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Abstract

Previous studies have demonstrated the ef-001
fectiveness of reasoning methods in eliciting002
multi-step reasoned answers from Large Lan-003
guage Models (LLMs) by leveraging in-context004
demonstrations. These methods, exempli-005
fied by Chain-of-Thought (CoT) and Program-006
Aided Language Models (PAL), have been007
shown to perform well in monolingual con-008
texts, primarily in English. There has, how-009
ever, been limited exploration of their abili-010
ties in other languages. To gain a deeper un-011
derstanding of the role of reasoning methods012
for in-context demonstrations, we propose a013
multidimensional analysis in languages beyond014
English, focusing on arithmetic and symbolic015
reasoning tasks. Our findings indicate that the016
effectiveness of reasoning methods varies sig-017
nificantly across different languages and mod-018
els. Specifically, CoT, which relies on natural019
language demonstrations, tends to be more ef-020
fective in high-resource than in low-resource021
languages. Conversely, the structured nature022
of PAL in-context demonstrations facilitates023
multilingual comprehension, enabling LLMs024
to generate programmatic answers in both high-025
and low-resource languages. This leads to sig-026
nificant improvements in the accuracy and qual-027
ity of the generated responses.028

1 Introduction029

One of the emergent properties of Large Language030

Models (LLMs) is the ability to solve tasks through031

prompts defined by structured patterns. This phe-032

nomenon, known as in-context learning (Brown033

et al., 2020), allows a task to be solved without034

updating the model parameters by using only the035

input. In light of the success of in-context learning,036

there has been increased interest in better analyzing037

the factors that influence how it works, such as the038

selection of demonstrations (Liu et al., 2022; Rubin039

et al., 2022; Zhao et al., 2023) and prompt design040

(Zhang et al., 2022; Si et al., 2023).041

In the case of reasoning methods, Chain-of- 042

Thought (CoT) (Kojima et al., 2023; Wei et al., 043

2023), and Program-Aided Language Models 044

(PAL) (Gao et al., 2022; Chen et al., 2023b) have 045

emerged as two effective approaches. The first 046

method, CoT, breaks down a reasoning problem 047

into a series of intermediate steps using natural 048

language, making it more general, flexible, and un- 049

derstandable. PAL offers reasoning solutions via 050

Python functions, with its step-by-step program- 051

ming code leading to more rigorous and structured 052

reasoning. 053

While previous contributions have demonstrated 054

the operation of in-context learning reasoning meth- 055

ods largely in English, a number of emerging 056

works have investigated multilingual reasoning. 057

Shi et al. (2022) have shown that the effective- 058

ness of CoT rationales is limited to the languages 059

most represented in the LLM’s pre-training data. 060

Hence, several studies addressed the problem by 061

proposing prompting mechanisms that translate the 062

problem to English (Huang et al., 2023), elicit 063

cross-lingual alignments for enabling reasoning 064

(Qin et al., 2023), or self-correction mechanisms 065

(Ranaldi et al., 2024). However, limited attention is 066

afforded to studying the type and role of in-context 067

demonstrations and the effect of scale on multilin- 068

gual reasoning with LLMs. 069

In this paper, we conduct an in-depth study to 070

evaluate the role of reasoning methods beyond En- 071

glish. Taking previous work a step further, we 072

study the operation of reasoning methods by ana- 073

lyzing the effects of different types of in-context 074

learning demonstrations on multilingual generative 075

reasoning abilities. We aim to identify different 076

LLMs’ characteristics, capabilities, and limitations 077

in reasoning tasks performed in 26 languages. 078

This leads to the main research questions of this 079

paper: 080

RQ1: What are the differences between natural 081

language demonstrations and structured in-context 082
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Native-PAL

Native-CoT

Question: Leah has 32 chocolates and her sister has 42. 
If they ate 35 pieces, how many pieces are left?
Answer: Leah has 32 chocolates and her sister has 42. 
In other words, there were 32 + 42 = 74 chocolates. She 
has already eaten 35. So they have 74 - 35 = 39 
chocolates left.

Question: Carlos is planting a lemon tree. It costs $90 
to plant the tree. The tree produces 7 lemons per year 
and sells them for $1.50 each. It costs $3 per year to 
water and fertilise the tree. How many years will it 
take for him to start making money from the lemon tree?

Question: Roger has 5 tennis balls. He bought 2 more cans of 
tennis balls. Each tin has 3 tennis balls. How many tennis 
balls does he now have?
Answer: # Roger starts with 5 tennis balls.
tennis_balls = 5
# 2 cans, each containing 3 tennis balls
bought_balls = 2 * 3 tennis balls.
# The answer is
answer = tennis_balls + bought_balls
The answer is 11

Question: Carlos is planting a lemon tree. It costs $90 
to plant the tree. The tree produces 7 lemons per year 
and sells them for $1.50 each. It costs $3 per year to 
water and fertilise the tree. How many years will it 
take for him to start making money from the lemon tree?

Answer: Annual revenue from sales is 7 lemons × $1.50/tree = $10.50. The annual 
cost is $90 (cost of planting) + $3 (watering and fertilising) = $93. So, the net 
income per year is $10.5 - $93 = -$82.5. Since the net income is negative, that 
means he loses $82.50 every year. In order to start making money from this lemon 
tree, he needs to wait until the annual net income becomes positive. Therefore, he 
needs to wait for the $90 cost to be covered, i.e. $90 ÷ $82.5/year ≈ 1.09 years. 
So, it will take him about 1.09 years to start making money from the lemon tree.

Answer: # Cost of growing lemon trees
initial_cost = 90
# Revenue per lemon
revenue_per_lemon = 1.5
# lemons produced per year
lemons_per_year = 7 
# annual income from the sale of lemons
annual_revenue = lemons_per_year * revenue_per_lemon
# Calculate annual net profit
annual_net_profit = annual_revenues - annual_costs
# of years required to calculate recovery of initial costs
years_necessary = initial_cost/annual_net_profit
The answer is 12 years.

*Examples tagged with     have been translated from Chinese to English.

Figure 1: The different reasoning methods proposed in our analysis. We explore the impact of in-context demon-
strations on multilingual tasks (Section 3.1) and the performances achieved by different LLMs (Section 3.2). *As
indicated in the figure, we have translated two examples of prompts from Chinese to English to improve understand-
ability.

demonstrations in multilingual reasoning?083

RQ2: What are the impacts and limits of natu-084

ral language in-context demonstrations beyond En-085

glish?086

RQ3: Do high and low-resource languages respond087

differently to reasoning methods?088

We use two types of in-context demonstrations:089

CoT and PAL in zero and few-shot settings (as090

shown in Figure 1). For multilingual CoT, we use091

a series of natural language demonstrations either092

in English or in specific target languages following093

Shi et al. (2022). Similarly, for PAL, we propose094

amethod by extending the original in English (Gao095

et al., 2022) to additional languages.096

We select a variety of multilingual reasoning097

tasks covering mathematical, commonsense reason-098

ing, and natural language inference tasks. These099

tasks are MGSM (Shi et al., 2022) and MSVAMP100

(Chen et al., 2023a), which consist of mathemati-101

cal reasoning problems, and XCOPA (Ponti et al.,102

2020), PAWS-X (Yang et al., 2019) and XLNI103

(Conneau et al., 2018) which consist of common-104

sense reasoning and natural language inference.105

Finally, we select a range of different LLMs106

to explore the LLM family, LLM size, and pur-107

pose of construction for a comprehensive evalu-108

ation. Specifically, we employ GPTs (OpenAI,109

2023) models for the results obtained in reason-110

ing tasks, different versions of Llama2 (Touvron111

et al., 2023) and Mistral (Jiang et al., 2024) for112

the improvements achieved by smaller-scale ver-113

sions; and finally, StarCoder (Li et al., 2023) and114

CodeLlama (Rozière et al., 2024) for the coding115

capabilities.116

The main findings of our paper are: 117

• Reasoning methods are able to improve per- 118

formance on non-English reasoning tasks. In 119

fact, both CoT and PAL improve performance, 120

although their effect on multilingual reasoning 121

tasks varies greatly depending on the language 122

and LLM. 123

• However, in the natural language in-context 124

demonstrations used in the CoT, limitations 125

can be seen in some languages. On the other 126

hand, we observe that the structured reason- 127

ing of program demonstrations (i.e., PAL), 128

are less ambiguous than natural language, 129

and are more transferable between languages. 130

PAL benefits from more structured reason- 131

ing, and this shows stronger performance for 132

non-English tasks and, in particular, for low- 133

resource languages. 134

• Finally, we show that LLMs are able to un- 135

derstand problems described in both low and 136

high-resource language questions, even if per- 137

formance is somewhat lower than in English. 138

In addition, LLMs are able to generate reason- 139

ing in English even if the question is phrased 140

in another language. 141

2 Reasoning Methods Beyond English 142

In-context reasoning methods are popular prompt- 143

ing strategies that elicit Large Language Models 144

(LLMs) to generate multi-step reasoned answers 145

as introduced in Section 2.1. Although these meth- 146

ods demonstrate their functionality in various tasks, 147
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evaluations and further studies are primarily con-148

ducted in English, leaving other languages unex-149

plored (Section 2.2). Hence, we propose a system-150

atic study of the impact of reasoning methods in151

languages other than English (Section 2.3).152

2.1 In-context Reasoning Methods153

These methods, best represented by Chain-of-154

Thought (CoT) (Wei et al., 2023) and Program-155

Aided Language Models (PAL) (Gao et al., 2022),156

are popular prompting strategies that introduce157

in-context demonstrations. These examples elicit158

LLMs to solve complex problems by simplifying159

them and breaking them down into a series of sub-160

problems. The CoT-based methods operate in zero-161

shot (Kojima et al., 2023), few-shot (Wei et al.,162

2023), self-consistent way (Wang et al., 2023). In163

contrast, PAL uses a code interpreter (Zhou et al.,164

2023) or code-like structured demonstrations (Gao165

et al., 2022).166

2.2 Reasoning Across Languages167

Several earlier works have studied the perfor-168

mances of CoT prompting in different languages.169

Shi et al. (2022) tested the effectiveness of native in-170

context CoT that are manually translated rationales171

in a specific language (i.e., Native-CoT in Table 1)172

and English in-context CoT (i.e., En-CoT). En-CoT173

are composed of questions in the native language174

and rationales in English. Qin et al. (2023) in-175

spired by (Huang et al., 2023) and (Wang et al.,176

2023), proposed two-step CoT prompting (see Ta-177

ble 7). Finally, Ranaldi et al. (2024) proposed a178

prompt-based self-correction strategy as described179

in Appendix B. However, these studies focused on180

demonstrating the performance of CoT and eval-181

Native-CoT
Q:罗杰有5个网球。他又买了2罐网球。每罐有3

个网球。他现在有多少个网球？

A:罗杰一开始有5个球。2罐各3个网球就是6个

网球。5 + 6 = 11。答案是11。

Q:利亚有32块巧克力，她妹妹有42块。如果她们

吃了35块，她们一共还剩下多少块？

A:

Table 1: Native Chain-of-Thought, as proposed in (Shi
et al., 2022) (for simplicity, we have reduced the shot,
but the original is 6-shot). The in-context question and
the rationales are in the specific language (Chinese in
this example). The version with English rationales is
En-CoT as detailed in Appendix B).

uated methods on large English-focussed LLMs. 182

Thus, previous works left a gap in the study of the 183

type of multilingual in-context demonstrations on 184

both the impacts and effects they have on reasoning 185

on different scales of LLMs. 186

Native-PAL
Q:罗杰有5个网球。他又买了2罐网球。每罐有3

个网球。他现在有多少个网球？

A: #罗杰从5个网球开始。

tennis_balls = 5

# 2罐，每罐装3个网球

bought_balls = 2 * 3 tennis balls.

