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Abstract

Diet planning, a basic and regular human activity, is important to all
individuals. Children, adults, the healthy, and the infirm all profit from diet
planning. Many recent attempts have been made to develop machine learning
(ML) applications related to diet planning. However, given the complexity
and difficulty of implementing this task, no high-quality diet-level dataset
exists at present. Professionals, particularly dietitians and physicians, would
benefit greatly from such a dataset and ML application. In this work, we
create and publish the Korean Menus–Ingredients–Nutrients–Diets (MIND)
dataset for a ML application regarding diet planning and dietary health
research. The nature of diet planning entails both explicit (nutrition)
and implicit (composition) requirements. Thus, the MIND dataset was
created by integrating input from experts who considered implicit data
requirements for diet solution with the capabilities of an operations research
(OR) model that specifies and applies explicit data requirements for diet
solution and a controllable generative machine that automates the high-
quality diet generation process. MIND consists of data from 1,500 South
Korean daily diets, 3,238 menus, and 3,036 ingredients. MIND considers
the daily recommended dietary intake of 14 major nutrients. MIND can be
easily downloaded and analyzed using the Python package dietkit accessible
via the package installer for Python. MIND is expected to contribute to the
use of ML in solving medical, economic, and social problems associated with
diet planning. Furthermore, our approach of integrating data from experts
with OR and ML models is expected to promote the use of ML in other
fields that require the generation of high-quality synthetic professional task
data, especially since the use of ML to automate and support professional
tasks has become a highly valuable service.
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1 Introduction

Diet is “the sum of foods consumed by a person or other organism” [24], and diet planning
is a regular human activity. The term “meal” implies consumed foods in general, and
the term “diet” is used to indicate the combination of food menus planned for a specific
purpose such as nutritional satisfaction, allergen avoidance, or weight control [8, 19]. Given
that a diet is necessary for all individuals, diet planning has emerged as a core function
of dietary healthcare research (DHR) in diverse disciplines that include food technology
[21, 36, 37], nutrition management [5], clinical medicine [40], sports science [3, 15], and
military nutrition [28, 12]. A single diet can be defined as a sequence of menus; diet planning
involves the consideration of menus, ingredients, and nutrients (see Figure 1). A menu item
is the complete product of cooked foods. For example, “a salad” is food and “ricotta cheese
salad” is on the menu. Individuals usually consume end-products, not raw foods, and "menu"
corresponds to the end product. “Ricotta cheese salad” consists of ingredients such as ricotta
cheese, lettuce, and balsamic vinegar; and each ingredient contains several nutrients such as
protein, fat, iron, sodium, etc. Therefore, any single diet can be hierarchically expressed
with respect to menu-level, ingredient-level, or nutrient-level representations.
Diet planning is an advanced issue of the traditional "diet problem", the problem of optimizing
quantities of foods and ingredients. The diet planning problem involves assessment of menus
rather than foods. The solution to this problem is the optimization of the quantity of each
menu with the simultaneous attainment of the optimal combination of menus (refer to Section
2 and Appendix A.1 for further details on the diet problem and diet planning). Recently
in the healthcare field, researchers have attempted to define a health-related diet planning
problem and to solve this problem using machine learning (ML). A major interest of medical
DHR with ML is the design of a diet that counters disease-related factors [40, 20, 34, 1], and
the ML studies of sports and military DHR focus on diets that strengthen physical abilities
and metabolic controls [13, 6]. Despite the importance of ML application in academia and
practice, studies in ML-based DHR are challenging because of the insufficiency of data.
Figure 1 illustrates how DHR studies have been conducted based on the data of diet + X
(e.g., menu, ingredient, or nutrition) configurations. Most of these previous studies have
evaluated the physiological changes in subjects consuming different foods or have focused on
recommending the consumption of specific foods based on perceived benefit. This indicates
that diet data are the main source of information in those studies. However, a sufficiently
large benchmark diet dataset that is accessible to the public does not yet exist. [7, 11, 30, 41].
This lack of a diet-level dataset may be the reason that most dietary studies have been based
on operations research (OR) modeling instead of the ML approach that requires a dataset
for training.
Several reasons exist for the lack of a diet-level dataset. From a data perspective, the diet
can be defined as a set of menu items or food items arranged in a sequence, e.g., appetizer,
main course, and dessert, for a specific purpose (see Figure 1). Obtaining a large quantity of
diet data from current consumption practices may appear to be relatively simple. However,
actual diet data have significant data quality issues. Our previous study provides evidence
of this [17, 14]. While we were able to obtain an actual diet dataset that was created and
used by public institutes and professional dietitians in South Korea, difficulty in use of this
as a benchmark dataset arose for two reasons. First, the nutritional quality of each diet
was inadequate. The first objective of dietary studies is to meet nutritional requirements
according to age or other conditions, and necessary guidelines are clearly delineated by
nutrition science. Surprisingly, many of the diets provided by public institutes did not meet
these requirements. Many dietitians believe that this is an unavoidable reality because of
the high complexity and difficulty of diet planning. Designing a diet plan is indeed complex
and difficult because of its combinatorial optimization nature, which represents an NP-hard
problem [39, 29]. For example, a breakfast plan with a combination of 100 menu items will
consist of approximately 108 options, supposing that a breakfast contains five menu items.
Second, the available datasets are insufficient in size. Usually, a unit of data in a diet
dataset is one daily diet. Therefore, yearly data only contain approximately 300 examples,
limiting the composition patterns of the diets. Additionally, diet planning involves substantial
knowledge of food and nutrition. Understanding the context, e.g., religious beliefs and cultural
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Figure 1: The scope of our study (left) and structure of the MIND dataset (right). The
approaches in the blue boxes are used by most OR studies, which are based on the formulation
of explicit requirements of diet planning; the approach in the red box is extended to learn
implicit patterns in diets through ML. This figure shows the spectrum from existing works,
primarily using an OR approach to confront the diet problem and diet planning to our
ML-based approach to address these issues. In summary, all previous studies on diet planning
consider ingredient and menu-level information, but diet-level planning should involve the
compositional patterns of menus in diets. In addition, existing ML studies on dietary
healthcare also consider only the ingredient and menu levels. The proposed MIND dataset
is the first dataset that integrates all of the hierarchical relationships between diets-menus,
menus-ingredients, and ingredients-nutrition.

