Shape Defense

Ali Borji
Quintic Al, San Francisco, CA
aliborji@gmail.com

Abstract

Humans rely heavily on shape information to recognize objects. Conversely,
convolutional neural networks (CNNs) are biased more towards texture. This fact
is perhaps the main reason why CNNs are susceptible to adversarial examples.
Here, we explore how shape bias can be incorporated into CNNs to improve
their robustness. Two algorithms are proposed, based on the observation that
edges are invariant to moderate imperceptible perturbations. In the first one, a
classifier is adversarially trained on images with the edge map as an additional
channel. At inference time, the edge map is recomputed and concatenated to the
image. In the second algorithm, a conditional GAN is trained to translate the edge
maps, from clean and/or perturbed images, into clean images. The inference is
done over the generated image corresponding to the input’s edge map. A large
number of experiments with more than 10 data sets demonstrate the effectiveness
of the proposed algorithms against FGSM, ¢, PGD, Carlini-Wagner, Boundary,
and adaptive attacks. Further, we show that edge information can a) benefit
other adversarial training methods, b) be even more effective in conjunction with
background subtraction, c) be used to defend against poisoning attacks, and d) make
CNNs more robust against natural image corruptions such as motion blur, impulse
noise, and JPEG compression, than CNNs trained solely on RGB images. From
a broader perspective, our study suggests that CNNs do not adequately account
for image structures and operations that are crucial for robustness. The code is
available at: https://github.com/aliborji/ShapeDefense.git

1 Introduction

Our primary goal here is to learn robust models for visual recognition inspired by the observation that
object shape remains largely invariant to imperceptible adversarial perturbations (Fig.[I). Shape is
the signature of an object and plays a vital role in recognition [[I]. Humans rely heavily on edges
and object boundaries, whereas CNNs emphasize more on texture [8, [11]]. This may explain why
adversarial examples are perplexing.

The convolution operation in CNNss is biased towards capturing texture since the number of pixels
constituting texture far exceeds the number of pixels that fall on the object boundary. This in turn
provides a big opportunity for adversarial image manipulation. Some attempts have been made to
emphasize more on edges, for example by utilizing normalization layers (e.g., contrast and divisive
normalization [14]]). Such attempts, however, have not been fully investigated for adversarial defense.
Overall, how shape and texture should be reconciled in CNNs continues to be an open question. Here
we propose two solutions that can be easily implemented and integrated in existing defenses. We
also investigate possible adaptive attacks against them. Extensive experiments across ten datasets,
over which shape and texture have different relative importance, demonstrate the effectiveness of our
solutions against strong attacks. Experiments on more than 10 data sets demonstrate the effectiveness
of the proposed algorithms against FGSM, /., PGD, substitute, Carlini-Wagner, Boundary, and
adaptive attacks (the latter are shown in appendices B, C, D, and E in order).

I (Still) Can’t Believe It’s Not Better Workshop at NeurIPS 2021.

https://github.com/aliborji/ShapeDefense.git

FGSM PGD-40

paper towel adv.img -img edge map edge map adv. owel adv.img -img edge map edge mapadv. diff. edge map
i 300

DeepFool

1000

9
Q
7]

-
@

Figure 1: Adversarial attacks against ResNet152 over the giant panda image using FGSM [9]], PGD-40 [16]
(a=8/255), DeepFool [17] and Carlini-Wagner [3]] attacks. The second columns in panels show the difference
(L) between the original image (not shown) and the adversarial one (values shifted by 128 and clamped). The
edge map (using Canny edge detector) remains almost intact at small perturbations. Notice that edges are better
preserved for the PGD-40.

Algorithm 1 Edge-guided adversarial training (EAT) for T" epochs, perturbation budget ¢, and loss balance ratio
a, over a dataset of size M for a network fy (performed in minibatches in practice). 8 € {edge, img, imgedge}
indicates network type and redetect_train means edge redetection during training.

fort=1...T do
fori=1...Mdo
// launch adversarial attack (here FGSM and PGD attacks)
&; = clip(z; + € sign(Vl(fo (i), yi)))
if 8 == imgedge & redetect_train then
Z; = detect_edge(Z;) / recompute and replace the edge map
end if
C=al(fo(zi),yi) + (1 —) l(fo(Ti),y:) //herea=0.5
0 =60 —YNeol //update model weights with some optimizer, e.g., Adam
end for
end for

2 Proposed methods

Edge-guided Adversarial Training (EAT). In this approach, we perform adversarial training over
the 2D (Gray+Edge) or 4D (RGB+Edge) input (i.e., number of channels; denoted as Img+Edge).
Please see Appx A for illustration of this algorithm (Alg. 1). In another version of the algorithm,
first, for each input (clean or adversarial), the old edge map is replaced with the newly extracted one.
The edge map can be computed from the average of only image channels or all available channels
(i.e., image plus edge). The latter can sometimes improve the results, since the old edge map, although
perturbed, still contains unaltered shape structures. Then, adversarial training is performed over the
new input. The reason behind adversarial training with redetected edges is to expose the network to
possible image structure damage. The loss for training is a weighted combination of loss over clean
images and loss over adversarial images. At inference time, first, the edge map is computed and then
classification is done over the edge-augmented input. As a baseline model, we also consider first
detecting the input’s edge map and then feeding it to the model trained on the edges for classification.
We refer to this model as Img2Edge.

GAN-based Shape Defense (GSD). Here, first, a conditional GAN is trained to map the edge
image, from clean or adversarial images, to its corresponding clean image (Alg. 2). Any im-
age translation method (here pix2pix by [12]] using code athttps://github.com/mrzhu-cool/
pix2pix-pytorch) can be employed for this purpose. Next, a CNN is trained over the generated
images. At inference time, first, the edge map is computed and then classification is done over the
generated image for this edge image. The intuition is that the edge map remains nearly the same
over small perturbation budgets (See Appx A). Notice that conditional GAN can also be trained on
perturbed images (similar to and [13]] or edge-augmented perturbed images (similar to above).