#答案是

answer = tennis_balls + bought_balls

#答案是11

Q:利亚有32块巧克力，她妹妹有42块。如果她们

吃了35块，她们一共还剩下多少块？

A:

Table 2: Native Program-Aided Language Models
(Native-PAL) (we reported one-shot as in Table 1). The
in-context questions and the demonstrations are in the
native language (Chinese in this example). The En-PAL
version have English commented answers as detailed in
Appendix E).

2.3 Aligning Reasoning Methods 187

Inspired by previous work, we take the next step 188

by proposing an in-depth evaluation of the effect 189

of in-context demonstrations used in the reasoning 190

methods. We conduct our analysis on different 191

LLMs chosen by family, capabilities, and purpose 192

of construction (Section 3.2) by using appropriate 193

tasks presented in Section 3.1. Our contribution 194

aims to study the effect of different types of in- 195

context demonstrations in different languages by 196

discussing their limitations and the functionality 197

that these methods are able to supply. 198

Our experiments explore the following key 199

points: (i) constructing multilingual evaluations by 200

extending PAL (as introduced later) and applying 201

multilingual CoT methods (Shi et al., 2022; Huang 202

et al., 2023) on different models using carefully 203

designed benchmarking tasks; (ii) conducting an 204

investigation into the effects of in-context demon- 205

strations across various languages; and (iii) ana- 206

lyzing the different impact of in-context reasoning 207

approaches for high- and low-resource languages. 208

Multilingual PAL To extend multilingual eval- 209

uation to the PAL reasoning method, we propose 210
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a specially constructed language-specific version211

(showed in Table 2) by transferring the prompts212

proposed in (Shi et al., 2022) into programs-like213

demonstrations as done in (Gao et al., 2022).214

3 Experimental setup215

3.1 Data216

To study the impact of reasoning methods in mul-217

tilingual tasks, we use MGSM (Shi et al., 2022),218

MSVAMP (Chen et al., 2023a), XNLI (Conneau219

et al., 2018), and PAWS-X (Yang et al., 2019),220

XCOPA (Ponti et al., 2020).221

Understanding tasks To assess multilingual222

comprehension abilities, we use XNLI and PAWS-223

X. The first is an extension of Stanford Natural224

Language Inference data set (Bowman et al., 2015)225

to 15 languages and, based on premise and hypoth-226

esis, requires the model to determine whether the227

hypothesis is entailed, contradicted, or neutral in228

15 different languages. The second, Paraphrase Ad-229

versaries from Word Scrambling (PAWS-X), con-230

tains two sentences and requires the model to judge231

whether they paraphrase each other in 7 languages.232

Commonsense Reasoning task The Cross-233

lingual Choice of Plausible Alternatives (XCOPA)234

(Ponti et al., 2020) is based on one premise and235

two choices. It asks the model to choose which one236

is the result or cause of the premise, covering 11237

languages from diverse families.238

Arithmetic Reasoning task To evaluate the239

problem-solving abilities, we use the extension of240

GSM8K Cobbe et al. (2021) and SVAMP (Patel241

et al., 2021). Respectively, Multilingual Grade242

School Math (MGSM) (Shi et al., 2022) and Multi-243

lingual Simple Variations on Arithmetic Math word244

Problems (MSVAMP) (Chen et al., 2023a). In both245

original cases, the authors proposed a benchmark of246

mathematical problems in English. The examples247

have the following structure: a math word problem248

in natural language and a target answer in numbers.249

Shi et al. (2022); Chen et al. (2023a), in their con-250

tribution, selected a subset of instances from the251

official list of examples and translated them man-252

ually into 11 different languages, maintaining the253

structure of the input and output.254

Evaluated Languages In our experiments, to255

promote open-source sharing, we use a list of tasks256

available in different languages; we provide de-257

tailed descriptions in Appendix A.258

3.2 Models 259

We evaluate the effects of reasoning methods on 260

different LLMs. Following previous work, we use 261

three models from the GPT family; moreover, in 262

additional experiments, we introduce other models 263

from the Llama2 and Mistral families and Star- 264

Coder2. Hence, complementing previous evalua- 265

tions, we choose models for (i) multilingual perfor- 266

mances achieved by the GPTs and Llama2s (Ahuja 267

et al., 2023),(ii) the monolingual abilities in mathe- 268

matical reasoning achieved by Mixtral (Jiang et al., 269

2024) on GSM8K, and finally, (iii) the proficiency 270

in coding for StarCoder2 (Li et al., 2023), CodeL- 271

lama (Rozière et al., 2024), and GPTinstruct (also 272

for results in PAL (Gao et al., 2022; Ye et al., 273

2023)). We accessed the GPT models via the API, 274

whereas we downloaded the other models from 275

HuggingFace and ran inference locally. Appendix 276

F and Appendix F describe the parameters and ver- 277

sions used in detail. 278

3.3 Prompting Methods 279

To conduct the study on robust models, we operate 280

with state-of-the-art in-context learning methods 281

and extend the experimental setting by introduc- 282

ing multilingual Program-Aided Language Models 283

(PAL). 284

Arithmetic Reasoning Prompts We define two 285

types of prompts for the MGSM and MSVAMP 286

tasks by adapting CoT and PAL to multilingual 287

scenarios. Hence, we use En-CoT and Native-CoT 288

as in (Shi et al., 2022) (Table 1) and an adapted 289

method proposed in (Qin et al., 2023; Huang et al., 290

2023) (see Appendix B). Concerning PAL, we in- 291

troduce multilingual demonstrations as shown in 292

Table 2 for Native-PAL and, to complete the set- 293

tings En-PAL detailed in Appendix E. 294

Finally, to complete the experimental setting, 295

we introduce Cross-CoT and -PAL. Both have the 296

initial part as well as Native-methods, but unlike 297

these, the models are elicited to deliver reasoned 298

answers in English (detailed in Appendix W). 299

Understanding & Commonsense Prompts 300

While we employ the workflow proposed in previ- 301

ous works for arithmetic tasks by performing exper- 302

iments with zero and few-shot settings, for under- 303

standing and commonsense tasks, we define input 304

templates that lead to the comprehension of LLMs 305

and consequently aid generation. As described in 306

detail in Appendix D, we construct prompts follow- 307
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Model Method Mathematical Understanding Commonsense

MGSM MSVAMP XNLI PAWS-X XCOPA

GPT-4
Direct 67.1 69.2 75.4 68.1 89.0
CoT 68.4 (+1.3) 70.4 (+1.4) 76.1 (+x.x) 70.7 (+2.6) 91.7 (+1.7)
PAL 71.2 (+4.1) 71.7 (+2.5) - - -

GPT-3.5-based
Direct 48.5 59.3 62.1 66.4 80.2
CoT 55.9 (+6.4) 62.4 (+3.1) 63.2 (+1.9) 67.2 (+3.7) 85.3 (+3.6)
PAL 57.5 (+9.0) 63.9 (+4.3) - - -

Llama-70-based
Direct 45.9 54.0 48.2 58.3 70.2
CoT 51.0 (+5.1) 54.8 (+1.8) 49.8 (+1.6) 60.6 (+2.3) 73.3 (+3.2)
PAL 51.5 (+5.6) 55.7 (+1.7) - - -

Llama-7-based
Direct 42.5 46.8 44.1 53.2 45.4
CoT 46.1 (+3.6) 48.6 (+1.8) 45.3 (+1.2) 54.8 (+1.5) 46.0 (+0.6)
PAL 47.2 (+4.7) 49.4 (+2.6) - - -

StarCoder2 Direct 41.6 46.8 - - -
PAL 45.1 (+3.5) 48.6 (+1.8) - - -

Mixtral8x7 Direct 51.2 56.2 42.5 57.6 74.2
CoT 49.4 (-1.8) 56.8 (+0.4) 42.7 (+0.5) 59.7 (+3.1) 72.7 (-1.5)

Mistral-7
Direct 49.5 48.2 38.5 56.3 47.7
CoT 48.0 (-1.5) 47.8 (-0.4) 40.1 (+1.6) 58.4 (+2.1) 46.6 (-1.1)
PAL 48.0 (-1.5) 48.0 (-0.2) - - -

Table 3: The average accuracy scores achieved by models proposed in Section 3.2 using reasoning methods
introduced in Section 3.3 (in bold the best performance per model and task). For GPT-3.5-based, we reported
results achieved by gpt-3.5-turbo and gpt-instruct, and the same for Llama-70-based and Llama-7-based.
Appendices I and J are reported detailed results.

ing (Ahuja et al., 2023) using the CoT prompting308

method to elicit multi-step generations.309

Evaluation We evaluate performance using the310

accuracy score, following the approaches used in311

(Shi et al., 2022; Huang et al., 2023). Hence, we312

measure the exact match between generated out-313

puts and labels1 (Ahuja et al., 2023). We maintain314

the generation temperatures as recommended in the315

official papers.316

4 Results317

Large Language Models (LLMs) benefit from rea-318

soning methods not merely in monolingual con-319

texts (as amply demonstrated in English) but also320

in other languages. As discussed in Section 4.1, the321

in-context demonstrations beyond English elicit the322

LLMs to deliver multilingual multi-step reasoned323

answers; however, the operation differs depending324

on the type of method.325

Although in-context demonstrations lead the326

models to generate more robust answers, bringing327

tangible improvements in multilingual tasks, the328

operation of these techniques differs depending on329

1We extract target labels from the generated answers using
regular expressions before calculating the exact match. In ad-
dition, for each task, we use Instruction Templates (Appendix
G) to guide the model to stable generations and facilitate eval-
uation.

the model. As analyzed in Section 4.2, in-context 330

rationales in natural language have a limited effect 331

in some languages. On the other hand, structured 332

program-of-thoughts demonstrations lead the mod- 333

els to stable generations. However, the impact of 334

demonstrations varies according to the quality or 335

quantity of rationales and the scale of model pa- 336

rameters (Section 4.3). 337

Finally, in Section 4.4, we examine the effects of 338

high-resource languages on the final performance 339

by discerning the factors that influence the gen- 340

eration of the final response and highlighting the 341

matter of native language demonstrations in low- 342

resource settings. 343

4.1 Reasoning Methods operate across 344

languages 345

In-context reasoning methods empower the LLMs’ 346

multilingual performances in mathematical, com- 347

monsense reasoning and understanding tasks. Ta- 348

ble 3 shows the differences in terms of performance 349

between the language-adapted reasoning methods, 350

i.e., Native-CoT and Native-PAL, and the base- 351

lines (i.e., Direct). The use of in-context multi- 352

lingual demonstrations also brings clear benefits 353

beyond English. 354

In particular, the results achieved by GPT-4 355

and GPT-3.5-based (GPT-3.5 and GPT-instruct) 356
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show a clear distinction between Native-CoT,357

