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ABSTRACT

Large language models (LLMs) present significant risks when used to generate non-factual
content and spread disinformation at scale. Detecting such LLM-generated content is
crucial, yet current detectors often struggle to generalize in open-world contexts. We
introduce Learning2Rewrite, a novel framework for detecting AI-generated text with
exceptional generalization to unseen domains. Our method leverages the insight that
LLMs inherently modify AI-generated content less than human-written text when tasked
with rewriting. By training LLMs to minimize alterations on AI-generated inputs, we
amplify this disparity, yielding a more distinguishable and generalizable edit distance
across diverse text distributions. Extensive experiments on data from 21 independent
domains and four major LLMs (GPT-3.5, GPT-4, Gemini, and Llama-3) demonstrate that
our detector outperforms state-of-the-art detection methods by up to 23.04% in AUROC
for in-distribution tests, 37.26% for out-of-distribution tests, and 48.66% under adversarial
attacks. Our unique training objective ensures better generalizability compared to directly
training for classification, when leveraging the same amount of learned parameters. Our
findings suggest that reinforcing LLMs’ inherent rewriting tendencies offers a robust and
scalable solution for detecting AI-generated text.

1 INTRODUCTION

Large Language Models (LLMs) demonstrate exceptional capabilities across various tasks (Radford et al.,
2019; Brown et al., 2020; Achiam et al., 2023; Touvron et al., 2023; Team et al., 2023; OpenAI, 2020).
However, they can be misused for illegal or unethical activities, such as spreading misinformation (Chen &
Shu, 2023), scaling spear phishing campaigns (Hazell, 2023), facilitating social engineering and manipulation
of social media (Zhang et al., 2024), and generating propaganda (Pan et al., 2023). LLMs also facilitate
academic dishonesty (Zellers et al., 2019; Mvondo et al., 2023), and training foundation models with generated
content can lead to irreversible defects in resulting models (Shumailov et al., 2023). These issues highlight
the urgent need for reliable algorithms to detect LLM-generated text.

Various methods for detecting generated text have been proposed (Solaiman et al., 2019; Fagni et al., 2021;
Mitrović et al., 2023; Mitchell et al., 2023; Su et al., 2023; Liu et al., 2024; Bao et al., 2024; Mao et al.,
2024). Most of these detectors employ pre-trained models, extracting hand-crafted features and heuristics,
such as loss curvature (Bao et al., 2024) and rewriting distance (Mao et al., 2024), and apply thresholds to
distinguish LLM from human data. However, these thresholds are highly domain-dependent, obfuscating the
establishment of a universal detection standard.

In this paper, we present L2R (Learning to Rewrite), which trains an LLM to perform more edits when being
asked to rewrite human-generated data and fewer edits when rewriting on LLM-generated data across a
diverse set of domains. Unlike traditional detectors, which work well in-distribution (ID) but often struggle to
generalize among out-of-distribution (OOD) domains (including adversarial attacks), our algorithm leverages
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Figure 1: Rewriting for LLM Text Detection. The histograms on the left show the similarity between human
and AI texts before and after fine-tuning a rewrite model on two domains. Purple and Yellow represent human
and AI distributions for Product Review texts, while Blue and Orange represent those for Environmental texts.
Initially, human and AI texts are inseparable by a single threshold (red line, above). After fine-tuning, the
texts can be separated by this threshold (below). On the right, we conceptualize L2R’s intuition by showing
that the rugged decision boundary between human and AI texts, caused by varying data distributions across
domains, can be better aligned and divided by a single threshold after fine-tuning.

the inherent tendency of LLMs to modify their own output less frequently, and maximizing its generalizability
by focusing on learning a single rewriting threshold across diverse distributions. Figure 1 illustrates an
example of how L2R learns to make LLM and human generated text more separable across domains,
comparing with rewriting using a pre-trained model (Mao et al., 2024).

Visualizations and numerical results demonstrate that our targeted training objective enables LLMs to better
capture the intricate structure of AI-generated content. To reflect the rapid advancements and real-world
diversity of LLM-generated text, we in addition constructed a dataset spanning 21 domains (e.g., finance,
entertainment, cuisine) using four different generator models. L2R surpasses the state-of-the-art detectors,
achieving up to 19.56% higher AUROC ID and 35.10% higher OOD than Verma et al. (2024), 23.04%
higher ID and 37.26% higher OOD than Bao et al. (2024), and 10.39% higher ID and 4.67% higher OOD
than Mao et al. (2024). Comparing with fine-tuning a Llama-3 model for naive text classification, L2R has
51.35% higher AUROC OOD despite leveraging the same number of parameters. These results demonstrate
that our training objective offers superior accuracy and generalizability. Furthermore, our method provides
interpretability by highlighting the rewritten portions of the text. We will release our data, code, and models
upon acceptance.

2 RELATED WORK

Various AI-generated text detectors have been proposed over the years. One set of detectors directly
train a model on the input text (Solaiman et al., 2019; Fagni et al., 2021; Mitrović et al., 2023). These
methods excel in their training domains but struggle under OOD evaluation (Uchendu et al., 2020; Pu
et al., 2023), namely detection with text from different domains or unfamiliar models. The second set of
detectors utilize the raw outputs, i.e., logits, from pre-trained LLMs to assign probability score for detection.
GLTR (Gehrmann et al., 2019) utilizes statistical features like log probability, word rank, and entropy to
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INPUT HUMAN
Poverty is now lower than at any time in human history, and 
all trends demonstrate that we will have consistent 
successes in the fight against poverty in the foreseeable 
future.