2

https://github.com/mrzhu-cool/pix2pix-pytorch
https://github.com/mrzhu-cool/pix2pix-pytorch

Algorithm 2 GAN-based shape defense (GSD)

// Training
1. Create a dataset of images X = {x;, y; including clean and/or perturbed images
2. Extract edge maps (e;) for all images in the dataset
3. Train a conditional GAN p,(z|e) to map edge image e to clean image x // here pix2pix
4. Train a classifier p.(y|z) to map generated image x to class label y

// Inference
1. For input image z, clean or perturbed, first compute the edge image e
2. Then, compute p.(y|z’) where z’ is the generated image corresponding to e

}i:l---N

3 Experiments and results
3.1 Datasets and Models

Experiments are spread across 10 datasets covering a variety of stimulus types. Sample images from
datasets are given in Fig. 2] Models are trained with cross-entropy loss and Adam optimizer [13]
with a batch size of 100, for 20 epochs over MNIST and FashionMNIST, 30 over DogVsCat, and 10
over the remaining. Canny method [3]] is used for edge detection over all datasets, except DogBreeds
for which Sobel edge detection is used. Edge detection parameters are separately adjusted for
each dataset. We did not carry out an exhaustive hyperparameter search, since we are interested in
additional benefits edges may bring rather than training the best possible models. For attacks, we use
https://github.com/Harry24k/adversarial-attacks-pytorch, except Boundary attack for which
we use https://github.com/bethgelab/foolbox.

3.2 Results
3.2.1 Edge-guided Adversarial Training

Results over MNIST and (10) Fashion (10) Dog (16) @ @3) (50) (250) (10) Tiny (200
MNIST ~ MNIST 00 CIFAR10 Breeds DongCat GTSRB lcons50 Sketch Imagenette ImageNet

- B[

CIFAR-10 are shown in
Tables [2] and [3] respec-
tively (please see Appx

A). In these experiments,
edge maps are computed ‘(

only from the gray-level
image (in turn computed
from the image chan-
nels). Figure 2: Sample images from the datasets. Numbers in parentheses
Over MNIST and Fash- denote the number of classes.

1ionMNIST, robust models trained using edges outperform models trained on gray-level images
(the last column). The naturally trained models, however, perform better using gray-level images than
edge maps (Orig. model column). Adversarial training with augmented inputs improves the robust-
ness significantly over both datasets, except the FGSM attack on FashionMNIST. Over CIFAR-10,
incorporating the edges improves the robustness by a large margin against the PGD-40 attack. At
€ = 32/255, the performance of the robust model over clean and perturbed images is raised from
(0.316, 0.056) to (0.776, 0.392). On average, the robust model shows 64% improvement over the
RGB model (last column in Table @) Over the TinylmageNet dataset, as in CIFAR-10, classification
using edge maps is poor perhaps due to the background clutter. Nevertheless, incorporating edges
improves the results. We expect even better results with more accurate edge detection algorithms
(e.g., supervised deep edge detectors). Over these 4 datasets, the final model (i.e., adversarial training
using image + redetected edge, and edge redetection at inference time) leads to the best accuracy.
The improvement over the image is more pronounced at larger perturbations, in particular against the
PGD-40 attack (as expected; please see Fig. [I).

Over the DogVsCat dataset, as in FashionMNIST, the model trained on the edge map is much more
robust than the image-only model (Table[/|in Appx. A). Over the DogBreeds dataset, utilizing edges
does not improve the results significantly (compared to the image model). The reason could be that
texture is more important than shape in this fine-grained recognition task (Table[8| Appx. A). Over
GTSRB, Icons-50, and Sketch datasets, image+edge model results in higher robustness than the
image-only model, but leads to relatively less improvement compared to the edge-only model. Please

https://github.com/Harry24k/adversarial-attacks-pytorch
https://github.com/bethgelab/foolbox

0.653

- fdge

055 o7 551 542 03] =~ img2Edge 03 | = Img2Edge
518 - img = Img

050 492 02 == Img+Edge 02 | == Img+Edge

o1 | == Img+Edge Redetc 01| = Img+Edoe Redetc

== Robust Full Model = Robust Full Modz!

- Edge

] 8 2 0 8 2
255 255

@

&
8
o

Img2Edge
Img

Img +
Edge

Img +
Edge
Redet

Figure 3: Left) Average results of the EAT defense on all datasets (last cols. in tables). Middle and Right)
Comparison of natural (Orig. model column; solid lines) vs. adversarial training averaged over all datasets.

see Tables 0] [TT} and[I3] Over the Imagenette2-160 dataset (Table[T3), classification using images
does better than edges since the texture is very important on this dataset.

Average results over 10 datasets is presented in Fig. 3] (left panel). Combining shape and texture (full
model) leads to a substantial improvement in robustness over the texture alone (5.24% improvement
against FGSM and 28.76% imp. against PGD-40). Also, image+edge model is slightly more robust
than the image-only model. Computing the edge map from all image channels improves the results
on some datasets (e.g., GTSRB and Sketch) but hurts on some others (e.g., CIFAR-10) as shown
in Appx. A. The right two panels in Fig. [3]show a comparison of natural (Orig. model column in
tables; solid lines) vs. adversarial training. Natural training with image+edge and redetection at
inference time leads to enhanced robustness with little to no harm to standard accuracy. Despite the
Edge model only being trained on edges from clean images, the Img2Edge model does better than
other naturally-trained models against attacks. The best performance, however, belongs to models
trained adversarially. Notice that our results set a new record on adversarial robustness on some of
these datasets even without exhaustive parameter searc

Robustness against Carlini-Wagner (CW) and Boundary attacks. Performance of our method
against [CW attack on MNIST dataset is shown in Appx. C. To make experiments tractable, we set
the number of attack iterations to 10. With even 10 iterations, the original Edge and Img models are
severely degraded. Img2Edge and Img+(Edge Redetect) models, however, remain robust. Adversarial
training with CW attack results in robust models in all cases.