Native-PAL and the baseline Direct.Also, Llama-358

70-based (Llama2-70 and Codellama-70) models359

obtain noticeable benefits from Native-CoT and360

Native-PAL prompting (complete results in Ap-361

pendix I). Although these LLMs benefit the most362

from introducing reasoning methods in the prompt-363

ing stage, further improvements are observable364

even in LLMs with fewer parameters. In partic-365

ular, Llama2-7-based and StarCoder2 outperform366

the baselines when reasoning methods are used367

(see the average scores in Table 3). In contrast to368

the general trend, the models of the Mistral family369

do not perform as well on reasoning methods as370

the other models on mathematical tasks (see differ-371

ences with reference averages in Table 3. These372

results demonstrate the benefit of multilingual in-373

context prompting not only in the mathematical374

tasks but also in natural language understanding,375

average accuracies in last three columns of Table 3376

(details for each language in Tables 20 and 21 and377

commonsense task in Table 22).378

However, although the averages are mainly pos-379

itive, some phenomena emerge, such as negative380

differences (the baseline Direct outperforms the381

reasoning method) and, in the mathematical rea-382

soning tasks, a disparity between CoT and PAL.383

Specifically, PAL outperforms CoT consistently384

with accuracy averaging ranging from 1.5 up to385

3 points (green values in Table 3). Hence, to386

gain a thorough understanding of the dynamics387

that emerge, we now explore how the structure of388

in-context demonstrations affects the generations389

provided by the models.390

4.2 The Limits of Natural Language391

The effect of the reasoning method relies on the392

solution strategy. Structured in-context demonstra-393

tions in a program-like manner (PAL) are more394

effective than natural language rationales(CoT) in395

multilingual mathematical reasoning tasks. Fig-396

ures 2 display the differences between PAL and397

CoT using both in-context learning adapted to the398

specific language (Native-PAL and Native-CoT).399

Furthermore, to complete the analysis, the same ex-400

periments were performed with in-context demon-401

strations in English (En-PAL and En-CoT2).402

In particular, in mathematical tasks, PAL out-403

performs CoT in eight languages over ten on av-404

erage in the case of language-specific demonstra-405

2details on the structure of the prompts in Section 3.3

Figure 2: Performance difference between Native-PAL
and Native-CoT for each individual language (low-
resource languages in red) in MGSM and MSVAMP
(we also reported the difference between En-PAL and
En-CoT hatched). In Table 28 are reported the extended
differences for all models.

tions (Native-CoT and Native-PAL). Furthermore, 406

similar results emerged using the in-context in En- 407

glish as proposed in (Shi et al., 2022). Examining 408

the results between languages shows that better 409

improvements are obtained in low-resource lan- 410

guages (low- and high-resource3, echoing previ- 411

ous work (Shi et al., 2022)). In particular, PAL 412

consistently outperforms CoT in high-resource lan- 413

guages by about 1.8 average points while by more 414

than 2.1 points in low-resource languages. The 415

phenomenon is more marked in models beyond 416

GPT-based (Llama2-based and StarCoder2). 417

Since the natural language of in-context ratio- 418

nales does not provide the same benefits as PAL, 419

we examined the generations delivered by the dif- 420

ferent LLMs in detail to investigate the origin of 421

the differences. 422

The structure of the Rationales The in-context 423

demonstrations in natural language have the same 424

structure as the previously proposed contribution, 425

but they have different effects due to imbalances 426

related to pre-training languages. Even though the 427

Native-CoT consists of questions and demonstra- 428

tions in a specific language, the generations are 429

not always in the same language (Figure 3). An- 430

alyzing the composition of languages through the 431

3high (German, Chinese, French, Russian,
Spanish, Japanese) and low (Telogu, Bengali,
Swali, Thai)
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Figure 3: Percentage (%) of answers generated in
specific language (LS) and the relative accuracies for
MGSM using Native-CoT. We reported averages for
low-resources (lr) and high-resources (hr) languages.

framework OpenLID (Burchell et al., 2023), a dif-432

ference emerges in the generations delivered for433

high-resource languages that are predominantly in434

the native language as opposed to low-resource that435

are predominantly in English despite the in-context436

in the specific language (detailed in Appendix S).437

Hence, these generations impact the perfor-438

mances. The results in Figure 3 show that non-439

language-specific answers tend to be more accurate440

than other answers. In addition to the languages441

generated, a relationship emerges between perfor-442

mance and the average number of steps required to443

get correct answers. The number of Hops, i.e., the444

steps to reach the final solution, represented by nat-445

ural language sentences, appears different between446

English and non-English (Figure 4). In contrast,447

PAL generations are less skewed between English448

and specific language answers (detailed results for449

each model in Appendix S).450

4.3 The Role of Demonstrations451

In-context demonstrations play a key role in com-452

plex multilingual scenarios because they promote453

reasoning in specific languages beyond English,454

as discussed in Sections 4.1. We investigated the455

Figure 4: Average number of Hops in answers deliv-
ered in specific language (LS) and in English (En) (in
Appendix S are reported for each model)

performance trend as in-context demonstrations 456

increased by varying the quality and quantity of 457

demonstrations operated. We repeated the previ- 458

ous experiments focusing on a mathematical task 459

(MGSM), starting with zero- and increasing to 6- 460

shots. The results (Figure 5) show that the positive 461

impact of in-context demonstrations across the lan- 462

guages is related to the quality (as discussed in 463

Section 4.2) and quantity of demonstrations used. 464

Quantitative Impacts The amount of in-context 465

demonstrations is relevant (Figure 5). However, a 466

distinction emerges between models and the num- 467

ber of de facto useful demonstrations. GPT-based 468

models with 4-shots achieve results comparable 469

to 6-shots (average accuracies in Figure 5). This 470

balance does not occur in Llama2-70, CodeLlama- 471

70, and Mixtral, which underperform as in-context 472

demonstrations increase (see details in Figure 6). 473

Finally, the smaller models (Llama2-7, Mistral-7, 474

CodeLlama-7 StarCoder2) have conspicuous im- 475

provements as the number of demonstrations in- 476

creases. However, there are divergences related to 477

the languages, as discussed in Section 4.4. 478

M
G

SM

M
SV

A
M

P

X
N

L
I

PA
W

S-
X

X
C

O
PA

Model ∆ ∆ ∆ ∆ ∆

GPT-4
CoT +11.2 +3.2 +1.8 +3.6 +5.5
PAL +5.8 +2.6 - - -

GPT-3.5
CoT +7.8 +6.1 +2.6 +2.8 +0.6
PAL +8.4 +5.4 - - -

Llama-70
CoT +5.0 +4.8 -0.2 -0.4 -0.3
PAL +4.7 +4.6 - - -

Llama-7
CoT +2.7 +0.8 +0.3 -1.2 +0.2
PAL +2.1 +0.2 - - -

Mixtral
CoT +0.1 -0.4 -0.6 -0.5 +0.9
PAL - - - - -

Mistral-7
CoT +0.2 -1.6 0.8 -0.7 +0.7
PAL -0.2 -1.2 - - -

Starcoder2PAL +3.7 +0.8 - - -

Table 4: Differences in term of accuracies (∆) between
Cross-CoT and Cross-PAL and the Native-based ver-
sions.

4.4 The Language of Reasoning Matters 479

Multilingual in-context demonstrations may ben- 480

efit LLMs in applying solution strategies during 481

generation; however, the language used to solve 482

a given problem matters. By prompting in a spe- 483

cific language and eliciting the LLMs to generate 484

reasoning in English (defined as Cross-method), 485

we observed significant improvements in accuracy 486

7



Figure 5: Average accuracies for all languages on MGSM using methods prompting in (Section 3.3) setting
providing in input k-shot demonstrations with k equal to {0,2,4,6}. In Appendix M and Appendix O, detailed
results are reported.

(see Table 4).487

Specifically complementing previous work, we488

used two strategies: (1) delivered in-context demon-489

strations of reasoning answers in English (En-CoT,490

En-PAL). (2) delivered in-context demonstrations491

of reasoning answers in the native language and492

then elicited the model to reason and provide a493

solution in English, i.e., Cross-method (reported494

in Appendices W) As shown in Table 4, in both495

cases, the reasoning methods provided tangible ben-496

efits both in PAL and CoT. These latter results em-497

phasized the LLMs’ understanding and production498

abilities as reported in generations in Tables 31, 32.499

Finally, in the additional experiments in Appendix500

T, we show that our analysis can be transferred to501

further LLMs, and the observations discussed also502

emerge in these latter models.503

5 Related Work504

Large Language Models (LLMs) demonstrate in-505

context learning abilities (Min et al., 2022; Dong506

et al., 2023) to guide LLMs in generating desired507

task responses, marking the advent of the prompt-508

ing era and surpassing the age of the intermedi-509

ate steps and structured reasoning (Roy and Roth,510

2015; Ling et al., 2017). Early works challenged511

the efficacy of in-context learning approaches to im-512

prove downstream performances. Gao et al. (2022)513

adapted the Chain-of-Thought (CoT) (Wei et al.,514

2023) approach by considering the proficiency515

of LLMs in producing code, proposing Program-516

Aided Language Models (PAL).517

These approaches, called reasoning methods,518

demonstrated success, but the findings are limited519

to a single language (i.e., English). Hence, Shi520

et al. (2022) proposed a multilingual evaluation that521

Huang et al. (2023); Qin et al. (2023); Ranaldi et al.522

(2024) (see summary in Table 29) extended into523

cross-lingual by proposing a prompt mechanism524

to handle requests in any language and generate525

English CoT. While Ranaldi et al. (2024) proposed 526

a single single-phase prompt, Huang et al. (2023) 527

used a double-step mechanism reinforced with the 528

self-consistency approach (Wang et al., 2023) as 529

in (Qin et al., 2023). Although the proposed ap- 530

proaches achieve robust results, the role, effects, 531

and limitations of multilingual in-context demon- 532

strations on reasoning abilities remained under- 533

explored. 534

This work proposes an analysis to evaluate 535

LLMs’ multilingual reasoning abilities. We in- 536

vestigate the impact that reasoning methods cause 537

on final performance by studying the role and the 538

limits of in-context demonstrations in different lan- 539

guages. The cornerstones can be outlined by the 540

following points: (i) Analysis of the impact of mul- 541

tilingual reasoning methods on different tasks using 542

several LLMs (selected by features and scope of 543

construction); (ii) Examination of the limitations 544

of multilingual in-context demonstrations in natu- 545

ral language and comparison with PAL; (iii) Study 546

the role of in-context demonstrations by discerning 547

between low- and high-resource languages. 548

6 Conclusion 549

The benefits of reasoning methods emerge beyond 550

the English language. Our analysis shows that ap- 551

propriately elicited LLMs are able to deliver struc- 552

tured answers in different languages. Indeed, by 553

operating via CoT and PAL, we revealed that in- 554

context demonstrations play a strategic role in im- 555

proving performance in direct proportion to their 556

quality and quantity. Our research highlights the 557

need for a customized approach to employing rea- 558

soning methods for LLMs in different languages. It 559

supports the demand for a reasonable combination 560

of model scale, reasoning technique, and strate- 561

gic use of in-context demonstrations to elicit the 562

prospect of LLMs in different language landscapes. 563
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Limitations564

