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Abstract

Non-contact respiratory monitoring in uncontrolled environments is a critical un-
met need for applications ranging from remote healthcare to search and rescue.
While low-power radar is a promising sensing modality, its effectiveness is severely
limited by environmental clutter and signal non-stationarity, which cause traditional
signal processing pipelines to fail. We present a novel framework for respiratory
sensing and tracking that overcomes these limitations by leveraging Hankel Dy-
namic Mode Decomposition (HDMD) with temporal tracking. Our approach treats
the noisy time-series data as the output of a dynamical system and decomposes
it into a set of coherent oscillatory modes, enabling the robust isolation of the
respiratory signal without requiring extensive hyperparameter tuning. We evaluate
our method on a dataset of 24 subjects recorded with a compact pulsed radar in
diverse indoor and outdoor conditions. The proposed HDMD pipeline significantly
outperforms established decomposition baselines, achieving an NRMSE of 6.00%
indoors and 1.33% outdoors, substantially reducing the Root Mean Square Error
(RMSE) compared to next-best methods. These results establish HDMD as the
first modal decomposition method to extend radar-based respiratory rate estimation
and variability analysis into outdoor, mobile contexts, advancing the feasibility of
privacy-preserving and low-power physiological sensing. Our code and dataset are
available at: https://github.com/Suhani92/HDMD-Respiratory-Rate

1 Introduction

Contactless respiratory monitoring is critical for applications ranging from clinical care to emergency
response. Contact-based sensors such as belts or fingertip photoplethysmography (PPG) probes are
effective in controlled settings, but they are impractical or unsafe in scenarios like neonatal care,
burn treatment, or disaster triage [1–3]. While non-contact imaging PPG using cameras has been
explored, it inherits the same limitations as vision-based methods, line of sight, lighting dependence,
and privacy concerns [4]. This has driven increasing interest in non-contact sensing to unobtrusively
track respiration. Among available modalities, radar [5, 6] has emerged as a particularly promising
modality: privacy preservation through motion-only sensing [7], wall-penetration capability, lighting
independence, and deployment on compact, low-power platforms.

Despite these advantages, the widespread adoption of these systems is hindered by a performance
gap between controlled indoor environments and challenging real-world settings. The fundamen-
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tal challenge lies in extracting subtle respiratory motion from signals corrupted by environmental
interference, subject movement, and low signal-to-noise ratios in realistic conditions. Traditional
spectral analysis methods such as FFT or STFT assume stationarity and thus fail under these condi-
tions [8, 9]. More recent decomposition techniques like Ensemble Empirical Mode Decomposition
(EEMD)[10, 11] and Variational Mode Decomposition (VMD)[12, 13] suffer from mode mixing,
parameter sensitivity, and computational complexity, rendering them unsuitable for robust, real-time
mobile deployment.

In this work, we address this gap by introducing a task-driven framework that jointly considers signal
acquisition and analysis. We propose Hankel Dynamic Mode Decomposition (HDMD) with temporal
tracking (DMD-t) to decompose noisy radar signals into constituent oscillatory components such
as breathing, heartbeat and environmental noise, enabling robust respiratory mode isolation. While
DMD and its extensions have found wide applications in fields such as fluid dynamics [14], structural
health monitoring[15], and neural signal analysis[16], their use in physiological monitoring remains
relatively unexplored. To our knowledge, no prior work has applied HDMD with temporal tracking
for respiratory rate extraction, particularly in outdoor environments. This work bridges that gap by
extending these methods to robust vital sign monitoring.

Contributions. Our primary contributions are: (1) a framework combining task-specific phase
extraction with Hankel-embedded Dynamic Mode Decomposition for respiratory monitoring on
low-cost mmWave radar; (2) the first application of a Hankel-DMD pipeline with temporal tracking
to isolate quasi-periodic physiological signals from non-stationary outdoor noise; (3) analysis of
reconstruction quality characteristics relevant for clinical use cases requiring reliable respiratory
waveform extraction; and (4) comprehensive evaluation on 24 subjects showing superior performance
with RMSE of 1.14 BPM (6% NRMSE) indoors and 0.4 BPM (1.33% NRMSE) outdoors.

2 Preliminaries

2.1 Signal Model

The radar sensor generates time-series of complex-valued measurements organized as In-phase and
Quadrature (IQ) data. For a system with S temporal sweeps and D spatial range bins, the raw
measurements are represented as x[s, d] = I[s, d] + jQ[s, d], where s ∈ {1, . . . , S} denotes the
sweeps index and d ∈ {1, . . . , D} represents the range index. Each complex measurement encodes
two essential signal components: the magnitude |x[s, d]| =

√
I[s, d]2 +Q[s, d]2, which indicates

target presence and location, and the phase ∠x[s, d] = arctan(Q[s, d]/I[s, d]), which captures
minute displacements that encode respiratory motion. Detailed explanations of the radar principles
and data structure are provided in Appendix B.1 and Appendix B.2.

2.2 Target Detection

The first stage in processing raw radar data is to localize the subject by analyzing the signal’s
magnitude across all range bins, corresponding to the range-profile and range-slowtime stage in
Fig. 1 (steps 1-2). The range bin corresponding to the subject is the one with maximum magnitude,
indicating the strongest reflection:

d′ = argmax
d

(
1

S

S∑
s=1

|x[s, d]|

)
(1)

To isolate the subject signal and mitigate background clutter, we apply amplitude thresholding and
define a spatial window {d′ −∆, . . . , d′ +∆} around the detected peak, where ∆ corresponds to
±5 cm. All subsequent processing operates exclusively on IQ data within this window (detailed in
Appendix B.2).

2.3 Phase Extraction

While respiratory motion is encoded in the phase variation across sweeps, directly using the arctangent-
derived phase [17, 18] is challenging due to phase wrapping within [−π, π]. These discontinuities
do not represent actual motion and require separate, often unreliable, unwrapping steps. Instead,
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Figure 1: Overview of the HDMD pipeline for respiratory and vital sign tracking using DMD-t.
Steps: (1–2) target detection and thresholding to form the range–slowtime matrix and IQ signal
x(s, d), (2.1) spatial downsampling, (2.2) temporal filtering, (3) continuous phase extraction, (4)
Hankel reshaping, (5) HDMD decomposition, (6) respiratory reconstruction, and (7) DMD-based
motion tracking.

we adopt a variation trend method [19] that computes a continuous phase by tracking cumulative
displacement over time, as illustrated in Fig. 1 (steps 2.1–3). The IQ signal x[s, d] is first spatially
downsampled to xD[s, d∗] (step 2.1), then temporally low-pass filtered to x̄d[s, d∗] (step 2.2) to retain
respiratory components. The continuous phase is extracted iteratively using a smoothing factor αϕ

and phase difference obtained by complex conjugation (step 3):

ϕ[s] = αϕϕ[s− 1] + ∠


d′+∆∑

d′=d′−∆

x̄D[s, d′] x̄∗D[s− 1, d′]

 (2)

where x̄[s, d] denotes the filtered IQ data, ∆ defines the spatial window around the target, and ∗

represents complex conjugation. The coefficient αϕ = exp(−2flow/fs) acts as a high-pass filter to
suppress low-frequency drift.The resulting continuous phase serves as input to the HDMD-based
decomposition for respiratory rate estimation. A detailed derivation is provided in Appendix B.3.

3 Methodology

In this work, we employ Hankel Dynamic Mode Decomposition (HDMD)[20] for respiratory signal
analysis, incorporating Hankel matrix embedding, modal decomposition, signal reconstruction, and
DMD-t tracking approaches. The pipeline visualized in Fig. 1, spans subject localization (steps 1-2.1),
phase extraction (steps 2.2-3), Hankel embedding and Koopman approximation (steps 4-5), signal
reconstruction using DMD (step 6), and DMD-t based tracking (step 7).
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3.1 Hankel Matrix

The Hankel matrix uses a sliding window to embed the signal into a higher-dimensional space,
allowing Dynamic Mode Decomposition to better identify system dynamics. Consider a discrete-time
phase signal ϕ = [ϕ1, ϕ2, . . . , ϕN ] sampled at interval ∆t. We construct overlapping time-delay
embeddings of length m to generate n temporal windows such that m+ n− 1 = N . The resulting
Hankel matrices X and Y represent sequential, time-shifted views of the signal and are used to
capture temporal evolution for Koopman-based analysis (Fig. 1 steps 4- 5). The Koopman operator
approximates the nonlinear evolution of the system via a linear transformation, expressed as

Y ≈ KX (3)
where K represents the Koopman matrix that captures the system’s linearized dynamics in the higher-
dimensional embedding space. This pseudo-spatiotemporal embedding improves frequency resolution
and enables effective modal decomposition through DMD [21]. To ensure adequate frequency
resolution and statistical accuracy across samples, the window lengthmmust satisfym ≥ fs

fmin
, where

fmin is the lowest frequency of interest [21] with Hankel construction H = hankel(ϕ[1 : n], ϕ[n : N ])
enabling DMD analysis by expressing the physiological signal in multivariate format suitable for
modal decomposition.

