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Figure 1. CT Reconstruction with 32 views of State-of-the-Art Methods. Comparative analysis with post-processing and first-order
unrolling networks highlights QN-Mixer’s superiority in artifact removal, training time, and data efficiency.

Abstract

Inverse problems span across diverse fields. In medical
contexts, computed tomography (CT) plays a crucial role
in reconstructing a patient’s internal structure, presenting
challenges due to artifacts caused by inherently ill-posed
inverse problems. Previous research advanced image qual-
ity via post-processing and deep unrolling algorithms but
faces challenges, such as extended convergence times with
ultra-sparse data. Despite enhancements, resulting images
often show significant artifacts, limiting their effectiveness
for real-world diagnostic applications. We aim to explore
deep second-order unrolling algorithms for solving imag-
ing inverse problems, emphasizing their faster convergence
and lower time complexity compared to common first-order
methods like gradient descent. In this paper, we introduce
QN-Mixer, an algorithm based on the quasi-Newton ap-
proach. We use learned parameters through the BFGS al-
gorithm and introduce Incept-Mixer, an efficient neural ar-
chitecture that serves as a non-local regularization term,
capturing long-range dependencies within images. To ad-
dress the computational demands typically associated with

*Corresponding author. † Equal contribution.

quasi-Newton algorithms that require full Hessian matrix
computations, we present a memory-efficient alternative.
Our approach intelligently downsamples gradient infor-
mation, significantly reducing computational requirements
while maintaining performance. The approach is validated
through experiments on the sparse-view CT problem, in-
volving various datasets and scanning protocols, and is
compared with post-processing and deep unrolling state-
of-the-art approaches. Our method outperforms existing
approaches and achieves state-of-the-art performance in
terms of SSIM and PSNR, all while reducing the number
of unrolling iterations required.

1. Introduction

Computed tomography (CT) is a widely used imaging
modality in medical diagnosis and treatment planning, de-
livering intricate anatomical details of the human body
with precision. Despite its success, CT is associated with
high radiation doses, which can increase the risk of can-
cer induction [50]. Adhering to the ALARA principle (As
Low As Reasonably Achievable) [37], the medical com-
munity emphasizes minimizing radiation exposure to the
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lowest level necessary for accurate diagnosis. Numerous
approaches have been proposed to reduce radiation doses
while maintaining image quality. Among these, sparse-
view CT emerges as a promising solution, effectively low-
ering radiation doses by subsampling the projection data,
often referred to as the sinogram. Nonetheless, recon-
structed images using the well-known Filtered Back Projec-
tion (FBP) algorithm [34], suffer from pronounced streak-
ing artifacts (see Fig. 1), which can lead to misdiagnosis.
The challenge of effectively reconstructing high-quality CT
images from sparse-view data is gaining increasing atten-
tion in both the computer vision and medical imaging com-
munities.

With the success of deep learning spanning diverse do-
mains, initial image-domain techniques [6, 19, 25, 28, 59]
have been introduced as post-processing tasks on the FBP
reconstructed images, exhibiting notable accomplishments
in artifact removal and structure preservation. However,
the inherent limitations of these methods arise from their
constrained receptive fields, leading to challenges in effec-
tively capturing global information and, consequently, sub-
optimal results.

To address this limitation, recent advances have seen
a shift toward a dual-domain approach [18, 27, 29, 49],
where post-processing methods turn to the sinogram do-
main. In this dual-domain paradigm, deep neural networks
are employed to perform interpolation tasks on the sino-
gram data [15, 24], facilitating more accurate image re-
construction. Despite the significant achievements of post-
processing and dual-domain methods, they confront issues
of interpretability and performance limitations, especially
when working with small datasets and ultra-sparse-view
data, as shown in Fig. 1. To tackle these challenges, deep
unrolling networks have been introduced [1, 7, 8, 11, 16,
20, 51, 54]. Unrolling networks treat the sparse-view CT
reconstruction problem as an optimization task, resulting in
a first-order iterative algorithm like gradient descent, which
is subsequently unrolled into a deep recurrent neural net-
work in order to learn the optimization parameters and the
regularization term. Like post-processing techniques, un-
rolling networks have been extended to the sinogram do-
main [52, 56] to perform interpolation task.

Unrolling networks, as referenced in [12, 36, 44], exhibit
remarkable performance across diverse domains. However,
they suffer from slow convergence and high computational
costs, as illustrated in Fig. 1, necessitating the development
of more efficient alternatives [14]. More specifically, they
confront two main issues: Firstly, they frequently grapple
with capturing long-range dependencies due to their depen-
dence on locally-focused regularization terms using CNNs.
This limitation results in suboptimal outcomes, particularly
evident in tasks such as image reconstruction. Secondly, the
escalating computational costs of unrolling methods align

with the general trend of increased complexity in modern
neural networks. This escalation not only amplifies the re-
quired number of iterations due to the algorithm’s iterative
nature but also contributes to their high computational de-
mand.

To tackle the aforementioned issues, we introduce a
novel second-order unrolling network for sparse-view CT
reconstruction. In particular, to enable the learnable regu-
larization term to apprehend long-range interactions within
the image, we propose a non-local regularization block
termed Incept-Mixer. Drawing inspiration from the multi-
layer perceptron mixer [46] and the inception architec-
ture [45], it is created to combine the best features from both
sides: capturing long-range interactions from the attention-
like mechanism of MLP-Mixer and extracting local invari-
ant features from the inception block. This block facili-
tates a more precise image reconstruction. Second, to cut
down on the computational costs associated with unrolling
networks, we propose to decrease the required iterations
for convergence by employing second-order optimization
methods such as [21, 30]. We introduce a novel unrolling
framework named QN-Mixer. Our approach is based on
the quasi-Newton method that approximate the Hessian ma-
trix using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
update [10, 13, 57]. Furthermore, we reduce memory us-
age by working on a projected gradient (latent gradient),
preserving performance while reducing the computational
cost tied to Hessian matrix approximation. This adapta-
tion enables the construction of a deep unrolling network,
showcasing superlinear convergence. Our contributions are
summarized as follows:
• We introduce a novel second-order unrolling network

coined QN-Mixer where the Hessian matrix is approx-
imated using a latent BFGS algorithm with a deep-net
learned regularization term.

• We propose Incept-Mixer, a neural architecture acting as
a non-local regularization term. Incept-Mixer integrates
deep features from inception blocks with MLP-Mixer,
enhancing multi-scale information usage and capturing
long-range dependencies.

• We demonstrate the effectiveness of our proposed method
when applied to the sparse-view CT reconstruction prob-
lem on an extensive set of experiments and datasets. We
show that our method outperforms state-of-the-art meth-
ods in terms of quantitative metrics while requiring less
iterations than first-order unrolling networks.

2. Related Works
In this section, we present prior work closely related to
our paper. We begin by discussing the general framework
for unrolling networks in Sec. 2.1, which is based on the
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gradient descent algorithm. Subsequently, in Sec. 2.2 and
Sec. 2.3, we delve into state-of-the-art methods in post-
processing and unrolling networks, respectively.

2.1. Background

Inverse Problem Formulation for CT. Image reconstruc-
tion problem in CT can be mathematically formalized as the
solution to a linear equation in the form of:

y = Ax, (1)

where x ∈ Rn is the (unknown) object to reconstruct with
n = h × w, y ∈ Rm is the data (i.e. sinogram), where
m = nv × nd, nv and nd denote the number of projection
views and detectors, respectively. A ∈ Rn×m is the for-
ward model (i.e. discrete Radon transform [40]). The goal
of CT image reconstruction is to recover the (unknown) ob-
ject, x, from the observed data y. As the problem is ill-
posed due to the missing data, the linear system in Eq. (1)
becomes underdetermined and may have infinite solutions.
Hence, reconstructed images suffer from artifacts, blurring,
and noise. To address this issue, iterative reconstruction
algorithms are utilized to minimize a regularized objective
function with a L2 norm constraint:

x̂ = arg min
x

J(x) =
λ

2
∥Ax− y∥22 +R(x), (2)

where R(x) is the regularization term, balanced with the
weight λ. Those ill-posed problems were initially addressed
using optimization techniques, such as the truncated sin-
gular value decomposition (SVD) algorithm [42], or iter-
ative approaches like the algebraic reconstruction technique
(ART) [4], simultaneous ART (SART) [2], conjugate gra-
dient for least squares (CGLS) [22], and total generalized
variation regularization (TGV) [43]. Additionally, tech-
niques such as total variation [47] and Tikhonov regulariza-
tion [9] can be employed to enhance reconstruction results.
Deep Unrolling Networks. By assuming that the regular-
ization term in Eq. (2) (i.e. R) is differentiable and convex,
a simple gradient descent scheme can be applied to solve
the optimization problem:

xt+1 = xt − α∇xJ(xt),

where ∇xJ(xt) = λA† (Axt − y) +∇xR(xt).
(3)

Here, α represents the step size (i.e. search step), and A† is
the pseudo-inverse of A.