INPUT GPT-4o
While poverty is currently at its lowest levels in human 
history, ongoing efforts and trends suggest that we will 
continue to make significant strides in the battle against 
poverty in the foreseeable future.

REWRITTEN HUMAN
While poverty rates have decreased globally, there is still 
much work to be done to address this issue. However, with 
consistent efforts, we can expect continued progress in the 
fight against poverty in the foreseeable future.

REWRITTEN GPT-4o
While poverty is currently at its lowest levels in human 
history, ongoing efforts and trends suggest that we will 
continue to make significant strides in the battle against 
poverty in the foreseeable future.
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INPUT HUMAN
Poverty is now lower than at any time in human history, and 
all trends demonstrate that we will have consistent 
successes in the fight against poverty in the foreseeable 
future.

INPUT GPT-4o
While poverty is currently at its lowest levels in human 
history, ongoing efforts and trends suggest that we will 
continue to make significant strides in the battle against 
poverty in the foreseeable future.

REWRITTEN HUMAN
While poverty rates have decreased globally, it is crucial to 
recognize that the fight against poverty is ongoing. By 
implementing effective solutions and addressing the root 
causes of overpopulation, we can work towards a more 
sustainable and equitable future.

REWRITTEN GPT-4o
Despite reaching historic lows, poverty remains a pressing 
issue. However, the progress made to date and ongoing 
initiatives suggest that we will continue to make substantial 
strides in the fight against poverty in the near future, 
ultimately paving the way for a more equitable and 
prosperous world.
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Prompt: Refine this for me please:Input: Educational Material Domain Output Rewrite Edit Distance

Insertion: 91
Deletion: 13
Substitution: 71

Distance: 0.69

Insertion: 107
Deletion: 14
Substitution: 53

Distance: 0.58

Insertion: 54
Deletion: 5
Substitution: 60

Distance: 0.53

Insertion: 0
Deletion: 0
Substitution: 0

Distance: 0

Academic
Research
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Record
Creative
Writing

Medical 
Text

Product
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Technical 
Writing

Religious
Text

…… 
12 more

Figure 2: Overview. Deleted characters are marked in red, added characters are marked in blue, and
unmodified characters are in black. We exploit the difference in rewriting distance between human and AI
texts for classification. While the off-the-shelf Llama-3 model give different amount of rewrite for human and
AI texts (above), rewrites from our fine-tuned model are much more separable (below).

assign score, Ghostbuster (Verma et al., 2024) utilizes log probability and unigram and bigram probability,
DetectGPT (Mitchell et al., 2023) employs the delta in log probability of the input text after token perturbation
to estimate AI likehood, and Fast-DetectGPT (Bao et al., 2024) simplifies the process by exploiting conditional
probability curvature. Ippolito et al. (2020) reveals that decoding strategies optimized for human-like text
inadvertently introduce statistical artifacts that automated systems can detect with ease. These family of
detectors all require raw output of an LLM in some way or the other, but the main target of detection, namely
commercial LLMs, are not open-sourced, which potentially impose a barrier on their probability estimation.
Lastly, RAIDAR (Mao et al., 2024) is a detection method based on the observation that LLMs, when prompted
to rewrite a given text, tend to produce a greater number of rewrites for human-written text compared to
AI-generated text. Despite the attempt on capturing rewrite edit distance as a domain-agnostic feature, the
rewrite amount still varies across distributions, and the threshold of rewrite amount between human and AI
texts learned on training domains does not generalize to OOD, which limits its full potential.

3 METHOD

3.1 REWRITING FOR LLM DETECTION

Rewriting input with LLM and then measuring the change proves to be a successful way to detect LLM-
generated content. Given an held-out input text set Xtrain with LLM and human generated text, and its
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corresponding label set Ytrain, an LLM F (·) is prompted to rewrite the input x ∈ Xtrain using a prompt p.
The rewriting output is F (p,x). Particularly, the prompt p can be set to: Refine this for me please.

The edit distance between the input text and the rewritten output, D(x, F (p,x)), is then computed for all
x ∈ Xtrain. Mao et al. (2024) adopts the Levenshtein distance (Levenshtein et al., 1966), which is defined as
the minimum number of insertions, deletions, or substitutions required to transform one text into the other.
With the Levenshtein distance, a similarity score we use for classification is calculated based on:

Dk(x, F (p,x)) = 1− Levenshtein(F (p,x),x)

max(len(F (p,x)), len(x))
. (1)

Mao et al. (2024) trains a classifier, such as logistic regression or decision tree, to threshold the similarity
scores and predict if it is written by an LLM. However, as shown in Figure 1, the threshold of rewriting with a
vanilla LLM often varies from one domain to another, causing RAIDAR to fail to generalize to new domains.

