ACT-R: Adaptive Camera Trajectories for Single-View 3D Reconstruction
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Figure 1. ACT-R, for single-view 3D reconstruction, predicts an adaptive camera trajectory (green) to maximize the visibility of occluded
object parts over a fixed sequence length (20 views). The trajectory, obtained in under 10s, is then used by a video generator (e.g.,
SV3D [59]) to produce a sequence of novel views for multi-view 3D reconstruction, here using NeUS [61]. Compared to a generic
trajectory (red), at fixed elevation, ACT-R yields much cleaner results with more faithful recovery of occluded regions.

Abstract

We introduce the simple idea of adaptive view planning
to multi-view synthesis, aiming to improve both occlusion
revelation and 3D consistency for single-view 3D recon-
struction. Instead of producing an unordered set of views
independently or simultaneously, we generate a sequence of
views, leveraging temporal consistency to enhance 3D co-
herence. Importantly, our view sequence is not determined
by a pre-determined and fixed camera setup. Instead, we
compute an adaptive camera trajectory (ACT), to maximize
the visibility of occluded regions of the 3D object to be re-
constructed. Once the best orbit is found, we feed it to a
video diffusion model to generate novel views around the
orbit, which can then be passed to any multi-view 3D re-
construction model to obtain the final result. Our multi-
view synthesis pipeline is quite efficient since it involves
no run-time training/optimization, only forward inferences
by applying pre-trained models for occlusion analysis and
multi-view synthesis. Our method predicts camera trajec-
tories that reveal occlusions effectively and produce consis-
tent novel views, significantly improving 3D reconstruction
over SOTA alternatives on the unseen GSO dataset.

1. Introduction

Single-view 3D reconstruction has been one of the most in-
tensively studied problems in computer vision. One class
of modern approaches directly generate or regress 3D rep-

*Equal contribution.

resentations of objects from input images [28, 57, 69, 70,
76, 79], often resorting to 3D supervision which requires
large 3D datasets for training. With significant advances
in novel view synthesis [22, 40], the second line of pop-
ular approaches to single-view 3D reconstruction first per-
form a multi-view synthesis, which typically generates an
unordered set of views either independently [31] or simul-
taneously [33, 35, 50, 55] with fixed camera setups. This is
followed by multi-view 3D reconstruction via differentiable
rendering (e.g., NeUS [61] and variants [34, 60]) so that the
entire solution pipeline can avoid direct 3D supervision.

The main challenges to multi-view synthesis are twofold.
First, the produced images should reveal occluded struc-
tures of the target 3D object that are hidden from the input
image. Second, the generated views must attain 3D consis-
tency to ensure that a plausible and coherent 3D model can
be reconstructed. Upon close examination of state-of-the-
art multi-view synthesis methods, as well as single-view re-
construction methods which combine such syntheses with
direct 3D prediction [24, 30, 53, 65], we find that there is
still much room for improvement.

In this paper, we introduce adaptive view planning to
multi-view synthesis, so as to improve both occlusion rev-
elation and 3D consistency for single-view 3D reconstruc-
tion. Instead of synthesizing an unordered set of views as
in prior works, we generate a sequence of views, leveraging
the inherent temporal consistency to enhance 3D coherence.
More importantly, our view sequence is not constructed by a

We use the term “direct 3D supervision” in the context of 3D recon-
struction to refer to models trained using paired images and ground-truth
3D models.
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pre-determined setup [33, 35, 39, 55, 73]. Instead, we com-
pute an adaptive camera trajectory (ACT), which is specific
to the target 3D object and its input view, to generate the se-
quence of novel views. Note that several recent works have
shown benefits of camera perturbation [59] and stochastic
conditioning [66] for novel view synthesis. Our approach
takes these further with judicious view planning.

Given a single-view image of an object, we first search
for an orbit of camera views to maximize the visibility of
its occluded regions. Since occlusion prediction from a sin-
gle image is ill-posed and searching over all orbits is in-
tractable, we resort to a heuristic sampling of a manageable
number of candidate orbits and utilize a neural model to an-
alyze occlusion revelation by the camera orbits.