Previous research [16, 53] has emphasized the limita-
tions of optimization algorithms, such as the manual selec-
tion of the regularization term and the optimization hyper-
parameters, which can negatively impact their performance,
limiting their clinical application. Recent advancements
in deep learning techniques have enabled automated pa-
rameter selection directly from the data, as demonstrated

in [7, 11, 23, 33, 38, 56]. By allowing the terms in Eq. (3)
to be dependent on the iteration, the gradient descent itera-
tion becomes:

xt+1 = xt − λtA
† (Axt − y) + G(xt), (4)

where G is a learned mapping representing the gradient of
the regularization term. It is worth noting that the step size
α in Eq. (3) is omitted as it is redundant when considering
the learned components of the regularization term. Finally,
Eq. (4) is unrolled into a deep recurrent neural network in
order to learn the optimization parameters.

2.2. Post-processing Methods

Recent advances in sparse-view CT reconstruction lever-
age two main categories of deep learning methods: post-
processing and dual-domain approaches. Post-processing
methods, including RedCNN [6], FBPConvNet [19], and
DDNet [59], treat sparse-view reconstruction as a denoising
step using FBP reconstructions as input. While effective in
addressing artifacts and reducing noise, they often struggle
with recovering global information from extremely sparse
data. To overcome this limitation, dual-domain methods in-
tegrate sinograms into neural networks for an interpolation
task, recovering missing data [15, 24]. Dual-domain meth-
ods, surpassing post-processing ones, combine information
from both domains. DuDoNet [29], an initial dual-domain
method, connects image and sinogram domains through
a Radon inversion layer. Recent Transformer-based dual-
domain methods, such as DuDoTrans [49] and DDPTrans-
former [27], aim to capture long-range dependencies in the
sinogram domain, demonstrating superior performance to
CNN-based methods.
Self-supervised learning. SSL methods [5, 17, 26, 48, 58],
have been applied for CT reconstruction. For instance, [5]
proposed an equivariant imaging paradigm through a train-
ing strategy that enforces measurement consistency and
equivariance conditions. To ensure equitable comparisons,
we focus on supervised methods in this work.

2.3. Advancements in Deep Unrolling Networks

Unrolling networks constitute a line of work inspired by
popular optimization algorithms used to solve Eq. (2).
Leveraging the iterative nature of optimization algorithms,
as presented in Eq. (4), unrolling networks aim to directly
learn optimization parameters from data. These meth-
ods have found success in various inverse problems, in-
cluding sparse-view CT [7, 20, 52, 54, 56], limited-angle
CT [8, 11, 51], low-dose CT [1, 16], and compressed sens-
ing MRI [12, 44].
First-order. One pioneering unrolling network, Learned
Primal-Dual reconstruction [1], replaces traditional proxi-
mal operators with CNNs. In contrast, LEARN [7] and
LEARN++ [56] directly unroll the optimization algorithm
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Figure 2. Overall structure of the proposed QN-Mixer for sparse-view CT reconstruction, unrolled from Algorithm 2. The method
leverages the advantages of the quasi-Newton method for faster convergence while incorporating a latent BFGS update.

from Eq. (4) into a deep recurrent neural network. More
recently, Transformers [3, 31] have been introduced into
unrolling networks, such as RegFormer [54] and HUMUS-
Net [12]. While achieving commendable performance,
these methods require more computational resources than
traditional CNN-based unrolling networks and incur a sig-
nificant memory footprint due to linear scaling with the
number of unrolling iterations.

Second-order. To address this, a new category of unrolling
optimization methods has emerged [14], leveraging second-
order techniques like the quasi-Newton method [10, 13, 21].
These methods converge faster, reducing computational de-
mands, but struggle with increased memory usage due to
Hessian matrix approximation and their application is lim-
ited to small-scale problems [30, 57]. In contrast our
method propose a memory-efficient approach by operat-
ing within the latent space of gradient information (i.e.
∇xJ(x) in Eq. (3)).

Algorithm 1: Quasi-Newton for sparse-view CT
Data: y (sparse sinogram)
Manual choice of the regularization termR;
H0 ← In×n;
x0 ← A†y;
for t ∈ {0, . . . , T − 1} do

st ← −Ht∇xJ(xt)
xt+1 ← xt + st
zt ← ∇xJ(xt+1)−∇xJ(xt)
ρt ← 1/(zT

t st)
Ht+1 ← (I−ρtstzT

t )Ht(I−ρtztsTt )+ρtsts
T
t

3. Methodology
QN-Mixer is a novel second-order unrolling network in-
spired by the quasi-Newton (Sec. 3.1) method. It ap-
proximates the inverse Hessian matrix with a latent BFGS
algorithm and includes a non-local regularization term,
Incept-Mixer, designed to capture non-local relationships
(Sec. 3.2). To cope with the significant computational bur-
den associated with the full approximation of the inverse
Hessian matrix, we use a latent BFGS algorithm (Sec. 3.3).
An overview of the proposed method is depicted in Fig. 2,
and the complete algorithm is presented in Sec. 3.4.

3.1. Quasi-Newton method

The quasi-Newton method can be applied to solve Eq. (2)
and the iterative optimization solution is expressed as:

xt+1 = xt − αtHt∇xJ(xt), (5)

where Ht ∈ Rn×n represents the inverse Hessian matrix
approximation at iteration t, and αt is the step size. The
BFGS method updates the Hessian matrix approximation in
each iteration. This matrix is crucial for understanding the
curvature of the objective function around the current point,
guiding us to take more efficient steps and avoiding unnec-
essary zigzagging. In the classical BFGS approach, the line
search adheres to Wolfe conditions [10, 13]. A step size of
αt = 1 is attempted first, ensuring eventual acceptance for
superlinear convergence [21]. In our approach, we adopt a
fixed step size of αt = 1. The algorithm is illustrated in
Algorithm 1.

3.2. Regularization term: Incept-Mixer

Recent research on unrolling networks has often focused on
selecting the representation of the regularization term gradi-
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Figure 3. Architecture of our regularization block. It is referred
to as “Incept-Mixer” and denoted as G in Eq. (4)

ent (i.e. G in Eq. (4)), ranging from conv-nets [7, 44, 56] to
more recent attention-based nets [12, 54]. In alignment with
this trend, we introduce a non-local regularization block
named Incept-Mixer and depicted in, Fig. 3. This block
is crafted by drawing inspiration from both the multi-layer
perceptron mixer [46] and the inception architecture [45],
leveraging the strengths of each: capturing long-range in-
teractions through the attention-like mechanism of MLP-
Mixer and extracting local invariant features from the in-
ception block. This design choice is evident in the ablation
study (see Tab. 6) where Incept-Mixer outperforms both al-
ternatives.

Starting from an image xt ∈ Rh×w×c at iteration t, we
pass it through an Inception block to create a feature map
ft ∈ Rh×w×d, where d is the depth of features. Subse-
quently, ft undergoes patchification using a CNN with a
kernel size and stride of p, representing the patch size. This
process yields patch embeddings, et = patchify(ft) ∈
R

h
p×w

p ×d. These embeddings are then processed through
a Mixer Layer with token and channel MLPs, layer nor-
malization, and skip connections for inter-layer information
flow, following [46]:

Mixer(et) = Mix(MLPc,Mix([MLPh,MLPw] , et), (6)

where Mix(Layer, et) = Layer(LN(et)) + et, with LN as
layer normalization. MLPh, MLPw are applied to height
and width features, respectively, and MLPc to rows and
shared. Finally, after N such mixer layers, the regularized
sample is transformed back to an image through a patch ex-
pansion step to obtain G(xt). Consequently, the iterative
optimization solution is as follows:

xt+1 = xt −Ht∇xJ(xt),

where ∇xJ(xt) = λtA
† (Axt − y) + G(xt).

(7)

Here, G(xt) denotes the Incept-Mixer model, representing
the learned gradient of the regularization term.

