficient one.
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Progressive distillation is based on a teacher-student setup, where the student model approximates
the teacher with halved sampling steps. At first, a teacher model is trained as a continuous-time
diffusion model. Then a number of finite discrete sampling steps is given for the teacher and the
student, denote it as Tt and Ts = Tt/2. The distillation process is iterative, where each iteration
starts with weight initialization of the student model with the teacher’s parameters. The target x̃ is
then calculated from the latent variable zt by sampling in 2 DDIM steps using the teacher model to
get the predictions at time step (t − 0.5)/Ts and the (t − 1.)/Ts. The student has to denoise the
same zt in 1 reverse DDIM step to get the approximate result for x̃. When the student converges, Ts

is halved, the student becomes the teacher, and the process is repeated.

Figure 1: EEGWave architecture.

4 ARCHITECTURE

Our architecture aims to synthesize multi-channel EEG signals as many works on brain signal pro-
cessing show the benefits of processing signals recorded on multiple electrodes. Therefore, our
model is x̃θ : RE×L × R → RE×L that builds on non-causal bi-directional dilated convolutions.

Many works on multi-channel brain signal processing handle the measurements as 2-dimensional
samples, similarly to images, to make use of spatio-temporal features. In GANs and VAEs, this
approach means that EEG signals are synthesized through up-sampling interpolations or transposed
convolutions. Data synthesis in this approach with time-series signals can be ill-posed due to the
heavy influence of these operations’ temporal and spectral artifacts that occur in the generated data.

Our approach builds on the work of Kong et al. (2021). We omit up- and down-sampling layers
to avoid temporal and spectral artifacts in the synthesized data. We build on the residual layers of
DiffWave. Although EEG epochs are not as long as audio samples, we keep bi-directional dilated
convolutions with smaller dilations as they can help maintain global context and consistency through
the epochs. We realize the architecture with 2-dimensional convolutions. Our input convolution
layer maps the multi-channel data into a single-channel by applying (E, 1) sized filters, where E is
the number of EEG channels. We use kernels with size (1,K) in the dilated convolution layers as
we process 1-dimensional data in these blocks. The output point-wise convolution layer produces
the 1-dimensional signals with the number of EEG channels (N × E × 1 × L). Then this data is
reshaped to match the dimensions of the input (N × 1×E ×L). (We implemented the architecture
in PyTorch.)

λt is embedded through two global and one residual-local linear layers and added to the residual
features. The class and subject conditions are handled the same way, the only difference being that
they are not encoded in any way. The architecture is shown in Figure 1.

In the experiments given in this work, we use a rather deep than wide neural network with 32 residual
layers and 64 channels in each convolution layer. λt, one-hot encoded class, and subject conditions
are embedded into 512 dimensions in the global linear layers. We use a kernel size of (1, 3) in
the dilated convolutions and a dilation cycle of [1, 2, ..., 64] because empirically, we found it to be
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beneficial to use a dilation cycle that with there are kernels that cover the whole data sample. λt is
embedded through two global and one residual-local linear layers and added to the residual features.
The class and subject conditions are handled the same way, the only difference being that they are
not encoded in any way.

5 EXPERIMENTS

5.1 DATASETS

VEPESS dataset: the set contains visually evoked potentials from 18 subjects recorded by the
authors of Robbins et al. (2018). The measurements were done by following the oddball paradigm.
Subjects were presented with sequences of images that consisted of target and non-target types.
Based on the type of the shown image, the subjects had to push the corresponding buttons. Data
were recorded with an EEG device with 64 + 6 electrodes in the 10-20 standard configuration and
sampled at 512 Hz. In this work, we use raw measurements. Signals were band-pass filtered from
1 - 40 Hz with a zero-phase filter, and epochs were extracted between [0, 1] seconds from the onset
of the target/non-target image. The epochs were normalized by channel-wise mean subtraction and
deviation division into the range [−1., 1.].

BCI Competition IV Dataset IIa (BCIC4D2a): the set contains motor imagery signals from
9 participants. The subjects were asked to imagine the movement of their left and right hand, also
their feet and tongue, for a couple of seconds after the instruction cue were presented on their screen.
Data was recorded from 22 EEG and 3 EOG channels following the 10-20 standard system. The
measurements were sampled at 250 Hz and band-pass filtered from 0.5 - 100 Hz. Furthermore, a
notch filter at 50 Hz was applied to eliminate the line noise. We further band-pass filtered the signals
between 4 - 38 Hz with a zero-phase filter and down-sampled them to 128 Hz. Following the work
of , we extracted epochs from the recordings between [0.5, 4] seconds from the onset of the cue and
normalized them by channel-wise mean subtraction and deviation division. We excluded samples
marked as rejected due to artifacts by the publishers of the set.