orientation, and health and development issues, e.g., growth, aging, and the pathogenesis of
chronic diseases, is also of prime importance [23, 25]. This knowledge must be treated as
constraints when generating diets, but only some of these topics have an explicit guide for
specifying nutritional and other dietary requirements. No guidelines exist for the remaining
topics because the guidelines and topics are related to implicit requirements that include
the composition of a diet. As a result, professional dietitians employed in government or
daycare centers often copy and edit existing diets that are poorly crafted (see Section 4),
and this emulation behavior adversely impacts the quality and size of available diet datasets.
Similarly, although medical doctors and dietitians in large hospitals should design specialized
diet plans for inpatients, few inpatients receive these services. Last, diet planning in the
home is usually unsystematic, contributing to the low quality and insufficient size of the
available benchmark dataset. Therefore, the focus of our study is data augmentation using
synthetic diets of high quality to construct a benchmark dataset for ML-based diet planning
applications and DHR.
To generate synthetic diets of high quality, we initially performed the task of diet generation by
redefining the traditional OR diet planning problem as an ML one, a controllable generation
problem as described in Section 2. Accordingly, we devised an OR–Xperts–ML (ORxML)
framework that integrates input from experts with the capabilities of OR and ML modules
(see Section 3). Each OR, Expert, and ML module is responsible for the initialization,
evaluation, adjustment, and control of diet generation. The specific process involves the
formulation of a combinatorial optimization OR model to generate synthetic diets as a
means of satisfying explicit nutrient requirements. Next, we recruited experts, professional
dietitians, to evaluate and adjust the initial data in terms of implicit requirements. These
implicit requirements are criteria that cannot be specified in the combinatorial optimization
model. An example of these requirements is the essential dietician task of assessing the
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composition of a diet based on its implicit and contextual nature. This is critical to make
the diet recipients accept and enjoy menus with high nutritional quality. See Appendix A.4
for further details on the compositional quality of diets. Without this consideration, feasible
solutions for diet planning cannot be provided in practice. Last, we developed a controllable
diet generation machine to: (a) ensure composition compliance by learning the data patterns
constructed by the OR model and experts, (b) enhance nutrition by approximating an
optimal policy to maximize the nutrient rewards, and (c) automatically augment the data
by executing an optimal policy and generating synthetic diets.
With the diets generated by the ORxML framework, we created the
Menu–Ingredient–Nutrient–Diet (MIND) dataset for diet planning and DHR with
ML and introduce this dataset in this study. Figure 1 shows the MIND dataset that consists
of 1,500 daily diets, 3,238 menus, and 3,036 ingredients. Satisfaction of the nutritional
intake requirements for 14 major nutrients was a significant consideration. The original
sources of the menu items, ingredients, and nutrient information are the public databases
of South Korean government organizations that are responsible for ensuring the country’s
nutrition standards, and the diet data were created by the authors from the beginning using
the ORxML framework. The quality of the diets was validated by dietitians and physicians,
and we received approval from the government organizations responsible for determining
nutrition quality in South Korea (e.g., the Ministry of Food and Drug Safety and the Rural
Development Administration) to distribute the MIND dataset. The MIND dataset can
be downloaded and subsequently analyzed easily using the Python package called dietKit,
which is accessible via the package installer for Python.
This work is original research with academic merit and practical implications as illustrated
in Figure 1. Diet planning is an important problem that should be solved with ML but
could not be addressed in this way due to the lack of datasets for this data-driven approach.
To the best of our knowledge, this work is the first to create and publish a large-scale and
high-quality diet-level dataset for diet planning and DHR using ML. Section 2 explains
the methodological background more thoroughly. In addition, this work represents a first
attempt to develop a framework for generating high-quality synthetic data for professional
tasks. Section 3 explains the ORxML framework in detail. In Section 4, we discuss how the
quality of the MIND dataset was evaluated via a series of experiments to demonstrate the
significance of the three modules, the OR model, the knowledge and experience of experts,
and the ML model. The final outcome of the MIND dataset is described in Section 5. Our
work has already started to create an impact. In Section 6, we discuss ML applications of
our dataset as a means of assisting dietitians, medical doctors, and the public in their diet
planning and related healthcare tasks. In Section 7, we discuss how the ORxML framework
can be applied to constructing high-quality synthetic data involving professional tasks in
other domains.