3.2 Dynamic Mode Decomposition

DMD extracts coherent spatio-temporal modes from high-dimensional time-series data based on
Koopman operator theory [21], decomposing data into modes with characteristic frequencies and
growth/decay rates by finding the best-fit linear operator K. The eigenvalues of K capture temporal
dynamics, while its eigenvectors define spatial modes, which provide a linear framework for analyzing
nonlinear systems. For systems with memory effects, the time series is reshaped into a Hankel matrix
of time-delayed embeddings, enabling Hankel-based DMD to identify local Koopman modes and
analyze evolving dynamics in nonlinear systems [22]. Assuming a linear transformation between
consecutive signal vectors:

xk+1 = Kxk (4)
where K represents the Koopman operator containing respiratory signal dynamics. The data matrix
X undergoes SVD as:

X = UΣV∗, X† = VΣ−1U∗ (5)
where U ∈ Cm×r and V ∈ Cn×r contain the first r left and right singular vectors, Σ ∈ Rr×r is the
diagonal matrix of the dominant singular values, and the superscript ∗ denotes Hermitian transpose.
Projecting K onto the first r principal components yields the reduced matrix K̃ = U∗YVΣ−1 , and
its i-th eigenvalue satisfies K̃wi = λiwi , where wi is the i-th eigenvector and λi the corresponding
eigenvalue.

Spatial modes are recovered as ϕi = YVΣ−1wi, where the reduced matrix relates to its eigen
decomposition as Λ = Φ∗K̃Φ with Λ = diag(µ1, µ2, . . . , µκ) and Φ = [ϕ1, ϕ2, . . . , ϕκ] denoting
the DMD modes.

Applying a modal coordinate transformation xj = Φqj , with Φ = [ϕ1,ϕ2, . . . ,ϕr] and qj as modal
coordinates at time tj , we get qj+1 = Φ−1KΦqj = Λqj . Iterating from j = 0 to j = l yields
ql = Λlq0 , with q0 = Φ−1x0. Thus, the reconstructed state vector at time l becomes xl = ΦΛlq0, or
equivalently xl =

∑κ
i=1 µ

l
iϕiq0,i, where q0,i is the i-th component of q0.

The conversion of discrete eigenvalues to continuous values si [21] is given at a discrete time κ∆t
with x(0) as the initial condition: where si captures the temporal characteristics ϕi, expressed in
terms of natural frequency and damping ratio (see step 6 in Fig. 1).

3.3 Signal Reconstruction & Analysis

We simulate a synthetic breathing signal ϕ(t) shown in Fig. 2 (a) with breathing term fb(t) =
(
5 +

0.2 sin(2π ·0.02t)
)
cos
(

2π
fs

∑t
i=1 f1(i)

)
using time-varying frequency f1(t) = 0.25+0.083 sin(2π ·

0.005t) (0.2–0.333 Hz sweep with amplitude modulation), heartbeat component fh(t) = cos(2π ·
1.2t), flutter fn(t) = 0.005 cos(2π · 5t), and scaled Gaussian noise k · n(t):

ϕ(t) = fb(t) + fh(t) + fn(t) + k · n(t) (6)
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Respiratory mode isolation is performed using Hankel reshape parameters N = len(phi) for total
samples and m = 500 for embedding dimension in longer signals. HDMD achieves consistent
reconstruction quality across varying sampling conditions, as shown in Fig. 2 (b). At higher sampling
rates, HDMD preserves signal fidelity through adequate embedding, while at lower rates it isolates
dominant respiratory modes from eigenmode decomposition, producing smooth frequency variations
and amplitude modulations. However, being an inherently data-driven approach, HDMD performance
degrades under data sparsity conditions due to insufficient information for optimal Hankel matrix
construction and eigenvalue decomposition.

In contrast, Ensemble Empirical Mode Decomposition (EEMD) in Fig. 2 (c) reconstructs respiration
from IMFs (bands 5-7) that exhibit inconsistent periodicity and mode mixing. In Fig. 2 (d), Variational
Mode Decomposition (VMD), applied with K=6, reconstructs breathing mainly from modes 3-5
with moderate waveform fidelity, yet remains sensitive to parameter tuning, offers limited denoising,
consistent amplitude mismatch, and requires post-processing to suppress high-frequency flutter.
Wavelet decomposition with Daubechies-4 (db4) at max_level=10 in Fig. 2 (e) produces less noisy
outputs than VMD but introduces irregularities in feature extraction due to harmonics and cannot
match HDMD’s smooth amplitude-frequency reconstruction. Amplitude and frequency mismatch
can be observed in the 20-60s interval. Evaluating across varying sampling points, Gaussian noise
factors, and signal length establishes HDMD as a superior data-driven method for accurate respiratory
amplitude extraction, essential for respiratory distress analysis and subsequent classification tasks.

3.4 DMD-t Tracking

Standard Fourier Analysis (STFT) is unable to capture the non-stationary and time-varying respiratory
signal. DMD-based tracking (DMD-t)[23] addresses this limitation by iterative decomposition within
overlapping windows to track evolving dynamics in the signal (Fig. 1, step 7). For each window i

centered at t(i), the Koopman approximation yields eigen values (λ(i)j ) that represent local signal
dynamics. Sliding window maps the time-frequency evolution of the extracted mode and the
window_size and step_size balance the temporal resolution. The overall algorithmic pipeline is
briefly discussed in Fig. 9, with implementation details on phase data is provided in Appendix C.1.

4 Experiments and Results

4.1 Dataset Acquisition and Experimental Setup

We evaluate our approach on both synthetic breathing signals and real-time captured radar signals.
For real data, we use a self-collected dataset from 24 participants (12 male, 12 female, aged 20-
60) recorded with low-cost 60.5 GHz pulsed coherent mmWave radar across three postures (sitting,
standing, lying) and two environments (indoor and outdoor). The outdoor experiments were conducted
in uncontrolled environments with clutter and interference, providing a challenging testbed for sensor
algorithm robustness.

Ground truth measurements were obtained using synchronized clinical-grade capnography and pulse
oximeter devices for indoor scenarios (Figure 3d-e), while outdoor measurements relied on portable
pulse oximetry due to equipment mobility constraints (Figure 13). Cross-validation between the two
reference devices on indoor data shows RMSE of 0.74 BPM (3.87% NRMSE), indicating that the
portable oximeter provides sufficiently reliable ground truth within its rated ±1 BPM accuracy.

Additionally, to optimize signal acquisition, we conducted a comparative testing of three antenna
configurations: radar module without lens, plano-convex dielectric lens, and Fresnel Zone Plate (FZP)
lens. Based on our evaluation across all subjects (detailed results in Table 3), the plano-convex lens
from Acconeer’s lens kit achieved optimal performance with RMSE of 0.89 compared to 1.15 for FZP
and 1.88 for no-lens configurations. The lens focuses the radar beam on the subject’s chest region
while suppressing environmental reflections, significantly improving signal-to-noise ratio at typical
monitoring distances of 1.5-2m (Figure 3). Comprehensive analysis of lens selection, including its
effect on extracted phase and estimated respiratory rate, along with complete hardware specifications
and data acquisition details, is provided in Appendix D.
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Figure 2: Reconstruction of a synthetically generated physiological signal. (a) Ground truth signal;
(b–e) reconstructions using HDMD, EEMD, VMD, and DWT, respectively. Each method extracts
the underlying respiratory carrier from the noisy input, with reconstruction errors and mismatches
highlighted in the marked time segments.

4.2 Baselines and Metrics

Baselines: We compare HDMD with the following methods: (a) Variational Mode Decomposition
(VMD), (b) Wavelet Transform (DWT), (c) Ensemble Empirical Mode Decomposition (EEMD), (d)
Compressed Sensing with Orthogonal Matching Pursuit (CS-OMP), (e) Wavelet Cosine Transform
(WCT), (f) Band-Pass Filtering (BPF), (g) Moving Average (MAV), and (h) Finite Impulse Response
(FIR) filtering (see Appendix E.1 for detailed formulations).