Due to the limitations imposed by the evaluation565

benchmarks and the cost of the OpenAI API, we566

conducted tests on five tasks and 26 languages in to-567

tal, which only scratches the surface of the world’s568

vast array of languages. In addition, our approaches569

are based on a single-stage prompting approach in570

English. It should be evaluated Self-consistency571

prompts (Wang et al., 2023) and using different572

configurations of cross-lingual in-context demon-573

strations. Finally, we tested the effectiveness of our574

method on GPT-based models (closed-source) and575

several models (open-source). In the future, it will576

be appropriate to study the generality of our model577

compared to other closed-source Large Language578

Models.579

Finally, although we have considered and ana-580

lyzed different versions distributed over 22 models581

in our work, we would like to take a closer look582

at the performance achieved by language-specific583

pre-trained models (better known as language-584

centered). However, at the moment, there are not585

many open resources comparable in size to those586

we have analyzed. In the future, we hope these587

models can be readily available to investigate this588

phenomenon better.589

Ethics Statemet590

In our work, ethical topics were not addressed.591

The data comes from open-source benchmarks,592

and statistics on language differences in commonly593

used pre-training data were obtained from official594

sources without touching on gender, sex, or race595

differences.596
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A Proposed Task
Dataset Task Languages #Languages

Bengali (bn), Chinese (zh), French (fr), Thai (th) 10
MGSM mathematical reasoning German (de), Japanese (jp), Russian (ru), Telugu (te)

Spanish (es), Swahili (sw)
Bengali (be), Chinese (zh), French (fr), Thai (th) 9

MSVAMP mathematical reasoning German (de), Japanese (jp), Russian (ru)
Spanish (es), Swahili (sw)
English (en), German (de), Russian (ru), French (fr), 15

XNLI natural language inference Spanish (es), Chinese (zh), Vietnamese (vi), Turkish (tr),
Arabic (ar), Greek (el), Thai (th), Bulgarian (bg),
Urdu (ur), Swahili (sw), Hindi (hi)
Chinese (zh), Italian (it), Vietnamese (vi), Indonesian (in), 11

XCOPA commonsense reasoning Turkish (tr), Thai (th), Estonian (et), Tamil (ta),
Swahili (sw), Haitian (ht), Quechua (qu)

PAWS-X paraphrase identification English (en), German (de), Japanese (jp), French (fr), 7
Spanish (es), Chinese (zh), Korean (ko)

Table 5: Languages present in datasets used in this work.

M K-shot per Model

Figure 6: Average accuracies on mathematical reasoning task (MGSM) using methods proposed in (Section 3.3)
setting providing in input k-shot demonstrations with k equal to {0,2,4,6}. In Appendix M and Appendix O,
detailed results are reported.
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O K-shot per Language using CoT

Figure 7: Acciracies (%) on MGSM using Native-CoT (Section 3.3) setting providing in input k-shot demonstra-
tions with k equal to {0,2,4,6}.

P K-shot per Language using PAL

Figure 8: Acciracies (%) on MGSM using Native-PAL (Section 3.3) setting providing in input k-shot demonstra-
tions with k equal to {0,2,4,6}.
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B State-of-art Prompting Methods

Direct (Question in Chinese without CoT)
Q: ：罗杰有5 个网球。他又买了2 罐网球。每罐有3
个网球。他现在有多少个网球？
A: 11
Q:利亚有32块巧克力，她妹妹有42块。如果她们吃
了35块，她们一共还剩下多少块？
A:
Native-CoT ( Question and CoT Answer in Chinese)
Q:罗杰有5个网球。他又买了2罐网球。每罐有3个
网球。他现在有多少个网球？
A: 罗杰一开始有5 个球。2 罐各3 个网球就是6 个网
球。5 + 6 = 11。答案是11。
Q:利亚有32块巧克力，她妹妹有42块。如果她们吃
了35块，她们一共还剩下多少块？
A:
En-CoT (Question in Chinese and CoT Answer in English)
Q:罗杰有5个网球。他又买了2罐网球。每罐有3个
网球。他现在有多少个网球？
A: Roger started with 5 balls. 2 cans of 3 tennis balls each
is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q:利亚有32块巧克力，她妹妹有42块。如果她们吃
了35块，她们一共还剩下多少块？
A:

Table 6: Chain-of-Thought as proposed in (Shi et al.,
2022) (for simplicity we have reduced the shot but the
original is 6-shot). Given a problem in specific lan-
guage, the following prompts are Direct, Native-CoT
(without additional languages) and En-CoT, the original
question in specific language with answers in English.

CLIP First-Step
Please act as an expert in multi-lingual
understanding in [Specific Language Ls].
Question: [Given sentence X in Ls]
Let’s understand the task in [Target Language
Lt] step-by-step!

CLIP Second-Step
After understanding, you should act as an expert
in mathematics in [Language Lt].
Let’s resolve the task you understand above
step-by-step!

Table 7: CLIP (Qin et al., 2023) where the prompt is
split into two phases: there is the alignment of the differ-
ent languages, and then, there is the solving mechanism
for the specific language.

Cross-ToT
Simulate the collaboration of {n} mathematicians
answering a question in their mother tongue: L1,
L2, ... and Ln. They all start Step1 from a
separate thought process, step by step, each
explaining their thought process. Following
Step1, each expert refines and develops their
thought process by comparing themselves with
others. This process continues until a
definitive answer to the question is obtained.
Question: [Question in Language L1]
Answer: [num].

Table 8: Cross-ToT prompting (Ranaldi et al., 2024)
that using Tree-of-Thoughts method elicit the model
to produce multi-step reasoning processes in different
languages.

C Prompting Methods Arithmetic
Reasoning Tasks

In this work, as introduced in Section 3, we propose
the Cross-lingual extension of Program-Aided Lan-
guage Models (Cross-PAL) as shown in Table 34
(detailed in Appendix E), and a Cross-lingual ver-
sion of CoT as shown in Table 33. In detail, in both
settings, the prompt is a few-shots as proposed in
(Wei et al., 2023) for CoT and in (Gao et al., 2022)
for PAL, respectively; however, unlike the previous
versions, the question-answer pairs (the answers
are a CoT demonstration) are proposed in the lan-
guages evaluated in each task. Moreover, we use
additional configurations as proposed by Shi et al.
(2022): "Direct" prompt, i.e., question and an-
swer in the original language; the "Native-CoT"
prompt, i.e., question and answer CoT in the orig-
inal language; the "En-CoT" prompt specific lan-
guage question and answer CoT in English (see
prompts in Appendix B). Furthermore, in order to
analyse the effect of reducing the in-context ex-
amples down to zero-shots we propose additional
settings esemplifing the number and the typology
of demonstrations that compose the prompt.

D Prompts for Understanting &
Commonsense Reasoning Tasks

As far as prompts for natural language understand-
ing and commonsense reasoning tasks are con-
cerned, we follow the methods proposed by state-
of-the-art works. Hence, following Ahuja et al.
(2023), to construct prompts that lead Large Lan-
guage Models (LLMs) to produce stable and struc-
tured answers, we define a sequence consisting of
Task Instruction, Demonstration, and Task Prob-
lem. In particular, the Task Instruction is the initial
instruction that defines the type of task and the de-
sired answer. Then, there is a body composed of
Demonstrations that are related to the number of
shots. For example, in the few-shot settings such
as CoT proposed in (Shi et al., 2022), the demon-
strations are composed of questions and desired
outputs. Finally, the final part consists of questions
about the tasks we are analyzing. As in Appendix
B, we propose Direct, En-CoT and Cross-CoT
configurations while we do not use PAL as it is
not suitable for this type of task. In Table 14, we
report the selected templates. Table 30, 31 and
32 report the demonstrations, input and outputs
generated.
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E Program-Aided Language Models
Prompts

In this paper, as introduced in Section 3.3, we
propose a novel Cross-lingual extension of the
Program-Aided Language Models (Gao et al.,
2022) (Cross-PAL) method. The following tables
show the prompts used for the final evaluation.

Program-Aided Language Models (PAL)
Q: Roger has 5 tennis balls. He buys 2 more
cans of tennis balls. Each can has 3 tennis
balls. How many tennis balls does he have now?
A: Roger started with 5 tennis balls.

tennis_balls = 5
2 cans of 3 tennis balls each is
bought_balls = 2 * 3 tennis balls.
The answer is
answer = tennis_balls + bought_balls
The answer is 11

Q: Kyle bought last year’s best-selling book
for $19.50. This is with a 25% discount from the
original price. What was the original price?
A:

Table 9: This is an example prompt of the PAL method
proposed by (Gao et al., 2022).

En-PAL
Q: Roger has 5 tennis balls. He buys 2 more
cans of tennis balls. Each can has 3 tennis
balls. How many tennis balls does he have now?
A: Roger started with 5 tennis balls.

tennis_balls = 5
2 cans of 3 tennis balls each is
bought_balls = 2 * 3 tennis balls.
The answer is
answer = tennis_balls + bought_balls
The answer is 11

Q: Kylar geht ins Kaufhaus, um Gläser für seine
neue Wohnung zu erwerben. Ein Glas kostet 5
US-Dollar, aber jedes weitere Glas kostet nur
60% des Ausgangspreises. Kylar möchte 16 Gläser
kaufen. Wie viel muss er dafür ausgeben?
A:

Table 10: In En-PAL we use the same setting proposed
in Table 6 but in contrast to En-PAL we use PAL demon-
strations.

Cross Program-Aided Language Models
Q: Michael hat 58 Golfbälle. Am Dienstag hat
er 23 Golfbälle verloren. Am Mittwoch hat er
2 weitere verloren. Wie viele Golfbälle hat er
Mittwoch am Ende des Tages?
A: Michael hat 58 Golfbälle.

initial = 58
Am Dienstag verlor er 23 Golfbälle
lost_tuesday = 23
Am Mittwoch verlor er 2 Golfbälle
lost_wednesday = 2
Golfbälle abzüglich der verlorenen
answer = initial - lost_tuesday
- lost_wednesday
Die Antwort ist 33

*(final question as in Table 10)

Table 11: In Cross-PAL, we use the same setting pro-
posed in Table 10 but in contrast to En-PAL, we use PAL
demonstrations in the same language of the question.