2 Background and Literature Review

The academic concepts and definitions necessary to understand our research are briefly
discussed in this section. Each of the two subsections defines the diet planning problem and
its recent paradigm with the support of ML.

Diet planning problem The concept of the diet problem, highlighted by Dantzig [4],
was motivated by the United States Army’s desire to meet the nutritional requirements of
military personnel in the field while minimizing the cost of implementing the endeavor [2].
The prototype study of the diet problem was published in 1945 when George Stigler, who
later received the Nobel Prize, presented an economical diet model [35]. Stigler regarded the
diet problem as a scenario involving continuous optimization to identify optimal quantities of
food items; thus, a linear programming approach was adopted. However, Stigler’s approach
was later criticized as impractical by subsequent economists and operation researchers. Most
criticisms centered on the optimization units. Smith [33] and Smith [32] explained that the
linear programming solution, i.e., using an optimal set of food items, was “unpalatable”
because the linear models exemplified “one-dish meals” similar to animal feed blends rather
than those fit for a “daily human diet.” Similarly, Peryam [27] and Eckstein [9] also disapproved
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of the linear programming approaches. Their contention was that a diet is optimized at
the level of food items or ingredients rather than at the level of menu items or recipes; the
solutions of the linear programming were viewed as raw materials and not as end-products.
This view is critical, as humans do not consume a specific quantity of each food unit but
rather the end-product as a whole unit. Subsequent to this wave of criticism of Stigler’s
approach, a new type of diet problem, i.e., diet planning, has emerged. The diet problem
in this case has been formulated as a combinatorial optimization problem. Consequently,
most researchers have applied mixed-integer programming (MIP) to solve the diet problem.
Diet planning research has since focused on formulating the diet problem in the MIP form
[31, 18, 10] as follows:

max
X
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= T for k = 1, 2, 3, ..., K (3)

...