Metrics: We employ Pearson Correlation Coefficient (PCC) to assess waveform similarity preser-
vation, Mean Squared Error (MSE) for reconstruction fidelity, Root Mean Squared Error (RMSE)
and Normalized RMSE (NRMSE) for respiratory rate estimation accuracy (detailed definitions are in
Appendix E.2).
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Figure 3: Experimental setup for radar-based respiratory monitoring. (a) Indoor data collection with
subject at 1.5m distance; (b) Data collection at 2.0m distance; (c) Acconeer XM125 radar module
with plano-convex lens; (d) Clinical-grade capnography reference device; (e) Portable pulse oximeter
reference device; (f) Extracted phase signal.

Table 1: Performance comparison across varying parameters

Method
Sampling Frequency (fs) Gaussian Noise Factor (k) Signal Duration (t)
fs = 240Hz fs = 100Hz k = 0.5 k = 3 t = 120s t = 180s

MSE PCC MSE PCC MSE PCC MSE PCC MSE PCC MSE PCC
HDMD 0.16 0.994 1.26 0.958 0.006 1.000 0.54 0.985 0.54 0.985 0.64 0.980
EEMD 2.42 0.899 1.37 0.952 3.64 0.801 4.68 0.731 1.68 0.931 3.92 0.830
VMD 1.85 0.993 3.62 0.989 0.93 0.993 1.72 0.983 0.92 0.983 0.73 0.983
DWT 1.15 0.953 2.56 0.892 0.76 0.969 0.80 0.958 0.79 0.968 0.63 0.975

4.3 Ablation Study

We conduct systematic ablation studies to analyze HDMD performance across sampling frequency
(fs), signal duration (t), and Gaussian noise factor (k), with quantitative results summarized in
Table 1. An extended analysis is available in Appendix F.1.

Sampling Frequency (fs): Table 1 presents the effect of reducing fs from 240 Hz to 100 Hz. HDMD
achieves the best performance at high sampling (0.16 MSE, 0.994 PCC), but reconstruction errors
increase when the data becomes sparse (1.26 MSE, 0.958 PCC). VMD maintains high correlation
(0.993 → 0.989) but with larger MSE (1.85 → 3.62), while DWT and especially EEMD degrade
more severely. These results confirm HDMD’s dependence on adequate data density due to its
data-driven nature.

Gaussian Noise Factor (k): To assess robustness under outdoor conditions, we vary k between 0.5
and 3. As shown in Table 1, HDMD remains stable, achieving near-perfect reconstruction at low
noise levels (k = 0.5:0.006 MSE, 1.000 PCC) and maintaining high accuracy even under elevated
noise (k = 3:0.54 MSE, 0.985 PCC). In contrast, EEMD exhibits counterintuitive behavior where
moderate noise appears to aid decomposition (increased MSE 4.64, reduced PCC 0.731).VMD
maintains stability across noise levels (0.993 → 0.983 PCC with slight MSE increase), while
DWT shows consistent robustness (0.969 → 0.958 PCC). This demonstrates HDMD’s resilience to
harmonics and flutter under noisy conditions while revealing that certain decomposition methods can
even benefit from controlled noise injection.

Signal Duration (t): Increasing signal length improves embedding richness for Hankel construction.
Table 1 shows that HDMD sustains competitive accuracy at both durations (120 s: 0.54 MSE, 0.985
PCC; 180 s: 0.64 MSE, 0.980 PCC). At 180s, DWT achieves the lowest MSE (0.63) but with reduced
correlation (0.975), while VMD achieves a higher correlation (0.983) and higher MSE (0.73). EEMD
shows the most significant degradation with longer signals (MSE increases from 1.68 to 3.92). Setting
m ≥ fs/fmin improves frequency resolution for sparse data and ensures stable reconstruction.
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Figure 4: DMD-t respiratory tracking where each subplot shows the instantaneous respiratory rate
over the DMD-t spectrogram, where color intensity indicates spectral energy concentration. P6, P12,
P13, P15, and P24 show random body movements (RBMs), while others exhibit stable breathing
cycles. (a) Original signal with time-varying breathing rates; (b) DMD-t tracking results; (c) STFT
spectrogram exhibits spectral leakage and reduced interpretability.

4.4 DMD-t Tracking Performance

For tracking evaluation, we construct a synthetic 120-s breathing signal sampled at 300 Hz with
a time-varying respiratory component, heartbeat interference, high-frequency flutter, and additive
Gaussian noise shown in Fig. 4 (a). The benchmark signal is defined in Eq. (7):

fb(t) =


[5 + 0.2 sin(2π · 0.02t)] sin(2π · 0.25t), 0 ≤ t < 40

[5 + 0.3 sin(2π · 0.015t)] sin(2π · 0.283t), 40 ≤ t < 80

[5 + 0.15 sin(2π · 0.025t)] sin(2π · 0.2t), 80 ≤ t ≤ 120

(7)

with respiratory rates of 0.25, 0.283, and 0.2 Hz (15, 17, 12 BPM), heartbeat interference fh(t) =
Ah sin(2π ·1.2t), flutter fn(t) = An sin(2π ·5t), and variable Gaussian noise k ·n(t) for performance
evaluation. As shown in Fig. 4 (b), DMD-t demonstrates superior tracking as compared to STFT
Fig. 4 (c), particularly during rapid transitions with improved resolution and reduced spectral leakage.

8



Table 2: Respiratory rate measurements (BPM) comparing HDMD against baseline methods across 24
participants in six scenarios (indoor/outdoor × sitting/lying/standing). Ground truth from capnography
(indoor) and oximeter (outdoor). RBM denotes random body movements.

Person ID Ground Truth (BPM) Measured Rate (BPM)
Capnography Oximeter HDMD VMD DWT EEMD CS-OMP WCT BPF MAV FIR

Indoor - Sitting
P1 17 17 17.2 17.7 18 18 19 30 28 26 25
P2 18 18 18.2 18.8 19 18 4 5 7 8 9
P3 19 18 19.01 18.89 19 18 22 32 30 28 27
P4 15 16 16.34 19.5 20 20 32 30 28 25 24
P5 11 12 11.15 11.51 12 12 26 24 22 20 18
P6 (RBM) 28 28 27.4 10.23 3 14 10 12 14 16 18
P7 9 9 8.12 7.75 8 8 25 23 21 19 18
P8 17 17 16.62 18.2 18 18 12 3 5 7 8

Indoor - Lying
P9 15 16 11.31 15.32 16 16 33 31 29 26 24
P10 15 16 12.84 14.74 15 16 2 1 3 5 6
P11 10 11 10.5 11.67 16 16 28 26 24 21 20
P12 (RBM) 26 26 27.02 9.73 3 26 8 10 12 15 16
P13 (RBM) 28 29 29.23 12.25 3 14 9 11 13 16 18
P14 17 18 17.68 17.99 18 18 36 34 32 29 27
P15 (RBM) 18 18 18.62 13.57 4 12 2 4 2 4 6
P16 18 18 18.05 18.01 18 18 38 36 34 31 29

Indoor - Standing
P17 19 18 18.02 17.08 17 18 1 3 5 8 10
P18 18 19 18.37 19.3 19 20 39 37 35 32 30
P19 17 16 17.14 17.41 17 16 3 1 3 6 8
P20 20 20 20.88 18.85 19 18 15 3 5 8 10
P21 19 19 19.23 18.93 19 20 42 40 38 35 33
P22 18 18 18.02 18.99 19 18 2 4 6 3 5
P23 19 18 19.64 16.91 18 18 17 41 39 36 34
P24 (RBM) 22 21 23.9 18.98 19 18 17 3 5 8 10

Performance Metrics
RMSE 0.74 1.14 6.12 9.27 4.68 17.81 16.14 14.33 11.99 10.34
NRMSE (%) 3.90 6.00 32.20 48.80 24.60 93.70 85.00 75.40 63.10 54.40

Outdoor - Sitting
P1 – 9 9.03 9.75 10 10 10 8 5 19 4
P2 – 11 11.2 13.39 13 14 11 31 2 18 22
P3 – 20 19.7 18.91 19 18 17 4 7 9 7
P4 (RBM) – 18 17.59 7.86 6 14 13 5 12 11 28
P5 – 16 15.9 14.7 15 14 2 15 29 15 7
P6 – 14 14.42 14.2 15 14 12 8 3 11 12
P7 – 13 13.71 14.3 14 14 12 3 2 12 3
P8 – 21 21.13 19.89 3 20 5 20 5 17 33