As our neural model, we employ Slice3D [63], a recent
method for single-view 3D reconstruction which excels at
recovering occluded 3D object structures. We apply a pre-
trained Slice3D to predict a stack of images capturing par-
allel volumetric slices of the 3D object in the input image.
We then rank the candidate camera orbits based on how well
they reveal occluded regions of the 3D object, which can be
localized over the slice images by examining semantic dif-
ferences between them and the input image.

Once the best orbit is found, we feed it to a video dif-
fusion model to generate a sequence of novel views that
are adapting to the 3D object. The multi-view images
obtained are finally passed to a 3D reconstruction model
to obtain the final result. Note that these last two steps
can employ a variety of state-of-the-art video diffusion and
multi-view 3D reconstruction models. In our current work,
we employ Stable Video 3D (SV3D) [59] for the former,
while for the latter, either NeUS [61], a well established
method, or InstantMesh (IM) [72], a more recent one based
on large reconstruction models (LRMs). As a result, our
entire solution pipeline (see Fig. 2), which is coined ACT-R
for using Adaptive Camera Trajectory for single-view 3D
Reconstruction, does not use direct 3D supervision since
none of Slice3D, NeUS, or InstantMesh does. Also, our
multi-view generation is quite efficient since it involves no

Camera Trajectory Output Baseline

Figure 2. Pipeline of our single-view reconstruction method, ACT-R, with adaptive camera trajectories (ACT). We first employ Slice3D [63]
to produce the slice images of the input object, with the slicing direction from the camera to the object center. Then we compute the semantic
difference between the input and its slices by comparing their 512 x 7 x 7 feature maps extracted from VGG16 [51]. Each difference
map d; € [0, 1]7X7 is up-scaled and overlaid onto slice images for beter visualization. Next, we identify the regions that have significant
semantic differences (Sec. 3.2), and plan the camera trajectories based on them (Sec. 3.3). Finally, we condition SV3D [59] on our planned
trajectories, yielding a sequence of views, which can be fed into NeUS [61] or InstantMesh (IM) [72] for multi-view 3D reconstruction.
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Figure 3. Initial single-view inputs to advanced methods such as
Trellis and Hunyuan3D (HY) can be improved by one of the syn-
thesized multi-view images from ACT-R, to improve reconstruc-
tion results, as highlighted in the colored regions.

run-time training or optimization, only forward inferences
by applying the pre-trained Slice3D and SV3D.

Extensive experiments demonstrate that our method pre-
dicts camera trajectories tailored to each input example, ef-
fectively revealing occluded regions for higher-quality re-
construction. On the GSO benchmark [9], ACT-R outper-
forms, both qualitatively and quantitatively, state-of-the-art
methods based on multi-view syntheses from static [59],
fixed [35, 53], or randomly perturbed [59] camera trajec-
tories, all without direct 3D supervision, as well as a recent
method, Craftsman [25], which employs 3D supervision in
the multi-view reconstruction step. On the other hand, ACT,
which is best positioned to boost multi-view 3D reconstruc-
tion without direct 3D supervision, cannot beat some of
the latest LRMs such as CLAY [76], Hunyuan3D [57], or
Trellis [70], which all use direct 3D supervision trained by
closed-source (CLAY) or carefully curated (Trellis) large-
scale 3D assets. Directly comparing ACT-R with these
models can be unfair due to the different training setups.
Nevertheless, as shown in Fig. 3, ACT can benefit these su-



pervised LRMs by improving the input views.

2. Related Work

As single-view 3D reconstruction has been extensively
studied, we only focus on closely related works on video
generation, multi-view synthesis, and view planning.