Results against the decision-based Boundary attack [2]] are shown in Appx. D over MNIST and
Fashion MNIST datasets. Edge, Img, and Img+Edge models perform close to zero over adversarial
images. Img+(Edge Redetect) model remains robust since the Canny edge map does not change
much after the attack, as is illustrated in Fig. @

Robustness against substitute model attacks. Following [[18], we trained substitute models to
mimic the robust models (with the same architecture but with RGB channels) using the cross-entropy
loss over the logits of the two networks, for 5 epochs. The adversarial examples crafted for the
substitute networks were then fed to the robust networks. Results are shown in italics in Tables 2} B]
and 5] (performed only against the edge-redetect models). We find that this attack is not able to knock
off the robust models. Surprisingly, it even improves the accuracy in some cases. Please refer to
Appx. B for more details.

Robustness against adaptive attacks. So far we have been using the Canny edge detector which is
non-differentiable. What if the adversary builds a differentiable edge detector to approximate the
Canny edge detector and then utilizes it to craft adversarial examples? To study this, we run two
experiments. In the first one, we build the following pipeline using the HED deep edge detector [24]]:
Img — HED — Classifier ¥ A CNN classifier (as above) is trained over the HED edges on the
Imagenette2-160 dataset (See Appx. E). Attacking this classifier with FGSM and PGD-5 (e = 8/255)
completely fools the network. The original classifier (Img2Edge here) trained on Canny edges,
however, is still largely robust to the attacks (i.e., Img®®~HED __ Canny — Classifier®®"") as
shown in Table[20] Notice that the HED edge maps are continuous in the range [0,1], whereas Canny
edge maps are binary, which may explain why it is easy to fool the HED classifier (See Fig.[7).

Above, we used an off the shelf deep edge detector trained on natural scenes. As can be seen in Appx.
E, its generated edge maps differ significantly from Canny edges. What if the adversary trains a
model with the (input, output) pair as (input image, Canny edge map) to better approximate the Canny

!cf. [I0]; the best robust accuracy on CIFAR-10 against PGD attack, £o. of size 8/255, is about 67%.

edge detector? In experiment two, we investigate this possibility. We build a pipeline consisting of a
convolutional autoencoder followed by a CNN on MNIST. Details regarding architecture and training
procedure are given in Appx. E. As results in Fig. [I0]reveal, FGSM and PGD-40 attacks against
the pipeline are very effective. Passing the adversarial images through Canny and then a trained
(naturally or adversarially) classifier on Canny edges (i.e., Img2Edge), still leads to high accuracy,
which means that transfer was not successful. We attribute this feat to the binary output of Canny.
Two important point deserve attention. First, here we used the Img2Edge model, which as shown
above, is less robust compared to the full model (i.e., img+edge and redetection). Thus, adaptive
attacks may be even less effective against the full model. Second, proposed methods perform better
when edge map is less disturbed. For example, as shown in Fig.[TI0] (bottom), the PGD-40 adaptive
attack is less effective against the shape defense since edges are preserved better.

Analysis of parameter «. By setting a = 0, the network will be exposed only to adversarial
examples (Alg. 1), which is computationally more efficient. However, it results in lower accuracy
and robustness compared to when o = 0.5, which means exposing the network to both clean and
adversarial images is important (See Table 23} Appx. H). Nevertheless, here again incorporating
edges improves the robustness significantly compared to the image-only case.

Speculation behind effectiveness of this method. The main reason is that the edge map acts as a
checksum, and the network learns (through adversarial training) to rely more on the redetected edges
when other channels are misleading. This aligns with prior observations such as shortcut learning
in CNNs [[7]. Also, our approach resembles adversarial patch or backdoor/trojan attacks where the
goal is to fool a classifier by forcing it to rely on irrelevant cues. Conversely, here we use this trick
to make a model more robust. Also, the Img2Edge model can purify the input before classifying it.
Any adaptive attack against the EAT defense has to alter the edges which most likely will result in
perceptible structural damages.

3.2.2 GAN-based Shape defense

We trained the pix2pix model for 10 epochs over MNIST and FashionMNIST datasets, and for 100
epochs over Icons-50 dataset. Sample generated images are shown in Fig. [IT] (Appx. F). A CNN
(same architecture as before) was trained for 10 epochs to classify the generated images. Results are
shown in Fig. @] The model trained over the images generated by pix2pix (solid lines in the figure) is
compared to the model trained over the original clean training set (denoted by the dashed lines). Both
models are tested over the clean and perturbed versions of the original test sets of the four datasets.
Over MNIST and FashionMNIST datasets, GSD performs on par with the original model on clean
test images. It is, however, much more robust than the original model against the attacks. When we
trained the pix2pix over the edge maps from the perturbed images, the new CNN models became
even more robust (stars in Fig. [} top panels). We expect even better results with training over edge
maps from both intact and perturbed image

10

Over Icons-50 dataset, generated images
are poor. Consequently, GSD underper- s
forms the original model on clean im-
ages. Over the adversarial inputs, how-

ever, GSD wins, especially at high pertur- >
bation budgets and against the PGD-40 .,
attack. With better edge detection and im-
age generation methods (e.g., using per-
ceptual loss), better results are expected.

Fashion MNIST | |%

‘\\
\\\ Icons-50
S
\

e -

0.0

255 £255 £/255

. . A Figure 4: Results of GSD method.
Speculation behind effectiveness of

this method. The main reason is that cGAN learns a function f that is invariant to adversarial
perturbations. Since the edge map is not completely invariant to (especially large) perturbations,
one has to train the cGAN on the augmented dataset composed of clean and perturbed images. One
advantage of this approach is it computational efficiency since there is no need for adversarial training.
Any adaptive attack against this defense has to fool the cGAN which is perhaps not feasible since it
will be noticed from the generated images (i.e., cGAN will fail to generate decent images).