Outdoor - Lying
P9 – 16 15.67 14.12 13.8 14.3 19 25 2 12 12
P10 – 13 12.82 11.95 12 12 4 8 39 33 2
P11 – 19 18.88 18 19 18 10 19 21 2 12
P12 (RBM) – 30 29.8 6.96 3 14 10 7 21 2 4
P13 – 25 25.16 25.71 26 26 22 5 5 22 12
P14 – 10 9.74 10.76 11 10 4 2 24 34 12
P15 – 13 12.53 11 12 12 4 21 30 12 9
P16 – 25 25.92 27.37 3 26 12 35 3 2 7

Outdoor - Standing
P17 (RBM) – 33 32.72 9.01 4 32 12 8 22 12 12
P18 – 17 17.71 17.91 18 14 12 5 11 14 11
P19 – 15 15.73 15.84 14 16 3 16 5 22 10
P20 – 16 15.75 11.51 12 12 8 6 32 11 14
P21 – 12 12.29 13.96 14 14 18 32 6 17 13
P22 – 39 39.14 22.49 3 38 28 5 28 16 12
P23 (RBM) – 20 20.3 8.82 5 16 12 26 34 12 11
P24 (RBM) – 19 19.33 9.01 4 18 21 36 5 2 12

Performance Metrics
RMSE 0.4 8.56 13.40 3.81 9.70 14.40 13.47 13.51 12.05
NRMSE (%) 1.33 28.55 44.66 12.71 32.33 48.01 44.91 45.04 40.17
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DMD-t achieves superior physical interpretability and resolution as compared to spectrograms, which
suffer from fixed windowing constraints and spectral leakage. Real-time phase signal tracking (6-s
windows, 0.5-s step) is shown in Fig. 4, with results corresponding to indoor scenarios in Table 2.
Ground truth comparisons reveal that DMD-t provides higher resolution even in challenging random
body movement (RBM) cases, consistent with HDMD’s accuracy. This capability is critical for
respiratory variability analysis and distress classification. Additional real-time radar tracking results
are provided in the Appendix C.1.

4.5 Results

Table 2 presents respiratory rate estimation results across 24 participants in six experimental scenarios.
HDMD achieves superior performance with indoor RMSE of 1.14 (6% NRMSE) and outdoor RMSE
of 0.4 (1.33% NRMSE), substantially outperforming all baseline methods.

For indoor scenarios, decomposition methods show competitive performance with EEMD and VMD
achieving moderate accuracy (RMSE 4.68 and 6.12 respectively), and outperforming DWT (RMSE
9.27). Among traditional filtering approaches, FIR demonstrates the best baseline performance
(RMSE 10.34). For outdoor scenarios, EEMD and VMD perform competitively (RMSE 3.81 and
8.56 respectively), outperforming DWT (RMSE 13.40), while CS-OMP is the strongest traditional
method (RMSE 9.70). The lower outdoor error reflects the ±1 BPM accuracy limitation of the
portable oximeter compared to medical-grade capnography. Across both settings, HDMD maintains
consistent superiority with sub-7% indoor and sub-2% outdoor error rates.

HDMD’s performance stems from its ability to effectively isolate respiratory components from
environmental interference through Hankel embeddings. Notably, cases marked in Table 2 as RBM
(random body movements) demonstrate HDMD’s robustness to motion artifacts where decomposition
methods like VMD fail dramatically (e.g., P6, P12, P13 with errors exceeding 10+ BPM), HDMD
maintains accurate estimation within 1-2 BPM of ground truth. The method achieves consistent
sub-7% indoor and sub-2% outdoor error rates across all conditions, including scenarios with body
movements and environmental clutter.

5 Discussion and Conclusion

Computational Complexity and Limitations: Runtime evaluation on a 120-second signal (300 Hz)
shows HDMD’s primary limitation: with an average processing time of 5.4 s, it is approximately 6.3×
slower than VMD (0.86 s), and ∼1000× slower than DWT (4 ms), though 20× faster than EEMD
(38.9 s). As a data-driven method, HDMD requires dense sampling for effective Hankel embeddings,
yielding O(n2) to O(n3) complexity but enabling superior denoising and harmonic suppression,
particularly under random body movements where faster methods such as DWT and VMD fail
(Table 2). This computational cost currently limits real-time deployment without optimization.
Additional limitations include performance degradation under sparse sampling and sensitivity to
embedding dimension parameters, though less pronounced than in VMD.

Future Work: Further research directions include: (1) adaptive parameter selection for automated
Hankel embedding optimization; (2) extension to multi-person tracking using MIMO radar arrays; (3)
integration of motion cancellation algorithms for random body movements; (4) comprehensive vital
sign monitoring including heart rate estimation; and (5) deployment on edge computing platforms
with optimized waveform reconstruction maintaining high frequency resolution.

Conclusion:We present HDMD as a framework for radar-based respiratory monitoring, achieving
superior performance as compared to traditional decomposition methods across diverse environmen-
tal conditions. Our approach effectively isolates physiological signals from complex interference
through mode decomposition. While computational overhead remains a challenge, HDMD’s signal
reconstruction and noise resilience establish a strong foundation for contactless physiological moni-
toring. DMD-t tracking enables non-stationary respiratory analysis, advancing practical deployment
of privacy-preserving, low-power vital sign monitoring in clinical and mobile health applications.

10



References
[1] Mohammed Al-khafajiy, Thar Baker, Carl Chalmers, Muhammad Asim, Hoshang Koli-

vand, Muhammad Fahim, and Atif Waraich. Remote health monitoring of elderly through
wearable sensors. Multimedia Tools and Applications, 78:1–26, 09 2019. doi: 10.1007/
s11042-018-7134-7.

[2] Robert Steele, Amanda Lo, Chris Secombe, and Yuk Wong. Elderly persons’ perception and
acceptance of using wireless sensor networks to assist healthcare. International journal of
medical informatics, 78:788–801, 09 2009. doi: 10.1016/j.ijmedinf.2009.08.001.

[3] Mauricio Villarroel, Sitthichok Chaichulee, Joao Jorge, Sara Davis, Gabrielle Green, Carlos
Arteta, Andrew Zisserman, Kenny McCormick, Peter Watkinson, and L. Tarassenko. Non-
contact physiological monitoring of preterm infants in the neonatal intensive care unit. npj
Digital Medicine, 2:128, 12 2019. doi: 10.1038/s41746-019-0199-5.

[4] Lingyun Ren, Lingqin Kong, Farnaz Foroughian, Haofei Wang, Paul Theilmann, and Aly E.
Fathy. Comparison study of noncontact vital signs detection using a doppler stepped-frequency
continuous-wave radar and camera-based imaging photoplethysmography. IEEE Transactions
on Microwave Theory and Techniques, 65(9):3519–3529, 2017. doi: 10.1109/TMTT.2017.
2658567.

[5] A.G. Yarovoy, L.P. Ligthart, Jonas Matuzas, and Boris Levitas. Uwb radar for human being
detection [same as uwb radar for human being detection, ibid., vol. 21, n. 11, 06]. Aerospace and
Electronic Systems Magazine, IEEE, 23:36 – 40, 06 2008. doi: 10.1109/MAES.2008.4523914.

[6] Laura Anitori, Ardjan Jong, and F. Nennie. Fmcw radar for life-sign detection. pages 1 – 6, 06
2009. doi: 10.1109/RADAR.2009.4976934.

[7] Øyvind Aardal, Yoann Paichard, Sverre Brovoll, Tor Berger, Tor Sverre Lande, and Svein-Erik
Hamran. Physical working principles of medical radar. IEEE Transactions on Biomedical
Engineering, 60(4):1142–1149, 2013. doi: 10.1109/TBME.2012.2228263.

[8] Mohamed Mabrouk, Sreeraman Rajan, Miodrag Bolic, Mohamad Forouzanfar, Hilmi R.
Dajani, and Izmail Batkin. Human breathing rate estimation from radar returns using har-
monically related filters. Journal of Sensors, 2016(1):9891852, 2016. doi: https://doi.org/
10.1155/2016/9891852. URL https://onlinelibrary.wiley.com/doi/abs/10.1155/
2016/9891852.

[9] Zhanjun Hao, Yue Wang, Fenfang Li, Guozhen Ding, Kai Fan, and Yifei Gao. Detection of
vital signs based on millimeter wave radar. Scientific Reports, 15, 08 2025. doi: 10.1038/
s41598-025-09112-w.

[10] Degui Yang, Zhengliang Zhu, and Buge Liang. Vital sign signal extraction method based on
permutation entropy and eemd algorithm for ultra-wideband radar. IEEE Access, PP:1–1, 12
2019. doi: 10.1109/ACCESS.2019.2958600.