2.1. Video Generation in 2D and for 3D

Early works [2, 11, 15, 16, 52, 67, 78, 80] extend im-
age diffusion to video generation. Stable Video Diffusion
(SVD) [3] adapts latent diffusion methods [4, 48] to large-
scale video datasets for temporally coherent generation. A
stream of work focuses on keyframe conditioning [12, 26,
62, 75], where initial frames are generated to anchor sub-
sequent video synthesis, with latent-consistency networks
ensuring temporal and appearance coherence. Training-free
approaches [17, 19] utilize Large Lanague Models (LLMs)
for generation guidance. Although video generation mod-
els typically lack explicit 3D representations, they can still
achieve 3D consistency by producing temporally coherent
videos. In our approach, we use video diffusion models as
the backbone to generate view sequences.

The temporal coherency achieved by video generation
models such as SVD [3] can be utilized to enhance 3D con-
sistency. CameraCtrl [14] trains a camera encoder upon
a pre-trained T2V (Text-to-Video) model (such as [13])
to allow precise and customizable camera pose control.
ViewCrafter [74] uses partial point clouds to render images
as the condition of video diffusion models. CamCo [71]
employs Pliicker coordinates to control camera poses and
leverages epipolar constraints to enhance 3D consistency in
generated videos. Finally, SV3D [59] fine-tunes a video
generation model [3] to create orbital videos around a 3D
object given a camera trajectory. By adding random pertur-
bations to the camera orbit, it can reveal structures that a
standard orbit cannot. However, these randomized orbits do
not reliably reveal additional occlusions. As more views are
generated, the process slows down considerably.

2.2. Multi-view Synthesis from Single View

Multi-view images are commonly adopted as an intermedi-
ate representation between single view and 3D, by which
novel views are first synthesized from the input view, and
then 3D entities are reconstructed via optimization [35, 59]
or feed-forward networks [24, 53, 72]. Zero-1-to-3 [31]
fine-tunes Stable Diffusion (SD) [49] to generate novel
views conditioned on camera poses. One-2-3-45 [29] and
its upgraded version [28] combines such multi-view im-
age generator with a feed-forward network, achieving re-
construction speeds as few as 45 seconds. Such a pipeline
is later improved in Instant3D [24], InstantMesh [72],
and LGM [53] for faster and higher-quality inference
by leveraging large reconstruction models (LRM). Sync-

Dreamer [33] enhances 3D consistency through cross-
attention mechanisms between different views. Won-
der3D [35] produces depth and normal maps alongside with
the RGB novel views to further support accurate 3D recon-
struction. MVDiffusion [54] and MVDiffusion++ [55] uti-
lize cross-view attention to improve multi-view consistency
for generating panoramas and 3D structures.

Generating multiple views from a single image in one
step presents significant consistency challenges, as es-
tablishing correspondences between substantially differ-
ent viewpoints remains difficult. To address this issue,
3DiM [66] generates novel views in an auto-regressive man-
ner, selecting a previously generated view as a condition for
producing each subsequent view during the denoising pro-
cess. ViewFusion [73] builds upon Zero-1-to-3 [31] to gen-
erate novel views using a similar auto-regressive approach
as 3DiM [66]. IM-3D [39] employs a video generation
model [12] to create novel views that are then processed
by 3D G-Splat [22] for 3D reconstruction. This approach
can be iteratively refined by feeding rendered objects back
into the video diffusion model. However, these methods
(3DiM, ViewFusion, IM-3D) rely on either random camera
poses or predefined trajectories for novel view generation,
without considering the specific structural properties of the
objects being modeled.

2.3. View and Path Planning

Path planning has applications in navigation, scanning, and
even computational fabrication [10, 21, 32, 36, 46, 47].
In particular, Next-Best-View (NBV) planning addresses
the fundamental challenge of determining an optimal se-
quence of camera positions to maximize information gain
during scene or object inspection [8, 38, 58]. Two popular
traditional approaches to this problem include voxel-space
methods that optimize coverage metrics [8, 37, 38, 58],
and surface-based methods that analyze boundary charac-
teristics to determine optimal viewpoints [6, 23, 43]. Re-
cent advances in deep learning have transformed the NBV
paradigm, introducing reinforcement learning [7, 42], re-
constructability predictor [32] and uncertainty evaluation
framework [20] to the scope. While traditional NBVs as-
sume the availability of a complete 3D reference model,
our work addresses a more challenging scenario where only
a single image serves as input. This constraint fundamen-
tally shifts the problem from pure coverage optimization to
view prediction based on limited initial information, requir-
ing novel strategies for trajectory planning.