3.3. Latent BFGS update

We propose a memory-efficient latent BFGS update. Draw-
ing inspiration from LDMs [41], at step t, given the gradient
value ∇xJ(xt) ∈ Rh×w×c, the encoder E encodes it into
a latent representation rt = E(∇xJ(xt)) ∈ Rlh·lw . Im-
portantly, the encoder downsamples the gradient by a factor
fE = h

hl
= w

wl
. Throughout the paper, we explore different

downsampling factors (see Tab. 5) fE = 2k, where k ∈ N is
the number of downsampling stacks. Encoding the gradient
reduces the optimization variable size of BFGS (i.e. Ht ∈
R(lh·lw)×(lh·lw)), thereby decreasing the computational cost
associated with high memory demand. The direction is then
computed in the latent space st = −Htrt, and finally, the
decoderD reconstructs the update from the latent direction,
giving D(st) = D(−HtE(∇xJ(xt))) ∈ Rh×w×c. It is
noteworthy that E and D are shared across the algorithm
iterations, as shown in Fig. 2.

3.4. Proposed algorithm of QN-Mixer

Algorithm 2: QN-Mixer (latent BFGS update)
Data: y (sparse sinogram)
H0 ← I(lh·lw)×(lh·lw);
x0 ← A†y;
r0 ← E(∇xJ(x0));
for t ∈ {0, . . . , T − 1} do

st ← −Htrt
xt+1 ← xt +D(st)
rt+1 ← E(∇xJ(xt+1))
zt ← rt+1 − rt
ρt ← 1/(zT

t st)
Ht+1 ← (I−ρtstzT

t )Ht(I−ρtztsTt )+ρtsts
T
t

Our method, builds on the BFGS update [10, 13] rank-
one approximation for the inverse Hessian. This approxi-
mation serves as a preconditioning matrix, guiding the de-
scent direction. In contrast to [14], which directly learns
the inverse Hessian approximation from data, our approach
incorporates the mathematical equations of the BFGS al-
gorithm for more accurate approximations. The full QN-
Mixer algorithm is illustrated in Algorithm 2.

4. Experiments
In this section, we initially present our experimental set-
tings, followed by a comparison of our approach with other
state-of-the-art CT reconstruction methods. Finally, we
delve into the contribution analysis of each component in
our model.
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Method
No noise (N0 = 0) Low noise (N1 = 106) High noise (N2 = 5× 105)

nv = 32 nv = 64 nv = 128 nv = 32 nv = 64 nv = 128 nv = 32 nv = 64 nv = 128

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
FBP 22.65 40.49 27.29 57.94 33.04 79.50 22.09 32.73 26.51 49.56 31.69 71.09 19.05 15.56 22.71 25.74 26.52 40.87
FBPConvNet [19] 30.32 85.11 35.42 90.15 39.71 94.64 30.20 84.46 35.09 89.72 39.06 94.08 29.91 82.52 34.13 87.85 36.89 91.28
DuDoTrans [49] 30.48 84.70 35.37 91.87 40.62 96.41 30.34 83.72 35.36 91.42 39.75 95.49 30.09 81.83 34.09 88.67 37.08 93.44
Learned PD [1] 35.88 92.09 41.03 96.28 43.33 97.31 35.78 92.21 39.03 94.79 41.65 96.44 33.80 89.23 37.34 93.23 39.17 94.69
LEARN [7] 37.58 94.65 42.26 97.25 43.11 97.57 36.95 93.63 39.91 95.82 42.17 97.11 34.38 90.51 37.15 93.53 39.38 95.18
RegFormer [54] 38.71 95.42 43.56 97.76 47.95 98.98 37.21 94.73 41.65 96.92 44.38 98.02 35.93 92.78 38.53 94.84 40.52 96.19

QN-Mixer (ours) 39.51 96.11 45.57 98.48 50.09 99.32 37.50 94.92 42.46 97.70 44.27 98.11 35.91 92.49 38.73 94.92 40.51 96.27

Table 1. Quantitative evaluation on AAPM of state-of-the-art methods (PSNR in dB and SSIM in %). Bold: Best, under: second best.

Gound Truth FBP FBPConvNet DuDoTrans Learned PD LEARN RegFormer QN-Mixer (ours)
PSNR/SSIM 24.26/48.04 31.40/87.05 30.81/85.46 35.47/91.78 37.34/94.46 38.16/95.26 38.53/95.64

PSNR/SSIM 24.59/47.27 32.25/82.32 33.39/87.44 38.42/94.35 40.04/96.20 41.29/96.95 43.30/98.02

PSNR/SSIM 21.66/35.60 28.12/76.15 27.99/68.23 31.78/86.64 33.99/89.14 34.00/88.89 36.51/94.49

Figure 4. Visual comparison on AAPM. From top to bottom: the results under the following conditions: first (nv=32, N1), second
(nv=64, N1), third (nv=32, N0). The last row presents out-of-distribution (OOD) results with a randomly overlaid circle on a test image.
The display window is set to [−1000, 800] HU.

4.1. Experimental Setup

Datasets. We evaluate our method on two widely
used datasets: the “2016 NIH-AAPM-Mayo Clinic Low-
Dose CT Grand Challenge” dataset (AAPM) [35] and the
DeepLesion dataset [55]. The AAPM dataset comprises
2378 full-dose CT images from 10 patients, while DeepLe-
sion is the largest publicly accessible multi-lesion real-
world CT dataset, including 4427 unique patients.
Implementation details. For AAPM, we select 1920
training images from 8 patients, 244 validation images from
1 patient, and 214 testing images from the last patient. For
DeepLesion, we select a subset of 2000 training images and
300 testing images randomly from the official splits. All
images are resized to 256 × 256 pixels. To simulate the
forward and backprojection operators, we use the Operator
Discretization Library (ODL) [39] with a 2D fan-beam ge-
ometry (512 detector pixels, source-to-axis distance of 600
mm, axis-to-detector distance of 290 mm). Sparse-view CT
images are generated with nv ∈ {32, 64, 128} projection
views, uniformly sampled from a full set of 512 views cov-
ering [0, 2π]. To mimic real-world CT images, we intro-

duce mixed noise to the sinograms, combining 5% Gaussian
noise and Poisson noise with an intensity of 1× 106.

Training details. For each set of nv views, we train our
model for 50 epochs using 4 Nvidia Tesla V100 (32GB
RAM). We employ the AdamW optimizer [32] with a learn-
ing rate of 1 × 10−4, weight decay 1 × 10−2, and utilize
the mean squared error loss with a batch size of 1. Ad-
ditionally, we incorporate a learning rate decay factor of
0.1 after 40 epochs. Unrolling iterations for QN-Mixer are
set to T = 14. Incept-Mixer uses a patch size of p = 4,
d = 96 embedding dimension, and N = 2 mixer lay-
ers. The inverse Hessian size is 642 × 642 with k = 2
downsampling blocks. E comprises cascading 3x3 CNNs
with max-pooling for downsampling, culminating in a 1x1
CNN layer for a one-channel latent gradient. D utilizes 2x2
ConvTranspose operations. Both E and D layers incorpo-
rate instance normalization and PReLU activation. Follow-
ing [54], A† is implemented using the FBP algorithm for
the pseudo-inverse of A.

Evaluation metrics. Following established evaluation pro-
tocols [1, 49, 54], we employ the structural similarity index
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Gound Truth FBP FBPConvNet DuDoTrans Learned PD LEARN RegFormer QN-Mixer (ours)
PSNR/SSIM 25.73/40.03 35.28/87.35 36.66/90.01 37.81/92.60 40.29/96.28 42.08/97.15 44.41/98.14

PSNR/SSIM 31.72/72.20 38.85/93.74 41.26/95.78 41.25/96.02 41.07/96.50 45.51/98.40 48.58/99.13

Figure 5. Visual comparison on DeepLesion of state-of-the-art methods. Rows display results under different conditions: (nv=64, N1)
and (nv=128, N1). Display windows are set to [−1000, 800] HU for the first row and [−200, 300] HU for the second row.

Method nv = 32 nv = 64 nv = 128

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
FBP 21.55 31.65 26.07 47.17 31.49 69.63
FBPConvNet [19] 30.74 80.41 34.64 87.36 38.69 92.94
DuDoTrans [49] 32.11 79.86 36.02 88.14 40.47 93.81
Learned PD [1] 34.02 88.44 37.56 92.46 40.79 95.32
LEARN [7] 35.76 92.12 39.83 95.66 41.34 96.21
RegFormer [54] 37.38 93.89 41.70 96.78 46.10 98.39

QN-Mixer (ours) 39.39 95.67 43.75 97.73 48.62 98.64

Table 2. Quantitative evaluation on DeepLesion for state-of-the-
art methods (PSNR in dB and SSIM in %). With Poisson noise
level of N1 = 106. Bold: Best, under: second best.

measure (SSIM) with parameters: level 5, a Gaussian ker-
nel of size 11, and standard deviation 1.5, as our primary
performance metric. Furthermore, we supplement our as-
sessment with the peak signal-to-noise ratio (PSNR).
State-of-the-art baselines. We compare QN-Mixer to
multiple state-of-the-art competitors: (1) post-processing
based denoising methods, i.e., FBPConvNet [19], and Du-
DoTrans [49]; (2) first-order unrolling reconstruction net-
works, i.e., Learned Primal-Dual [1], LEARN [7], and Reg-
Former [54]. Note that we replace the pseudo-inverse oper-
ator used by LEARN with the FBP algorithm, as it has been
demonstrated to be more effective according to [54]. To en-
sure a fair comparison, we utilize the code-base released
by the authors when possible or meticulously implement
the methods based on the details provided in their papers.
All approaches undergo training and testing on the same
datasets, as elaborated in implementation details.