2Similarly, the edge map classifier used in the Img2Edge model in the previous section (EAT defense) can be
trained on edge maps from both clean and adversarial examples to improve performance.

Table 1: Performance of edge-augmented FastAT and FreeAT adversarial defenses over clean and perturbed
images (See Appx. G for extended algorithms). FastAT is trained with the FGSM adversary (e = 0.1 or e = 0.3)
over MNIST and FashionMNIST datasets, and e = 8/255 over CIFAR-10). FreeAT is trained over CIFAR-10
with e = 8/255 and 8 minibatch replays. CIFAR-10 results are averaged over 3 runs (Appx. G). PGD attacks
use 10 random restarts. The remaining settings and parameters are as in [22].

MNIST (FastAT) Fashion MNIST (FastAT) CIFAR-10 (FastAT) CIFAR-10 (FreeAT)

€ 0.1 0.3 Avg. 0.1 0.3 Avg. 8/255 Avg. 8/255 Avg.

0 PGD-50, 0 PGD-50{Acc.| 0 PGD-50/ 0 PGD-50/Acc.|| 0 PGD-10[Acc.| 0 PGD-10| Acc.

Edge 0.986 0.940 (0.113 0.113 |0.538/0.844 0.753 |0.786 0.110 [0.623]]0.582 0.386 [0.484]|0.679 0.678 |0.678
Img 0.991 0.955 (0.985 0.877 |0.952]0.835 0.696 |0.641 0.000 [0.543][0.767 0.381 |0.574|0.774 0.449 |0.612
Img + Edge 0.988 0.968 (0.980 0.922 |0.965/0.851 0.780 |0.834 0.769 [0.809]{0.874 0.386 [0.630]0.782 0.442 |0.612
Redetect . 0977 | ,, 0966 (0978 , 0823 | , 0.778 |0.822|]| , 0.393 [0.634] , 0.448 |0.615
Img + Red. Edge|0.986 0.087 [0.986 0.000 |0.515{0.857 0.262 (0.817 0.000 |0.484||0.866 0.074 |0.470(0.777 0.451 |0.614
Redetect . 0984 | ., 0986 (098| ,, 0855 | , 0.823 |0.838|| ., 0.416 |0.641| , 0.452 |0.615

4 Fast & free adversarial training with shape defense

Here, we examine whether incorporating shape bias can empower other defenses, in particular, a) fast
adversarial training by [22], dubbed FastAT, and free adversarial training by [20], dubbed FreeAT.
Wong et al. trained robust models using a much weaker and cheaper adversary to lower the cost of
adversarial training. They showed that adversarial training with the FGSM adversary is as effective
as PGD-based training. The key idea in Shafahi et al. ’s work is to simultaneously update both the
model parameters and image perturbations in one backward pass, rather than using separate gradient
computations at each update step. Please see also Appx. G.

The same CNN architectures as in Wong et al. are employed here. For FastAT, we trained three
models over MNIST (for 10 epochs), FashionMNIST (for 3 epochs), and CIFAR-10 (for 10 epochs &
early-stopping) datasets. For FreeAT, we trained models only over CIFAR-10 for 10 epochs.

Results are shown in Table|l} Using shape-based FastAT and over MNIST, robust accuracy against
PGD-50 grows from 95.5% (image-only model) to 98.4% (our full model) at ¢ = 0.1 and from
87.7% to 98.6% at e = 0.3, which are even higher than what is reported by Wong et al. (97.5% at
e = 0.1 and 88.8% at € = 0.3). Over FashionMNIST, the improvement is even more pronounced
(from 69.6% to 85.5% at € = 0.1 and from 0% to 82.3% at ¢ = 0.3). Over clean images, our full
model outperforms other models in most of the cases. Over the CIFAR-10 dataset, the shape-based
extension of the defenses results in high accuracy over both clean and perturbed images (using
PGD-10 attack), compared to the image-only model. We expect similar improvements with the
classic PGD adversarial training. Overall, our analyses in this section suggest that exploiting edges is
not specific to the particular way we perform adversarial training (Algorithms 1&2), and be extended
to other defense methods (e.g., TRADES algorithm by [25]]).

5 Limitations and future work

Two algorithms are proposed to use shape bias and background subtraction to strengthen CNNs and
defend against adversarial attacks and backdoor attacks. To fool these defenses, one has to perturb
the image such that the new edge map is significantly different from the old one while preserving
image shape and geometry, which does not seem to be trivial at low perturbation budgets. Our results
without exhaustive parameter search (model architecture, epochs, edge detection, cGAN training,
etc.) are very promising. However, comparison with other more complicated defenses, which often
use a lot of tricks, bells and whistles, needs to be investigated. Our additional investigations, not
shown here, reveal that combination of shape defense with background subtraction can help defend
against backdoor attacks. Also, our results show that shape defense strengthens other adversarial
defenses such as fast adversarial training [22] and free adversarial training [[20].

Future work should test the proposed ideas against adversarial attacks such as gradient-free attacks,
decision-based attacks, sparse attacks (e.g., the one pixel attack [21]]), attacks that perturb only
the edge pixels, attacks that manipulate the image structure [23]], ad-hoc adaptive attacks, and
backdoor [6]]), other £,, norms, and datasets. There might be also other ways to incorporate shape-bias
in CNNG, such as 1) augmenting a dataset with edge maps or negative images, 2) overlaying texture
from some objects onto some others as in [8]], and 3) designing normalization layers [4].

References

(1]

(2]

(3]

[4

—_

[5

—

(6]

[7

—

(8

—_—

[9

—

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(171

(18]

[19]

(20]

(21]

[22]

I. Biederman. Recognition-by-components: a theory of human image understanding. Psychological review,
94(2):115, 1987.

W. Brendel, J. Rauber, and M. Bethge. Decision-based adversarial attacks: Reliable attacks against
black-box machine learning models. CoRR, abs/1712.04248, 2017.

J. Canny. A computational approach to edge detection. IEEE Transactions on pattern analysis and machine
intelligence, (6):679-698, 1986.