3. Method

Given a single image € R3*H>*W of an object and a
video generation model G conditioned on a camera trajec-
tory (e.g., SV3D [59]), our goal is to determine an adap-
tive camera pose trajectory (my,ma, ..., my) that adapts to



the object in its input view. It should condition G to gener-
ate a sequence of views that better reveals the geometry of
the target object compared to a fixed generic trajectory, and
leads to a more accurate 3D reconstruction.

Similar to SV3D [59], we assume that the camera al-
ways looks at the center of an object (origin of the world),
and the distance between the camera and the center remains
unchanged, so any viewpoint can be specified by only two
parameters: 7; = (e;, a;), where e;, a; are the elevation and
azimuth angles.

When designing an adaptive trajectory in contrast with a
generic one, we aim to avoid increasing its length (i.e., the
number of views), as doing so would complicate both the
multi-view generation and subsequent 3D reconstruction.
To maintain consistency, we fix the number of generated
views, N, as 21 and use a single closed orbit for the camera
trajectory, the same as SV3D (u) [59] for a fair comparison
as SV3D serves as our closest baseline.

3.1. Overview

Fig. 2 shows our pipeline. To guide camera trajectory gen-
eration, we first identify occluded regions from the input
view. To this end, we employ Slice3D [63] to produce ob-
ject slice images from the front to the rear of the object.
These slices allow us to construct a coarse representation by
voxelizing each slice and stacking them up. When compar-
ing each slice image to the input image, significant semantic
differences in certain areas often suggest that these regions
in the slice are occluded from the input view. Therefore,
we compute semantic difference maps between each slice
image and input image by leveraging VGG16 features and
incorporating this information into the voxels, forming a se-
ries of spatially-aware 3D semantic difference blocks.

From these blocks, we plan a camera trajectory aiming to
maximize the visibility of the occluded regions, with each
block weighted by its semantic difference. This optimized
trajectory is fed into SV3D [59] to generate a sequence of
novel views. The generated novel views can be used in a
plug-and-play manner for any 3D reconstruction pipeline
that takes novel views as intermediate representations. We
used NeUS [61] and large reconstruction models trained
from InstantMesh [72] as our two alternative 3D reconstruc-
tion backbones.

3.2. Building Semantic Difference Blocks

As illustrated in the first step in Fig. 2, Slice3D produces
in total M slice images {s1, s2,..., S} from the input
x. We quantify the semantic differences between slice im-
age s; and input x by comparing the features from the fi-
nal pooling layer of VGG16 [51]. Specifically, we com-
pute: d; = {¢(x), d(s;)), where ¢(-) € R312X7TX7 repre-
sents the VGG16 feature maps for a given input, with spa-
tial resolution 7 x 7 and feature dimension 512 per position;
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Figure 4. Illustration of camera trajectory planning. Left: Trans-
forming the semantic difference maps into 3D blocks, where
lighter yellow indicates greater differences. Right: Visualization
of different camera orbits. Red: fixed elevation; Green: variable
elevations that capture greater visibility. “diff” and “cam” denote
difference and camera, respectively.

1 <4 < M; (-,-) denotes the cosine similarity between
the 512-dimensional feature vectors at each corresponding
spatial position from the two inputs, resulting in d; € R7*7.

As shown in Fig. 4 (left), we transform the semantic dif-
ference maps {d1, ..., dps} into 3D blocks (shown in yel-
low), approximating the object shape and indicating seman-
tic differences to the input view. Specifically, we first iden-
tify the 2D mask of the object in the input image, and apply
this mask to crop each map d; into d;, € R YW <7,
W' < 7). Next, we estimate the object’s 3D bounding box
in the camera coordinate system (detailed in the supp. mate-
rial) and divide this space into M x H’ x W’ blocks. Each
block at position (¢, j, k) corresponds to the element d ke
where 1 <1< M,1<j< H and1 <k <W'.