[11] Hongming Shen, Chen Xu, Yongjie Yang, Ling Sun, Zhitian Cai, Lin Bai, Edward Clancy, and
Xinming Huang. Respiration and heartbeat rates measurement based on autocorrelation using
ir-uwb radar. IEEE Transactions on Circuits and Systems II: Express Briefs, PP:1–1, 07 2018.
doi: 10.1109/TCSII.2018.2860015.

[12] Konstantin Dragomiretskiy and Dominique Zosso. Variational mode decomposition. IEEE
Transactions on Signal Processing, 62(3):531–544, 2014. doi: 10.1109/TSP.2013.2288675.

[13] Xiangyu Xu, Jiadi Yu, Chengguang Ma, Yanzhi Ren, Hongbo Liu, Yanmin Zhu, Yi-Chao
Chen, and Feilong Tang. mmecg: Monitoring human cardiac cycle in driving environments
leveraging millimeter wave. In IEEE INFOCOM 2022 - IEEE Conference on Computer
Communications, page 90–99. IEEE Press, 2022. doi: 10.1109/INFOCOM48880.2022.9796912.
URL https://doi.org/10.1109/INFOCOM48880.2022.9796912.

[14] Hiroyuki Asada and Soshi Kawai. Exact parallelized dynamic mode decomposition with hankel
matrix for large-scale flow data, 09 2024.

11

https://onlinelibrary.wiley.com/doi/abs/10.1155/2016/9891852
https://onlinelibrary.wiley.com/doi/abs/10.1155/2016/9891852
https://doi.org/10.1109/INFOCOM48880.2022.9796912


[15] Jae seung Hwang and Hongjin Kim. Mode decomposition of structures with closely distributed
modes and nonclassical damping. Structural Control and Health Monitoring, 25:e2065, 07
2017. doi: 10.1002/stc.2065.

[16] Bingni W. Brunton, Lise A. Johnson, Jeffrey G. Ojemann, and J. Nathan Kutz. Extracting
spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decom-
position. Journal of Neuroscience Methods, 258:1–15, January 2016. ISSN 0165-0270. doi:
10.1016/j.jneumeth.2015.10.010. URL http://dx.doi.org/10.1016/j.jneumeth.2015.
10.010.

[17] Byung-Kwon Park, Olga Boric-Lubecke, and Victor M. Lubecke. Arctangent demodulation
with dc offset compensation in quadrature doppler radar receiver systems. IEEE Transactions on
Microwave Theory and Techniques, 55(5):1073–1079, 2007. doi: 10.1109/TMTT.2007.895653.

[18] Jingyu Wang, Xiang Wang, Lei Chen, Jiangtao Huangfu, Changzhi Li, and Lixin Ran. Noncon-
tact distance and amplitude-independent vibration measurement based on an extended dacm
algorithm. IEEE Transactions on Instrumentation and Measurement, 63(1):145–153, 2014. doi:
10.1109/TIM.2013.2277530.

[19] Nima Bahmani, Markku Rouvala, and Arto Kaarna. Vital sign detection using short-range
mm-wave pulsed radar. pages 512–516, 03 2021. doi: 10.1109/LifeTech52111.2021.9391910.

[20] Matthew J. Colbrook. The multiverse of dynamic mode decomposition algorithms, 2023. URL
https://arxiv.org/abs/2312.00137.
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A Related Work

Non-Contact Respiratory Monitoring: Camera-based methods [24–27] achieve high accuracy in
controlled settings but suffer from lighting dependency, privacy concerns, and computational overhead.
RGB photoplethysmography requires stable illumination and line-of-sight, while thermal imaging
[28, 29] demands expensive sensors and struggles with ambient heat sources. Audio-based approaches
[30–32] using microphones or ultrasonics require close proximity and fail under environmental noise.
These constraints severely limit deployment in mobile, outdoor, or privacy-sensitive scenarios
where radar’s unique advantages including lighting independence, clothing penetration, and compact
hardware become critical.

Radar Signal Processing for Vital Signs: Traditional algorithms employ arc-tangent demodula-
tion followed by spectral analysis (FFT, STFT). These frequency-domain methods assume signal
stationarity, failing when respiratory patterns exhibit natural amplitude and frequency variations
common in real-world conditions. Time-frequency approaches including STFT and wavelets partially
address non-stationarity but suffer from fundamental resolution trade-offs that obscure physiological
variations [8, 9]. Recent adaptive methods like EEMD and VMD show improvements but exhibit
critical limitations: EEMD suffers from mode mixing in noisy conditions [33], while VMD requires
careful parameter tuning and struggles with denoising under real-time constraints [13]. Compressive
sensing approaches impose sparsity assumptions poorly aligned with oscillatory physiological signals.

Dynamic Mode Decomposition: Originally developed for fluid dynamics, DMD identifies coherent
spatiotemporal modes through Koopman operator approximation and has achieved success across
structural health monitoring, neuroscience (fMRI/EEG analysis), and biomedical signal processing.
Standard DMD requires spatial measurements; Hankel DMD extends to scalar time series through
delay embedding, enabling robust mode extraction from single-channel data. Recent work on ECG
classification [34–36] demonstrates HDMD’s superior performance over standard DMD for unstable
physiological modes. Time-resolved variants [37, 23] including sliding-window DMD enable tracking
of evolving dynamics, yet applications to radar-based respiratory monitoring remain unexplored.

B Preliminary Methodology

B.1 Fundamentals of Pulsed Coherent Radar

The sensor operates as a pulsed coherent radar in the millimeter-wave spectrum, specifically at a
carrier frequency of 60.5 GHz. Its pulsed nature means the radar transmits short-duration wavelets of
electromagnetic energy rather than a continuous wave. When these pulses encounter an object, they
reflect back to the sensor, enabling the measurement of the time delay (tdelay) between transmission
and reception. This delay determines the distance (d) to the target, calculated as

d = 2 · tdelay · v, v =
c0√
εr

(8)

here, v is the wave speed in the medium, c0 is the speed of light in vacuum, and εr is the relative
permittivity of the medium. The factor of 2 accounts for the round-trip travel of the pulse.

Given a 60.5 GHz carrier frequency (fRF), the corresponding wavelength (λ) is approximately 5 mm.
Thus, a 5 mm shift in the wavelet corresponds to a 2.5 mm target movement due to the round-trip
path. This high frequency enables sub-millimeter movement detection, which is especially useful for
applications such as vital sign monitoring.

The transmitted radar pulse x(t) is modeled as:

x(t) = A(t) · cos(2πf0t+ θ) = ℜ
{
A(t)ejθej2πf0t

}
(9)

where the envelope A(t) is given by:

A(t) = exp

(
− t2

2τ2

)
(10)

here, A0(t) is the delayed received envelope. The received signal undergoes a time delay of ∆T =
2R0

c and a phase shift of ∆θ = − 4πR0

λ , due to the propagation distance.
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Figure 5: Radar data acquisition hierarchy (a) Sub-sweeps are grouped into sweeps and frames, where
each sweep captures range information across bins; (b) Fast-time (range) and slow-time (temporal)
samples into a 2D matrix representation.

B.2 Data Interpretation

As part of the signal model (Section 2.1) and the basis for target detection (Section 2.2), the raw radar
data is represented as an IQ matrix where each element is a complex number corresponding to a
specific sweep and range bin. For a radar system, the IQ data matrix consisting of magnitude and
phase information with S sweeps per frame and D range bins per sweep is expressed as:

Magnitude =
√
I[s, d]2 +Q[s, d]2, Phase = tan−1

(
Q[s, d]

I[s, d]

)
(11)

The Sparse IQ service of the Acconeer Exploration Tool SDK organizes the radar data into a
hierarchical structure consisting of frames and sweeps. Each frame contains multiple sweeps,
where each sweep comprises several measurement points spanning the configured sensing range (as
illustrated in Figure 5). The sweeps are sampled consecutively with a time interval Ts between the
corresponding measurement points in consecutive sweeps. The sweep rate is defined as fs = 1/Ts,
while the frame rate is given by ff = 1/Tf , where Tf is the frame period. To ensure that all sweeps
are completed before the next frame starts, the following constraint must be satisfied:

Tf ≥ Ns · Ts ⇔ ff ≤ fs
Ns

(12)

Subsweeps represent subregions within individual sweeps and allow for finer control of resolution
and signal-to-noise ratio (SNR). To ensure a consistent SNR across sweeps, overlapping range
configurations with different measurement profiles are used. In order to nullify the weakening of
signals at a distance, subsweeps are used with increasing HWAAS (Hardware Averaging per Sample)
and higher-resolution profiles. Each subsweep is configured with a start point, number of measured
points, and step length, while each frame is formed by stacking constituent sweeps.