X = [x1, ..., xT ] ∈ {0, 1}M×T is the matrix representation of a single diet consisting of T
menus out of l M available menus. xt ∈ {0, 1}M is the menu representation of tth menu in
a single diet. This is the one-hot vector of size M , the jth element of which is marked as
one if the jth element is the tth menu in a diet. The remaining elements are assigned zeros.
A ∈ RM×N is the menu-nutrient matrix in which the value of each element is an amount
of nutrient contained in one unit of the menu. N is the number of nutrients. C ∈ RM

is the menu-cost vector in which the value is the unit cost of each menu. C is the upper
bound of the total cost available for spending. S ∈ {0, 1}M×K is the menu-category indicator
matrix in which smk is set to one if the mth menu belongs to the category k and zero
otherwise. Note that the subscript of the matrix from equation (1) to (3) indicates an
indexing after inner-product operations. For emphasis, the equations are not the absolute
forms of formulating the diet planning problem; rather, a dual form can be designed. One
example has the objective of minimizing the total cost, given the constraint in which some
amounts of the total nutrition can be achieved. Figure 1 in Appendix A.1 illustrates the
concept of diet planning.

Diet planning with ML In the previous section, we described diet planning as a combi-
natorial optimization problem; this is the main approach used in OR communities. However,
using OR approaches solely is insufficient when a problem is dynamic or comprises latent
elements, but ML is an emerging approach that can help overcome the limitations of OR
(see Appendix A.1). In this work, we assert that a ML-supported OR approach is the best
approach to diet planning. We offer two reasons to support this view. First, diet planning
is a task that requires expertise. We discovered from our interviews with diet experts that
rules or practices of planning are tightly adhered to. Second, some elements are difficult
to define, even among diet experts. Elements such as individual preference that include
the color, flavor, or texture of menus and context that includes mealtime, food culture, or
composition of the diet, are implicit information such that all possible scenarios cannot be
explicitly defined. In summary, the nature of diet planning is essentially static, and various
latent elements are highly implicit and difficult to describe explicitly. More specifically,
we found in our previous study [17] that dietitians consider the chemistry of the menus,
i.e., the composition of a diet, to be as important as meeting the nutritional requirements.
We, therefore, propose a diet planning framework that addresses both explicit (nutrition)
and implicit (composition) requirements. See Appendix A.4 for further details on these
explicit and implicit requirements of diets. The framework consists of OR and ML parts,
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(a)

(b)

Figure 2: OR-Xpert-ML framework (ORxML). Figure (a) shows that the framework consists
of three modules and six steps. Steps in blue are related to explicit requirements, and steps
in red are related to implicit requirements. Note that this framework is designed to have a
cyclical structure that is intended to reflect the continuous interaction between experts and
machines. Figure (b) describes the task of each module, e.g., combinatorial optimization
and the form of the corresponding diet, e.g., a combination of menus.

each responsible for nutrition and composition; and the outputs are high-quality diet plans
addressing both requirements. We elaborate on the details in the next section.

3 Methodology

To generate a high-quality diet-level dataset, we propose the ORxML framework. This
framework integrates the input of experts with the capabilities of OR and ML. In particular,
this section presents the overall framework and then describes each of the three modules in
detail.