4.2. Comparison with state-of-the-art methods

Quantitative comparison. We compared our model
with state-of-the-art baselines on two public datasets. For
AAPM, models were trained and tested across three pro-
jection views (nv ∈ {32, 64, 128}) and three noise levels,
namely no noise N0 = 0, low noise N1 = 106, and high
noise N2 = 5 × 105 (see Tab. 1). For DeepLesion, models
were trained and tested on the same three projection views
and a noise level of N1 = 106 (see Tab. 2). Visual re-

Method nv = 32 nv = 64 nv = 128

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
FBP 21.38 33.36 26.08 50.29 31.43 73.06
FBPConvNet [19] 28.05 75.96 32.50 82.90 35.45 88.14
DuDoTrans [49] 28.11 68.17 32.71 83.26 36.41 90.36
Learned PD [1] 31.96 87.10 36.40 92.57 37.63 93.17
LEARN [7] 34.48 90.15 36.89 91.85 38.32 94.67
RegFormer [54] 34.49 89.98 36.95 91.48 38.02 92.44

QN-Mixer (ours) 36.84 94.84 42.11 97.78 45.69 98.82

Table 3. Quantitative evaluation on out-of-distribution (OOD)
AAPM test dataset of state-of-the-art methods (PSNR in dB and
SSIM in %). Bold: Best, under: second best.

sults are provided in Fig. 4 (AAPM) and Fig. 5 (DeepLe-
sion). Impressively, our method achieves state-of-the-art
results on DeepLesion across all projection views. It out-
performs the second-best baseline, RegFormer, with an av-
erage improvements of +2.23 dB in PSNR and +1.02% in
SSIM. On AAPM without noise, we achieve state-of-the-art
results across all projection views and improve the second
best by an average +1.65 dB and +0.58%. In the pres-
ence of low noise, QN-Mixer achieves state-of-the-art re-
sults performance in all cases except nv=128 with −0.11
dB and shows an average improvements of +0.33 dB and
+0.35% over RegFormer. With high noise, our method per-
forms nearly on par in nv=32 (−0.02 dB and −0.29%),
achieves state-of-the-art in nv=64 (+0.2 dB and +0.08%),
and competes closely in nv=128 (−0.01 dB and +0.08%).
As noise increases, we attribute the decline in improvement
to the compressed gradient information in the latent BFGS,
influenced by sinogram changes, and the utilization of the
FBP algorithm instead of the pseudo-inverse.
Performance comparison on OOD textures. We eval-
uate frozen model performance on CT images featuring
a randomly positioned white circle with noise-free sino-
grams, as illustrated in the third row of Fig. 4. The rationale
and details are provided in the supplementary material. In
Tab. 3, QN-Mixer attains state-of-the-art results across all
nv views. First-order unrolling networks such as LEARN
and RegFormer exhibit significant PSNR degradation of
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−3.1 dB and −4.22 dB, respectively, for nv=32, while our
method demonstrates a milder degradation of −2.67 dB.
Visual comparison. As it can be seen on Fig. 4 and Fig. 5,
FBPConvNet and DuDoTrans show significant blurring and
pronounced artifacts when nv=32. While Learned PD and
LEARN show satisfactory performance, they struggle with
intricate details, like in the liver and spine. In contrast, Reg-
Former produces high-quality images but faces challenges
in generalizing to OOD data. QN-Mixer excels in produc-
ing high-quality images with fine details, even under chal-
lenging conditions such as nv=32 views and OOD data.

Method #Iters Epoch time (s) Time (ms) #Params (M) Memory (GB)

Post-processing based denoising
FBPConvNet [19] - 68 12.4 31.1 1.30
DuDoTrans [49] - 92 60.1 15.0 1.38

First-order unrolling reconstruction networks
Learned PD [1] 10 82 47.2 0.25 0.81
LEARN [7] 30 780 679.8 4.50 1.85
RegFormer [54] 18 700 598.9 5.00 10.19

Second-order unrolling Quasi-Newton
QN-Mixer (ours) 14 594 610.2 8.50 7.83

Table 4. Comparison of computational efficiency. Training
epoch time is reported in seconds, #Params in M and memory costs
for state-of-the-art methods on AAPM with nv = 32 views.

Efficiency comparison. The results in Tab. 4 show
that QN-Mixer is more computationally efficient than Reg-
Former, with a 1.3× reduction in memory usage. Fur-
thermore, our training time demonstrates a significant en-
hancement, realizing a speed improvement of 106 seconds
per epoch compared to first-order unrolling methods like
LEARN and RegFormer. Additionally, our method requires
only 14 iterations, in contrast to the 30 and 18 iterations
needed by LEARN and RegFormer, respectively.

Hessian size PSNR ↑ SSIM ↑
82 × 82 35.69 93.71
162 × 162 38.11 95.31
322 × 322 39.37 96.01
642 × 642 39.51 96.11

Table 5. Ablation on the
inverse Hessian approxi-
mation size.

Method PSNR ↑ SSIM ↑
QN with different learned regularization
Inception 31.65 85.28
U-Net 34.29 92.92
MLP-Mixer 36.89 93.87
Incept-Mixer 39.51 96.11

Pseudo-inverse A† vs Filtered Back Projection (FBP)
QN-Mixer+A† 38.94 95.83
QN-Mixer+FBP 39.51 96.11

First vs second order Quasi-Newton (QN)
Incept-Mixer+first-order 37.45 94.25
Incept-Mixer+QN 39.51 96.11

Table 6. QN-Mixer ablation.

4.3. Ablation Study

In this section, we leverage the AAPM dataset with nv=32
views by default, and no noise is introduced to the sinogram.
Inverse Hessian approximation size. The results in Tab. 5
emphasize the significant impact of the inverse Hessian ap-
proximation size on our performance. When too small, a
notable degradation is observed (e.g., 82× 82), while larger
sizes result in performance improvements as the approx-
imation approaches the full inverse Hessian. Exceeding

642×642 was unfeasible in our experiments due to memory
constraints.
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Figure 6. Ablation on the number of unrolling iterations. Left:
PSNR (dB); Right: SSIM (%)
Number of unrolling iterations. In Fig. 6, we visually
depict the influence of the number of unrolling iterations
on the performance of QN-Mixer and RegFormer. Notably,
the performance of both methods shows improvement with
an increase in the number of iterations. When subjected to
an equal number of iterations, our method consistently sur-
passes RegFormer in performance. Remarkably, we achieve
comparable results to RegFormer even with only 10 itera-
tions, demonstrating the efficiency of our approach.
Regularization term. In Tab. 6, we evaluate the impact of
the regularization term in our framework. Our Incept-Mixer
is compared against various learned alternatives, including
the Inception block [45] and MLP-Mixer block [46]. Ad-
ditionally, employing the pseudo-inverse A† instead of the
FBP results in a less pronounced degradation (−0.57 dB
and −0.28%), enhancing the interpretability of QN-Mixer.
Finally, we test our Incept-Mixer in the first-order frame-
work, highlighting the significance of the second-order la-
tent BFGS approximation with a significant improvement
(+2.06 dB and +1.86%).