3.2 FINE-TUNING THE REWRITE MODEL

L2R works on the premise that human-written and AI generated text would cause a different amount of
rewrites and a boundary can be drawn to separate both distributions. Thus we can finetune such a rewrite
model F ′(·), that gives as much rewrite as possible for human texts, while leaving the AI texts unmodified,
demonstrated in Figure 2. Given some human text xh ∈ Xtrain and AI text xai ∈ Xtrain, our objective
becomes:

max{D(xh, F
′(p,xh))−D(xai, F

′(p,xai))} (2)

Since the edit distance is not differentiable, we use the cross-entropy loss L(·) assigned to the input x by
F ′(·) as a proxy to the edit distance. As a result, for each of input x with label y = 1 (AI) or 0 (human), our
loss function becomes:

min{L(Xtrain) · ytrain}, ytrain =

{
1 (AI)
−1 (human)

(3)

In this way, we flip the sign of the loss of the human texts. Since the overall loss would be minimized, this
effectively encourages the rewrites to be different from human input and identical to the AI input.

3.3 CALIBRATION LOSS DURING FINE-TUNING

When fine-tuning the rewrite model on Equation 3, the rewrite model aims to maximize the edits on human-
generated text and minimize the edits on LLM-generated texts. However, without posting regularization and
constraint on the unbounded loss, the rewrite model takes the risk of being corrupted (e.g., verbose output for
all rewrite and over-fitting with more edits on human-generated text rewrite) which we evaluated in §A.5.

Therefore, we propose a calibration loss, which prevents the over-fitting problem by imposing a threshold
value t on the absolute value of the loss on each given input. For human text xh, we apply gradient
backpropagation only if the absolute loss L(xh) < t. For AI text xai, we apply backpropagation only if
L(xai) > t. Otherwise, the gradient is set to 0. We show a pseudocode for the algorithm in 1.

Therefore, rather than minimizing the loss proxy, our objective becomes separating the distribution of human
and AI rewrites to two ends of the threshold t. Concretely, this enables the model to only optimize against
the hard examples, and leave those already correctly classified unchanged, so that we prevent overfitting.
This is similar to DPO (Rafailov et al., 2023), where we fine-tune the rewrite model using only preference
data, namely the rewrites that are not yet separated by the existing boundary. This process is depicted by the
graphical illustrations in Figure 1.

4



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

Algorithm 1 Calibration Loss Calculation

Require: Threshold t, loss L(·), human text xh, AI text xai

1: Lh ← L(xh), Lai ← L(xai), L← 0
2: L← L+ Lh if Lh < t
3: L← L+ Lai if Lai > t
4: return L

To determine the threshold t, we perform a forward pass using the rewrite model before fine-tuning on Xtrain

and train a logistic regression model on all loss values. The threshold t can be derived from the weight and
the intercept of the logistic regression model. In practice, applying the calibration loss improves detection
performance by 4.54% in AUROC among the 21 domains, from 0.8555 to 0.9009.

4 DATASET

Existing detectors are often evaluated on datasets such as SQuAD (Rajpurkar et al., 2016), XSum (Narayan
et al., 2018), and Writing Prompts (Fan et al., 2018). However, these datasets typically represent a narrow
subset of available data, both in terms of timeliness and domain coverage. This limitation raises concerns
about over-fitting and uncertainty regarding how these detectors would perform when deployed in real-world
scenarios, highlighting the necessity in creating a dataset of diversely-distributed texts for training.

4.1 DATA COLLECTION

To ensure the robustness and generalizability of our detection model, we construct a dataset consisting of
human-written text from 21 distinct domains, including finance, entertainment, cuisine, etc. For each domain,
we collect the texts either by crawling online platforms like Wikipedia or by sampling from publicly available
datasets. From these collections, we randomly select 200 complete paragraphs as text snippets which yields
an average length of 120 words among the samples. For each of these 200 human-written samples per
domain, we generate four AI-written counterparts using four state-of-the-art LLMs: GPT-4o (OpenAI, 2024),
GPT-3.5-Turbo (OpenAI, 2020), Gemini 1.5 Pro (Reid et al., 2024), and Llama-3-70B-Instruct (Meta, 2024).
This results in a total of 21,000 text samples across all domains. Detailed descriptions of the domains and
their sources are provided in §A.1, and examples of the dataset are shown in Figure 5.

4.2 PROMPT DIVERSITY

Conventionally, AI-generated text is created by prompting LLMs to either rewrite a given text or continue
writing from a given prefix, often using a single, static prompt for the entire process (Mitchell et al., 2023;
Bao et al., 2024; Verma et al., 2024; Mao et al., 2024). However, real-world text generation involves a wide
variety of prompts, which can significantly alter the distribution of the generated text. Previous work (Mao
et al., 2024) has shown that one straightforward way to bypass the RAIDAR detector is by using the prompt
"Help me rephrase it, so that another GPT rewriting will cause a lot of modifications,"
which suggests that data generated by different prompts are different in distribution, indicating the importance
of prompt diversity. To address this, we curate a dataset of 200 rewrite prompts, each containing slight
variations in phrasing and instructions. For each generated text, a prompt is randomly sampled from this
dataset. Examples of the prompts we use are provided below:

• Refine this for me please:
• Please rewrite this content in your own words:
• Make this text more formal and professional:

5
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• Make this text more casual and friendly:
• Rephrase this text in a more elaborate way:
• Reframe this content in a more creative way:
• Can you make this text sound more enthusiastic?
• Rewrite this passage to emphasize the key points:
• Help me rephrase it, so that another GPT rewriting will cause a lot of modifications:

For Gemini rewrite, training on diversely-prompted dataset increases testing AUROC from 0.7302 to 0.7566.
For Llama rewrite, AUROC increases from 0.7888 to 0.7970. This shows that diverse prompts effectively
enables the model to better capture the distribution of AI texts in the real world, whose generation prompts
are expected to vary significantly.