We retain a block only when its corresponding slice pixel
8451 18 not empty. The retained block is associated with
the value of d;; indicating the semantic difference of that
region compared to the input view. This process yields a
coarse 3D representation of the input object, highlighting
which parts were obstructed from the input view and require
further observation from subsequent views.

Compared with more recent feature encoders such as
DINOv2 [41] and CLIP [45], we empirically find that
VGG16 [51] works better in extracting semantic difference
maps between slices and input images. Please see the sup-
plementary materials for detailed ablation studies.

3.3. Camera Trajectory Planning
To accurately model the spatial relationship between the
camera and the reconstructed object, we estimate:

1. r: distance from the camera to the object center, with the
camera trajectory as an orbit on a sphere with radius r.

2. a: the elevation over the object in the input image.



The camera is initially positioned at the input view, i.e.,
(ap,e0) = (0,). The generic camera trajectory from
SV3D (u) [59] uses a fixed elevation «, shown as the red
orbit in Fig. 4 (right). Here r and « are used to calculate
the world-to-camera coordinate transform since SV3D [59]
operates in a world frame while we use a camera coordinate
system.

The reconstructed coordinate system is shown in Fig. 4.
To maximize the observation of occluded regions, an ideal
trajectory should aim to cover as many blocks as possible,
prioritizing those blocks with greater semantic differences
(denoted by lighter-coloured blocks). With the camera’s
known field of view (FOV) 6, we can determine the block
visibilities from any given position.

Since the search space for camera trajectories is infi-
nite, we discretize the camera’s movement to facilitate the
search. Specifically, we begin by sampling the azimuth
steps at a constant interval of 18° (calculated as 360°/20)
between each frame from 0° to 360°, which creates a
closed-loop trajectory in terms of azimuth.

Next, we define the elevation angle changes at each step
using the set {£5°, £4°, +3°,+2°, +1°,0°}. We limit per-
step elevation changes to within 5°, as larger step sizes chal-
lenges frame-consistent video generation. Each orbit is di-
vided into four segments based on azimuth angles. Within
each segment, the elevation angle increments at a constant
rate, with the step size selected from the set. To ensure a
closed orbit, we enforce the total variation in elevation to be
zero by mirroring and negating the elevation change in the
second segment onto the third and the first onto the fourth.
This approach results in a total of 11 x 11 = 121 candidate
trajectories, which we denote as the set II.

We choose the path 7* that maximizes the weighted vis-
ibility of difference blocks. For each camera position, we
determine which blocks are visible, and our objective is to
optimise culmulative visibility weight across all time steps:

N
ﬂ*:argmaxz Z dijre» (1)
T = k)
€p(m(t))

where ¢ (7(t)) denotes the set of all visible blocks under
camera 7(t). More details about the ) (-) formulation and
orbital camera trajectory justification can be found in the
supplementary material.

3.4. View Generation and 3D Reconstruction

We fed the camera trajectory 7* to SV3D [59] to generate
a video containing a sequence of novel views. Since the
video could suffer from significant artifacts due to stochas-
ticity in the generative models, we apply view-consistency
as the primary metric to filter out low-quality results and
regenerate with alternative random seeds when necessary.

The final view sequence can be integrated into any 3D re-
construction pipeline that accepts posed-multiview-images
as input. We demonstrate ACT-R’s flexibility by reconstruc-
tion meshes through two different approaches: volumetric
rendering with NeUS [61] using all 21 generated images,
and processing through LRM [72] by feeding 6 uniformly
sampled key frames from the 21 views.