F Model and Hyperparameters

In our experimental setting, as introduced in
Section 3.2, we propose different LLMs: (i)
three models from the GPT family (OpenAI,
2023): GPT-3.5 (gpt-3.5-turbo-0125), Codex
(gpt-3.5-turbo-instruct) and GPT-4 (gpt-4);
(ii) four models from the Llama-2 family (Touvron
et al., 2023): Llama2-7b, Llama2-70b, CodeLlama-
7 and CodeLlama-70; (iii) two models of the Mis-
tralAI family: Mistral-7b and Mixtral (Jiang et al.,
2024); (iv) finally, StarCoder2-15b (Li et al., 2023).
In particular, GPTs models are used via API, while
for the others, we used versions of the quantized to
4-bit models that use GPTQ (see detailed versions
in Table 27)
Furthermore, we have added additional LLMs
in the additional experiments presented in the
Appendix T. These models are two from Orca2
(Mukherjee et al., 2023), two from Yi (AI et al.,
2024), two models of the Google (Team et al.,
2024), three from Wizard (Luo et al., 2023), and
three from Tulu (Ivison et al., 2023) families.
As discussed in the limitations, our choices are re-
lated to reproducibility and the cost associated with
non-open-source models. We use closed-source
API and the 4-bit GPTQ quantized version of the
model on four 48GB NVIDIA RTXA600 GPUs for
all experiments performed only in inference.
Finally, the generation temperature used varies
from τ = 0 of GPT models to τ = 0.5 of Llama2s.
We choose these temperatures for (mostly) deter-
ministic outputs, with a maximum token length of
256. The other parameters are left unchanged as
recommended by the official resources. We will
release the code and the dataset upon acceptance
of the paper.

Language Percentage
English (en) 46.3%
Russian (ru) 6.0%
German (de) 5.4%
Chinese (zh) 5.3%
French (fr) 4.4%
Japanese (ja) 4.3%
Spanish (es) 4.2%
Other 23.1%

Table 12: Language distribution of CommonCrawl
(Common Crawl, 2021).
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G Instruction Template for MGSM and MSVAMP

This section contains the Instruction Templates used during the evaluation phase. The following templates
have been specially constructed to simplify the evaluation and route the generation of the analyzed models.

Instruction Template for:
Direct
(few-shot examples as showed for Direct in Table 6)
Q: [question in evaluated language]
For clarity, the answer should have the following format:’Answer:[num]’. (N.B. translated
in {evaluated language})
Native-CoT
(few-shot examples as showed for Native-CoT in Table 6)
Q: [question in evaluated language]
Let’s think step by step! For clarity, the answer should have the following
format:’Answer:[num]’. (N.B. translated in {evaluated language})
En-CoT
(few-shot examples as showed for En-CoT in Table 6)
Q: [question in evaluated language]
Let’s think step by step! For clarity, the answer should have the following
format:’Answer:[num]’.
Cross-CoT
Given the following examples, please act as an expert in multilingual understanding
in {evaluated language}.
(few-shot examples as in Native-CoT in Table 6), but the final instructions are in English)
Q: [question in evaluated language]
After understanding, act as an expert in arithmetic reasoning in English. Let’s
answer the question step-by-step! For clarity, the answer should have the following
format:’Answer:[num]’.

PAL & En-PAL
(few-shot examples as Table 9 for PAL and Table 10 for En-PAL)
Q: [question in evaluated language]
After understanding you act as a programmer by writing the solution. For clarity,
the answer should have the following format:’The answer is [num]’.

Cross-PAL
Given the following examples, please act as an expert in multilingual understanding
in {evaluated language}.
(few-shot examples as showed in Table 11)
Q: [question in evaluated language]
After understanding answer the question, you should act as a programmer in English.
For clarity, the answer should have the following format: ’The answer is [num]’.

Table 13: Instruction Template for Cross-CoT and Cross-PAL. The structure is defined by a set of in-context
examples (zero examples, in the 0-shot case), the question in {evaluated language}, the final instruction part and a
special template to guide generation and support the final evaluation.
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H Task Instruction for XNLI, XCOPA ans PAWS-X

Task Instruction for:
XNLI
You are an NLP assistant whose purpose is to solve Natural Language Inference (NLI)
problems in {evaluated language}. NLI is the task of determining the inference
relation between two (short, ordered) texts: entailment, contradiction, or neutral.
Answer as concisely as possible in the same format as the examples below:

XCOPA
You are an AI assistant whose purpose is to perform open-domain commonsense causal
reasoning in {evaluated language}. You will be provided a premise and two alternatives,
where the task is to select the alternative that more plausibly has a causal relation
with the premise. Answer as concisely as possible in the same format as the examples
below:

PAWS-X
You are an NLP assistant whose purpose is to perform Paraphrase Identification in
{evaluated language}.The goal of Paraphrase Identification is to determine whether a
pair of sentences have the same meaning. Answer as concisely as possible in the same
format as the examples below:

Table 14: Task Instruction for XNLI, XCOPA and PAWS-X as proposed in (Ahuja et al., 2023). List of the Basic
Prompt is in Table 15

Benchmark #Test Final Prompt

MGSM 250 Q: {problem}
MSVAMP 1000 Q: {problem}

XCOPA 200 Here is a premise: {premise}. What is the {question}? Help me pick the
more plausible option: -choice1: {choice1}, -choice2: {choice2}

XNLI 200 {premise}. Based on the previous passage, is it true that {hypothesis}? Yes,
No, or Maybe?

PAWS-X 200 Sentence 1: {sentence1} Sentence 2: {sentence2} Question: Does Sentence
1 paraphrase Sentence 2? Yes or No?

Table 15: The prompt of each task (excepted for MGSM and MSVAMP) that is systematically added following the
instructions we defined in Table 14. The column #Test denotes the number of instances for each language in the test
set proposed by the authors. The constructions of these tasks are derived from translations (manual or automatic) of
subsets of the original monolingual versions (in English) as explained in Section 3.1.
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I Results Arithmetic Reasoning Tasks Larger Models

The following evaluations were made by prompting the models presented in Section 3.2 with the methods
presented in Section 3.3 (see Appendix B and Appendix E where the prompts are described in detail).

Model Method de zh fr ru sw es bn ja te th Avg

GPT-3.5

Direct 56.0 60.0 62.0 62.0 48.0 61.2 33.6 52.8 7.6 42.2 48.5
Native-CoT 70.0 60.6 64.2 62.4 52.4 63.2 40.4 59.4 39.2 46.6 55.9
En-CoT 71.8 63.2 70.0 65.6 55.2 69.6 50.4 60.6 40.0 48.0 59.0
Cross-CoT 75.2 72.2 74.0 72.8 66.2 72.6 63.8 64.6 46.2 58.8 67.0
Native-PAL 70.8 61.2 64.6 63.8 53.2 63.8 42.6 59.6 41.0 52.8 57.3
En-PAL 72.0 65.0 70.2 64.6 54.8 70.2 49.8 61.8 41.4 53.2 60.4
Cross-PAL 77.0 73.4 76.2 68.8 65.2 70.8 63.6 69.8 53.0 64.4 68.2

GPTinstruct
Native-PAL 71.0 62.0 63.8 64.0 53.6 64.0 42.6 60.8 42.0 53.8 57.8
En-PAL 71.8 65.8 70.2 65.0 55.0 69.8 50.6 61.2 41.0 58.6 60.8
Cross-PAL 78.0 75.8 76.6 70.2 65.8 70.8 63.4 66.8 53.6 64.0 68.5

Llama2-70

Direct 52.2 55.0 58.2 60.0 46.4 58.6 30.2 48.6 9.2 41.0 45.9
Native-CoT 63.8 60.4 60.2 58.2 51.4 61.4 28.8 50.6 28.4 44.2 51.0
En-CoT 64.0 61.4 61.6 61.4 50.6 62.8 33.8 54.2 35.8 49.0 54.0
Cross-CoT 64.8 62.6 64.8 64.6 53.4 64.0 41.8 56.4 36.8 51.2 56.0

CodeLlama-70
Native-PAL 64.0 60.6 59.8 60.0 52.2 60.8 29.0 51.2 31.0 46.8 51.5
En-PAL 65.0 62.2 61.8 61.8 52.6 61.6 34.6 55.4 33.8 47.4 53.0
Cross-PAL 65.8 63.6 62.6 64.2 54.2 63.8 41.6 57.4 36.6 51.4 56.2

Mixtral8x7

Direct 58.2 62.4 64.4 62.8 54.2 62.8 35.0 54.2 12.8 44.6 51.2
Native-CoT 56.8 58.2 57.6 56.8 50.2 62.0 30.6 55.6 18.6 45.4 49.4
En-CoT 55.8 59.4 58.6 58.4 51.0 63.0 44.8 56.8 22.2 46.6 51.6
Cross-CoT 57.6 56.8 58.2 57.2 53.0 61.2 28.4 58.6 20.0 45.2 49.5

Table 16: Accuracies (%) on MGSM using the reasoning methods described in Appendix C (for each model, we
reported best performances per language and per method in bold).

Model Method de zh fr ru sw es bn ja th Avg

GPT-3.5

Direct 60.3 66.2 63.5 60.3 59.2 69.2 9.6 68.9 36.2 59.3
Native-CoT 68.9 76.5 77.8 68.5 66.3 74.5 12.1 73.1 43.5 62.4
En-CoT 73.9 78.4 78.2 70.9 68.4 74.6 14.4 74.0 46.1 64.3
Cross-CoT 78.4 78.6 79.3 74.8 70.4 75.2 41.0 76.2 51.4 69.4
Native-PAL 69.4 78.6 79.2 68.0 67.8 74.9 13.5 74.2 43.9 63.3
En-PAL 74.6 78.0 78.8 71.5 69.6 75.0 16.0 74.6 47.3 65.6
Cross-PAL 82.3 76.9 80.2 75.7 71.6 76.8 37.7 74.5 50.2 69.5

GPTinstruct
Native-PAL 70.6 79.4 79.0 67.9 69.7 75.4 16.3 75.6 44.0 64.6
En-PAL 75.3 78.7 79.3 71.8 70.2 75.6 35.0 73.6 45.6 65.9
Cross-PAL 82.6 78.2 81.6 76.8 73.1 77.2 40.3 76.1 53.4 70.2

Llama2-70

Direct 55.9 65.2 64.6 59.8 58.3 68.6 8.5 67.5 37.8 54.0
Native-CoT 60.7 64.8 60.9 60.5 59.1 67.3 13.2 66.8 36.7 54.8
En-CoT 63.5 66.3 62.8 61.7 60.2 66.0 20.3 65.9 40.3 56.7
Cross-CoT 66.0 69.5 65.9 64.6 62.5 68.6 30.7 69.3 42.4 59.8

CodeLlama-70
Native-PAL 61.6 65.0 62.4 60.9 60.7 68.9 16.0 67.9 38.5 55.7
En-PAL 63.9 67.2 63.7 62.8 61.7 67.6 22.4 66.3 42.0 57.5
Cross-PAL 70.6 69.5 65.8 65.7 64.3 66.8 28.0 66.8 45.9 60.3

Mixtral8x7

Direct 63.5 67.5 64.2 59.7 60.1 68.3 15.1 68.5 38.2 56.2
Native-CoT 63.1 66.7 65.3 60.2 61.4 69.5 15.6 69.3 40.1 56.8
En-CoT 66.2 67.3 66.8 61.7 62.5 68.9 16.2 70.0 40.1 57.6
Cross-CoT 64.8 64.7 65.4 62.3 62.8 66.2 15.6 70.3 37.1 56.5

Table 17: Accuracies (%) on MSVAMP using the reasoning methods described in Appendix C(for each model, we
reported best performances per language and per method in bold).
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J Results Arithmetic Reasoning Tasks Smaller Models
Model Method de zh fr ru sw es bn ja te th Avg