The overall framework As illustrated in Figure 2(a), the proposed framework consists of
three modules and has a cyclic structure of six repeated steps. Each of the three modules has
a slightly different view of diet planning. In the OR module, diet planning is a combinatorial
optimization problem to find a feasible set of menus that achieves nutritional requirements.
In the expert module, the experts define diet planning as a problem that includes composition
requirements and occasionally sacrifices meeting nutritional requirements to achieve desirable
composition. In the ML module, diet planning is defined as the midpoint between the previous
two modules. A machine is trained to control diet generation, allowing this generation to
proceed as intended. We intend the algorithm to refine the diets into high-quality ones
that recover the nutritional requirements obtained in the OR module while maintaining the
compositional requirements provided by experts.

Six steps for the three modules The six steps specify the tasks of each module. In the
first step, we formulate an OR model to define a searching space. The search space is the
space of feasible diets defined as a set of menus that satisfy the nutritional requirements. In
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the second step, we filter the optimal solutions. An optimal solution is a combination of
menus in the feasible space. The aim of this step is to filter the diets that satisfy nutrient
requirements and to include these diets as candidates for the initial settings of the diet
dataset. The OR module is guaranteed to find existing optimal solutions.
In the third step, the candidate diets are given to experts, e.g., dietitians, who edit these
diets to ensure acceptability. Note that the experts are guided to edit the diets and arrange
the edits into a sequential format. Such a guide is necessary because the following module,
the ML module, is designed to learn the sequential patterns of menu compositions in diets.
The goal of this step is to create a diet dataset with desirable compositions using the leverage
of human experiences. However, manual editing is labor-intensive with the risk of biased
editing or mistakes. To automate the editing task and to prevent the risk of human error, we
added an ML module in the fourth step to refine the input diets. The goal is the compliance
of compositional patterns in generated diets and the enhancement of the nutritional rewards.
We designed the reward functions based on the nutritional requirements in the National
Health Guideline provided by the Ministry of Health and Welfare of the Korean government.
Then, based on Lee et al. [17], we developed a sequence generation model that maximizes
the rewards using policy-based reinforcement learning with the REINFORCE algorithm [38].
Since reinforcement learning is built on the Markov assumption, the generative model could
be based on any type of neural networks that belong to the family of RNNs, e.g., GRU and
LSTM. This is powerful in learning sequential patterns and the reason that the experts were
guided to edit diets in the sequence form. The ML module is trained by learning the edited
diet data from the Expert module and the nutritional knowledge. Through this step, we
control the candidate generated diets to be excellent in both compositional and nutritional
quality.
The first two steps, i.e., formulation and filtering, are devised to consider explicit requirements;
the middle two steps, editing and refinement, are introduced to consider implicit requirements.
We can generate as many diets as is necessary in the fifth step. With a trained ML model,
the process of diet generation is totally automated. In the sixth step, the learned parameters,
e.g., the coefficients of the model and the attention map, of the ML model provide an
explanation of the latent elements, implicit requirements that are unobservable to experts.
Finally, these six steps can be repeated as many times as necessary such that the outcomes
of the generation and explanation steps may motivate the experts to reformulate the OR
model and to improve the diet editing process. See Appendix A.2 for further details of each
module.

4 Evaluation

In this section, we describe the experiment settings, including the models and algorithms
implemented in the OR and ML modules. In addition, we introduce three measures to
evaluate the usefulness of the ORxML framework and its outcome, the diet dataset. Finally,
we discuss the evaluation results.