4. Experiments

Implementation details. We used rembg [44] to remove
the background of input images. The number of slices M is
set to 4. The FOV 6 of the camera is set to 33.8. SV3D pro-
duces a video consisting of 21 frames, with each frame at
a resolution of 576 x 576 pixels. For volumetric rendering
based reconstruction, we chose NeUS [61] as our recon-
struction method because it is well-established and contin-
ues to be used in recent state-of-the-art methods (e.g., Won-
der3D [35]). Our 3D reconstruction performance could po-
tentially be enhanced with more recent 3D reconstruction
methods, such as those in [18, 27]. We train the network
of NeUS for 10k steps for each shape, which takes around
15 minutes in an NVIDIA 3090 GPU. For LRM based re-
construction, we uniformly sampled 6 views from the view
sequence used pretrained checkpoint from InstantMesh [72]
as it takes images from arbitrary camera pose.

Datasets. We conduct evaluation on GSO [9], a widely-
used benchmark for novel view synthesis and 3D recon-
struction which includes about 1K common household ob-
jects that were 3D scanned and represented as meshes.

Evaluation Metrics. For 3D metrics, we use Chamfer £,
(CD), Hausdorff (HD), and Light Field distances (LFD) [5],
as well as F-score%1 (F1) [56], to evaluate reconstruction
results. In addition, we also report 2D metrics such as
PSNR, SSIM [64], and LPIPS [77] on 12 rendered views
of the reconstructed meshes. Since no single metric is en-
tirely informative, we provide a comprehensive evaluation
to cover both object- and image-space, as well as distortion
and visual similarity aspects of the 3D reconstruction.

4.1. Qualitative Visual Comparisons

We compare ACT-R to representative SOTA approaches for
single-view 3D reconstruction, including Wonder3D [35],
SV3D(u) [59] for volumetric-rendering-based reconstruc-
tion, LGM [53] based on LRMs, and CraftsMan [25] as an
image-to-3D method with direct 3D supervision. We fur-
ther present three ablated experiment setups:

1. Random trajectory: Generate novel views with a random
orbital trajectory by using random elevation increments,
with the mesh reconstructed by NeUS.

2. SV3Dpy: LRM with 6 views sampled uniformly from
generic camera trajectories with constant elevation.
Qualitative results in Figure 6 show that different re-

construction backbones offer distinct advantages, while also
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Figure 5. Visualization of slice images predicted by Slice3D [63] and planned trajectories (shown in green). Purple arrows indicate the
world’s up direction. The 3D blocks (i.e., semantics difference blocks) roughly represent the input shape, using colors to highlight their
semantic differences from the input view. The numbers in brackets show the elevation changes in each segment of the orbit.

expose their limitations. NeUS produces more faithful
reconstructions that closely match the input, yet suffers
from blobby surface artifacts. Effectively leveraging 3D
priors, LRMs produce smoother surfaces, but respect less
the details from the input image. Despite these inherent
backbone-specific characteristics, ACT-R’s adaptive trajec-
tories consistently improve reconstruction quality, particu-
larly over occluded regions. Our approach more faithfully
reconstructs the solid bowl interiors (rows 2) that most com-
peting methods overlooked due to occlusion in the input im-
age and provides enhanced spatial awareness between ob-
jects (row 3). See supplementary material for more results.

Fig. 8 compares the generated views of Wonder3D [35]
and SV3D [59] to ours. Compared to SV3D, Wonder3D
offers a wider range of visibility (e.g., bottom views of the
objects) by varying both camera azimuths and elevations.
However, it tends to suffer from multi-view inconsistency,
as seen in the heavily distorted back view. SV3D main-
tains better consistency but cannot observe the back of the
object, leading to inadequate information during 3D recon-
struction. In contrast, our method captures the bottom of
the object and achieves view consistency.

4.2. Quantitative Comparisons

Since the reconstructed 3D meshes from different meth-
ods exhibit different poses, we first normalize the output
mesh and provide an initial transform to align it with the
GT mesh, then optionally used Iterative Closest Point (ICP)

Method CD| FIt HD| PSNRt SSIM{ LPIPS| LFD |

Wonder3D [35] 5.17 2.66 18.9 15.8 8.17 17.9 1.33
SV3D(u) [59] 493 279 184 159 8.12 17.6 1.30
LGM [53] 7.78 153 289 133 7.56 24.1 1.79