B.3 Phase Extraction

This section provides the detailed derivation for the method introduced in Section 2.3. The phase
extraction algorithm begins with downsampling the IQ data matrix in the fast time dimension (range)
and applies a low-pass filter in the slow time dimension (sweep). The filtered signal is expressed as:

x̄[s, d] = αiqx̄[s− 1, d∗] + (1− αiq)xD[s, d∗] (13)

where xD[s, d∗] is defined as

xD[s, d∗] = x
[
s, dD +

D

2

]
. (14)
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Figure 6: Phase extraction from three radar signals acquired in outdoor conditions using two methods:
variation trend (black) and arctangent demodulation (red). The arctangent method requires extra steps
like phase unwrapping, filtering, and baseline trend correction to align with the variation trend results.

αiq is the low-pass filter coefficient defined as:

αiq = exp

(
− 2

τiqfs

)
(15)

here, τiq is the time constant and fs is the sweep (slow-time) rate. This filtering smoothens the signal
while preserving the respiratory motion components. Then we compute the instantaneous phase
iteratively using:

ϕ[s] = αϕϕ[s− 1] + ∠

{
d+∆∑
d−∆

x̄D[s, d′] x̄∗D[s− 1, d′]

}
(16)

where αϕ is the high-pass filter coefficient given by:

αϕ = exp

(
−2flow

fs

)
(17)

In this expression, ∠z denotes the phase angle of the complex number z, the superscript ∗ represents
the complex conjugate, and Nd is the number of samples per sweep after downsampling. This
formulation captures the phase difference between consecutive sweeps, providing a single phase
value ϕ[s] for each sweep that encodes a respiratory-induced displacement. The final phase signal
is obtained through recursive summation of instantaneous phase changes across sweeps, resulting
in a continuous output phase free from discontinuities and eliminating the need for explicit phase
unwrapping. As shown in Figure 6, the variation trend approach (black curves) is compared against
arctangent demodulation (red curves), where the phase is computed as tan−1

(
Q[s,d]
I[s,d]

)
, with Q[s, d]

and I[s, d] representing the quadrature and in-phase components, respectively. The arctangent method
requires additional computational steps such as phase unwrapping and baseline correction. This
comparison highlights how the variation trend method offers a computationally efficient and robust
alternative for phase extraction in radar-based respiratory monitoring.
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C Proposed Method

C.1 DMD-t Tracking

DMD-t offers improved interpretability of real breathing dynamics compared to STFT-based tracking
as illustrated in Fig. 7. Unlike STFT, it provides higher frequency resolution and greater stability,
enabling reliable estimation of respiratory rate variability, crucial for clinical distress analysis and
can be extended to heart rate variability monitoring. To validate practical applicability across diverse

Figure 7: Phase analysis of a real radar signal. (a) Measured phase data; (b) DMD-t tracking
effectively highlights phase dynamics; (c) STFT spectrogram offers lower clarity and resolution.

physiological conditions, we apply DMD-t to all 24 indoor participants’ radar data. Figure 10 presents
time-frequency spectrograms, where blue curves represent extracted instantaneous respiratory rates
and color intensity indicates spectral energy concentration. It employs overlapping sliding windows
to ensure continuous tracking across temporal segments. The full algorithmic pipeline is shown in
(Fig. 9) from IQ service data to phase extraction, HDMD and Tracking..

Most participants (P1-P5, P7-P11, P14, P16-P23) exhibit stable breathing patterns characterized
by concentrated spectral energy along the tracked trajectory. The narrow frequency bandwidth
and consistent temporal evolution indicate regular respiratory cycles without significant motion
artifacts. In contrast, participants P6, P12, P13, P15, and P24 present challenging scenarios with
random body movements (RBM) during recording. These cases are characterized by broader
frequency dispersion and intermittent high-energy bursts at non-respiratory frequencies corresponding
to motion artifacts. Despite these challenges, DMD-t maintains tracking continuity by distinguishing
between respiratory variations and transient motion interference. The varied spectral patterns across
participants underscore the importance of adaptive tracking methods for real-world deployment.
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Figure 8: DMD-t respiratory tracking for 24 indoor participants. Each subplot shows the instantaneous
respiratory rate (blue curve) over the DMD-t spectrogram, where color intensity indicates spectral
energy concentration. Participants P6, P12, P13, P15, and P24 show random body movements
(RBMs), while others exhibit stable breathing cycles.
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Figure 9: Hankel-DMD algorithm with DMD-t tracking

C.2 Phase Reconstruction

HDMD effectively removes residual harmonics, producing a smooth signal where peaks are clearly
resolved as shown in Fig. 10(b). In contrast, EEMD struggles with mode mixing, leaving harmonics at
inhalation and exhalation points that lead to frequency estimation errors and poor temporal resolution
(Fig. 10(c)). VMD reconstruction depends heavily on mode selection and fails to suppress high-
frequency noise, causing amplitude mismatches that prevent clear respiratory waveform isolation
(Fig. 10(d)). While Wavelet Transform yields a cleaner reconstruction with reduced noise, residual
harmonics remain and closely spaced peaks often merge, leading to ambiguity in respiratory pattern
identification (Fig. 10(e)).
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Figure 10: Phase reconstruction and analysis of a real radar signal. (a) Original signal phase; (b–e)
phase reconstructions using HDMD, EEMD, VMD, and DWT, respectively. The methods track phase
variations, with mismatches and reconstruction errors highlighted in affected time intervals.
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D Experimental Setup

D.1 Hardware Configuration and Radar Platform

The experimental evaluation utilizes the Acconeer XM125 module integrating the A121 pulsed
coherent mmWave radar, operating at 60.5 GHz, configured as a single-channel system with one
transmitter and one receiver. The module is optimized for high precision, low power applications
with inherent robustness against environmental interferences including ambient lighting, acoustic
noise, and atmospheric particulates.

Figure 11: Comparison of beam patterns for the XM125 radar with different lens configurations. Top:
(a) No lens, (b) Fresnel Zone Plate lens, (c) Plano-convex hyperbolic lens. Bottom: Corresponding
radiation patterns showing beamwidth narrowing and gain enhancement with lens-assisted focusing.
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Figure 12: Phase signal comparison across different lens configurations. Red: Plano-convex lens;
Blue: Fresnel Zone Plate (FZP); Green: No lens. The plano-convex lens yields smoother, higher-SNR
phase trajectories with clearer respiratory cycles.
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To enhance respiratory signal acquisition, we systematically evaluated three antenna configurations:
bare radar module, plano-convex dielectric lens, and Fresnel Zone Plate (FZP) lens. The plano-
convex lens from Acconeer’s standard lens kit features a planar inner surface and convex outer surface
designed for 60.5 GHz operation with material permittivity εr ≈ 2.6 and focal distance F = 10 mm,
achieving optimal F/D ratio (≈ 0.5-0.8) for directivity and clutter rejection. The FZP lens operates
on diffraction principles with concentric phase-correcting rings, offering thickness independence
from diameter. The bare module exhibits broader beam patterns (∼60° beamwidth) compared to the
focused lens configurations (∼20° beamwidth), making it more susceptible to environmental clutter
and multipath interference. Table 3 presents respiratory rate estimation across all three configurations.
The plano-convex lens achieved best performance with RMSE of 0.89 BPM, representing 53%
improvement over no-lens (1.88 BPM) and 23% improvement over FZP (1.15 BPM). Figure 12
illustrates representative phase signals, where the plano-convex lens produces consistently cleaner
waveforms with higher SNR and distinct respiratory cycles, while the no-lens configuration shows
increased noise and baseline drift. The lens was mounted on a height-adjustable tripod maintaining
1.5-2m distance from the subject’s chest area across different postures.

Table 3: Comparison of breathing rate estimation (in BPM) under different lens configurations.