5.2 CLASS-CONDITIONAL SIGNAL GENERATION

The current experiment aims to generate EEG data of good quality from samples from a simple
Gaussian noise distribution. We condition the generation process based on classes in the data sets.
We use the VEPESS and the BCIC4D2a data sets to examine whether the model can capture the
features of the sets that contain different types of signals. For both data sets, EEGWave has to
model characteristics in both the time and frequency domain, but in a slightly different way. The
signals from the VEPESS set are characterized mainly by their amplitude deviation and the corre-
sponding latency in the time domain. On the other hand, the essential features of the samples from
the BCIC4D2a set are in the frequency domain, specifically in the theta, alpha, and beta bands.
Although the effect of progressive distillation on the quality of the generated data is examined in
the following subsection, we also present the results from the distilled models, which generated the
signals in a single step.

We chose only the RWGAN (Panwar et al. (2020)) as a baseline model because other deep learning
models in the literature were either incompletely documented, designed only for single-channel
EEG generation, or did not work based on the given information in the published work. We trained
RWGAN exactly as the publishers did in their work.

We give both qualitative and quantitative results. The Inception Score (IS) (Salimans et al. (2016)),
Frechet Inception Distance (FID) (Heusel et al. (2017)), spatial FID (Nash et al. (2021)), Precision,
Recall (Kynkäänniemi et al. (2019)) scores are computed based on EEGNet (Lawhern et al. (2018)),
which was trained on the data sets separately the same way as the authors of EEGNet did. We also
use Sliced Wasserstein Distance (SWD) (Wu et al. (2019)) and Gaussian Mixture Model (GMM)
differences (Panwar et al. (2020)) to measure the differences between real and generated distribu-
tions directly. We also found that qualitative results are a good way to have a greater understanding
and a deeper interpretation of results.
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Table 1: The quality of the generated EEG signals on the VEPESS set was measured indirectly (with
the feature maps of EEGNet) and directly (through distribution measures).

Origin IS ↑ FID ↓ sFID ↓ Prec ↑ Rec ↑ SWD ↓ dGMM ↓

Train set 1.2522 0 0 1.0 1.0 0 0
Test set 1.2360 0.0315 1.3264 0.9199 0.9369 0.9851 49.8316
RWGAN 1.1761 2.2708 3.0530 0.8865 0.9087 1.1769 119.0032
EEGWave 1.2284 0.1479 1.5266 0.9238 0.8740 1.0915 81.1503
EEGWave 1x 1.2146 1.4212 5.6885 0.8063 0.8284 1.7785 141.4728

Figure 2: Comparison of averaged real and generated samples by different models on the VEPESS
set. The averaging was done across the epochs, and the results are plotted on all 64 channels.

Figure 3: Real and generated signal PSD top
plots from the BCIC4D2a set.

VEPESS results: first, we present the results on
the VEPESS set. The quantitative metrics are given
in Table 1. We also give scores measured on the
test set to understand the generated signals’ re-
sults better. Figure 2 presents the averaged target
class samples from the original and the generated
sets. Based on the given results, it can be said that
EEGWave captured the ERPs’ main features in the
VEPESS set. RWGAN also generated good signals,
although these samples are heavily contaminated by
frequency artifacts, which, in our hypothesis, are
mostly the results of the up-sampling layers (also
mentioned frequently in the literature). The single-
step EEGWave has slightly poorer scores in the ta-
ble, but the generated signals seem to have more fi-
delity than the ones from the RWGAN.

BCIC4D2a results: for the BCIC4D2a set, the
quantitative results are given in Table 2. Figure 3
presents the power spectral densities distributed over
the scalp in the theta, alpha, and beta frequency
bands for the left-hand class. Generated signals from
the EEGWave 1024 step, EEGWave 1 step, and RW-
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Table 2: The quality of the generated EEG signals on the BCIC4D2a set was measured indirectly
(with the feature maps of EEGNet) and directly (through distribution measures).

Origin IS ↑ FID ↓ sFID ↓ Prec ↑ Rec ↑ SWD ↓ dGMM ↓

Train set 1.3998 0 0 1.0 1.0 0 0
Test set 1.3594 0.1798 80.4392 0.9040 0.9172 0.4781 2.4963
RWGAN 1.2949 7.2315 142.8659 0.4740 0.4123 1.6983 751.2371
EEGWave 1.1881 3.1708 51.9159 0.9668 0.5724 1.3566 597.6406
EEGWave 1x 1.2136 3.3100 42.8244 0.9282 0.5245 1.0874 430.7368

GAN models are compared to the real signals from the dataset. The results show that the single-step
EEGWave model could perform slightly better than RWGAN in this experiment. The top plots
show that all models were able to learn the main frequency features. The two EEGWave models
outperformed the GAN. The figures corresponding to the rest of the classes are given in Appendix
A.1.

5.3 SUBJECT SPECIFICITY

Brain signals vary not just between classes but subjects. In many cases, it could be beneficial to
generate data for only specific subjects, e.g., imbalanced sets, fine-tuning. We use the VEPESS set to
show that subject-specific features can be learned and reproduced by our model. Subject information
is one-hot encoded and injected into the network similarly to the signal class labels. The model is
trained the same way as in the class-conditional case. During inference, the signal generation process
is conditioned on the class labels and the subjects. We then compare the generated signals from each
subject to the real signals from all subjects to examine whether the model could learn each subject’s
features. The generated signals are visualized in top plots. Furthermore, we measure the SWD and
sFID metrics between the subject-specific distributions. For the sFID calculation, the same EEGNet
model is used as in the previous experiment.