M. Carandini and D. J. Heeger. Normalization as a canonical neural computation. Nature Reviews
Neuroscience, 13(1):51-62, 2012.

N. Carlini and D. A. Wagner. Towards evaluating the robustness of neural networks. In IEEE Symposium
on Security and Privacy, pages 39-57, 2017.

X. Chen, C. Liu, B. Lj, K. Lu, and D. Song. Targeted backdoor attacks on deep learning systems using
data poisoning. arXiv preprint arXiv:1712.05526, 2017.

R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge, and F. A. Wichmann. Shortcut
learning in deep neural networks. arXiv preprint arXiv:2004.07780, 2020.

R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel. Imagenet-trained
cnns are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint
arXiv:1811.12231,2018.

I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In Proc. ICLR,
2015.

S. Gowal, C. Qin, J. Uesato, T. Mann, and P. Kohli. Uncovering the limits of adversarial training against
norm-bounded adversarial examples. arXiv preprint arXiv:2010.03593, 2020.

M. A. Islam, M. Kowal, P. Esser, S. Jia, B. Ommer, K. G. Derpanis, and N. Bruce. Shape or texture:
Understanding discriminative features in cnns. arXiv preprint arXiv:2101.11604, 2021.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1125-1134, 2017.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097-1105, 2012.

X. Liand S. Ji. Defense-vae: A fast and accurate defense against adversarial attacks. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 191-207. Springer, 2019.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant to
adversarial attacks. CoRR, abs/1706.06083, 2017.

S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: A simple and accurate method to fool deep
neural networks. In Proc. CVPR, pages 2574-2582, 2016.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. Berkay Celik, and A. Swami. Practical black-box
attacks against deep learning systems using adversarial examples. CoRR, abs/1602.02697, 2016.

P. Samangouei, M. Kabkab, and R. Chellappa. Defense-gan: Protecting classifiers against adversarial
attacks using generative models. arXiv preprint arXiv:1805.06605, 2018.

A. Shafahi, M. Najibi, M. A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis, G. Taylor, and T. Goldstein.
Adversarial training for free! In Advances in Neural Information Processing Systems, pages 3358-3369,
2019.

J. Su, D. V. Vargas, and K. Sakurai. One pixel attack for fooling deep neural networks. IEEE Transactions
on Evolutionary Computation, 23(5):828-841, 2019.

E. Wong, L. Rice, and J. Z. Kolter. Fast is better than free: Revisiting adversarial training. arXiv preprint
arXiv:2001.03994, 2020.

[23] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song. Spatially transformed adversarial examples. arXiv
preprint arXiv:1801.02612, 2018.

[24] S. Xie and Z. Tu. Holistically-nested edge detection. In IEEE International Conference on Computer
Vision, 2015.

[25] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan. Theoretically principled trade-off
between robustness and accuracy. arXiv preprint arXiv:1901.08573, 2019.

A Supplementary results

adversarial

o2 input Training
WO
adversarial
training
robust model A
adversarial
adversarial B

training

robust model

.\«\a‘ée input
ct

‘(\99

ncat

Inference
inference

robust model

.\«\a‘ée’
edge

Figure 5: Edge-guided adversarial training (EAT). In its simplest form, adversarial training is
performed over the 2D (Gray+Edge) or 4D (RGB+Edge) input (i.e., number of channels; denoted as
Img+Edge). In a slightly more complicated form (B), first for each input (clean or adversarial), the
old edge map is replaced with the newly extracted one. The edge map can be computed from the
average of only image channels or all available channels (i.e., image plus edge).

Table 2: Results (Top-1 acc) over MNIST. The best accuracy in each column is highlighted in bold. In izalics
are the results of the substitute attack. Epsilon values are over 255. We used the ¢ variants of FGSM and PGD.
Img2Edge means applying the Edge model (first row) to the edge map of the image.

Orig. model | Rob.model(8) | Rob.model (32) [Rob. model (64) [Average

€ |O/clean 8 32 64 | O/clean 8 [O/clean 32 [O/clean 64 | Rob. models
Edge 0.964 0.925 0.586 0.059|0.973 0.954 0.970 0.892 0.964 0.776 0.921
Img2Edge . 0.960 0.951 0.918 ., 0.971 . 0.957 N 0.910 0.957
E Img 0.973 0.947 0.717 0.1620.976 0.955 0.977 0.892 0.970 0.745 0.919
(LE Img+Edge | 0.972 0.941 0.664 0.0890.976 0.958 0.977 0.902 0.972 0.782 0.928
Redetect > 0.950 0.803 0.356 |~ 0.962 (0.968) | 0.919 (0.947) | 0.843 (0.881) 0.941
Img + Redetected Edge 0974 0.950 0.970 0.771 0.968 0.228 0.810
Redetect » 0.958 (0.966) | 0.929 (0.947) | » 0.922(0.925)| 0.953
Edge 0.964 0.923 0.345 0.000|0.971 0.949 0.973 0.887 0.955 0.739 0.912
o | Img2Edge . 0.961 0.955 0.934 ., 0.970 N 0.958 N 0.927 0.960
T | Tmg 0.973 0.944 0.537 0.008 | 0.977 0.957 0.978 0.873 0.963 0.658 0.901
8 Img+Edge | 0.972 0.938 0.446 0.001 [0.978 0.953 0.975 0.879 0.965 0.743 0.915
A~ | Redetect > 0.950 0.741 0.116 |~ 0.960 (0.967) | 0913 (0.948) |’ 0.804 (0.908) 0.932
Img + Redetected Edge 0975 0.949 0.973 0.649 0.968 0.000 0.752
Redetect » 0.958 (0.967) | 0.945 (0.958) | » 0.939 (0.942)| 0.960

Table 3: Results over the CIFAR-10 dataset.