Person ID Actual Rate (BPM) Measured Rate (BPM)
Ground Truth No Lens Fresnel Zone Plate Lens Plano-Convex Lens

P1 24 24.42 23.43 23.16
P2 23 24.14 24.10 24.17
P3 19 19.23 19.41 19.16
P4 20 20.34 20.42 19.96
P5 15 13.69 12.90 15.59
P6 12 11.87 12.25 12.07
P7 16 15.99 16.11 15.11
P8 20 20.12 20.54 20.05
P9 24 24.73 24.12 24.25

P10 22 20.48 22.82 21.18
P11 15 17.52 17.88 16.49
P12 21 21.64 21.21 20.69
P13 20 19.79 19.90 19.21
P14 8 7.75 7.91 7.93
P15 18 18.45 18.26 17.75
P16 19 19.57 19.32 19.56
P17 16 17.47 15.38 15.08
P18 18 17.74 18.17 17.82
P19 19 11.03 16.16 16.81
P20 19 17.41 17.96 18.12
P21 20 20.48 19.61 19.70
P22 20 21.35 21.97 21.54
P23 23 22.96 21.43 21.86
P24 24 24.79 23.67 22.70

RMSE (BPM) 1.88 1.15 0.89

D.2 Radar Configuration Parameters

The Acconeer XM125 radar system is configured for remote respiratory monitoring using the Sparse
IQ service. Operating at a maximum sweep rate of 2575 Hz, the system achieves frame rates up to
411.8 Hz, providing dense temporal sampling for phase extraction and respiratory signal analysis
(target range: 0.15–0.5 Hz or 9–30 BPM). The sensing range spans 0.225–1.525 m with 20 mm spatial
resolution (start point: 80, 40 range bins, step length: 8), enabling robust subject localization across
typical monitoring distances. Signal quality is enhanced through coherent amplitude processing
(Profile 3), 16 dB receiver gain, and 8-fold hardware averaging per sample (HWAAS). Real-time IQ
data acquisition utilizes the Acconeer Exploration Tool SDK (v4.9.0+) with USB streaming at 40
samples per frame.
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D.3 Data Collection

Data collection includes both controlled indoor and outdoor environments to evaluate algorithm
robustness. The study involves 24 participants (12 male, 12 female, aged 20-60 years) across six exper-
imental conditions combining three postures (sitting, lying, standing) with two environmental settings
(indoor/outdoor). Indoor environments provide controlled conditions with minimal electromagnetic
interference and stable lighting for baseline performance validation. Outdoor scenarios introduce real-
istic challenges, including environmental interference, wind-induced movement, variable conditions,
and ground clutter reflections.

Figure 13: Outdoor Data collection (a) XM125 radar module. (b, d) The experimental configuration,
showing the sensor placed 1.5 m from the subject. (c) Pulse oximeter used for ground truth validation.

Each subject undergoes timed recording sessions across all six conditions. Ground truth respiratory
rates were recorded using a clinical-grade capnography system (BM-K12, Bird Meditech) and a
portable fingertip pulse oximeter (Dr. Trust). The capnograph has an accuracy of ±1 breath or
±10%, while the oximeter estimates respiratory rate from photoplethysmography (PPG) with a rated
accuracy of ±1 BPM.

To assess the reliability of the oximeter-based ground truth used in outdoor experiments, simultaneous
recordings from both devices were obtained for 24 indoor subjects. The oximeter readings showed an
RMSE of 0.74 BPM (3.87% NRMSE) relative to capnography. These results confirm that the portable
oximeter provides sufficiently accurate reference data for outdoor validation, with measurement
uncertainty comparable to our radar estimation error (RMSE 0.55 BPM).

E Baseline Methods and Metrics

E.1 Baseline Algorithms

E.1.1 Ensemble Empirical Mode Decomposition (EEMD)

EEMD decomposes a signal into a finite set of Intrinsic Mode Functions (IMFs) through an iterative
sifting process. For a given signal x(t), the decomposition is expressed as:

x(t) =

N∑
i=1

ci(t) + rN (t) (18)

where ci(t) represents the i-th IMF and rN (t) is the residual component. Each IMF satisfies two
conditions: (1) the number of extrema and zero-crossings must differ by at most one, and (2) the
mean of the upper and lower envelopes is zero at all points. The sifting process for obtaining the k-th
IMF involves:

h1k(t) = x(t)−m1(t) (19)
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where m1(t) is the mean of upper and lower envelopes formed by cubic spline interpolation of local
maxima and minima.

E.1.2 Variational Mode Decomposition (VMD)

VMD formulates the decomposition as a constrained variational problem. It seeks K modes {uk}
and their corresponding center frequencies {ωk} by solving:

min
{uk},{ωk}

{
K∑

k=1

∥∥∥∥∂t [(δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

}
(20)

subject to
∑K

k=1 uk = f , where δ(t) is the Dirac delta function, ∗ denotes convolution, and j is the
imaginary unit. The solution is obtained using the Augmented Lagrangian method:

un+1
k (ω) =

f̂(ω)−
∑

i̸=k ûi(ω) +
λ̂(ω)
2

1 + 2α(ω − ωk)2
(21)

where (̂·) denotes the Fourier transform and α is the balancing parameter.

E.1.3 Discrete Wavelet Transform (DWT)

The Discrete Wavelet Transform (DWT) of a signal x(t) is defined as:

W (a, b) =
1√
a

∫ ∞

−∞
x(t)ψ∗

(
t− b

a

)
dt (22)

where ψ(t) is the mother wavelet, a is the scale parameter, b is the translation parameter, and ∗
denotes complex conjugate. For the Discrete Wavelet Transform (DWT), the signal is decomposed
into approximation coefficients Aj and detail coefficients Dj at level j:

Aj [k] =
∑
n

x[n]ϕj,k[n] (23)

Dj [k] =
∑
n

x[n]ψj,k[n] (24)

where ϕj,k[n] and ψj,k[n] are the scaling and wavelet functions, respectively.

E.1.4 Wavelet Cosine Transform (WCT)

WCT combines wavelet decomposition with cosine transform. After wavelet decomposition, each
subband is further processed using the Discrete Cosine Transform (DCT):

Xk =

N−1∑
n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
, k = 0, 1, . . . , N − 1 (25)

The WCT coefficient for subband s and frequency index k is:

WCT(s, k) = DCT(DWTs(x)) (26)

where DWTs(x) represents the wavelet coefficients in subband s.

E.1.5 Band-Pass Filtering (BPF)

BPF isolates frequency components within a specified range [ω1, ω2]. For an ideal band-pass filter,
the frequency response is:

H(ω) =

{
1, ω1 ≤ |ω| ≤ ω2

0, otherwise
(27)

In practice, a Butterworth band-pass filter of order n is commonly used:

|H(ω)|2 =
1

1 +
(

ω2−ω2
0

ω·BW

)2n (28)

where ω0 =
√
ω1ω2 is the center frequency and BW = ω2 − ω1 is the bandwidth.
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E.1.6 Moving Average (MAV)

The simple moving average of window size N is defined as:

x̄[n] =
1

N

N−1∑
k=0

x[n− k] (29)

The exponential moving average with smoothing factor α is:
x̄[n] = αx[n] + (1− α)x̄[n− 1] (30)

where 0 < α ≤ 1. The weighted moving average assigns different weights wk to different samples:

x̄[n] =

∑N−1
k=0 wkx[n− k]∑N−1

k=0 wk

(31)

E.1.7 Compressed Sensing with Orthogonal Matching Pursuit (CS-OMP)

CS-OMP reconstructs sparse signals from compressed measurements. Given measurements y =
Φx + n, where Φ ∈ RM×N is the measurement matrix and n is noise, OMP iteratively selects
columns of the sensing dictionary Ψ:

Λ(k) = Λ(k−1) ∪ {argmax
j

|⟨r(k−1),ψj⟩|} (32)

x̂Λ(k) = argmin
z

∥y −ΦΨΛ(k)z∥22 (33)

r(k) = y −ΦΨΛ(k) x̂Λ(k) (34)

where Λ(k) is the support set at iteration k, r(k) is the residual, and ψj are the dictionary atoms.

E.1.8 Finite Impulse Response (FIR) Filtering

An FIR filter of length N is characterized by its impulse response h[n]:

y[n] =

N−1∑
k=0

h[k]x[n− k] (35)

The frequency response is:

H(ω) =

N−1∑
k=0

h[k]e−jωk (36)

For linear phase FIR filters, the coefficients satisfy symmetry conditions. The Parks-McClellan
algorithm designs optimal FIR filters by minimizing the maximum error in the passband and stopband:

E(ω) =W (ω)[Hd(ω)−H(ω)] (37)
where Hd(ω) is the desired frequency response and W (ω) is the weighting function.

E.2 Evaluation Metrics

E.2.1 Pearson Correlation Coefficient (PCC)

The PCC measures the linear correlation between the original signal x and reconstructed signal x̂:

PCC =

∑N
i=1(xi − x̄)(x̂i − ¯̂x)√∑N

i=1(xi − x̄)2
√∑N

i=1(x̂i − ¯̂x)2
(38)

where x̄ and ¯̂x are the sample means of the original and reconstructed signals, respectively. PCC
ranges from -1 to 1, where:

• PCC = 1: Perfect positive linear correlation (ideal waveform preservation)
• PCC = 0: No linear correlation
• PCC = -1: Perfect negative linear correlation

This metric evaluates how well the temporal morphology and phase relationships of the respiratory
waveform are preserved after decomposition and reconstruction.
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E.2.2 Mean Squared Error (MSE)

MSE quantifies the average squared differences between original and reconstructed signals:

MSE =
1

N

N∑
i=1

(xi − x̂i)
2 (39)

where N is the number of samples. MSE provides a measure of reconstruction fidelity, with lower
values indicating better performance. MSE is sensitive to outliers and gives higher weight to larger
errors, making it suitable for detecting significant reconstruction artifacts.