4.3 DATA CLEANING

In collecting human-written text, we ensure that no data is generated after November 30, 2022, the release
date of ChatGPT (OpenAI, 2020), avoiding contamination of human dataset with AI-generated content.
Instead of removing all entries that are either too short (less than 10 words) or too long (over 300 words), we
retain them while maintaining an overall average length of 120 words across different domains, with standard
deviation in length being 108 words. For AI-generated text, we carefully remove any extraneous suffixes,
such as “Sure, here is a...,” to avoid them be detected in this way.

5 EVALUATION

This section answers the following questions:

Q1: How does L2R compare with other detectors? (§5.3)
Q2: How does L2R perform when OOD? (§5.4)
Q3: How does L2R perform under adversarial attacks? (§5.5)
Q4: How does L2R’s training objective compare with directly training for binary classification? (§5.6)
Q5: How does training on our proposed dataset contribute to L2R’s performance? (§5.7)

5.1 EXPERIMENT SETUP

We perform all experiments on one NVIDIA A100 GPU with 40GB VRAM. We use ’meta-Llama/Meta-
Llama-3-8B-Instruct’ (AI@Meta, 2024) as the open-sourced rewrite model in all experiments. To fine-tune
the Llama model with 8B parameters, we employ 4-bit QLoRA (Dettmers et al., 2024), with parameter r
set to 16, lora_alpha set to 32, and lora_dropout set to 0.05, unless otherwise noted. We use an initial
learning rate of 5e-6, a weight decay of 0.01, and a batch size of 32 to train until convergence. We use 70% of
the dataset for training and the rest for testing in all experiments.

5.2 BASELINES

Our baseline detectors consist of Fast-DetectGPT (Bao et al., 2024), Ghostbusters (Verma et al., 2024),
RAIDAR (Mao et al., 2024), and a custom approach named ’Llama Logits,’ which involves training a
Llama-3-8B model together with a classifier (same size as RAIDAR and L2R) on its logits output to perform
naive text classification. For Ghostbuster, RAIDAR and ’Llama Logits’, we train and test these detectors
on the identical training and testing sets as L2R. For Fast-DetectGPT, we use its local version available
at Fast-DetectGPT (2024). For ’Llama Logits,’ we train its Llama model using the same LoRA configurations
as the rewrite model in L2R for a fair comparison. We also experiment on using a close-sourced model,
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Gemini 1.5 Pro (Reid et al., 2024) (referred to as Gemini Rewrite), as the rewrite model for RAIDAR in
addition to Llama Rewrite. We set the sampling temperature to 0 when using Llama for rewriting during
training and detection.

5.3 COMPARE L2R WITH OTHER DETECTORS

We compare the performance of L2R with Fast-DetectGPT, Ghostbusters, and RAIDAR (Llama Rewrite and
Gemini Rewrite), by measuring the Area Under the Receiver Operating Characteristic Curve (AUROC) scores.
The resulting scores for each domain along with their average and standard deviation can be found in Table 1.
L2R constantly outperforms both configurations of RAIDAR in all domains; outperforms Fast-DetectGPT in
20 of 21 domains by an average of 23.04% in AUROC; and outperforms Ghostbusters in 20 of 21 domains
by an average of 19.56% in AUROC. L2R has a 5.62% lower AUROC score than Fast-DetectGPT on legal
document domain, and a 1.62% lower AUROC score than Ghostbusters on literature creative writing domain,
which might be due to the unique distributions of these domains: legal documents require a more rigorous
writing style, while creative writing has a more casual style, thus leaving fewer room for rewrite even for
human writers.

In general, the fluctuating AUROC scores indicate the challenging nature of our dataset and the diversity and
independence of the distributions across domains. These results also show that L2R has better knowledge of
the intricate differences between human and AI texts in various domains compared with the baselines, and is
more capable in the real-world setting.

5.4 OOD DATASET EVALUATION

We showed that L2R outperforms the state-of-the-art detectors ID in terms of AUROC scores, but it is equally
important to assess its robustness under OOD conditions, as training-based detectors are prone to overfitting to
familiar domains and generator models. We first evaluate this by showing its performance on OOD datasets.

To assess L2R’s performance on OOD data, we adopt the M4 dataset (Wang et al., 2024), an OOD dataset
that is different from our training data in multiple dimensions, including data generation models, text length,
decoding strategy, and domains. We show a comparison in 2.

The results of the OOD evaluation are presented in Table 3. We include both ID and OOD results to highlight
the degree of overfitting for each detector. While the Llama Logits method achieves the highest ID AUROC,
its OOD result is the lowest, indicating significant overfitting to the training data. Similarly, Ghostbuster
shows overfitting with its OOD AUROC being roughly half of its ID performance. The naive rewrite-based
approach shows superior robustness compared with these other methods, but L2R trained with reduced
parameters, i.e. rank r set to 4 and lora_alpha set to 8 (reduced params), outperforms Llama Rewrite by
3.45% ID and 4.67% OOD. This demonstrates that our fine-tuning does not simply overfits the rewrite model
to the training data, but enhances its classification performance across diverse distributions.

