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Abstract

For many ill-posed inverse problems, such as photoacoustic imaging, the uncer-
tainty of the solution is highly affected by measurement noise and data incomplete-
ness (due, for example, to limited aperture). For these problems, the choice of prior
information is a crucial aspect of a computationally effective solution scheme. We
propose a regularization scheme for photoacoustic imaging that leverages prior
information learned by a generative network. We train conditional normalizing
flows on pairs of photoacoustic sources (the unknowns of the problem) and the
associated data in order to exploit the posterior distribution of the solution. The
learned prior is combined with physics-based optimization (enforced by partial
differential equations), according to the deep prior framework, in order to achieve
robustness with respect to out-of-distribution data. Numerical evidence suggests
the superiority of this approach with respect to non-conditional deep priors, and
the ability to retrieve features of the unknowns that are typically challenging for
limited-view photoacoustics.

1 Introduction

Photoacoustic imaging is a biomedical imaging technique based on the photoacoustic effect [17].
It leverages the interplay between optics and acoustics as a mean to circumvent the limitations of
imaging modalities relying on single-type physics. Light beams generated by a pulsed laser can
penetrate biological tissues by several centimeters, and are absorbed based on oxygen saturation or
hemoglobin concentration. While optical absorption is in principle an ideal parameter for medical
imaging (e.g., with respect to the detection of cancerous tissue), strong scattering imposes important
limitations in its imaging resolution. Ultrasonics, on the other hand, can theoretically provide
resolution of medical diagnostic value, but produce images of mechanical properties whose contrasts
are not sensitive. In photoacoustics, optical and acoustic effects are combined to gain the best of both
worlds. Under conditions of thermal and stress confinement, thermal energy can efficiently build
up in biological tissues, which in turn undergo thermal expansion and effectively act as a spatially
distributed acoustic source. In photoacoustic imaging, the actual object of interest is the induced
source, as it is directly related to optical absorption and can be recovered with a relatively higher
resolution than pure optical imaging, based on the acquired ultrasonic data.
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Photoacoustic imaging boils down to an initial value problem. The pressure field p, function of space
and time, obeys the acoustic wave equation: c−2∂ttp−∆p = 0,

∂tp|t=0 = 0,
p|t=0 = p0.

(1)

We are interested in retrieving the initial pressure distribution p0 from acoustic data. However, due to
the intrinsic limitations of optics, the viable imaging depth for human tissue ranges around 1-4 cm,
so that the receiver geometry has typically a one-sided view of the object [as for planar sensors, [8].
This restricted view poses serious challenges for photoacoustic imaging.

Due to measurement incompleteness, one has to resort to prior information. In a Bayesian setting,
we posit a data likelihood d = Ax + εεε, where the Gaussian white noise εεε is independent from x,
which represents the initial distribution value p0 appearing in equation (1). The linear operator A
comprises the solution of the equation ( 1) followed by the restriction to the receiver position. The
prior information is encapsulated by a probability density pprior. The solution is estimated by solving
the problem:

min
x

1

2
∥Ax− d∥2 − λ log pprior(x), (2)

for a given weighting parameter λ, to be properly tuned. For example, the compressed sensing
paradigm enforces sparsity of the unknown in some transformed domain via ℓ1-norm regularization.
This class of "hand-crafted" priors are well studied from a theoretical point of view [5], but they
typically do not take advantage of domain-specific knowledge of the problem.

In recent years, many applications of deep learning to linear inverse problems have dealt with priors
implicitly defined by neural networks, e.g. by pre-training a generative network on a collection of
candidate solutions [4] or without training by directly exploiting the network inductive bias that favors
natural-looking images [14]. Our proposal consists of a deep prior solution to photoacoustic imaging,
similarly to [4] where the generative model is now trained on joint pairs of photoacoustic sources and
associated measurements. The network is structured as a conditional normalizing flow [2, 15], so that
it is able to generate samples from the posterior distribution of x given data y. For out-of-distribution
data y, however, the learned posterior distribution does not adequately represent the analytical
posterior. We then resort to the physics-based formulation in equation (2) in combination with
the learned conditional prior to compute the maximum a posteriori solution (MAP). Our approach
takes advantage of the favorable trade-off between the representation error and over fit for invertible
networks when compared to other generative models [3, 9].

2 Related work

The regularization scheme described in this paper follows the deep prior literature originally spun
from the work of [4], which consists in reparameterizing the inverse problem unknowns by the input
of a pre-trained generator. A closely related method is the deep image prior of [14]. This method
must resort to early stopping strategy to avoid overfiting and only relies on the regularization effect of
the network inductive bias. The complementary strengths of these two approaches can be combined
in a hybrid scheme, e.g. by using image-adaptive priors [7]. Our proposal is similar to the deep prior
application to magnetic resonance imaging discussed in [9], which uses invertible networks. The
advantages of using normalizing flows in the deep prior context were originally advocated by [3].
We extend the normalizing flow approach by using conditional architectures, as described in [2] and
[15]. Normalizing flows have been subject to a great deal of research, we refer to [10] and [11] for
general overviews. The network architecture analyzed in this paper is HINT, discussed in [1] (and
later generalized to the conditional setting in [2]). An application of conditional normalizing flows in
variational inference was recently discussed in [12].