Craftsman [25] 637 2.81 20.8 15.7 8.08 17.4 1.42
SV3Dmy 515 264 18.0 16.4 8.35 16.1 1.17
Random Traj. 479 3.15 17.2 16.8 8.32 15.5 1.04
Oursyv 451 341 16.2 174 8.49 14.0 1.05
Ours 447 378 175 17.1 8.35 15.1 1.00

Table 1. Comparison of 3D reconstruction results. Cell colors
indicate ranking: (1st), blue (2nd), and (3rd) for each
metric. Lower is better for CD, HD, LPIPS, and LFD. Higher is
better for F1, PSNR, and SSIM.

to further tune the mesh poses, whichever leads to better
quantitative measures for the results.

We report quantitative comparison results for all 1,030
objects from the GSO dataset in Table 1. Our method
demonstrates clear advantages over the other methods
across all metrics, especially in F1 [56]. The improvements
on 2D metrics indicate that our method can generate ob-
jects that are aligned with the GT in pixel space. Over-
all, our method exhibits robustness in accurately modeling
object geometry while preserving visual realism in image-
space projections. Its superior performance on GSO fur-
ther underscores its strong generalizability across diverse
object categories, showcasing its capability in handling a
wide range of shapes, sizes, and appearances effectively.

We further compared the coverage metric resulting from
different trajectories. Quantitative numbers suggest that our
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Figure 6. Qualitative visual comparisons between single-view 3D reconstruction methods on the GSO dataset. Please zoom in for a closer
inspection. Meshes reconstructed with NeUS and LRM are in yellow and blue blocks, respectively. Our adaptive camera trajectories can
be integrated into both reconstruction frameworks. From these examples, it is evident that our method can capture geometric and structural
details better, especially over concavities and occluded regions, and it has less missing parts and geometric artifacts. For example, our
method is the only one, whether with NeuS or LRM, that can faithfully reconstruct the inside region of the dog bowl (second example).

adaptive trajectory achieves a better coverage than static or
random trajectories, please see the supplementary material
for more details.

4.3. Visualizations of Trajectories

Fig. 5 shows our predicted slice images and trajectories. An
naive view planning would negate the initial elevation an-
gle for an even span, raising the camera for negative angles
and lowering it for positive ones. In contrast, we base our
trajectory prediction on a deeper understanding of object
structures and occlusions.

For the Bundt cake pan, even with a positive elevation for
the input view, we still raise the camera to reveal the inner
tube. Although slice3D [63] failed to predict the inner tube
in the sliced image, it still suggests that inner regions re-
quire additional attention. For the tape example, the camera
highest elevation is lower that the pan example, since it has
already fully observed the hole in the middle. This proves
that our method is adaptive to each single object. For the
sneaker example, our trajectory can better observe the pair
of wings so that they will not occlude with each other in
most of the frames. For the sofa, we lower the camera to
fully capture its bottom. For the Jenga blocks, we planned
a trajectory that can better observe the concave areas.

Comparing VGG’s Last Pooling Layer Feat Comparing VGG’s Multi-layer Feats (LPIPS)
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Figure 7. Computing semantic difference maps {d; } using differ-
ent metrics. Brighter color indicates higher semantic difference.

4.4. Ablation Studies

Computation of semantic differences. The computation of
semantic difference maps {d;} plays an critical role in our
task. From the comparison between Ours and random tra-
jectory result, it is evident that our current VGG features
is guiding the camera in a meaningful way. Aside from
VGG16, we also tried perceptual loss (LPIPS) [77] to com-
pute the semantic differences by comparing multi-level fea-
tures from VGG, rather than the last-pooling layer features
we currently employ. As shown in Fig. 7, it appears that
high-frequency (low-layer) features do not aid in locating
the occluded regions. This is particularly evident in the third
slice images, where LPIPS generates a dark map that barely
highlights any differences from the input view.