We notice that reducing the number of training parameters make the model more generalizable, and further
investigate the impact of fine-tuning parameters on L2R’s performance ID and OOD. By adjusting the
LoRA parameters r and lora_alpha, we define four fine-tuning configurations with the number of trainable
parameters ranging from 851,968 to 6,815,744, with details listed in §A.4. Figure 3 illustrates the results,
where we observe a consistent increase in ID AUROC, accompanied by a decline in OOD AUROC as the
number of parameters grows. This suggests that the model becomes increasingly overfitted to the training
distribution. L2R either outperforms Llama Logits OOD or both ID and OOD, and all four configurations
outperform Ghostbusters and Fast-DetectGPT both ID and OOD. Also, the first two configurations surpass
RAIDAR in terms of AUROC across both settings.
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Domain Fast-DetectGPT Ghostbusters RAIDAR
(Gemini Rewrite)

RAIDAR
(Llama Rewrite) Llama L2R

AcademicResearch 0.4664 0.6597 0.7911 0.8311 0.8406
ArtCulture 0.6292 0.6781 0.7711 0.6750 0.8328
Business 0.6829 0.8331 0.8153 0.8369 0.9156
Code 0.6808 0.3770 0.5670 0.3840 0.8383
EducationalMaterial 0.7474 0.8506 0.9339 0.9675 0.9644
Entertainment 0.8392 0.8600 0.7836 0.8319 0.9494
Environmental 0.8382 0.8447 0.9081 0.9228 0.9786
Finance 0.6879 0.7828 0.6917 0.8153 0.9400
FoodCuisine 0.7425 0.6703 0.7181 0.7831 0.9547
GovernmentPublic 0.7100 0.6833 0.7375 0.7619 0.8675
LegalDocument 0.8365 0.5453 0.5528 0.6594 0.7803
LiteratureCreativeWriting 0.7928 0.9456 0.8056 0.9161 0.9294
MedicalText 0.5693 0.6242 0.7614 0.7700 0.7857
NewsArticle 0.5808 0.6800 0.7714 0.8547 0.9242
OnlineContent 0.6292 0.5922 0.7408 0.8231 0.8881
PersonalCommunication 0.5392 0.7042 0.6783 0.7233 0.8239
ProductReview 0.6467 0.7364 0.7150 0.8075 0.9689
Religious 0.6314 0.6111 0.7772 0.8397 0.9775
Sports 0.6015 0.6561 0.6917 0.7869 0.8742
TechnicalWriting 0.6075 0.7242 0.8269 0.8575 0.9369
TravelTourism 0.6210 0.7517 0.8492 0.8897 0.9475
AVERAGE 0.6705 0.7053 0.7566 0.7970 0.9009
STD 0.1015 0.1259 0.0928 0.1212 0.0634

Table 1: Comparison of detection performance measured with AUROC scores. For Ghostbuster and all
rewrite-based detectors, we train a single classifier on the training set of all domains, then test the model’s
performance on the test set of each individual domain. AVERAGE measures the average performance for all
independent domains, and STD measures the standard deviation across domains.

Dataset Ours M4

Generator GPT-3.5-Turbo, GPT-4o, Llama-3-70B, Gemini 1.5 Pro BLOOMz, ChatGPT, Davinci, Cohere, Dolly V2
Text Length Mean: 765 chars, STD: 654 chars Mean: 1365 chars, STD: 244 chars
Decoding Strategy Nucleus Sampling, Temperature = 1, top_p = 1 Varies
Domains 21 domains 5 Non-Overlapping English domains

Table 2: Comparison of characteristics of our dataset and M4 dataset, which we use for OOD evaluation.

5.5 ADVERSARIAL ATTACK

We employ two distinct types of attack to assess L2R’s robustness against the baseline detectors. For both
experiments, we apply the attack to all AI-generated texts in the testing set across all domains, while training
L2R and the baselines on the unmodified training set and evaluating it on the modified testing set.

5.5.1 DECOHERENCE ATTACK

Bao et al. (2024) introduces the decoherence attack where two adjacent, randomly selected words are
transposed in all sentences longer than 20 words within a paragraph for AI texts. Bao et al. (2024) demonstrated
that this simple attack can be highly effective in degrading the performance of sate-of-the-art detectors, without
affecting the core meaning of the input. We present the results of this attack in Table 4, where L2R achieves
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Model In-Distribution Out-of-Distribution

Ghostbusters 0.7053 0.3888
Fast-DetectGPT 0.6705 0.3672
Llama Logits 0.9774 0.1426
Llama Logits (Reduced Params) 0.8016 0.3450
Llama Rewrite 0.7970 0.6931

Llama L2R 0.9009 0.6561
Llama L2R (Reduced Params) 0.8315 0.7398

Table 3: ID and OOD performance measured in AUROC scores. For L2R and Llama logits, the "Reduced
Params" models are tuned with approximately 1/4 of the parameters for better generalizability. With reduced
parameters, L2R has the highest OOD AUROC, outperforming the naive Llama rewrite both ID and OOD by
3.45% and 4.67%, respectively, suggesting its generalizability through fine-tuning.