MGSM

Llama2-7

Direct 48.4 50.2 54.0 56.8 42.0 54.8 28.0 46.2 5.4 38.4 42.5
Native-CoT 54.8 51.0 55.4 57.6 48.8 58.4 27.4 49.2 20.0 41.6 46.1
En-CoT 56.0 55.2 56.4 60.2 51.0 60.2 30.0 50.2 22.6 43.8 48.0
Cross-CoT 53.8 54.4 56.2 57.6 50.4 62.6 27.4 50.0 28.8 45.2 48.9

CodeLlama-7
Native-PAL 55.0 51.8 56.0 57.8 49.0 59.6 27.8 50.0 22.6 42.8 47.2
En-PAL 57.0 55.0 56.8 60.4 50.0 61.8 30.6 50.0 24.0 42.0 48.8
Cross-PAL 54.2 56.0 55.2 57.0 50.2 62.8 32.4 49.8 29.6 45.8 49.3

Mistral-7

Direct 56.0 60.6 62.0 60.2 52.0 60.0 34.4 52.0 12.0 47.4 49.5
Native-CoT 54.2 58.4 60.2 58.6 51.4 58.6 32.6 50.2 12.2 47.8 48.0
En-CoT 55.6 59.2 61.4 59.0 52.2 58.8 32.4 51.0 14.0 48.0 48.4
Cross-CoT 54.2 57.4 60.0 58.4 50.2 58.6 32.0 51.8 12.4 47.8 48.2

Mistral-7
Native-PAL 53.6 58.0 59.0 58.2 50.6 58.2 33.0 50.0 12.4 47.4 48.0
En-PAL 55.2 59.4 60.8 59.2 51.2 58.0 32.6 50.2 12.6 46.2 48.4
Cross-PAL 53.8 57.2 59.0 57.6 49.4 58.0 32.2 52.0 12.6 46.4 47.8

StarCoder2

Direct 50.2 51.8 49.2 50.8 48.0 52.2 16.8 42.6 9.0 41.4 41.6
Native-PAL 54.6 56.8 52.4 52.6 48.8 54.0 24.6 48.6 14.0 46.8 45.1
En-PAL 56.2 58.4 54.0 54.8 50.2 56.4 26.2 52.8 16.2 48.0 47.3
Cross-PAL 54.2 57.2 54.6 57.0 50.0 62.2 28.0 50.2 25.0 50.2 48.8

MSVAMP

Llama2-7

Direct 51.2 57.3 57.1 51.0 50.9 56.3 10.4 60.2 - 30.1 46.8
Native-CoT 52.8 58.7 58.2 52.3 51.7 57.0 11.7 62.8 - 32.3 48.6
En-CoT 55.6 59.8 60.0 52.6 54.2 56.9 18.8 63.7 - 34.5 51.0
Cross-CoT 53.4 57.7 58.0 51.6 51.3 57.2 19.7 63.4 - 32.3 48.8

CodeLlama-7
Native-PAL 54.0 59.2 58.6 53.0 50.9 56.8 14.5 63.0 - 34.2 49.4
En-PAL 56.0 60.4 59.6 52.8 54.0 57.8 20.0 64.0 - 36.0 51.2
Cross-PAL 55.8 59.4 57.3 55.4 54.0 58.8 17.5 57.6 - 29.2 49.6

Mistral-7

Direct 52.6 58.7 59.0 52.3 51.4 55.9 8.8 62.1 - 32.7 48.2
Native-CoT 50.7 57.2 56.8 52.0 52.1 56.8 9.1 63.7 - 31.8 47.8
En-CoT 51.3 58.6 57.2 53.2 52.8 57.6 10.4 62.1 - 32.3 48.6
Cross-CoT 50.8 57.3 57.6 53.0 52.4 54.3 6.7 59.3 - 28.6 46.2

Mistral-7
Native-PAL 50.2 57.3 56.5 51.5 52.6 55.9 9.4 62.1 - 30.6 47.3
En-PAL 50.4 57.2 56.5 53.0 51.3 57.0 9.4 60.3 - 30.4 47.2
Cross-PAL 51.4 58.5 57.9 52.0 52.7 52.4 8.9 60.4 - 29.5 47.0

StarCoder2

Direct 54.4 59.0 57.4 54.2 52.6 58.7 11.6 58.3 - 32.0 48.6
Native-PAL 56.0 60.0 58.6 55.8 52.8 59.2 12.8 58.6 - 32.0 50.0
En-PAL 56.2 60.2 58.2 55.4 53.2 59.0 14.5 59.2 - 32.7 49.6
Cross-PAL 57.0 59.6 58.5 56.3 51.3 57.4 15.1 58.9 - 34.2 50.2

Table 18: Accuracies (%) on MGSM and SVAMP of further models using the reasoning methods described in
Appendix C (in bold the best performance of each model).

K Results Arithmetic Reasoning Tasks GPT-4
Model Method de zh fr ru sw es bn ja te th Avg

MGSM

GPT-4

Direct 78.0 79.2 83.0 78.4 76.2 82.2 38.8 72.0 18.4 65.4 67.1
Native-CoT 78.8 79.6 84.2 79.2 77.2 83.4 44.0 76.2 25.4 66.2 68.4
En-CoT 80.6 80.0 84.4 81.2 78.2 84.2 56.0 78.4 45.6 68.6 73.7
Cross-CoT 83.0 83.2 85.2 83.4 80.0 83.2 60.6 80.6 57.0 68.2 76.9
Native-PAL 79.8 80.2 84.8 79.6 78.2 84.0 41.0 77.2 41.2 66.4 71.2
En-PAL 80.8 81.4 84.8 80.0 79.2 83.2 55.0 79.2 51.8 69.2 74.3
Cross-PAL 84.4 83.6 85.0 83.8 81.6 85.0 58.8 81.2 56.2 70.2 77.0

MSVAMP

GPT-4

Direct 74.1 73.6 81.2 76.3 70.5 77.2 36.0 70.5 - 65.9 69.2
Native-CoT 74.6 74.2 81.8 76.2 71.4 78.1 38.0 71.2 - 66.3 70.2
En-CoT 76.7 76.3 82.6 77.8 71.2 81.3 39.6 71.8 - 67.2 71.6
Cross-CoT 81.3 77.5 83.4 78.2 73.1 82.1 42.8 73.6 - 68.5 73.4
Native-PAL 75.8 76.9 83.2 78.0 72.4 79.6 40.2 72.0 - 66.3 71.7
En-PAL 77.9 78.8 83.2 78.1 72.1 82.4 38.2 72.5 - 69.4 72.5
Cross-PAL 82.4 78.6 83.7 78.5 73.7 82.7 43.2 74.5 - 70.2 74.3

Table 19: Accuracies (%) on MGSM and SVAMP of GPT-4 on first 100 questions for each language using the
reasoning methods described in Appendix C.
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L Performances on XNLI

Table 20: Accuracies XNLI using 4-shot and 0-shot
prompts.

N Performances on PAWS-X

Table 21: Accuracies PAWS-X using 4-shot and 0-shot
prompts.

21



Q Performances on XCOPA
Model et ht id it qu sw ta th tr vi zh Avg
GPT-4
Direct 98.8 93.2 97.6 99.8 78.6 94.4 79.6 87.8 97.4 86.2 92.6 89.0
Native-CoT 98.0 94.6 92.8 98.6 82.0 92.6 82.4 86.0 92.0 84.2 91.6 90.7
En-CoT 95.8 94.0 96.0 98.2 80.0 95.2 84.6 88.0 93.4 85.2 93.6 91.7
Cross-CoT 97.8 95.2 96.6 95.0 84.8 93.8 85.8 91.8 96.6 87.2 94.0 96.2
GPT-3.5
Direct 90.6 72.0 90.4 95.2 54.6 82.0 59.0 77.6 91.0 83.6 90.4 80.2
Native-CoT 92.0 79.0 90.4 96.0 81.4 81.8 64.2 81.0 90.2 84.4 93.0 83.8
En-CoT 92.4 78.2 91.6 96.8 81.4 81.6 64.8 80.2 93.6 85.2 94.0 85.3
Cross-CoT 94.0 79.6 92.2 96.4 82.6 82.0 63.2 82.0 93.8 86.0 93.4 84.4
Mixtral8x7
Direct 82.5 68.0 81.6 54.5 83.1 60.3 78.1 81.9 80.5 74.2 70.6 74.2
Native-CoT 80.8 65.2 78.5 55.0 80.1 60.2 80.0 81.0 78.4 70.2 70.6 72.7
En-CoT 81.7 66.5 79.3 53.5 82.9 61.3 80.8 82.4 79.8 74.7 70.3 73.9
Cross-CoT 80.7 67.1 77.3 54.2 82.0 60.7 80.2 80.3 79.2 73.5 69.2 73.1
Llama2-70
Direct 80.4 66.2 79.8 82.4 52.8 81.6 58.4 76.0 79.2 73.0 69.2 70.2
Native-CoT 83.0 68.0 81.2 83.4 55.0 82.3 60.2 77.8 81.0 76.2 72.4 73.5
En-CoT 84.2 68.8 80.4 84.6 55.2 82.8 60.6 78.4 80.4 74.4 71.6 75.1
Cross-CoT 79.8 66.0 78.2 81.6 51.2 80.2 57.8 77.2 80.4 73.6 70.6 72.7
Llama2-7
Direct 39.6 32.5 58.4 55.8 47.2 34.6 47.4 33.2 43.0 59.6 50.4 45.4
Native-CoT 42.0 37.2 62.4 58.0 48.0 37.0 48.0 33.0 44.0 60.2 50.2 46.0
En-CoT 42.8 36.6 60.2 56.2 50.0 36.8 48.6 34.8 44.2 60.8 51.6 47.1
Cross-CoT 40.8 36.2 57.8 56.2 48.4 33.0 47.0 34.4 44.2 60.2 51.6 46.2
Mistral-7
Direct 42.6 36.5 60.1 57.8 48.7 37.3 49.2 36.6 45.2 59.3 51.2 47.7
Native-CoT 42.4 37.6 58.2 58.6 52.0 37.8 49.6 37.4 46.0 60.4 54.0 46.6
En-CoT 41.9 37.1 59.8 57.2 50.1 38.2 49.7 38.5 46.3 60.1 52.3 48.2
Cross-CoT 39.7 36.5 57.6 56.8 49.6 38.4 48.7 37.5 45.2 59.4 50.7 47.3
HUMAN (Ponti et al., 2020) 98.2 96.4 100.0 97.0 94.8 99.0 98.6 98.2 96.4 98.4 96.6 97.6

Table 22: Accuracies (%) on XCOPA (Ponti et al., 2020) using the reasoning methods described in Appendix C.
(Direct, Native-CoT, En-CoT and Cross-CoT as introduced in Section 3.3).