3 Methods

The proposed method aims at regularizing the inverse problem in equation (2) with a learned prior.
The first stage of the algorithm consists of training a generator given access to a dataset of joint pairs
x,y ∼ pX,Y (x,y), where y = ATd is time-reversed data (referred to as the adjoint solution). We
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(a) (b)

Figure 1: Samples from the posterior distribution learned in the pre-training phase. Here, we display
the results for: (a) in-distribution data (e.g. test data); (b) out-of-distribution data. Due to limited
aperture (the receivers are located at the position “z=0“), the areas of highest uncertainty correspond
to the vertical features of the blood vessel system.

train a normalizing flow fθθθ : X × Y → Zx × Zy by minimizing the Kullback-Leibler divergence
between the target density pX,Y and the pull-back of the standard Gaussian distribution defined on
the latent space Zx × Zy via fθθθ [10, 11]:

min
θθθ

KL(pX,Y ∥pθθθ) = Ex,y∼pX,Y (x,y)
1

2
∥fθθθ(x,y)∥2 − log |det Jfθθθ (x,y)|. (3)

Here, Jfθθθ denotes the Jacobian of fθθθ with respect to the input. Following [2], we impose a triangular
structure on the normalizing flow, e.g. fθθθ(x,y) = (fzx

θθθ (x,y), f
zy
θθθ (y)). We choose the conditional

architecture of the HINT invertible network, whose original (non-conditional) form was proposed
in [1]. After an ideal optimization of equation (3), sampling from the posterior distribution x ∼
pX|Y (x|y) is equivalent to computing the latent data code zy = f

zy
θθθ (y) and evaluating f−1

θθθ (zx, zy)
for random zx’s. This first phase does not require repeated evaluation of the physical model A
appearing in equation (2), which helps in relieving the computational burden of solving partial
differential equations at scale.

When faced with out-of-distribution data, we can reasonably assume that the results previously
obtained are not as reliable as for in-distribution data. The second stage of the proposed method then
relies on the physics model in equation (2) and uses the pre-trained generator as an implicit deep
prior. Formally, we end up solving the problem:

min
zx

1

2

∥∥Af−1
θθθ (zx, zy)− d

∥∥2 + λ2

2
∥zx∥2 , zy = f

zy
θθθ (ATd). (4)

Note that the minimization is carried over the latent variables related to the unknowns x. The
computational effort to evaluate A and its adjoint is manageable when single data d is considered.

4 Results

The results related to the training of the generative model are collected in Figure 1. The training
set consists of images of blood vessel systems x and time-reversed data y = ATd measured at the
receiver location located on top of the image[6]. The measurements are generated synthetically by
solving the wave equation and adding Gaussian white noise. We qualitatively compare samples drawn
from the learned posterior distribution for in- and out-of-distribution data.

In Figure 2, we compare the reconstruction results for out-of-distribution data by solving the problem
in equation (2) with different choices for the prior. In particular, we consider a non-informative
Gaussian prior and learned priors trained on a dataset of samples x’s and joint pairs x,y’s (our
proposal). A qualitative inspection and quality metrics indicate superior results for the conditional
prior approach. Further comparison of the results regarding data fit is shown in Figure 3.

5 Discussion and conclusions

In limited-view photoacoustic imaging, the resolution of deep near-vertical structures in a blood vessel
system is a fundamental challenge due to the relatively weak imprint on the measurements. Note that
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Figure 2: Reconstruction results for photoacoustic imaging. We compare MAP estimates obtained
with different priors: (a) ground-truth, (b) Gaussian prior, (c) learned (marginal) prior pX(x), (d)
learned conditional prior pX,Y (x,y).

(a) (b) (c)

Figure 3: Data fit for some of the reconstruction results shown in Figure 2: (a) Gaussian prior, (b)
learned (marginal) prior pX(x), (c) learned conditional prior pX,Y (x,y).

similar issues are common for other wave-equation-based imaging applications such as geophysical
prospecting [13]. Conventional regularization methods based on sparsity in some transformed domain
are typically too generic and practically unable to fill the sensitivity gap. A straightforward alternative
is to use problem-specific information.

We proposed a regularization scheme for photoacoustic imaging that employs deep priors learned in
an offline phase. The generative model is trained on a dataset containing pairs of candidate solutions
and associated measurements, the goal is to learn the posterior distribution of the solution given some
data. The primary scope of this work is to compare the regularization effect of conditional deep priors
with "marginal" deep priors proposed in the recent past for many imaging applications.

The results presented in this paper suggest that the MAP estimate based on conditional deep priors is
able to recover the vertical features of a blood vessel image. Our results also show that the marginal
deep prior is more prone to misplace features. In our view, learned prior regularization can be
beneficial for highly ill-posed problems such as limited-view photoacoustic imaging. However, we
must further assess the bias imposed by this type of learned priors.

The dataset used in this work is a derivative of the ELCAP lung dataset prepared by [6].
The results presented here use a Julia implementation of invertible network architectures:
https://github.com/slimgroup/InvertibleNetworks.jl [16]. A Julia repository to reproduce the ex-
periments herein described can be found in https://github.gatech.edu/rorozcom3/PhotoVI.jl.
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