1 2 3 4 5 6 7
Number of Parameters (1e6)

0.2

0.4

0.6

0.8

1.0

A
U

R
O

C

L2R ID
Llama Logits ID
L2R OOD
Llama Logits OOD

Figure 3: Relationship between the number of train-
able parameters and ID and OOD AUROC scores for
L2R and RAIDAR. As the number of parameters in-
crease from 1×106 to 7×106, both L2R and RAIDAR
show higher ID performance and lower OOD perfor-
mance, showing how the effect of overfitting emerges
as we increase the LLM’s trainable parameters. L2R
outperforms Llama Logits either OOD or both ID and
OOD, showing the superior robustness and accuracy
of L2R.

the highest AUROC on samples subjected to this attack, indicating its superior robustness compared to other
models. This is because our rewrite-based objective function for fine-tuning teaches the model the innate
distributions of human and AI texts, instead of relying on brittle statistical features that are easily altered
through this simple attack.

5.5.2 REWRITE ATTACK

Mao et al. (2024) introduces the rewrite attack where a GPT-3.5-Turbo model is prompted to refine an input
paragraph, generated by AI, in such a way that a subsequent rewrite by another GPT model would result
in significant changes. Mao et al. (2024) showed that this type of attack is particularly effective against
rewrite-based detectors, as it disrupts the rewrite we use for classification. As shown in Table 4, L2R again
achieves the highest AUROC on these attack samples, further demonstrating its robustness through fine-tuning.
This is because its fine-tuning objective creates separable gap between human and AI rewrite ratios that is
large enough so that the attack samples remain in the AI distribution despite the perturbations. Concretely, the
average edit ratio of human texts is 0.6981, and of AI texts is 0.8606. After attack, the ratio for AI decreases
to 0.8386, which suggests that the rewrite attack is effective in shifting the AI distribution towards human,
but there still exists a clear gap between both distributions, so that L2R’s classification performance only
degrades marginally.
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Model No Attack Decoherence Attack Rewrite Attack

Ghostbusters 0.7053 0.4730 0.4061
Fast-DetectGPT 0.6705 0.4984 0.5100
Llama Logits 0.9774 0.7281 0.6563
Llama Rewrite 0.7970 0.7681 0.7944

Llama L2R 0.9009 0.8746 0.8927

Table 4: Adversarial attack results. We employ two types of attacks, namely decoherence and adversarial
rewrite. While all detectors show performance degredation under attack, L2R has the highest AUROC in both
setting, suggesting its robustness through fine-tuning.

5.6 COMPARE L2R WITH DIRECT FINE-TUNING

A valid concern regarding L2R’s superior performance is whether it is due to our fine-tuning objective, which
enhances model’s rewriting ability, or is solely from the fact that we exploit the vast parameters of an LLM.
To answer this question, we compare L2R with the ’Llama Logits’ baseline in Table 3 and 4. The Llama
logits detector involves fine-tuning a Llama-3-8B model not for rewrite, but directly for binary classification.

Previously, we show that despite the Llama classifier has the highest ID AUROC score among all detectors,
surpassing L2R by 7.65%, it has the lowest AUROC when evaluated OOD, up to 51.35% lower than L2R,
which suggests that its performance ID is due to overfitting. This highlights the importance of our fine-tuning
objective function in ensuring domain-agnostic detection accuracy. Also, the Llama classifier is inferior under
adversarial attacks, with 14.65% and 23.64% lower AUROC for decoherence and rewrite attacks, respectively.
This again shows L2R’s robustness in capturing the true underlying distributions of human and AI data.

5.7 EFFECTIVENESS OF THE DIVERSE DATASET

While there exists public datasets that emphasize data diversity, including RAID (Dugan et al., 2024),
RuTAD (Maloyan et al., 2022), and MAGE (Li et al., 2024), the contribution of our proposed dataset lies in
its ability to train a robust and generalizable L2R model. We show this by training L2R on MAGE using the
same number of texts and under the same configurations, then test its performance ID and OOD on the M4
dataset. We compare the results in 5, where L2R trained on our dataset has 15.98% higher OOD AUROC,
suggesting that the diverse text distributions in our dataset is effective in training a robust and generalizable
L2R model.

Training Dataset ID AUROC OOD AUROC

MAGE 0.8333 0.4963
Ours 0.9009 0.6561

Table 5: Comparison of L2R’s ID and OOD performance when trained on MAGE and ours dataset. The
superior OOD performance on our dataset suggests its effectiveness.

6 CONCLUSION

We present L2R, a method designed to enhance the detection of LLM-generated text by learning to rewrite
more on LLM-generated inputs and less on human generated inputs. L2R excels in identifying LLM-generated
content collected across various models and 21 unique domains, both ID and OOD, and under adversarial
attacks. Our work demonstrates that LLMs can be trained to detect content generated by other LLMs,
surpassing previous detection methods in accuracy and generalizability.
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A DATASET DETAILS

A.1 DOMAINS

Our dataset encompasses 21 indepedent domains. Below are the details for each domain in the format of
domain name - source.