Experiment settings For the OR module, we formulated the problem of combinatorial
optimization. Then, we solved the problem using the branch and cut method [16, 22], a
popular optimization algorithm in OR communities, and found optimal MIP solutions (see
Appendix A.3). For the ML module, we define diet planning as a task of neural machine
translation (NMT) that maps the source diets, i.e., edited diets from the expert module, into
the refined target diets. Furthermore, we applied reinforcement learning (RL) to control the
generative translation process such that the translated diet becomes more nutritious than
the source diet [17]. All of the details of this approach are provided in Appendix A.2.
We evaluate the quality of diets generated by the modules of the ORxML framework with
three measures. First, we count the number of nutrients that satisfy the nutritional standards
using the Diet-Nutrition data in MIND (see Figure 6 in Supplementary material C). For the
nutritional standards, we referred to the recommended dietary intake (RDI) provided by the
Ministry of Health and Welfare of the Korean government (see Table 9 in the Supplementary
material). We applied 15 nutritional evaluation criteria and assigned one point each time
the diet satisfied a nutritional criterion. Therefore, the perfect score was 15. We named this
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measure the RDI score. Note that we also applied the RDI score for the constraint design
and reward shaping in the OR and ML modules, respectively. Second, we calculate the ratio
of mispositioned menus to evaluate the compositional quality of diets. A menu is considered
mispositioned when placed as a side dish but located in the position of the main dish or
vice versa. In this study, the diet has a sequence length of T = 19 in which each token xt

represents a menu served as a tth dish according to a rule of the dietitians’ table (refer to
Table 15 in the Supplementary material). This means that each menu occupies a feasible
position in the diet sequence, and a diet consisting of mispositioned menus is not acceptable.
Third, we performed a X 2 homogeneity test in terms of ingredient usages. (According to the
diet planning policy developed by professional dietitians, an ingredient-based diet evaluation
is important. See Supplementary material B.3 for further details). X 2 evaluates how similar
the pattern of ingredient usage is between the generated diets and actual diets. Specifically,
the pattern was defined based on the type and frequency of ingredients used for each meal,
breakfast, lunch, and dinner. Here, we computed the co-occurrence frequency of ingredients
over meals and regarded this as a homogeneity measure between the generated diets and
actual diets. If the ingredients usage of each meal in a generated diet is similar to that of
an actual diet, then their X 2 value decreases. Given that usage of ingredients represents
implicit compositional patterns of the flavors, colors, and textures, we compare the diets
generated by each module to the actual diets using the following measure. X 2 measures
whether generated diets have the same population in terms of implicit patterns as actual
ones.

Results Table 1 shows the experimental result of the diet data generated by the ORxML
framework. This table shows the quality of the generated diets compared with the actual
diets over the RDI score, % Mispos, and X 2. The RDI score represents nutritional excellence
of diets, and % Mispos, mispositioned menu items, and X 2 indicate the compositional
compliance with respect to the dishes and ingredients in diets.3 The results verify that the
ORxML framework succeeds in increasing diet quality. As shown in Table 1, the OR module
generates diets of perfect nutrition as expected; we provide the average nutrition of generated
diets and report the achievement ratio of the nutritional standards in the bracket. This is
self-evident considering the characteristics of the MIP model and algorithm we used that
guarantees optimal solutions unless there is no feasible one within the constraints.
However, as the % Mispos and X 2 values denote, the compositional qualities of diets
generated by the OR module are low. Note that the composition-related criteria shown in
Table 1 can cover few aspects of the compositional quality of diets, and designing a metric
to measure all aspects of the compositional quality is impossible, especially regarding the
implicit requirements of diet planning (see Appendix A.4). Thus, we conducted a survey of 51
professional dietitians to further evaluate the compositional quality in a relatively qualitative
way. The survey participants rated the compositional quality of diets generated by the OR
module as low. For the expert module, the compositional quality of diets from the OR module
could be enhanced by editing the diets into a more realistic form. However, the average
nutritional quality declined due to the limited capability of experts to consider nutrition.
The ML module recovered the nutritional quality sacrificed by the expert module; this is
encouraging and as expected. In addition, the ML module outperformed the composition-
related measures. That the ML module can further increase the RDI score after a sufficient
training time is significant; we trained our ML model for only 40 hours4 Additionally, as
mentioned in Section 3, our framework is able to provide the experts with explanations of the
compositional patterns (implicit requirements) using the attention mechanism. See Appendix
A.5 for further details on the explanation of the ML module. Furthermore, in Appendix A.6,
we explain the evaluation survey completed by 51 professional dietitians in detail, which is
“the human evaluation of our dataset”. In summary, the quality of the generated diets was
validated by the experts. Furthermore, this qualitative evaluation of the ORxML framework
and MIND dataset also showed the necessity of this work in creating and publishing the
MIND dataset that incorporates the expertise of domain experts to perform combinatorial
optimization and controllable generation.