R Performances on English
Model Method MGSM MSVAMP XNLI PAWS-X XCOPA

GPT-4
Direct 94.6 92.5 84.9 69.3 98.6
CoT 96.8 95.3 87.4 74.6 99.4
PAL 97.2 96.7 - - -

GPT-3.5
Direct 80.6 82.7 77.2 65.9 94.5
CoT 84.8 85.2 76.6 73.4 95.0
PAL 86.6 86.3 - - -

Llama-70
Direct 70.2 73.7 64.3 60.2 85.6
CoT 71.8 75.3 68.1 62.5 85.9
PAL 72.4 76.9 - - -

Llama-7
Direct 64.6 68.5 56.2 55.1 60.8
CoT 67.8 69.4 58.1 56.2 60.6
PAL 69.2 70.1 - - -

Mixtral8x7
Direct 76.0 78.0 47.5 59.3 66.2
CoT 75.4 77.2 48.3 60.8 67.1
PAL 77.2 77.8 - - -

Mistral-7
Direct 66.2 67.8 43.8 57.9 62.4
CoT 66.8 66.9 44.0 60.4 61.6
PAL 67.2 67.5 - - -

Starcoder2
Direct 58.0 61.4 - - -
PAL 64.2 63.9 - - -

Table 23: Evaluations on proposed tasks using CoT and PAL of English versions of proposed task.
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S Qualitative Analysis

Language Generated The reasoning methods introduced in Section 3.3 elicit Large Language Models
to generate answers following in-context demonstrations. Specifically, operating in multilingual scenarios,
in-context demonstrations were provided in several different languages; hence, the models are expected to
be able to generate language-specific responses following the examples provided in context.
To analyze the language compositions in answers delivered from the different models, we use the
OpenLID4 library (Burchell et al., 2023). In particular, we focus the analysis on CoT generations
(particularly on Native-CoT and En-CoT). In both cases, we apply sentence splitting. We then apply
OpenLID to the responses generated downstream of the CoT method by attributing the most frequent
language present to each response. In contrast, for PAL, we start with sentence splitting but remove
possible code fragments (found by string matching between the sentence and a list consisting of symbols
such as ‘=’, ‘*’, ‘+’, ‘-’) from the analysis. Following this superficial cleaning, we analyze the composition
of the response by attributing the maximum language present in the generated sentences.

Model Method de zh fr ru sw es bn ja te th Avg

GPT-4
Native-CoT 88.2 (75) 86.5 (76) 88.2 (82) 80.6 (77) 54.7 (46) 84.3 (78) 46.0 (39) 69.3 (70) 55.5 (35) 57.2 (38) 73.9 (58.9)
En-CoT 44.2 (45) 36.3 (40) 48.7 (48) 25.4 (36) 18.2 (22) 48.1 (51) 28.8 (30) 36.3 (29) 23.1 (32) 36.4 (27) 36.2 (39)

GPT-3.5
Native-CoT 96.3 (78) 92.6 (78) 94.5 (85) 78 (64) 55 (26) 80 (82) 44 (32) 67 (18) 53 (24) 60 (28) 72.0 (48.8)
En-CoT 40.2 (70) 30.7 (75) 42.3 (76) 20.4 (67) 16.8 (58) 46.8 (73) 23.2 (56) 31.4 (49) 19.6 (47) 53.5 (51) 34.6 (65)

Llama-70
Native-CoT 72.8 (66) 76.5 (64) 80.2 (69) 63.6 (62) 55.2 (46) 63.6 (43) 36.7 (33) 38.2 (37) 46.5 (35) 38.2 (29) 66.5(54)
En-CoT 18.8 (40) 16.7 (45) 33.5 (41) 19.8 (37) 13.2 (26) 36.3 (33) 17.9 (17) 19.5 (16) 11.8 (21) 37.9 (19) 24.3(44)

Llama-7
Native-CoT 67.6 (55) 62.8 (63) 60.5 (68) 58.3 (52) 46.2 (18) 50.3 (27) 30.0 (26) 26.8 (35) 40.2 (28) 32.8 (16) 41.4(55)
En-CoT 16.7 (32) 17.2 (40) 32.6 (37) 17.5 (35) 16.6 (23) 33.6 (39) 14.9 (44) 17.5 (38) 27.8 (50) 30.9 (36) 22.6(38)

Table 24: Percentage (%) of answers generated in Native language (i.e., the specific language of the examined
sub-task) for MGSM using the reasoning methods described in Appendix C. Moreover, we reported the accuracies
(values in brackets) for each set of generations in Native language.

Number of Hops Analyzing the composition of languages in the answers provided by the different
models is useful to understand whether a certain model follows the in-context prompts by generating
language-specific answers and, if so, what the error rate is. However, it is important to analyze the
composition of the provided answers. To qualitatively estimate the generated responses, we propose
the analysis of the phrases present in the responses generated by the models under study. In particular,
given an answer A, composed of a set of sentences ({s1, s2, . . . , sn}), we define Hops as the number of
sentences the models generate to deliver the solution. Since the in-context rationales provided have an
average number of 4 Hops (min value 3 and max value 5) (Shi et al., 2022), they do not include the final
keyword “Answer:” or “The answer is:”, we do not consider the final keyword for a more realistic value
as it often repeats the last sentence. Formally, let A be composed of n sentences and represent the final
answer. The sum of sentences in A gives the total number of Hops.
Hence, we compute this value for the generations of models analyzed and report results in the following
table.

Table 25: Number of Hops generated for each model introduced in Section 3.223



T Scalability to further LLMs

We study the performance of additional Large Lan-
guage Models (LLMs) that are not considered in
the main analysis. The models are chosen for
performances in mathematical reasoning tasks (in
the case of WizardMath (Luo et al., 2023)) or in
specific languages beyond English (Tulu (Ivison
et al., 2023) and Yi (AI et al., 2024)), and finally
for abilities in functions with a limited number
of parameters (gemma (Team et al., 2024)). We
used the same experimental setup of Section 3.
We produced evaluations for a few instances of
the MSGM task (we used the same instances as
those used for GPT-4). This experiment observes
whether the selected models perform comparably
to those discussed in Section 4. Figure 26 con-
firms the results obtained from previous LLMs (re-
sults detailed in Table 18), and the following points
emerge: (i) Reasoning methods operate beyond En-
glish. As discussed in Section4.1, LLMs prompted
via En-CoT stably overperform the baselines, i.e.,
Direct. (ii) Ehere are limitations, as yet discussed
in Section 4.2. Models with fewer parameters (see
Orca and Gemma) underperform when the quality
of in-context prompts is more articulated (Direct
vs. CoT case). (iii) While the smaller models appear
not to benefit under varying in-context demonstra-
tions, the larger models (in these experiments, they
are average LLMs not comparable to GPT-4) out-
perform when the Cross-CoT prompting strategy is
used, as happens to the results discussed in Section
4.

Table 26: Average accuracies across specific languages
of further LLMs by using prompting pipelines proposed
in Section 3.3.

U Models Vesions
Model Version
Llama-2-7 meta-llama/Llama-2-7b
Llama-2-13 meta-llama/Llama-2-13b
Llama-2-70 meta-llama/Llama-2-70b
gemma-2 google/gemma-2b
gemma-7 google/gemma-7b
Orca-2-7 microsoft/Orca-2-7b
Orca-2-13 microsoft/Orca-2-13b
Mistral-7-instruct mistralai/Mistral-7B-Instruct-v0.2
Mixtral TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ
Yi-6b TheBloke/Yi-6B-GPTQ
Yi-34b TheBloke/Yi-6B-GPTQ
Tulu-2-7 TheBloke/tulu-2-7B-GPTQ
Tulu-2-13 TheBloke/tulu-2-13B-GPTQ
Tulu-2-70 TheBloke/tulu-2-70B-GPTQ
WizardMath-7 TheBloke/WizardMath-7B-V1.0-GPTQ
WizardMath-13 TheBloke/WizardMath-13B-V1.0-GPTQ
WizardMath-70 TheBloke/WizardMath-70B-V1.0-GPTQ
StarCoder2 bigcode/starcoder2-15b
CodeLlama-70 (7) TheBloke/CodeLlama-70B (7)-Instruct-GPTQ
GPT-3.5-turbo OpenAI API (gpt-3.5-turbo-0125)
GPT-instruct OpenAI API (gpt-3.5-turbo-instruct)
GPT-4 OpenAI API (gpt-4-1106-preview)

Table 27: List the versions of the models proposed in
this work, which can be found on huggingface.co. We
used the configurations described in Appendix F in the
repositories for each model *(access to the following
models was verified on 14 June 2024).

Figure 2 complete

Table 28: Performance difference between Native-PAL
and Native-CoT for each individual language (low-
resource languages in red) in MGSM and MSVAMP
(we also reported the difference between En-PAL and
En-CoT hatched). This is Figure 2 extended for each
model.
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V Related Works

work methods models tasks findings
(Shi et al., 2022) Direct, CoT, GPT-3, PaLM MGSM multilingual-

Native-CoT reasoning
(Huang et al., 2023) En-CoT, Translate-CoT, GPT-3.5 MGSM, XCOPA, MKQA in-context translation

Meta-prompting∗ Llama2-70 PAWS-X, XNLI, FLORES En-CoT matter
(Qin et al., 2023) Cross-CoT∗, GPT-3.5 MGSM, XCOPA English lead

En-CoT, Native-CoT PaLM PAWS-X, XNLI Cross-lingual alignment
(Ranaldi et al., 2024) Cross-ToT GPT-3.5 MGSM, XCOPA ToT lead

Llama2-s PAWS-X, XNLI self-consistent reasoning
OUR En-,Native-, Cross-, GPT-s, Llama2-s MGSM, SVAMP

CoT and PAL Mistral-s, StarCoder PAWS-X, XNLI, XCOPA

Table 29: Summary related works that propose multilingual reasoning in-context approaches (i.e., no fine-tuning), ∗
means double-step prompting phase, where not specified there are single-step prompting approach.

Native-CoT
Q:罗杰有5个网球。他又买了2罐网球。每罐有3个网球。他现在有多少个网球？
A:罗杰一开始有5个球。2罐各3个网球就是6个网球。5 + 6 = 11。答案是11。
Q:问题：服务器机房里有九台电脑。从周一到周四，每天又安装了五台电脑。服务器机房里现在有多少
台电脑？
A: 从周一到周四有4 天。每天增加5 台电脑。这意味着一共增加了4 * 5 = 20 台电脑。一开始有9 台电
脑，所以现在有9 + 20 = 29台电脑。答案是29。
Q:问题：肖恩有五个玩具。圣诞节他从他爸爸妈妈那里各得到了两个玩具。他现在有多少个玩具？
A:他有5个玩具。他从妈妈那里得到2个，所以之后他有5 + 2 = 7个玩具。然后他又从爸爸那里得到了2
个，所以他一共有7 + 2 = 9个玩具。答案是9。
Q:制作一件袍子需要2匹蓝色纤维布料和这个数量一半的白色纤维布料。它一共需要用掉多少匹布料？
让我们逐步思考！为清晰起见，答案应采用以下格式："答案：[数字]"。
GPT-4
制作一件袍子需要2匹蓝色纤维布料和这个数量一半的白色纤维布料。首先，2匹的一半是1匹，所以需
要1匹白色纤维布料。将蓝色和白色纤维布料相加，2匹蓝色加上1匹白色总共是3匹布料。
答案：3
GPT-3.5
首先，袍子需要2匹蓝色纤维布料。然后，它需要同样数量的白色纤维布料的一半，也就是1匹白色纤维
布料。所以总共需要用掉2 + 1 = 3匹布料。
答案：3
Mixtral8x7
To make one robe, you need 2 pieces of blue fabric and half as much white fabric. Half of the amount of white
fabric would be 2/2 = 1 piece. Therefore, to make one robe, you will need a total of 2 (blue) + 1 (white) = 3 pieces
of fabric. Answer: 3
Llama2-7
[.̇..] 制作一件袍子需要 two π blue cotton fabrics and this amount half white cotton fabric. How much fabric do
they need in total? A: To make one shirt, you need 2 pi (π) blue cotton fabrics and half of them is equal to 1 pi (π)
white cotton fabric. So, in total, you need 2 * π + (1/2) * π = 3π white cotton fabrics.
Mistral-7
To make one suit, it requires 2 pieces of blue fabric and half as many pieces of white fabric. Therefore, it takes 2
(blue) + 2 (half of what 2 is for white) = 3.5. Since we cannot have a half piece of fabric, let’s assume it needs an
additional 0.5 pieces to cover this requirement. So, it takes a total of 3.5 x 2 = 7 pieces of fabric to create one suit.
The answer is 7.