E.2.3 Root Mean Squared Error (RMSE)

RMSE is the square root of MSE, providing error magnitude in the same units as the original signal:

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2 (40)

RMSE offers better interpretability than MSE as it represents the standard deviation of prediction
errors. For respiratory signals, RMSE directly indicates the average amplitude deviation in the
original signal units.

E.2.4 Normalized Root Mean Squared Error (NRMSE)

NRMSE normalizes RMSE by the signal’s dynamic range to enable comparison across different
signal amplitudes:

NRMSE =
RMSE

max(x)−min(x)
× 100% (41)

Alternative normalizations include division by the mean or standard deviation:

NRMSEmean =
RMSE
|x̄|

× 100% (42)

NRMSEstd =
RMSE
σx

× 100% (43)

where σx is the standard deviation of the original signal. NRMSE enables fair comparison between
signals with different amplitude ranges and provides a percentage-based error metric.

E.2.5 Respiratory Rate Estimation Accuracy

For respiratory rate estimation, we evaluate the accuracy of extracted breathing frequency fr compared
to the ground truth fr,gt:

Absolute Error:
AE = |fr − fr,gt| (44)

Relative Error:
RE =

|fr − fr,gt|
fr,gt

× 100% (45)

Mean Absolute Error (MAE):

MAE =
1

M

M∑
j=1

|fr,j − fr,gt,j | (46)

where M is the number of test segments.

Mean Absolute Percentage Error (MAPE):

MAPE =
1

M

M∑
j=1

|fr,j − fr,gt,j |
fr,gt,j

× 100% (47)
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F Extended Results

F.1 Ablation Studies

Effect of Sampling Frequency Variations: Sampling frequency fs determines data density critical
for SVD-based Hankel-DMD, where matrix dimensions strongly depend on available samples. To
evaluate this effect, the constructed respiratory signal was resampled at different fs values and
reconstructed using HDMD, EEMD, VMD, and Wavelet Transform (Table 1). At higher sampling
frequencies (240 Hz), HDMD consistently achieved the best correlation with the ground truth,
accurately capturing variability while effectively suppressing high-frequency flutter (0.16 MSE,
0.994 PCC). In contrast, EEMD suffers from escalated mode mixing producing distorted oscillations
(2.42 MSE, 0.899 PCC), VMD shows amplitude mismatches despite maintaining high correlation
(1.85 MSE, 0.993 PCC), while Wavelet Transform provides competitive results but introduces
overshoots from residual harmonics (1.15 MSE, 0.953 PCC). At lower sampling frequencies (100
Hz), data sparsity degraded HDMD performance (1.26 MSE, 0.958 PCC), leading to mode mixing
and pronounced amplitude mismatches due to limitations in Hankel matrix construction. Wavelet
Transform also performed poorly (2.56 MSE, 0.892 PCC), showing increased frequency mismatches
and less smooth reconstructions. VMD, however, demonstrated relative robustness under sparse
data, achieving higher correlation (0.989 PCC) despite increased MSE (3.62), though it still failed to
fully suppress high-frequency noise and harmonics. Overall, HDMD exhibits strong dependence on
adequate sampling density, while VMD shows greater resilience under reduced sampling.

Effect of Signal Duration and Embedding Length: The variation in performance of algorithms
based on signal duration is shown in Table 1. HDMD is inherently dependent on the Hankel
embedding parameter m, which represents the number of rows in the matrix. For longer signals
(180s), richer embeddings (m ≈ 300–500) yield smooth reconstructions (0.54 MSE, 0.985 PCC at
120s vs. 0.64 MSE, 0.980 PCC at 180s) with accurate amplitude and frequency representations. In
comparison, EEMD exhibits significant degradation at longer duration (MSE increases from 1.68 to
3.92), suffering from harmonic leakage, mode mixing, and amplitude-frequency mismatches. Wavelet
Transform achieves the lowest MSE at longer duration (0.63) but with reduced correlation (0.975),
while VMD maintains higher correlation (0.983) with increased MSE (0.73), remaining sensitive
to parameter tuning and unable to fully suppress higher-order harmonics. For shorter durations
(120s), HDMD maintains stable mode isolation as the Hankel matrix construction in HDMD provides
adequate temporal embedding when sufficient matrix rows are maintained (m ≥ fs/fmin). VMD
reconstructions show consistent performance across durations, EEMD continues to suffer from
high-frequency flutter and harmonic contamination, and Wavelet Transform introduces overshooting,
peak shifting, and baseline offsets.

Reconstruction Performance Under Gaussian Noise: In Table 1 HDMD shows minimal effect
from Gaussian noise on breathing component reconstruction, achieving near-perfect reconstruction at
low noise levels (k = 0.5: 0.006 MSE, 1.000 PCC) and maintaining high accuracy under elevated
noise (k = 3: 0.54 MSE, 0.985 PCC). EEMD exhibits counterintuitive behavior where reconstruction
quality improves with increased noise. While MSE increases from 3.64 to 4.68, the correlation
slightly improves from 0.801 to 0.731, reflecting stochastic resonance effects where controlled noise
perturbations aid in separating intrinsic mode functions that remain poorly distinguished in overly
smooth signals. VMD maintains stable performance with a slight increase in MSE (0.93 → 1.72)
showing good noise resilience. Wavelet Transform shows consistent behavior across noise conditions
(0.969 → 0.958 PCC) with minor performance degradation. HDMD, however, consistently provides
smooth reconstructions with minimal noise impact, aside from a slight amplitude mismatch at higher
levels of white Gaussian noise.

F.2 Computational Complexity

Based on the computational analysis of signal decomposition methods applied to a 120-second
signal sampled at 300 Hz , clear runtime differences were observed aligned with their algorithmic
complexities. Discrete Wavelet Transform (DWT) was the fastest, completing in 4 ms with linear O(n)
complexity. VMD and EEMD required 0.86 s and 38.9 s respectively, consistent with O(K ·n · log n)
and O(k ·n2) complexities, where K and k denote the number of modes and intrinsic mode functions.
Hankel Dynamic Mode Decomposition (HDMD) was the slowest at 5.4 s, approximately 6.3× longer
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than VMD, reflecting its O(n2) to O(n3) complexity arising from singular value decomposition
(SVD) operations on the Hankel matrix.

As a data-driven method, HDMD requires higher sampling rates to construct effective Hankel
embeddings. Denser sampling provides more temporal information for robust subspace identification
and respiratory component reconstruction. This requirement directly impacts computational cost,
as the Hankel matrix dimensions scale with the number of samples. However, this computational
investment enables superior frequency resolution and harmonic suppression capabilities. In contrast,
while DWT and VMD offer significantly faster processing with satisfactory frequency resolution, they
fail to adequately denoise, remove harmonics, and maintain accuracy under random body movements,
as demonstrated in Table 2. For fair comparison, all methods were evaluated on identical signal
lengths.

While HDMD offers excellent frequency resolution and robust breathing signal extraction even in
challenging conditions, its computational cost remains a key limitation for real-time deployment or
extended signal durations without algorithmic optimization or hardware acceleration. Additionally,
HDMD performance degrades under sparse sampling due to insufficient Hankel embedding structure
and, though less sensitive than VMD, still requires careful tuning of the embedding dimension
parameter.

G Conclusion and Limitations

This work establishes Hankel Dynamic Mode Decomposition as a robust framework for radar-based
respiratory monitoring, achieving superior performance (3.14% NRMSE) compared to traditional
decomposition methods across diverse environmental conditions. While HDMD demonstrates excep-
tional signal reconstruction quality and noise resilience through its Koopman operator-based approach,
the method faces practical limitations including computational complexity (O(n2) to O(n3)) that
restricts real-time deployment, sensitivity to sparse sampling conditions below 60 Hz, and current
evaluation scope limited to single-person scenarios. The DMD-t tracking extension successfully
enables analysis of non-stationary respiratory dynamics, providing enhanced temporal resolution
compared to traditional spectral methods. Future research directions should focus on algorithmic
optimization for real-time implementation, extension to multi-person tracking scenarios using HDMD,
and integration with edge computing platforms while maintaining the superior frequency resolution
that makes HDMD particularly suitable for privacy-preserving, contactless physiological monitoring
in clinical and mobile health applications.
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