3Note that the perfect RDI score is 15.
4with an Nvidia Quadro RTX 5000 GPU and Intel(R) Xeon(R) Gold 6136 CPU.

8



Table 1: Evaluation results of the diet data generated by the ORxML framework

real diets OR Expert ML
RDI score (↑) 11.63 15.00 12.26 13.19
% Mispos (↓) – 0.43 0.06 0.05
X 2 (↓) – 6.32 5.70 3.61
Energy 1359.5 (68%) 1383.5 (100%) 1314.4 (62%) 1321.97 (72%)
Protein 56.16 (100%) 53.45 (100%) 54.72 (100%) 55.66 (100%)
% Carbo 0.61 (87%) 0.62 (100%) 0.61 (77%) 0.61 (81%)
% Protein 0.17 (100%) 0.15 (100%) 0.17 (98%) 0.17 (100%)
% Fat 0.21 (97%) 0.22 (100%) 0.22 (94%) 0.22 (98%)
Dietary Fiber 9.84 (21%) 17.52 (100%) 12.92 (74%) 13.08 (73%)
Calcium 592.6 (97%) 612.3 (100%) 538.8 (57%) 601.25 (94%)
Iron 9.26 (100%) 10.74 (100%) 9.47 (100%) 9.78 (94%)
Sodium 1978.5 (11%) 1517.4 (100%) 1663.7 (44%) 1620.81 (100%)
Vitamin A 445.3 (87%) 345.7 (100%) 349.7 (88%) 374.93 (100%)
Vitamin B1 1.15 (100%) 0.97 (100%) 0.96 (100%) 0.94 (78%)
Vitamin B2 1.32 (100%) 1.29 (100%) 1.19 (100%) 1.27 (100%)
Vitamin C 56.9 (69%) 55.56 (100%) 61.28 (87%) 71.93 (53%)
Linolenic 6210.9 (82%) 7407.3 (100%) 6965.5 (82%) 6796.78 (90%)
α-Linoleic 886.2 (44%) 869.3 (100%) 938.0 (61%) 925.70 (73%)

Time required – 30 min 3 weeks ≤ 40 hours
# of diets 62 500 500 500

5 MIND dataset

MIND is a dataset related to the diet and its constituent elements. We created this dataset
based on the ORxML framework. Dietkit is the Python package that provides tools for MIND.
MIND is distributed with the dietkit package and can be loaded and manipulated through
dietkit.5 There are four elements that comprise the MIND dataset: Diets, Menus, Ingredients,
and Nutrition. Nutrition is the substances absorbed by our bodies through food consumption
and includes protein and vitamins. Ingredients are the materials that are used to cook food
menus. Menus are the end-products of foods cooked with ingredients. Diets are sequences
of menus organized in terms of nutritional and compositional requirements. The detailed
relationship between these elements is described in Figure 5 in the Supplementary material
B. The MIND dataset is currently available in two languages, Korean and English. The
contents of the dataset in each language version are the same. The ingredient data of MIND
were extracted from the Standard Food Components provided by the Rural Development
Administration of the Korean government. For each ingredient, the data consist of the name,
its category, and the quantity of nutrients per 100 g. The dataset consists of a total of 3,036
ingredients; these are classified into 20 categories. Menu data were collected from food service
management centers under the Ministry of Food and Drug Safety of the Korean government.
A total of 3,238 menus were collected. We prepared the final data after processing the
collected data. For instance, the names of the ingredients in the original data were unified,
along with the names in the food ingredients data. A total of 527 food ingredients were used
in the menu data. The menus were classified into 22 categories according to a policy that can
be found in the Supplementary material B.4. Additional information on each menu can be
found in the “note” field. This information includes whether the menu is Korean or Western
and whether the menu item is a main dish or side dish. Currently, we provide three kinds of
diet data: “OR-generated diets”, "Experts-generated diets" and “ML-generated diets.” Each
of the diet datasets is made up of 500 different diets. Each diet dataset consists of 19 menus:
five breakfast menus, two morning snacks, five lunch menus, two afternoon snacks, and five
dinner menus. Some diets have a slightly smaller number of menus. In this case, we included
a dummy menu called “empty” to fit the data form. Detailed information about MIND and
dietkit can be found in Appendix A.8 and in the Supplementary material.