• AcademicResearch - Arxiv abstracts (Mao et al., 2024)
• ArtCulture - Wikipedia
• Business - Wikipedia
• Code - Code snippets (Mao et al., 2024)
• EducationalMaterial - Ghostbuster essays (Verma et al., 2024)
• Entertainment - IMDb dataset (IMDb, 2024) and Stanford SST2 (Socher et al., 2013)
• Environmental - Climate-Ins (Spokoyny et al., 2023)
• Finance - Hugging Face FIQA (Thakur et al., 2021)
• FoodCuisine - Kaggle fine food reviews (McAuley & Leskovec, 2013)
• GovernmentPublic - Wikipedia
• LegalDocument - CaseHOLD (Zheng et al., 2021)
• CreativeWriting - Writing Prompts (Fan et al., 2018)
• MedicalText - PubMedQA (Jin et al., 2019)
• NewsArticle - XSum (Narayan et al., 2018)
• OnlineContent - Hugging Face blog authorship (Schler et al., 2006)
• PersonalCommunication - Hugging Face daily dialogue (Li et al., 2017)
• ProductReview - Yelp reviews (Mao et al., 2024)
• Religious - Bible, Buddha, Koran, Meditation, and Mormon
• Sports - Olympics website (Olympics, 2024)
• TechnicalWriting - Scientific articles (Mosca et al., 2023)
• TravelTourism - Wikipedia

A.2 GENERATION PROMPTS

Our dataset encompasses 200 different prompts for generating AI data. Here is an incomplete list of the
prompts we used:

• Refine this for me please:
• Please rewrite this content in your own words:
• Make this text more formal and professional:
• Make this text more casual and friendly:
• Rephrase this text in a more elaborate way:
• Reframe this content in a more creative way:
• Can you make this text sound more enthusiastic?
• Rewrite this passage to emphasize the key points:
• Help me rephrase it, so that another GPT rewriting will cause a lot of modifications:
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A.3 EFFECTIVENESS OF THE DIVERSE PROMPT IN DATA PREPARATION

Our dataset involves 21 independent domains, four source LLMs, and 200 generation prompts, resembling
real-world use cases for text detectors compared with traditional evaluation datasets which are usually
constrained to one single domain and generation prompt. To prove the superiority of our dataset in training
more capable detection models, we create a parallel nondiverse dataset which is created on the same number
of domains and source LLMs, but generate the AI data with only with the prompt "Rewrite this for me
please." Then, we train two RAIDAR detectors without fine-tuning, on the non-diverse dataset, and evaluate
it on the diverse dataset. As shown in Table 6, the diverse prompts yields to 2.64% increase in AUROC score
if the rewrite model is Gemini 1.5 Pro, and 0.82% increase in AUROC score if the rewrite model is Llama-3
8B. This validates the effectiveness of the diverse prompts we were using, and suggests that such diversity
could help the detector to capture more information about real world data distributions.

Dataset Rewrite Model AUROC

Single-Prompt Gemini 0.7302
Multi-Domain Dataset Llama 0.7888

Multi-Prompt Gemini 0.7566
Multi-Domain Dataset Llama 0.7970

Table 6: Comparison of AUROC scores for Gemini and Llama rewrite models on nondiverse and duverse
Datasets. Diverse prompting in the training set enhances detection performance for both models.

A.4 LORA CONFIGURATIONS FOR FINE-TUNING

Table A.4 lists the four fine-tuning configurations we use in §5.4.

r lora_alpha Trainable Parameters

2 4 851,968
4 8 1,703,936
8 16 3,407,872

16 32 6,815,744

Table 7: Parameter settings for LoRA fine-tuning.

A.5 EFFECTIVENESS OF THE CALIBRATION LOSS

An important contribution of ours that improves the fine-tuning performance is the calibration loss, as
proposed in §3.4. Without this loss, the model tends to overfit during fine-tuning as shown in Figure 4, where
the model loss drastically decrease after 1500 steps, resulting in verbose rewrite even for LLM-generated text.
We conduct an ablation study on five domains where the AUROC score is only 0.62 after the model overfits.
We hypothesized that this technique could benefit model learning because the threshold effectively prevents
further modification to model weights once an input, labeled either AI or human, falls in its respectively
distribution already. Since our purpose is simply to draw a boundary rather than separate the distributions
as much as possible, this halt in further weight adjustments facilitates the model to only perform parameter
update on those inputs which are not yet correctly classified, so that it could converge more efficiently and
effectively. Concretely, applying the calibration loss improves detection performance by 4.54% in AUROC
among the 21 domains, even comparing with a model tuned with the loss before over-fitting.
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Figure 4: Training loss curves for the rewrite model. The orange plots the loss trained without the calibration
method, and the blue line plots the loss trained with the method. The later one exhibits faster convergence
and higher stability than the former one.

A.6 DIFFERENT WAYS TO GENERATE OOD DATA

There exists a variety of ways to generate OOD data, including using different generation models, decoding
strategies, text lengths, and writing styles. While we show how M4, the OOD dataset we use for evaluation, is
distinct from our training domain in all above aspects in 2, we conduct an additional ablation study on how
different text length and decoding strategy alone could influence detection performance in 8

Avg Length Decoding Strategy Fast-DetectGPT RAIDAR L2R

120 Nucleus Sampling 0.6833 0.8186 0.9213
60 Nucleus Sampling 0.6500 0.7635 0.8632
120 Greedy Decoding & Beam Search 0.6897 0.8009 0.8750

Table 8: Performance comparison of different setups across models.