Orig. model Rob. model (8) [Rob. model (32) [Average
€ 0/clean 8 32 | Oclean 8 | Ofclean 32 | Rob. models
Edge 0.490 0.060 0.015 0.535 0.323 0.382 0.199 0.360
Img2Edge i 0.258 0.258 . 0.270 N 0.217 0.351
E Img 0.887 0.359 0.246 | 0.869 0.668 0.855 0.553 0.736
E Img + Edge 0.860 0.366 0.169 | 0.846 0.611 0.815 0.442 0.679
Redetect " 0.399 0.281 " 0.569 (0.631) | ., 0.417 (0.546) 0.662
Img + Redetected Edge 0.846 0.530 0.832 0.337 0.636
Redetect . 0.702 (0.753) | ., 0.569 (0.678) 0.737
Edge 0.490 0.071 0.000 | 0.537 0.315 0.142 0.119 0.278
o | Img2Edge i 0.259 0.253 | ,, 0.274 N 0.253 0.301
Y | Tmg 0.887 0.018 0.000 | 0.807 0.450 0.316 0.056 0.407
8 Img + Edge 0.860 0.019 0.000 | 0.788 0.429 0.176 0.119 0.378
A~ | Redetect " 0.306 0.093 " 0.504 (0.646) | ., 0.150 (0.170) 0.404
Img + Redetected Edge 0.834 0.155 0.776 0.006 0.443
Redetect . 0.661 (0.767) | .. 0.392 (0.700) 0.666
Table 4: Results over the Fashion MNIST dataset (*)
Orig. model Rob. model 8) | Rob. model 32) [Rob. model (64) | Average
€ |O/clean 8 32 64 [Ofclean 8 [O/clean 32 [O/clean 64 | Rob. models
FGSM
Edge 0.775 0.714 0.497 0.089(0.776 0.740 0.766 0.664 0.748 0.750 0.741
Img2Edge " 0.755 0.679 04521, 0.762 . 0.664 ' 0.420 0.690
Img 0.798 0.670 0.288 0.027 [0.798 0.722 0.764 0.584 0.768 0.505 0.690
Img+Edge | 0.809 0.662 0.229 0.010|0.794 0.732 0.769 0.623 0.750 0.537 0.701
Redetect ” 0.691 0.326 0.053 |~ 0.739(0.761) | 0.616 (0.660) | ,, 0.491 (0.496) 0.693
Img + Redetected Edge 0.789 0.719 0.775 0.539 0.762 0.045 0.605
Redetect » 0.739 (0.753) |7 0.664 (0.678) |7 0.611(0.532)| 0721
PGD-40
Edge 0.775 0.711 0.370 0.002 |0.783 0.744 0.769 0.661 0.743 0.574 0.712
Img2Edge " 0.757 0.683 0.380 | ,, 0.762 . 0.658 . 0.374 0.681
Img 0.798 0.659 0.133 0.000|0.792 0.713 0.760 0.515 0.734 0.324 0.640
Img+Edge | 0.809 0.647 0.100 0.000|0.794 0.726 0.765 0.608 0.744 0.568 0.701
Redetect ” 0.682 0.235 0.014 |~ 0.734 (0.760) | ” 0.629 (0.666) | - 0.607 (0.426) 0.712
Img + Redetected Edge 0.800 0.717 0.779 0.393 0.771 0.002 0.577
Redetect 7 0.743 (0.766) | ” 0.694 (0.681) |~ 0.690 (0.504) 0.746
Table 5: Results over the TinyImageNet dataset (*)
‘ Orig. model [Rob. model (8) [Rob. model (32) Average
€ 0/clean 8 32 [Olclean [[Ofclean 32 | Rob. models
FGSM
Edge 0.136 0.010 0.001 0.150 0.078 0.098 0.021 0.087
Img2Edge i 0.097 0.096 . 0.094 . 0.077 0.105
Img 0.531 0.166 0.074 0.512 0.297 0.488 0.168 0.366
Img + Edge 0.522 0.152 0.050 0.508 0.273 0.471 0.148 0.350
Redetect) 0.171 0081 | ., 0.287 (0.356) | ., 0.162 (0.266) 0357
Img + Redetected Edge 0.505 0.264 0.482 0.111 0.340
Redetect » 0.305 (0.371) | ., 0.171 (0.296) 0.366
PGD-40
Edge 0.136 0.007 0.000 0.148 0.077 0.039 0.014 0.069
Img2Edge " 0.094 0.092 N 0.095 N 0.033 0.079
Img 0.531 0.019 0.000 0.392 0.150 0.191 0.019 0.188
Img + Edge 0.522 0.008 0.000 0.402 0.131 0.157 0.003 0.173
Redetect " 0.074 0.009 . 0.198 (0.353) . 0.019 (0.103) 0.194
Img + Redetected Edge 0.425 0.072 0.328 0.005 0.208
Redetect » 0.206 (0.380) 0.073 (0.279) 0.258

10

Table 6: Results on CIFAR-10 dataset [edge map computed from 4 channels]

‘ Orig. model [Rob. model (8) [Rob. model (32) [Average
€ 0/clean 8 32 | Ofclean 8 [Ofclean 32 | Rob. models
FGSM
Img+Edge 0.860 0.366 0.169 0.846 0.611 0.815 0.442 0.679
Redetect ‘ ” 0.415 0.280 ” 0.574 . 0.416 0.663
Img + Redetected Edge 0.848 0.547 0.835 0.351 0.645
Redetect ” 0.696 ” 0.553 0.733
PGD-40
Img+Edge 0.860 0.000 0.789 0.431 0.179 0.135 0.384
Redetect ‘ ” 0.087 . 0.501 . 0.152 0.405
Img + Redetected Edge 0.837 0.164 0.767 0.010 0.444
Redetect ” 0.648 . 0.352 0.651

Table 7: Results on DogVsCat dataset [edge map computed from 4 channels] (*¥)