5. Conclusion
In this paper, we investigate the application of deep second-
order unrolling networks for tackling imaging inverse prob-
lems. To this end, we introduce QN-Mixer, a quasi-Newton
inspired algorithm where a latent BFGS method approx-
imates the inverse Hessian, and our Incept-Mixer serves
as the non-local learnable regularization term. Extensive
experiments confirm the successful sparse-view CT recon-
struction by our model, showcasing superior performance
with fewer iterations than state of-the-art methods. In sum-
mary, this research offers a fresh perspective that can be
applied to any iterative reconstruction algorithm. A limi-
tation of our work is the memory requirements associated
with quasi-Newton algorithm. We introduced a memory
efficient alternative by projecting the gradient to a lower
dimension, successfully addressing the CT reconstruction
problem. However, its applicability to other inverse prob-
lems may be limited. In future work, we aim to extend our
approach to handle larger Hessian sizes, broadening its ap-
plication to a range of problems.
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A. Inverse Hessian approximation
A.1. Approximation via optimization

The fundamental idea is to iteratively build a recursive ap-
proximation by utilizing curvature information along the
trajectory. It is crucial to emphasize that a quadratic ap-
proximation offers a direction that can be leveraged within
the iterative update scheme. This direction is defined by the
equation:

xt+1 = xt + αtdt. (8)

In order to determine the direction dt, we can employ
a quadratic approximation of the objective function. This
approximation can be expressed as:

J(xt + d) ≈ mt(d) = J(xt) +∇J(xt)
Td+

1

2
dTBtd, (9)

where J(xt) represents the objective function evaluated at
the current point xt, ∇J(xt) denotes the gradient of the

objective function at xt, Bt ∈ Rn×n corresponds to the
approximation of the Hessian matrix. By minimizing the
right-hand side of the quadratic approximation in Eq. (9),
we can determine the optimal direction dt. Taking the
derivative of mt(d) with respect to d and setting it to zero,
we obtain:
∇mt(d)

∇d
= dtBt +∇J(xt)

∇mt(d)=0−−−−−−−→ dt = −B−1
t ∇J(xt),

by substituting this result in Eq. (8) we obtain:

xt+1 = xt − αtB
−1
t ∇J(xt).

The objective is to ensure that the curvature along the
trajectory is consistent. In other words, at the last two it-
erations, mt+1 should match the gradient ∇J(xt) in the
following way:

∇mt+1

∣∣∣∣
d=0

= ∇J(xt+1), ∇mt+1

∣∣∣∣
d=−αtdt

= ∇J(xt).

This condition ensures that the quadratic approximation
captures the correct curvature information along the trajec-
tory, allowing for accurate optimization and convergence of
the algorithm. By evaluating ∇mt+1(·) at the point −αtdt

we obtain:

αtBt+1dt = ∇J(xt+1)−∇J(xt).

From Eq. (8) we get the secant equation:

Bt+1(xt+1 − xt)︸ ︷︷ ︸
st

= ∇J(xt+1)−∇J(xt)︸ ︷︷ ︸
zt

→ Bt+1st = zt.

To avoid explicitly computing the inverse matrix B−1
t ,

we can introduce an approximation Ht = B−1
t and opti-

mize it as follows:

Ht+1 = arg min
H

∥H −Ht∥2W ▷Ht+1 close to Ht

s.t.: H = HT ▷ symmetry
Hzt = st ▷secant equation

(10)
Here ∥·∥2W denotes the weighted Frobenius norm. This
optimization problem aims to find an updated approxima-
tion Ht+1 that is close to Ht, while satisfying the con-
straints that Ht+1 is symmetric and satisfies the secant
equation Ht+1zt = st. BFGS [10, 13, 21] uses W =∫ 1

0
∇2J(xt + tαtdt)dt, to solve this optimization problem

and obtain the iterative update of H:

Ht+1 = (I − ρtstz
T
t )Ht(I − ρtzts

T
t ) + ρtsts

T
t , (11)
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Figure 7. Visualization of the inverse Hessian approximation across iterations. Observe the subtle changes between each iteration,
attributed to the influence of the objective function used to estimate Ht (see Eq. (10)).

Figure 8. Inverse Hessian approximation rows visualization. We present the first 40 rows for the 9th and 14th inverse Hessian approx-
imations on the first and second lines, respectively. Each row is of size 642, reshaped into a 64 × 64 image. The corresponding image
reconstructions are shown on the left, along with PSNR (dB) and SSIM (%) values at the top.

where ρt =
1

zT
t st

, st = xt+1 − xt, and zt = ∇J(xt+1)−
∇J(xt). This update equation allows us to iteratively refine
the approximation Ht based on the current gradient infor-
mation and the changes in the solution.
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Figure 9. Inverse Hessian matrix approximation algorithm.
Verification of requirements over the iterations. Left: Objective
function value in Eq. (10); Right: Symmetry index of the inverse
Hessian approximation refer to Eq. (12).

A.2. Validation of adherence to BFGS
We validate the adherence of our method to the BFGS re-
quirements. To achieve this, we present the constraint val-
ues of the optimization algorithm given in Eq. (10) using
a test set image from AAPM, as illustrated in Fig. 9. The
symmetry index is defined as follows:

SI =
1

n · (n− 1)

n∑
i=1

n∑
j=1,j ̸=i

|Aij −Aji|. (12)

Our results demonstrate the effectiveness of our approach
in satisfying the essential conditions required by the BFGS
algorithm. Notably, the symmetry index is consistently
close to zero, indicating the symmetry of the matrix Ht

at each iteration, which is the first constraint of the BFGS
method. Furthermore, with regard to the objective function
value, it is evident that it is close to zero, except for the ini-
tial approximation. This deviation can be attributed to the
use of the identity matrix as the starting point.

Inverse Hessian matrix approximation visualizations.
Figure 7 depicts Ht at different iterations. These visualiza-
tions confirm the required symmetry of the matrix in each
iteration. Additionally, the matrix Ht is close to the identity
matrix at the second iteration, becoming more structured in
the third iteration. This behavior aligns with expectations,
as the matrix Ht is initialized as the identity matrix and up-
dated based on gradient information and solution changes.

Visualization of reshaped rows. To further understand
the inverse Hessian matrix approximation structure, we de-
pict the reshaped (64× 64) first 40 rows of Ht at iterations
9 and 14 in Fig. 8. These rows store gradient attention in-
formation used for updating the solution, consistent with
the matrix Ht being updated based on gradient information
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Gound Truth FBP FBPConvNet DuDoTrans Learned PD LEARN RegFormer QN-Mixer (ours)
PSNR/SSIM 18.66/26.99 25.13/66.40 27.09/69.04 31.79/86.05 33.34/90.56 34.05/91.29 35.90/93.69

PSNR/SSIM 26.85/58.95 34.51/89.70 34.37/91.76 40.07/95.07 41.16/96.09 42.63/97.28 43.35/97.79

PSNR/SSIM 32.68/79.88 39.30/94.05 39.90/95.21 42.71/96.78 42.50/96.46 45.18/98.13 45.06/98.23

Figure 10. Visual comparison on AAPM. From top to bottom: the results under the following conditions: first (nv = 32, N1), second
(nv = 64, N1), third (nv = 128, N1). The display window is set to [−1000, 800] HU for the first two rows and to [−200, 300] HU for
the last row.

and solution changes. In future work, we plan to explore the
impact of Ht on the optimization process and its influence
on reconstruction performance.

B. More Ablation Study and visualization
B.1. Ablation on Incept-Mixer

We further investigate the impact of the hyperparameters of
Incept-Mixer on the reconstruction performance. We vary
the patch size p and the number of stacked Mixer layers N
and report the results in Tab. 7a, and Tab. 7b respectively.

Impact of the path size. We observe that increasing the
patch size p from 2 to 4 improves the performance (+1.28
dB and +1.04%) while further increasing the patch size
from 4 to 8 decreases the performance (−1.32 dB and
−0.79%).

We attribute this observed pattern to the trade-off be-
tween local and global features in the reconstruction pro-
cess. When the patch size is small, such as p = 2, the
model focuses on capturing fine-grained local details, which
can enhance reconstruction accuracy. As the patch size in-
creases to p = 4, the network gains a broader perspective
by considering larger regions, leading to an improvement in
performance. However, when the patch size becomes too
large, for example, p = 8, the model might start incorpo-
rating more global context at the expense of losing finer de-
tails. This can result in a decrease in performance as the
model becomes less sensitive to localized patterns.

Impact of the number of stacked Mixer layer. We ob-
serve that increasing the number of stack N from 1 to 2

p PSNR ↑ SSIM ↑
2 38.22 95.07
4 39.51 96.11
8 38.19 95.32

(a)

N PSNR ↑ SSIM ↑
1 37.64 94.79
2 39.51 96.11
3 38.47 95.51
4 38.17 95.40

(b)

Table 7. Ablation of Incept-Mixer. (a) p is the patch size; (b)
N is the number of stacked Mixer layers. The best performance is
attained using p = 4 and N = 2.

improves the performance (+1.86 dB and +1.31%), while
further increasing the patch size from 2 to 3 decreases the
performance (−1.03 dB and −0.60%) and from 3 to 4 de-
creases the performance (−0.30 dB and −0.11%).

Similarly, when varying the number of stacked Mixer
layers N , we observe a trend where an increase in N ini-
tially contributes to improved performance, as the model
can capture more complex features and relationships. How-
ever, as N continues to grow, the network may encounter
diminishing returns, and the benefits of additional layers di-
minish, potentially leading to overfitting or increased com-
putational overhead.