5github.com/pki663/dietkit
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6 Application of the MIND dataset

Many interesting applications of ML can be developed based on the MIND dataset. While
we discuss various uses of the MIND dataset in detail in Appendix A.7, in this section we
summarize some of the diet planning and DHR tasks that can be improved with ML using
the MIND dataset. First, new interesting embeddings can be created with the MIND dataset
for diet planning. For example, a Menu2Vec embedding can be created to represent the
compositional patterns of menus in diets; similarly, an attention map can be extracted as
exemplified in Appendix A.5. The "identification of alternative or complementary menus" is
one of the frequent tasks that dietitians conduct in diet planning; this task is particularly
important for those with food allergies. A Menu2Vec embedding extracted from the MIND
dataset can be used to develop a system to recommend alternative menus to dietitians,
considering their contributions to the nutritional and compositional quality of diets as well
as their alternative or complementary relationships in diets. The authors are conducting
such a clinical study for children with atopic dermatitis (AD) and food allergy (FA) who
must restrict allergenic foods that could lead to fatal anaphylaxis. Precise diet planning and
dietary healthcare are necessary to manage the growth and health of these children. In fact,
this work on creating a novel high-quality diet dataset was initiated for our clinical study of
children with AD and FA; actual diet data in practice were not of sufficient quality to be
used to train a machine for the AI service. See Appendix A.7 for further details on these use
cases. Note that a high-quality, large-scale diet dataset, such as the MIND dataset, is the
basis for these use cases of diet planning and dietary healthcare that could not be conducted
without ML.
The MIND dataset has limitations that involve future research issues. First, the diets in MIND
are healthy "reference diets" for an unspecified majority of the population. Therefore, there
is no guarantee that a user will prefer the provided diets for their meals. Second, the dataset
should be extended to multinational and multicultural contexts. See the Supplementary
E.2 for further details on our dataset maintenance plan. Third, integrating our MIND
dataset with existing databases covering molecules and compounds is necessary [26]. This
attempt will allow "precision diet for healthcare" (see Appendix A.7). Finally, a tree or
graph structure could be adopted as a diet data structure, and the ML module used to
synthesize high-quality diet data could be designed to learn diet data in a graph or tree
structure. Nonetheless, the MIND dataset is the first high-quality resource for this research
direction, and the ORxML framework can further encourage this research. We hope that
future studies will take different approaches and expand the research field of “diet planning
and dietary healthcare with ML.” We believe the proposed MIND dataset and the ORxML
framework will contribute for such work.

7 Concluding remarks

Data construction efforts are essential for training machines that can subsequently assist in a
variety of human tasks. This work creates a validated dataset to support diet-related human
tasks with ML. In fact, our work has already created an impact in solving medical, economic,
and social problems associated with diet planning and dietary healthcare. For example, the
MIND dataset has been used by the Center for Children’s Food Service Management in
South Korea beginning in the fall of 2021. This government organization is responsible for
the support of daycare centers and kindergartens in Korea that cannot hire professional
dietitians due to economic constraints. See Appendix A.7 for further details of these use
cases. Furthermore, we did not construct the MIND dataset with manual effort only. We
devised a systematic framework that integrates the capabilities of experts and machines
to scientifically and efficiently create high-quality data of the complex professional diet
planning task. We hope our ORxML framework can be used to inspire and promote dataset
preparation methodologies and ML applications for other professional tasks. See Appendix
A.7 for a detailed discussion of the value of our ORxML framework.

The authors bear all responsibility in the case of a violation of rights.
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