We use 200 randomly selected texts from our dataset for both studies. For decoding strategy, we use greedy
decoding for GPT and Gemini models and beam search with num_beams=5 for the Llama model. For text
length, we chunk the texts to an average length of 60. We test L2R on the two datasets and show results below,
where L2R outperforms RAIDAR by 9.97% for the length ablation and 7.41% for the decoding strategy
ablation in AUROC. This further shows L2R’s robustness to different OOD data distributions.

A.7 EFFICIENCY OF L2R

We compare the efficiency of L2R against Llama Logits measured by FLOPS. Llama Logits only requires a
forward pass of the language model, while L2R requires decoding to generate the rewrites. The FLOPS of a
forward pass is 2N per token, where N is the number of parameters (Kaplan et al., 2020). Decoding is more
expensive due to attention computations, but the use of KV cache has reduced this to linear complexity with
respect to sequence length, thus the FLOPS per token remains approximately 2N (Pope et al., 2022). Overall,
we believe we shall not sacrifice robustness just to make the algorithm fast, and our generative method is
important to publish due to the improved robustness.
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A.8 REWRITE EXAMPLES

Academic
Research

INPUT HUMAN
In recent years, several techniques have been proposed 
for increasing robustness to adversarial examples --- 
and yet most of these have been quickly shown to be 
vulnerable to future attacks. For example, over half of 
the defenses proposed by papers accepted at ICLR 
2018 have already been broken.

REWRITTEN HUMAN
Despite recent efforts to increase robustness, most 
proposed techniques have been quickly shown to be 
vulnerable to future attacks. For instance, over half of 
the defenses presented at ICLR 2018 have already 
been breached.

INPUT LLAMA-3-70B
Despite numerous attempts to develop robustness 
against these threats, most proposed defenses have 
been rapidly compromised by subsequent attacks. In 
fact, a staggering 50% of defenses presented at ICLR 
2018 have already been breached.

REWRITTEN LLAMA-3-70B
Despite numerous attempts to develop robustness 
against these threats, most proposed defenses have 
been rapidly compromised by subsequent attacks. In 
fact, a staggering 50% of defenses presented at ICLR 
2018 have already been breached.

Code

Indentation
hidden

INPUT HUMAN
def solve(s): flg = 0 idx = 0 new_str = list(s) for i in s: if 
i.isalpha(): new_str[idx] = i.swapcase() flg = 1 idx += 1 s 
= "" for i in new_str: s += i if flg == 0: return s[len(s)::-1] 
return s

REWRITTEN HUMAN
def solve(s): result = [] for char in s: if char.isalpha(): 
result.append(char.swapcase()) else: 
result.append(char) return "".join(result) if not 
any(char.isalpha() for char in s) else "".join(result)[::-1]

INPUT GPT-4o
def solve(s): has_letter = any(char.isalpha() for char in 
s) if has_letter: return ''.join(char.swapcase() if 
char.isalpha() else char for char in s) else: return s[::-1]

REWRITTEN GPT-4o
def solve(s): has_letter = any(char.isalpha() for char in 
s) if has_letter: return ''.join(char.swapcase() if 
char.isalpha() else char for char in s) else: return s[::-1]

Legal
Document

INPUT HUMAN
This type of information may constitute trade secrets. 
See G.L.c. 266, §30 (defining “trade secret” as used in 
G.L.c. 93, §42

REWRITTEN HUMAN
This type of information may constitute trade secrets. 
Massachusetts General Laws, chapter 266, section 30

INPUT GEMINI 1.5 PRO
This type of information, such as customer data and 
proposals, can be legally protected as trade secrets 
under Massachusetts law (G.L.c. 266, §30).

REWRITTEN GEMINI 1.5 PRO
This type of information, such as customer data and 
proposals, can be legally protected as trade secrets 
under Massachusetts law (G.L. c. 266, § 30).

Creative
Writing

INPUT HUMAN
A voice in the sky will tell you when you've left a place 
for the last time. You tell your SO goodbye and head out 
to [ location of your choice ]. Halfway there you hear 
"You have visited a location for the last time." John 
wrinkled his nose and cleared his throat. Pausing, he 
put down his briefcase and adjusted his tie. It was a red 
tie with white stripes. This was one of his favorite ties.

REWRITTEN HUMAN
As John bid his SO farewell, he headed out to [location 
of his choice]. Halfway there, a voice in his mind 
whispered, "You have visited this place for the last 
time." John's expression faltered, and he paused to 
adjust his tie, a favorite red tie with white stripes.

INPUT LLAMA-3-70B
As John bid farewell to his partner and headed out to 
the city, a mysterious voice in the sky announced, "You 
have visited a location for the last time." He paused, 
adjusting his favorite red tie with white stripes, and 
cleared his throat.

REWRITTEN LLAMA-3-70B
As John bid farewell to his partner and stepped out into 
the city, a mysterious voice in the sky announced, "You 
have visited a location for the last time." He paused, 
adjusting his favorite red tie with white stripes, and 
cleared his throat.

Figure 5: Examples of texts in our proposed dataset along with the amount of edits L2R model gives for
human and LLM data. Deleted characters are marked in red, inserted characters are in blue, and unmodified
characters are in black. The examples demonstrate the diverse domains and source LLMs available in the
dataset, as well as L2R’s ability in separating human and LLM texts via rewriting.
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