Robustness to hyperparameters. Hence, there exists an
optimal trade-off between the patch size p and the number
of stacked Mixer layers N , but the model performs simi-
larly for a wide range of values. In our experiments, we use
p = 4 and N = 2 for all the datasets, which highlights the
robustness of our method to these hyperparameters.
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Gound Truth FBP FBPConvNet DuDoTrans Learned PD LEARN RegFormer QN-Mixer (ours)
PSNR/SSIM 20.16/28.35 27.29/73.08 29.54/83.86 30.15/83.29 31.40/86.97 32.84/89.99 35.10/93.10

PSNR/SSIM 26.49/49.27 34.60/88.72 36.68/90.18 37.75/93.17 39.16/95.55 40.87/96.45 42.11/97.25

PSNR/SSIM 32.32/68.39 40.90/94.64 43.42/96.25 43.05/96.02 42.89/96.74 46.41/97.46 49.03/98.26

Figure 11. Visual comparison on DeepLesion. From top to bottom: the results under the following conditions: first (nv = 32, N1),
second (nv = 64, N1), third (nv = 128, N1). The display window is set to [−1000, 800] HU for the first two rows and to [−200, 300]
HU for the last row.

B.2. More visualization results

Fig. 10 displays supplementary visualizations of our ap-
proach on AAPM. Our method consistently produces high-
quality reconstructions across all views. Notably, among
state-of-the-art techniques, QN-Mixer excels in reconstruct-
ing fine-grained details. For instance, it accurately captures
small vessels in the first row, delicate soft tissue structures
in the second row, and sharp boundaries in the third row.

In Fig. 11, we showcase additional visualizations of our
method applied to DeepLesion. QN-Mixer demonstrates
superior performance across all views, yielding high-quality
reconstructions. This is particularly evident in the challeng-
ing scenario of 32 views, where our method outperforms
others in capturing fine-grained details, such as small ves-
sels and lesions. Importantly, these results are achieved with
fewer iterations compared to alternative unrolling networks
like RegFormer.

B.3. Iterative results visualization

In order to demonstrate the effectiveness of QN-Mixer, we
present a series of intermediate reconstruction results in
Fig. 12. These results illustrate the progression of the re-
construction process at different iterations of our method.
By examining the reconstructed outputs at each iteration,
our goal is to offer insights into the evolution of image qual-
ity. Notably, we observe that the improvement in quality, as
quantified by the PSNR and SSIM values of each iteration,
does not consistently increase with each iteration (see Itera-
tion 10 in Fig. 12). We suspect that the observed unexpected
behavior may arise from the variation of the objective func-
tion (i.e. Eq. (2)) around the point t in the unrolled network,

which is dependent on a learnable gradient regularization
term Incept-Mixer.

B.4. Reconstruction error visualization

We present the reconstruction error of QN-Mixer in com-
parison to LEARN and RegFormer in Fig. 13. The images
are organized from left to right based on the SSIM value. As
illustrated, our method consistently produces high-quality
reconstructions. In the most challenging scenario (nv = 32)
with no added noise, and for the least favorable image, our
method achieves a reconstruction with an SSIM of 93.53%,
maintaining notably satisfactory performance compared to
RegFormer with an SSIM of 91.30%. For the best recon-
struction across all methods, our method achieves an SSIM
of 97.72%, while RegFormer achieves an SSIM of 97.48%.
These results demonstrate the robustness of our method
when dealing with challenging scenarios.

Method nv = 32 nv = 64 nv = 128

SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑
FBP 72.88 18.97 83.42 22.13 91.75 24.85
FBPConvNet [19] 63.91 20.94 73.02 24.12 80.60 25.74
DuDoTrans [49] 60.51 19.09 79.75 25.00 85.65 27.23
Learned PD [1] 67.99 21.92 83.79 25.51 85.42 25.86
LEARN [7] 79.70 24.46 84.44 26.74 88.16 26.20
RegFormer [54] 72.45 23.69 77.33 25.46 84.99 28.22

QN-Mixer (ours) 86.17 25.95 94.56 30.95 97.04 33.98

Table 8. Quantitative results of the reconstruction of the
cropped OOD circle. Bold: Best, under: second best.
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PSNR/SSIM

27.89/51.60

20.56/37.05

30.83/78.81

20.51/26.81

32.58/85.75

23.15/39.84

31.36/62.97

24.08/42.32

33.87/90.57

23.63/30.38

34.99/90.40

25.72/39.25

37.45/94.51

27.87/45.53

38.05/95.08

Gound Truth FBP Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

Iteration 9 Iteration 10 Iteration 11 Iteration 12 Iteration 13 Iteration 14Iteration 8Iteration 7

Figure 12. QN-Mixer’s intermediate reconstructions using AAPM with (nv = 32, N1). Display window is set to [−1000, 800] HU.

LEARN

RegFormer

QN-Mixer

Figure 13. Reconstruction errors with LEARN, RegFormer, and
QN-Mixer using (nv = 32, N0). Images are ordered left to right
by SSIM, with the first column showing the worst reconstruction
among 214 patient images. The second and third columns repre-
sent the 1/3 and 2/3 percentiles, respectively, and the last column
corresponds to the best reconstruction with the highest SSIM.

C. More experiments

C.1. Out-of-Distribution

OOD circle performance across entire image In the main
text, we assess the robustness of methods to a simple out-
of-distribution scenario, where an unseen during training,
white circle is inserted, and computing SSIM and PSNR
metrics for the entire image. We achieved the best perfor-
mance across all views in this setting (Tab. 3). We note,
however that this setting mixes the inherent performance on
clean data and its ability to handle unseen patterns.
OOD circle performance in anomalous region To further

isolate the capacity of models to reconstruct unseen OOD
patterns (i.e., white circle), we extend our evaluation. In-
stead of evaluating the whole image, we compute the re-
construction performance of a crop region containing the
white circle, thus isolating the reconstruction performance
exclusively to the circle region.

For that, we randomly selected 5 samples from the
AAPM test set depicted. The evaluated data is depicted in
Fig. 14, and the overall performance across the complete set
of 214 patient images is summarized in Tab. 8 for 3 views.

Our method significantly outperforms the second-best
across all views in both SSIM and PSNR. For the most
challenging case of 32 views, we surpass the second best
by +6.47% and +1.49 dB. With 64 views, our performance
exceeds the second best by +10.12% and +4.21 dB. In the
easiest case of 128 views, we outperform the second best by
+5.29% and +5.76 dB. As anticipated, all methods exhibit
degraded performance when focusing on the circle region,
and the gap between our method and the second-best widens
compared to the complete image. Moreover, the numerical
results in Tab. 8 align with the visualizations in Fig. 14.

Train AAPM nv=32 AAPM nv=128

Test DeepLesion nv=32 AAPM nv=32 AAPM nv=64

Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DuDoTrans 28.69 73.77 25.60 51.01 32.38 82.35
LEARN 37.21 93.46 28.20 66.10 34.40 87.21
RegFormer 37.97 94.01 29.83 72.53 37.78 92.64
QN-Mixer (ours) 38.28 94.66 30.43 80.03 37.16 91.81

Table 9. Quantitative results of the reconstruction perfor-
mance of OOD cases: anatomy and geometry Bold: Best,
under: second best.

Anatomy and Geometry OOD. We explore more complex
out-of-distribution (OOD) scenarios, particularly focusing
on changes in anatomy and geometry. For the geometry as-
pect, we train our methods using AAPM data and evaluate
them on DeepLesion, maintaining a fixed geometry param-
eter of nv=32. Concerning anatomy, we test under the most
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(a) nv = 32, N0 (b) nv = 64, N0 (c) nv = 128, N0

Figure 14. Visualization of 5 samples of the OOD circle texture reconstruction. From each figure and from left to right, we show the
ground truth, FBP, FBPConvNet, DuDoTrans, Learned PD, LEARN, RegFormer and QN-Mixer.

challenging scenario, which involves training on AAPM
data with nv=128 and subsequently testing on AAPM data
with two lower geometries: nv=32 and nv=64. The out-
comes of this experiment are detailed in Tab. 9.
• anatomy: we outperform RegFormer by +0.31 dB and
+0.65%.

• geometry nv=32: we outperform Regformer by +0.60
dB and +7.50% in most challenging setting.

• geometry nv=64: we lag behind Regformer by −0.62
dB and −0.83% in the easiest setting.