Reconstruction from 6 views. Since Wonder3D only gen-
erates 6 views to obtain a 3D mesh, we also test our method
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Figure 8. Generated views of Wonder3D [35] (st row),
SV3D [59] (2nd row) and our method (3rd row). The red and green
orbits show the orbits of SV3D and our method, respectively.

to only rely on 6 frames from our generated videos that
have nearly the same azimuths as Wonder3D. The results
in Fig. 9 indicate that the quality of the views is more im-
portant than their quantity.

Robustness to camera pose estimation. Since our trajectory
planning operates on a coarse 3D representation, i.e., the
blocks, it is robust against errors from estimating the camera
parameters and the bounding boxes. More details on how
camera estimation affects our view planning can be found
in the supplementary material.

5. Conclusion, Limitation, and Future Work

We propose adaptive view planning for synthesizing novel
views from a single image. Our key insight is that slice
images from Slice3D [63] can effectively reveal occluded
structures from the input view and guide the camera’s move-
ment. By leveraging the capabilities of modern video
generation models, the generated novel views along our
planned trajectory tend to improve the visibility of occluded
structures while maintaining multi-view consistency and
the overall frame budget. Interestingly, this reveals how
multi-slice and multi-view can work together to comple-
ment each other, where the former provides geometric in-
sights on where the self-occlusion may be present while
the later offers signals on the visible geometries. Combin-
ing the two, potential invisible regions are better exposed
for improved single-view 3D reconstruction. In the end,
our method ACT-R has been shown to outperform state-of-
the-art reconstruction alternatives which take the single-to-
multi view route without resorting to direct 3D supervision.

Limitations. Most limitations in our current implementa-
tion are inherited from SV3D [59], e.g., limited camera
DoFs as only azimuth and elevation are changeable, and
quality of the generated videos. Nonetheless, our view plan-

Input view Wonder3D Ours Wonder3D Ours

& @B T Y SY

Figure 9. Reconstruction from 6 generated views.

Input view

ning is applicable to other video generation models such
as ViewCrafter [74], VD3D [1], and CameraCitrl [14] with
even higher camera DoFs. ACT-R’s performance is also
limited by the accuracy of the estimated semantic differ-
ences between slice and input images. It is certainly pos-
sible to explore alternative occlusion-aware reasoning for
view planning, or enlarge the scale of 3D data exposed to
Slice3D — the version we employed for trajectory planning
was trained on only 5% of the 880K Objaverse 3D dataset.

Adaptive vs. fixed camera trajectories. While we firmly
believe in the merits of adaptive view trajectories for oc-
clusion revelation, view synthesis from such trajectories
(e.g., via SV3D [59]) is more difficult compared to one that
only works with fixed cameras, e.g., Zero123++ [50]. Even
when trained on the same 3D dataset, SV3D is clearly out-
done by Zerol23++ in terms of the quality of the synthe-
sized multi-view images. As a result, our method, which
feeds adaptive trajectories to SV3D, cannot quantitatively
beat InstantMesh [24], which employs Zero123++, across
most metrics. Qualitatively however, we consistently ob-
serve that our method can outperform InstantMesh when
the 3D objects have significant concavities or occlusions;
see the two bowls in the fourth blue column in Fig. 6. We
are motivated to resolve the above discrepancy by improv-
ing camera-adaptive view synthesis.

LRMs with direct 3D supervision. The most successful
single-view reconstruction models of late have predomi-
nantly been LRMs [57, 70, 76] with direct image-to-3D and
3D supervision using large-scale 3D datasets. The strong
3D priors learned by these models appears to be diminish-
ing the importance of multi-view synthesis. As we show
in the supplementary material, multi-view Trellis does not
outperform its single-view counterpart. This is also due in
part to the blurriness of the synthesized multi-view images,
regardless of the camera trajectories. That being said, hal-
lucinations still abound either due to severe occlusions in
the input view (see Fig. 3) or erroneous priors (e.g., sym-
metries by CLAY [76]), while potential overfitting to 3D
training data remains a valid concern.

In future work, a more in-depth investigation into how to
best integrate adaptive view planning into direct image-to-
3D large reconstruction models (LRMs) is worth conduct-
ing. We would also like to explore other applications of
ACT, e.g., for robotics and autoscanning [68].
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