Results: the metrics in Figure 4 imply that the distributions of the real and generated signal corre-
sponding to the same subjects are closer to each other than to other subject data. Figure 5 visually
supports this implication. The averaged ERP epochs of each subject are visually easily distinguish-
able from each other. Although we only present a few examples here, we include the rest of the top
plots in Appendix A.2.

Figure 4: Two types of distance metrics were measured between the distributions of the real and
generated subjects from the VEPESS set to examine the ability of the model to learn subject-specific
features. (The lower, the better.)
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Figure 5: Comparison of the averaged real and generated ERP epochs from the VEPESS set for
Subjects 1 and 15.

5.4 AUGMENTATION

In the augmentation task, we try to improve the performance of EEGNet on the BCI4D2a dataset.
A generated dataset is created with the single-step EEGWave model with the same amount of sig-
nals as the original set. The original dataset is split into train, validation, and test subsets with
0.7%, 0.15%, 0.15% ratios. The subsets are created to contain the same number of signals from
each subject. We try to improve the accuracy of the EEGNet model with two approaches:

1. we double the size of the training subset by mixing the same amount of generated signals
as the number in the original subset (6)

2. pre-train EEGNet on the generated data and then re-train this initialized model with the real
signals (7)

In both cases, we only stop the training if over-fitting is detected via monitoring the validation loss.
We use Adam optimizer with a learning rate of 1e− 3.

Figure 6: The effect of training EEGNet with the real-generated mixed training subset. The left
confusion matrix shows the test results without augmentation, while the right one shows the training
results with the mixed-set augmentation.

7



Under review as a conference paper at ICLR 2023

Figure 7: The effect of pre-training EEGNet with the generated signals. The left confusion matrix
shows the test results without pre-training, while the right one shows the results with pre-training.

Results: although the mixed training gave slightly better accuracy on the validation subset during
training, it did not improve the accuracy of the test set. On the contrary, with the pre-training
approach, the model converged faster and achieved better accuracy on the test. These observations
imply that although EEGWave was able to learn the main characteristics of the real signals, it could
not produce signals that are diverse enough to regularize EEGNet.

5.5 DISTILLATION

By progressive distillation, we aim to attain a DPM model that can synthesize EEG signals in a
single step. We distill EEGWave on the VEPESS and BCIC4D2a data sets to examine the effect
of the process. The distillation is started at 1024 steps, and we continue it until the single-step
generation is reached. The number of training iterations in steps 2 and 1 is doubled, following the
work of . The distilled models with different inference steps are saved and compared to the initial
model generating signals through the same number of steps as the distilled ones. We evaluate the
generated signals at these steps and present results in Figures 8 and 9.

Figure 8: Effect of the distillation of EEGWave trained on the VEPESS data set. F-Score is calcu-
lated from the Precision and Recall scores with β = 2.

Results: while at a higher number of steps (> 8), distillation did not result in a better-performing
model. At steps ≤ 8, the metrics show much better models than the ones without distillation. In the
case of the VEPESS set, the scores achieved with the single-step distilled model are much closer to
the scores of the initial model than without distillation. This shows that distillation can be a good
option for achieving a DPM that can effectively balance the trade-off between fast sampling and
high-quality samples. Interestingly, in the case of the BCIC4D2a set, the scores of the distilled mod-
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Figure 9: Effect of the distillation of EEGWave trained on the BCIC4D2a data set. F-Score is
calculated from the Precision and Recall scores with β = 2.

els show better performance than those of the initial model. This implies that the distilled models
are more likely to generate EEG signals that are copies of the ones from the train set, resulting in
better metrics due to higher fidelity but a narrower learned distribution.

6 CONCLUSION

Our work shows a novel way of generating brain signals that can be useful in augmentation tasks.
Although this work aimed to examine as many aspects of brain signal generation as possible, there
is much yet to explore. We believe the current work shows that DPM-based brain signal generation
is a very feasible task and can be used to create datasets that help improve deep learning models in
classification tasks.

This work is mainly limited in that the quality and diversity of EEG signals can not be measured the
same way as in the case of images. The metrics commonly used in image synthesis tasks often give
contrary results in brain signal generation.

ERP and MI signals were generated conditioned on class labels. The performance of our single-step
DPM was close to 1024-step DPM and the RWGAN. We also showed that EEGWave could learn
subject-specific features. In the augmentation task, the generated signals were the most useful for
the pre-training of EEGNet, before re-training on the original set. The distillation results show that
progressive distillation is an excellent approach to obtaining a DPM with a low number of inference
steps that can generate signals of good quality. The diversity of the generated signals is still an open
question, as well as the metrics that can measure the realness of the generated data. We hope that
DPM-based signal generation will be much more explored in the future, and we are eager to see the
development of this field.
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A APPENDIX

A.1 GENERATED MOTOR IMAGERY SIGNALS

Figure 10: PSD top plots of the generated signals from the BCIC4D2a dataset. The top, middle, and
bottom figures visualize the right hand, feet, and tongue classes.
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A.2 GENERATED SUBJECT-SPECIFIC ERP SIGNALS
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