C.2. Results when A is the 90◦ limited view CT

To further evaluate the robustness of our method, we con-
ducted experiments on a more challenging CT inverse prob-
lem, specifically involving a 90◦ limited-angle CT setup. In
this scenario, the system matrix A comprises a restricted
number of views, resulting in significant artifacts and distor-
tions in the reconstructed images. We compared the perfor-
mance of our proposed QN-Mixer, with that of RegFormer
on this demanding task. Our method demonstrated supe-
rior performance, achieving promising results with a PSNR
of 30.17 dB and a SSIM of 90.01%. This outperformed
RegFormer by +1.03 dB in PSNR and +0.45% in SSIM.
Visual results illustrating the effectiveness of our approach
are provided in Fig. 15.

GT FBP

14.56/48.45 31.51/90.66

OursRegFormer

30.09/89.91

Figure 15. Visual comparaison on AAPM with Limited-angle
CT. The system matrix A is a 90◦ limited view. The display win-
dow is set to [−1000, 800] HU.

C.3. MBIR evaluation

To demonstrate the superiority of our method, we conducted
an additional comparison with the state-of-the-art model-
based iterative reconstruction (MBIR) technique, which is

widely employed in clinical settings. Our evaluation in-
volved testing our approach against MBIR using datasets
with varying numbers of views, specifically nv=32, 64, and
128, with low noise added to sinograms. The correspond-
ing PSNR values obtained with MBIR were 22.94, 28.80,
and 34.33 dB, with SSIM values of 67.70%, 72.60%, and
80.68%, respectively.

Our method, QN-Mixer, consistently outperformed
MBIR across all views, showcasing an average improve-
ment of +12.72 dB in PSNR and +23.25% in SSIM.
These results underscore the robustness and effectiveness
of our approach compared to MBIR, a benchmark technique
widely utilized in clinical practice.

C.4. Noise Power Spectrum analysis

We conducted a comprehensive examination of the noise
characteristics in our reconstructed images through noise
power spectrum (NPS) analysis. NPS serves as a metric,
quantifying the magnitude and spatial correlation of noise
properties, or textures, within an image. It is derived from
the Fourier transform of the spatial autocorrelation function
of a zero-mean noise image.

NPS analysis was performed on a configuration of Re-
gions of Interest (ROIs) as depicted in Fig. 17. This process
was applied to all 214 images from the AAPM test set and
for three different views (32, 64, and 128). The average 1D
curves were generated by radially averaging the 2D NPS
maps, and the results are presented in Fig. 16.

The area under the NPS curve is equal to the square of
the noise magnitude. Importantly, the ordering of methods
based on noise magnitude corresponds to the ranking ob-
served in our quantitative experiments for PSNR and SSIM
in the main text. For example, FBP, which exhibits the low-
est noise magnitude, also performs the poorest in terms of
PSNR and SSIM. Conversely, our method, with the high-
est noise magnitude, stands out as the top performer in
both PSNR and SSIM metrics. Furthermore, the mean and
peak frequencies serve as key indicators of noise texture or
“noise grain size”, where higher frequencies denote finer
texture. Remarkably, our method showcases superior mean
and peak frequencies compared to other methods, suggest-
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(a) nv = 32, N1

0.0 0.5 1.0
0

5000

10000

15000

20000 QN-Mixer
RegFormer
LEARN
Learned PD
DuDoTrans
FBPConvNet
FBP

(b) nv = 64, N1
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(c) nv = 128, N1

Figure 16. Noise Power Spectrum (NPS) Analysis in comparison to state-of-the-art methods. The x-axis represents normalized frequency
in cycles per pixel (px−1), and the y-axis represents noise power spectrum (HU2px2). Display windows are configured as [−1000, 800]
HU. Mean and peak frequencies are intricately linked to noise texture, with finer textures correlating to higher mean and peak frequencies
in the NPS. Our method exhibits the highest peak frequencies, indicating that our reconstructed images feature the most refined noise
texture among all compared methods.

Figure 17. ROIs for NPS Analysis: Red squares denote 20× 20
pixel ROIs distributed evenly across two circular regions. The first
circle (radius 25) holds 8 ROIs, and the second circle (radius 50)
has 20 ROIs. Both circles, centered at the image center, include a
total of 29 ROIs per image. This standard positioning in the CT
community underscores the clinical diagnostic importance of the
image center.

ing a finer noise texture or smaller grain size.
This alignment with good clinical practice standards re-

inforces the robust performance of our method in capturing
and preserving image details, as supported by both quanti-
tative metrics and noise analysis.

D. Reproducibility

All our experiments are fully reproducible. While the
complete algorithm is already provided in the main pa-
per (see Algorithm 2), we additionally present a PyTorch
pseudo-code for enhanced reproducibility in Appendix D.1.
We furnish comprehensive references to all external li-
braries used in Appendix D.2. Detailed information re-
garding the initialization of our model can be found in
Appendix D.3. The precise parameters of our regularizer,
Incept-Mixer architecture, are available in Appendix D.4.

We outline the exact data splits utilized across the paper for

Algorithm 3: Minimal QN-Mixer pseudo-code

1 class GradientFunction(nn.Module):
2 def __init__(self, regularizer):
3 self.regularizer = regularizer
4 self.lambda = nn.Parameter(torch.zeros(1))
5
6 def forward(self, physics, y, x):
7 y_t = physics.forward_operator(x)
8 # Compute the regularization term
9 reg_x = self.regularizer(x)

10 # Compute the data fidelity term
11 y_dft = y_t - y
12 # Compute the backprojection
13 x_dft = physics.backward_operator(y_dft)
14 g = self.lambda * x_dft + reg_x
15 return g
16
17 class QN_Iteration(nn.Module):
18 def __init__(self, gradient_function):
19 self.gradient = gradient_function
20

21 def latent_bfgs (self, h, s_t, z_t):
22 I = torch.eye(len(s_t))
23 rho_t = 1. / torch.dot(z_t, s_t)
24 u_t = I - torch.outer(s_t, z_t) * rho_t
25 d_t = I - torch.outer(z_t, s_t) * rho_t
26 return (torch.matmul(u_t, torch.matmul(h, d_t))
27 + (torch.outer(s_t, s_t) * rho_t))
28
29 def forward(self, physics, encoder, decoder,
30 y, x, h, r, is_last):
31 # Compute latent direction s_t
32 s_t = -torch.matmul(h, r)
33 d = decoder(s_t)
34
35 # Update the reconstruction
36 x = x + d
37 # Return x if it is the last iteration
38 if is_last:
39 return x, h, r
40 else:
41 r_p = encoder(self.gradient(physics, y, x))
42 z_t = r_p - r
43 with torch.no_grad():
44 h = self.latent_bfgs(h, s_t, z_t)
45 return x, h, r_p
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the AAPM dataset in Appendix D.5. Lastly, to facilitate the
reproduction of our out-of-distribution (OOD) protocol, we
provide the pseudo-code in Appendix D.6.

D.1. QN-Mixer pseudo-code

Our QN-Mixer algorithm is introduced in Algorithm 2, and
for improved reproducibility, we present a PyTorch pseudo-
code in Algorithm 3. The fundamental concept underly-
ing unrolling networks lies in having a modular gradient
function, denoted as ∇J(xt), which can be easily adapted
to incorporate various regularization terms. Subsequently,
the core element is the unrolling iteration block responsi-
ble for updating both the solution xt and the inverse Hes-
sian approximation Ht. The update of the inverse Hessian
approximation is executed through the latent BFGS algo-
rithm. Notably, each iteration call takes the physics opera-
tor as input, tasked with computing the forward and pseudo-
inverse operators for the CT reconstruction problem, along
with the gradient encoder and direction decoder, which are
shared across all iterations. For a more in-depth under-
standing, refer to Algorithm 3. Note the employment of
torch.no grad() to inhibit the computation of gradi-
ents for the inverse Hessian approximation. Since there is
no necessity to compute gradients for this variable, given
that it is updated through the latent BFGS algorithm.

Within these two modules, second-order quasi-Newton
methods can be seamlessly incorporated by simply modi-
fying the latent BFGS algorithm or the regularization term,
offering flexibility to the user.

D.2. External libraries used

We utilized the following external libraries to implement
our framework and conduct our experiments:
• Operator Discretization Library (ODL):
https://github.com/odlgroup/odl

• High-Performance GPU Tomography Toolbox (ASTRA):
https://www.astra-toolbox.com/

• Medical Imaging Python Library (Pydicom):
https://pydicom.github.io/

D.3. QN-Mixer’s parameters initialization

To enhance reproducibility, we provide the parameters ini-
tialization of QN-Mixer. First, for the gradient function,
we initialize the CNNs of Incept-Mixer using the Xavier
uniform initialization. The multi-layer perceptron of the
MLP-Mixer is initialized with values drawn from a trun-
cated normal distribution with a standard deviation of 0.02.
The λt values are initialized to zero, and the inverse Hessian
approximation H0 is initialized with the identity matrix I .
Second, for the latent BFGS, both the encoder and decoder
CNNs are initialized with the Xavier uniform initialization.