‘ Orig. model [Rob. model (8) | Rob. model (32) [Average
€ 0O/clean 8 32 [Ofclean 8 [Ofclean 32 | Rob. models
FGSM
Edge 0.814 0.633 0.119 0.812 0.757 0.806 0.999 0.843
Img2Edge . 0.755 0.584 . 0.767 . 0.576 0.740
Img 0.863 0.007 0.051 0.777 0.430 0.819 0.985 0.753
Img+Edge 0.823 0.007 0.000 0.782 0.641 0.808 0.992 0.806
Redetect ” 0.043 0.002 ” 0.666 ” 0.986 0.810
Img + Redetected Edge 0.829 0.615 0.812 0.853 0.778
Redetect ” 0.763 ” 0.998 0.850
PGD-40
Edge 0.814 0.624 0.018 0.820 0.770 0.763 0.681 0.758
Img2Edge " 0.760 0.568 N 0.778 N 0.656 0.754
Img 0.863 0.000 0.000 0.769 0.384 0.500 0.500 0.538
Img+Edge 0.823 0.000 0.000 0.785 0.689 0.816 0.496 0.696
Redetect ” 0.006 0.000 . 0.744 . 0.500 0.711
Img + Redetected Edge 0.819 0.600 0.817 0.009 0.561
Redetect ” 0.760 . 0.972 0.842

Table 8: Results on DogBreeds dataset using Sobel edge detection [edge map computed from 4 channels] (*)

Orig. model [Rob. model (8) [Rob. model (32) [Average
€ 0/clean 8 32 [Ofclean 8 [Ofclean 32 | Rob. models

FGSM
Edge 0.750 0.006 0.031 0.506 0.101 0.413 0.073 0.273
Img2Edge . 0.236 0.194 . 0.362 . 0.241 0.380
Img 0.899 0.256 0.140 0.823 0.595 0.829 0.449 0.674
Img + Edge 0.896 0.225 0.098 0.862 0.534 0.820 0.385 0.650
Redetect . 0.244 0.171 . 0.455 . 0.292 0.607
Img + Redetected Edge 0.843 0.506 0.874 0.298 0.630
Redetect ” 0.618 N 0.419 0.689

PGD-40
Edge 0.750 0.000 0.000 0.514 0.065 0.036 0.000 0.154
Img2Edge . 0.250 0.207 . 0.301 . 0.037 0.222
Img 0.899 0.000 0.000 0.795 0.286 0.596 0.025 0.425
Img + Edge 0.896 0.000 0.000 0.789 0.225 0.567 0.042 0.406
Redetect . 0.008 0.000 ” 0.396 . 0.065 0.454
Img + Redetected Edge 0.772 0.028 0.677 0.000 0.369
Redetect ” 0.393 ” 0.149 0.498

11

Table 9: Results on GTSRB dataset [edge map computed from 4 channels] (*)

Orig. model [Rob. model (8) [Rob. model (32) [Average
€ 0O/clean 8 32 | Olclean 3 [O/clean 32 | Rob. models
FGSM
Edge 0.938 0.683 0.315 0.947 0.863 0.946 0.701 0.864
Img2Edge . 0.501 0.451 . 0.516 . 0.469 0.719
Img 0.955 0.464 0.322 0.902 0.607 0.896 0.562 0.742
Img + Edge 0.951 0.624 0.382 0.940 0.842 0.943 0.686 0.853
Redetect ” 0.592 0.471 ” 0.743 ” 0.626 0.813
Img + Redetected Edge 0.925 0.801 0.939 0.616 0.820
Redetect ” 0.844 ” 0.766 0.869
PGD-40
Edge 0.938 0.618 0.054 0.950 0.861 0.937 0.598 0.836
Img2Edge . 0.501 0.459 . 0.506 . 0.462 0.714
Img 0.955 0.189 0.033 0.855 0.495 0.736 0.246 0.583
Img + Edge 0.951 0.271 0.021 0.943 0.750 0.839 0.342 0.718
Redetect . 0.526 0.251 . 0.774 . 0.514 0.767
Img + Redetected Edge 0.929 0.505 0.893 0.134 0.615
Redetect ” 0.818 0.557 0.799
Table 10: Results on GTSRB dataset [edge map computed from 3 channels]
‘ Orig. model [Rob. model (8) [Rob. model (32) [Average
€ 0O/clean 8 32 [Ofclean 3 [Ofclean 32 | Rob. models
FGSM
Img + Edge 0.951 0.624 0.382 0.940 0.842 0.943 0.686 0.853
Redetect ‘ . 0.500 0.395 N 0.558 N 0.492 0.733
Img + Redetected Edge 0.889 0.699 0.891 0.549 0.757
Redetect . 0.610 . 0.577 0.742
Table 11: Results on Icons-50 dataset [edge map computed from 4 channels] (*)
Orig. model [Rob. model (8) [Rob. model (32) [Average
€ 0/clean 8 32 | Olclean 8 [O/clean 32 | Rob. models
FGSM
Edge 0.883 0.545 0.210 0.904 0.771 0.889 0.594 0.789
Img2Edge . 0.713 0.690 . 0.746 . 0.730 0.817
Img 0.930 0.495 0.433 0.772 0.789 0.836 0.720 0.779
Img + Edge 0.929 0.569 0.433 0.829 0.818 0.844 0.745 0.809
Redetect . 0.470 0414 . 0.730 . 0.732 0.784
Img + Redetected Edge 0.841 0.837 0.849 0.688 0.804
Redetect . 0.817 0.710 0.804
PGD-40
Edge 0.883 0.423 0.000 0.902 0.769 0.846 0.404 0.730
Img2Edge » 0.706 0.683 N 0.753 N 0.695 0.799
Img 0.930 0.341 0.113 0.765 0.663 0.736 0.453 0.654
Img + Edge 0.929 0.320 0.011 0.800 0.678 0.785 0.366 0.657
Redetect . 0.416 0.248 . 0.738 . 0.660 0.746
Img + Redetected Edge 0.838 0.644 0.824 0.097 0.601
Redetect ” 0.792 . 0.539 0.748
Table 12: Results on Icons-50 dataset [edge map computed from 3 channels]
‘ Orig. model [Rob. model (8) [Rob. model (32) [Average
€ 0/clean 8 32 [Ofclean 3 [Ofclean 32 | Rob. models
FGSM
Img+Edge 0.929 0.569 0.433 0.829 0.818 0.844 0.745 0.809
Redetect ‘ " 0.520 0.460 . 0.737 . 0.731 0.785
Img + Redetected Edge 0.831 0.788 0.870 0.725 0.804
Redetect ” 0.783 0.765 0.812