Table 30: Example output answers generated by different LLMs prompted via En-CoT (Section 3.3). In general,
LLMs produce good answers while Smaller LLMs (for example see Llama2-7) produce misleading answers.

.
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Cross-CoT
Given the following examples, please act as an expert in multilingual understanding in
Chinese.
Q:罗杰有5个网球。他又买了2罐网球。每罐有3个网球。他现在有多少个网球？
A:罗杰一开始有5个球。2罐各3个网球就是6个网球。5 + 6 = 11。答案是11。
Q:问题：服务器机房里有九台电脑。从周一到周四，每天又安装了五台电脑。服务器机房里现在有多少
台电脑？
A: 从周一到周四有4 天。每天增加5 台电脑。这意味着一共增加了4 * 5 = 20 台电脑。一开始有9 台电
脑，所以现在有9 + 20 = 29台电脑。答案是29。
Q:问题：肖恩有五个玩具。圣诞节他从他爸爸妈妈那里各得到了两个玩具。他现在有多少个玩具？
A:他有5个玩具。他从妈妈那里得到2个，所以之后他有5 + 2 = 7个玩具。然后他又从爸爸那里得到了2
个，所以他一共有7 + 2 = 9个玩具。答案是9。
Q:问题：利亚有32块巧克力，她妹妹有42块。如果她们吃了35块，她们一共还剩下多少块？
........................
Q:问题：如果停车场里有3辆车，又来了2辆车，停车场里有多少辆车？
........................
Q:制作一件袍子需要2匹蓝色纤维布料和这个数量一半的白色纤维布料。它一共需要用掉多少匹布料？
After understanding, act as an expert in arithmetic reasoning in English. Let’s answer the
question step-by-step! For clarity, the answer should have the following format:’Answer:[num]’

GPT-4
To solve the question regarding the amount of fabric needed for the robe, [.̇..] Here’s the step-by-step calculation:
Total fabric = Blue fabric + White fabric = 2 bolts (blue) + 1 bolt (white) = 3 bolts
Thus, the total amount of fabric needed to make one robe is 3 bolts.
Answer: 3
GPT-3.5
To solve the problem, we need to determine the total number of pieces of fabric required to make a robe.
Given that making one robe requires 2 pieces of blue fabric and half that amount of white fabric, we can calculate:
Blue fabric needed: 2 pieces.
White fabric needed: Half of 2 pieces, which is 1 piece.
Adding the blue and white fabric together, we find that the robe requires 2 + 1 = 3 pieces of fabric in total.
Answer: 3
Mixtral8x7
A robe requires 2 pieces of blue fabric and half the amount of white fabric as compared to the blue fabric.
First, determine the amount of white fabric required. Since the white fabric is half the amount of blue fabric, and
there are 2 pieces of blue fabric, the robe needs 0.5 * 2 = 1 piece of white fabric.
Next, add up the amount of both types of fabric to find the total amount required. The robe needs 2 pieces of blue
fabric and 1 piece of white fabric, so it needs 2 + 1 = 3 pieces of fabric in total.
Therefore, a robe requires 3 pieces of fabric in total (2 pieces of blue fabric and 1 piece of white fabric).
Llama2-7
Step 1: First, let’s calculate the amount of blue fabric needed:
2 yards x 2 = 4 yards
Step 2: [.̇..]
8 + 4 = 12 yards Answer: 12 yards
Mistral-7
To make one suit, you need 2 pieces of blue fabric and half as many pieces of white fabric. So you need 2 (blue) + 2
(half of the number of white pieces) = 2 + 1 = 3 pieces of blue fabric and 2 (half of the number of white pieces) = 2
pieces of white fabric in total. Therefore, you need 3 (blue) + 2 (white) = 5 pieces of fabric in total. The answer is 5.

Table 31: Example output answers generated by different LLMs proposed in our work prompted via Cross-CoT
(Section 3.3). In contrast to the generation in Table 30 Llama-2-7 does not deliver misleading answer.

.
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Cross-PAL
Given the following examples, please act as an expert in multilingual understanding in German.
Q: Jason hatte 20 Lutscher. Er hat Denny einige Lutscher gegeben. Jetzt hat Jason 12 Lutscher.
Wie viele Lutscher hat Jason Denny gegeben?
A:
#solution in Python

# Jason hatte 20 Lutscher.
jason_lollipops_initial = 20
# Jetzt hat Jason 12 Lutscher.
jason_lollipops_left = 12
# Lutscher werden Denny
lollipops_given_to_denny = jason_lollipops_initial - jason_lollipops_left
# Die Antwort ist
return lollipops_given_to_denny

Die Antwort ist 11.
(...more in-context demonstrations...)
Q: Kylar geht ins Kaufhaus, um Gläser für seine neue Wohnung zu erwerben. Ein Glas kostet
5 US-Dollar, aber jedes weitere Glas kostet nur 60% des Ausgangspreises. Kylar möchte 16
Gläser kaufen. Wie viel muss er dafür ausgeben?
A: After understanding, you should act as a programmer in English and answer the question.
For clarity, the answer should have the following format: ’The answer is [num]’.

GPT-4
A: #solution in Python
def total_cost_for_glasses():

first_glass_price = 5
subsequent_glass_price = 0.60 * first_glass_price
total_glasses = 16
cost = first_glass_price + (total_glasses - 1) * subsequent_glass_price
return cost

The answer is 16

GPT-3.5
To calculate the total cost for Kylar’s purchase of 16 glasses, we can break it down into
two parts: the cost of the first glass and the cost of the additional glasses.
The cost of the first glass is $5.
For each additional glass beyond the first one, the cost is 60% of the original price, which
is 0.6 * $5 = $3.
So, for the remaining 15 glasses, the cost would be 15 * $3 = $45.
Adding the cost of the first glass to the cost of the additional glasses, the total cost
would be $5 + $45 = $50.
Therefore, Kylar would need to spend $50 to purchase 16 glasses for his new apartment.

CodeLlama-70
A: #solution in Python
def cost_of_glasses(glasses):
"""A function to calculate the cost of glases."""

glasses_cost = 0
glass_price = 5
for glass_index in range(glasses):

glasses_cost += glass_price
glass_price = 0.6 * glass_price

return glasses_cost
The answer is 16

CodeLlama-7
A: #solution in Python
def glass_cost(n): return 5 * n + 0.6 * 5 * (n - 1) price = glass_cost(16) print("Kylar will spend around $154.00 to
buy 16 glasses.")
CodeLlama-7
A: #solution in Python
def cost_of_glasses(n):

if n == 1:
return 5 *.6

else:
print("The total cost of", end=" ")

n = int(input("how many glasses do you want to buy?"))
total_cost = cost_of_glasses(n)
print("the purchase will cost:", total_cost)

The answer is 16

Table 32: Example output answers generated by different LLMs prompted via Cross-PAL (Section 3.3). Generations
are structured and guided by program languages.
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W Detailed Structures of Cross-based Methods

Zero- & Few-shot Chain-of-Thought
Q: <Question1> (in En)

A: <CoT demonstration1> (in En)

.........
Q: <Questionn> (in En)

A: <CoT demonstrationn> (in En)

Q: <Question> (in En)

A:Let’s think step-by-step!

English Chain-of-Thought (En-CoT)
Q: <Question1> (not in En)

A: <CoT demonstration1> (in En)

.........
Q: <Questionn> (not in En)

A:<CoT demonstrationn> (in En)

Q: <Question> (not in En)

A:Let’s think step-by-step!

Cross Chain-of-Thought
Given the following examples, please
act as an expert in multilingual
understanding in Chinese.

....few-examples.... (in case of few-shot prompting)

Q:罗杰有5个网球。他又买了2罐网球。每罐有3个

网球。他现在有多少个网球？

A: 罗杰一开始有5 个球。2 罐各3 个网球就是6 个网

球。5 + 6 = 11。答案是11。

Q: 服务器机房里有九台电脑。从周一到周四，每天
又安装了五台电脑。服务器机房里现在有多少台电
脑？

A: After understanding, act as an expert
in arithmetic reasoning in English.
Let’s answer the question step-by-step!

Table 33: The tables on the left represent the standard Chain-of-Thought (En-CoT) prompting in a few-shot (Wei
et al., 2023) or zero-shot (Kojima et al., 2023) settings. Then, following Shi et al. (2022), we propose En-CoT by
using Q in the specific language and the traditional CoT. The table on the right represents Cross-lingual prompting
(for easier understanding, we specified the target language, Chinese). Unlike previous settings, the (Q,A) pairs are
in the same specific language, but the final answer should be in English.

Program-Aided Language Models (PAL)
Q: Roger has 5 tennis balls. He buys
2 more cans of tennis balls. Each can
has 3 tennis balls. How many tennis
balls does he have now?
A: Roger started with 5 tennis balls.

tennis_balls = 5
2 cans of 3 tennis balls each is
bought_balls = 2 * 3 tennis balls.
The answer is
answer = tennis_balls + bought_balls
The answer is 11

Q: Jason had 20 lollipops. He gave
Denny some lollipops. Now Jason has
12 lollipops. How many lollipops did
Jason give to Denny?
A:

Cross Program-Aided Language Models
Given the following examples, please
act as an expert in multilingual
understanding in German.
Q: Roger hat 5 Tennisbälle. Er kauft noch 2 Dosen

Tennisbälle. In jeder Dose sind 3 Tennisbälle. Wie

viele Tennisbälle hat er jetzt?

A: # Roger begann mit 5 Tennisbällen.

tennis_balls = 5

# 2 Dosen mit je 3 Tennisbällen sind

bought_balls = 2 * 3 tennis balls.

# Die Antwort ist

answer = tennis_balls + bought_balls

# Die Antwort ist 11

Q: Gretchen hat 110 Münzen. Es sind 30 mehr
Gold- also Silbermünzen. Wie viele Goldmünzen hat
Gretchen?

A: After understanding answer the
question, you should act as a programmer
in English.

Table 34: The table on the left represents Program-Aided Language Models (PAL) method in a few-shot setting
where demonstrations of PAL answers are provided as input (Gao et al., 2022; Cheng et al., 2023). On the right, the
Cross-lingual PAL (Cross-PAL) prompting where the question and relative answers are in a specific language as
proposed for Cross-CoT in Table 33.
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