D.4. Incept-Mixer’s architecture

For enhanced reproducibility, we present the architecture
of Incept-Mixer in Tab. 11. The Incept-Mixer architec-
ture consists of a sequence of Inception blocks, followed
by Mixer blocks. Each Mixer block comprises a channel-
mixing MLP and a spatial-mixing MLP. The MLPs are con-
structed with a fully-connected layer, a GELU activation
function, and another fully-connected layer. Ultimately, the
regularization value is projected to the same dimension as
the input image through a patch expansion layer, which is
composed of a fully-connected layer and a CNN layer.

Patient ID L067 L109 L143 L192 L286 L291 L096 L506 L333 L310

#slices 224 128 234 240 210 343 330 211 244 214

Training ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Validation ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Testing ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Table 10. AAPM dataset split specification. The validation set
comprises images from patient L333, and testing utilizes images
from patient L310. The images from the remaining patients have
been designated for training purposes.

Stage Layers #Param (k) Output size

Input - - 1× 256× 256

InceptionBlock-1

convblock1:
conv1-1: K1C16S1P0
prelu1-1

convblock2:

conv2-1: K1C16S1P0
prelu2-1
conv2-2: K3C32S1P1
prelu2-2

convblock3:

conv3-1: K1C16S1P0
prelu3-1
conv3-2: K5C32S1P2
prelu3-2

convblock4:
maxpool4-1: K3S1P1
conv4-1: K1C16S1P0
prelu4-1

17.6 96× 256× 256

PatchEmbed-2
conv2-1: K4C96S4P0
rearrange2-1: bchw→ bhwc 145.5 96× 64× 64

MixerLayer-3 ×(N = 2)

layernorm3-1: D96
rearrange3-1: bhwc→ bcwh

heightmlp3-1:
linear3-1: D64O256
gelu3-1
linear3-2: D256O64

rearrange3-2: bcwh→ bchw

widthmlp3-1:
linear3-3: D64O256
gelu3-2
linear3-4: D256O64

rearrange3-3: bchw→ bhwc
layernorm3-2: D96

channelmlp3-1:
linear3-5: D96O384
gelu3-3
linear3-6: D384O96

140.8× 2 96× 64× 64

PatchExpand-4
linear4-1: D96O1536
layernorm4-1: D96
conv4-1: K1C1S1P0

147.7 1× 256× 256

Table 11. Incept-Mixer architecture. K-C-S-P represents the
kernel, channel, stride, and padding configuration of CNNs, while
D-O indicates the input and output dimensions of linear layers.
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D.5. AAPM dataset splits

In our experiments, we use the AAPM 2016 Clinic Low
Dose CT Grand Challenge public dataset [35], which holds
substantial recognition as it was formally established and
authorized by the esteemed Mayo Clinic. To ensure the in-
tegrity of our evaluation process, we followed the prece-
dent set by [7, 54] and created the training set using data
from eight patients, while reserving a separate patient for
the testing and validation sets. This approach guarantees
that no identity information is leaked during test time. Our
specification is presented in Tab. 10.

D.6. Robustness eval. protocol for OOD scenarios

Algorithm 4: add circle ood pseudo-code.

1 def add_circle_ood(img, value=1):
2 h, w = img.shape[::-1][:2]
3 radius = np.random.randint(5, 20)
4 c_x = np.random.randint(radius, w-radius)
5 c_y = np.random.randint(radius, h-radius)
6 center = (c_x, c_y)
7
8 Y, X = np.ogrid[:h, :w]
9 dist_x = (X - center[0])**2

10 dist_y = (Y - center[1])**2
11 dist_from_center = np.sqrt(dist_x + dist_y)
12 mask = dist_from_center <= radius
13 img[0, mask] = value
14 return img

In medical imaging, it’s crucial to develop methods that
generalize to scans with lesions or anomalies, and assessing
the model’s capability to reconstruct abnormal data holds
significant relevance, as test patient data may deviate from
the training data in clinical applications. To this end, we
design a simple protocol specifically crafted for evaluating
the effectiveness of methods when handling abnormal data.
In this case, a white circle mimicking an out-of-distribution
texture, which was never seen during training, is forged into
CT images with noise-free sinograms. The pseudo-code to
realize this is provided in Algorithm 4. Then, performance
can be evaluated on the entire image as shown in Tab. 3, or
on a cropped region within the circle as detailed in Tab. 8.

We strongly advocate for future research endeavors to
embrace and employ this protocol as a standard for evaluat-
ing the robustness of reconstruction methods.

E. Limitations
Our approach inherits similar limitations from prior meth-
ods [7, 54]. First, our method entails a prolonged optimiza-
tion time, stemming from the utilization of unrolling recon-
struction networks [7, 54], in contrast to post-processing-
based denoising methods [19, 49]. While our method repre-
sents the fastest unrolling network, there is still a need to ad-
dress the existing gap. Integrating Limited-memory BFGS
into our QN-Mixer framework is an interesting research di-

rection for accelerating training. Second, while we have as-
sessed our method using the well known AAPM low-dose
and DeepLesion datasets and compared it with several state-
of-the-art methods, the evaluation is conducted on images
representing specific anatomical regions (thoracic and ab-
dominal images). The generalizability of our method to a
broader range of datasets, which may exhibit diverse char-
acteristics or variations, remains unclear. Third, the acquisi-
tion of paired data has always been an important concern in
clinic. Combining our approach with unsupervised training
framework to overcome this limitation can be an exciting
research direction. Finally, the incorporation of actual pa-
tient data into our training datasets raises valid privacy con-
cerns. Although the datasets we utilized underwent thor-
ough anonymization and are publicly accessible, exploring
a solution that can effectively operate with synthetic data
emerges as an intriguing avenue to address this challenge.

F. Notations
We offer a reference lookup table, available in Table 12,
containing notations and their corresponding shapes as dis-
cussed in this paper.
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Notation Shape Value(s) Description

nv N∗ {32, 64, 128} The number of projection views
nd N∗ 512 The number of projection detectors
h N∗ 256 Height of the image
w N∗ 256 Width of the image
c N∗ 1 Channels of the image
lh N∗ 64 Latent height
lw N∗ 64 Latent width

m = nv × nd N∗ nv × 512 Data (sinogram) size
n = h× w N∗ 256× 256 Image size

(lh · lw)× (lh · lw) R (64 · 64)× (64 · 64) Size of the latent BFGS optimization variable i.e. H
T N∗ 14 Number of iterations of our method
t N - Iteration of the loop in the algorithm
y nv × nd - Sparse sinogram
A Rn×m - The forward model (i.e. discrete Radon transform)
A† Rm×n - The pseudo-inverse of A
x0 Rh×w×c A†y Initial reconstruction
λt R - Regularization weight at step t
αt R - Step size (i.e. search step)
xt Rh×w×c - Reconstructed image at iteration t

∇xJ(xt) Rh×w×c - Gradient value at iteration t
Ht R(lh·lw)×(lh·lw) - Approximation of the inverse Hessian matrix at iteration t
In×n Nn×n - Identity matrix of size n× n
ft Rh×w×d - Feature map after the Inception block at iteration t

et R
h
p×w

p ×d - MLP-Mixer embeddings
d R 96 Depth of features
p N∗ 4 Stride and kernel size in the patchification Conv 2D net
N N∗ 2 Number of stacked Mixer layers
G(·) - - Learned gradient of the regularization term (i.e. the Incept-Mixer model)
G(xt) Rh×w×c - Regularization term at step t
E(·) - - The gradient encoder
D(·) - - The direction decoder
k N∗ {2, 3, 4, 5} Number of Downsampling stacks in the encoder

fE = 2k N∗ {4, 8, 16, 32} Downsampling factor of the gradient in the encoder
wl = w/fE N∗ {64, 32, 16, 8} Number of columns of the down-sampled gradient
hl = h/fE N∗ {64, 32, 16, 8} Number of rows of the down-sampled gradient

rt = E(∇xJ(xt)) Rlh·lw - Latent representation of the gradient
st = −Htrt Rlh·lw - Direction in the latent space
ρt = (zT

t st)
−1 Rlh·lw - BFGS divider variable

N0 - - Zero noise added to the sinogram
N1 - - 5% Gaussian noise, 1× 106 intensity Poisson noise
N2 - - 5% Gaussian noise, 5× 105 intensity Poisson noise

Table 12. Lookup table of notations and hyperparameters used in the paper.
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