12

Table 13: Results on Sketch dataset [edge map computed from 2 channels] (*)

Orig. model [Rob. model (8) [Rob. model (32) [Average
€ 0O/clean 8 32 [Olclean 8 [Orclean 32 | Rob. models

FGSM
Edge 0.479 0.167 0.041 0.502 0.343 0.483 0.216 0.386
Img2Edge . 0.464 0.014 . 0.494 . 0.022 0.375
Img 0.532 0.109 0.021 0.530 0.278 0.474 0.144 0.356
Gray + Edge 0.486 0.097 0.019 0.513 0.286 0.440 0.167 0.352
Redetect . 0.263 0.004 . 0.355 " 0.013 0.330
Img + Redetected Edge 0.497 0.180 0.420 0.071 0.292
Redetect 7 0.416 0.162 0.374

PGD-40
Edge 0.480 0.106 0.000 0.508 0.341 0.401 0.068 0.330
Img2Edge . 0.471 0.127 " 0.499 " 0.214 0.405
Img 0.532 0.028 0.000 0.538 0.260 0.018 0.000 0.204
Gray + Edge 0.486 0.034 0.000 0.500 0.279 0.026 0.000 0.201
Redetect . 0.277 0.024 " 0.360 " 0.004 0.223
Img + Redetected Edge 0.502 0.121 0.448 0.000 0.268
Redetect ” 0.423 " 0.212 0.396

Table 14: Results on Sketch dataset [edge map computed from 1 channel]
‘ Orig. model [Rob. model (8) [Rob. model (32) I Average
€ 0O/clean 8 32 [O/clean 8 [Orclean 32 | Rob. models

FGSM
Gray + Edge 0.486 0.097 0.019 0.513 0.286 0.440 0.167 0.352
Redetect ‘ . 0.213 0.005 " 0.388 . 0.022 0.341
Img + Redetected Edge 0.519 0.296 0.445 0.191 0.363
Redetect " 0.397 " 0.020 0.345

Table 15: Results on Imagenette2-160 dataset [edge map computed from 4 channels] (*)

Orig. model [Rob. model (8) [Rob. model (32) [Average
€ 0O/clean 8 32 [Orclean 8 [Orclean 32 | Rob. models

FGSM
Edge 0.780 0.101 0.436 0.781 0.520 0.664 0.245 0.553
Img2Edge . 0.599 0.598 . 0.603 . 0.578 0.656
Img 0.969 0.617 0.409 0.959 0.827 0.946 0.710 0.860
Img + Edge 0.959 0.613 0.373 0.951 0.801 0.935 0.643 0.832
Redetect . 0.652 0.471 . 0.812 . 0.687 0.846
Img + Redetected Edge 0.950 0.747 0.949 0.592 0.810
Redetect " 0.834 " 0.732 0.866

PGD-40
Edge 0.780 0.064 0.000 0.794 0.526 0.577 0.071 0.492
Img2Edge . 0.601 0.577 " 0.610 " 0.381 0.591
Img 0.969 0.052 0.005 0.918 0.599 0.808 0.221 0.636
Img + Edge 0.959 0.045 0.000 0.909 0.558 0.762 0.151 0.595
Redetect ” 0.445 0.069 ” 0.743 ” 0.305 0.680
Img + Redetected Edge 0.944 0.246 0.883 0.046 0.530
Redetect ” 0.757 ” 0.432 0.754

13

B Robustness against substitute model attacks

Following [18], we trained substitute models to mimic the robust models (with the same architecture but with
RGB channels) using the cross-entropy loss over the logits of the two networks, for 5 epochs. The adversarial
examples crafted for the substitute networks were then fed to the robust networks. Results are shown in italics in
Tables [2] [3]] and [5] (performed only against the edge-redetect models). We find that this attack is not able to
knock off the robust models. Surprisingly, it even improves the accuracy in some cases.

Table 16: Results of the substitute attack against the robust Img + Edge models (redetect and full model).

MNIST Fashion MNIST CIFAR TinyImgNet
e |8 32 64 8 32 64 8 32 8 32
FGSM
Img + edge model (redetect inference)
Substitute model on clean images 0.94 0.9365 0.9314 | 0.7515 0.7393 0.7311 | 0.8079 0.7766 | 0.008 0.008
Substitute model on adversarial images | 0.8941 0.5858 0.0992 | 0.6484 0.3701 0.0967 | 0.2716 0.2049 | 0.004 0.003
Robust model on clean images 0.9761 0.9766 0.9722 | 0.7939 0.7692 0.75 0.8463 0.8463 | 0.508 0.471
Robust model on adversarial images 0.9623 09189 0.842 | 0.7391 0.6156 0.4908 | 0.5695 0.4186 | 0.287 0.161

Robust model on substitute adv. images | 0.9678 0.9472 0.8813 | 0.7609 0.6604 0.4955 | 0.6307 0.5463 | 0.356 0.266

Img + redetected edge model (redetect inference)

Substitute model on clean images 0.9381 0.9335 0.9326 | 0.7513 0.7431 0.7388 | 0.8104 0.7966 | 0.008 0.008
Substitute model on adversarial images | 0.89 0.5696 0.0989 | 0.6538 0.3663 0.08 0.2879 0.1988 | 0.004 0.002
Robust model on clean images 0.9742 0.9699 0.9681 | 0.7891 0.7746 0.7617 | 0.8456 0.8328 | 0.495 0.482
Robust model on adversarial images 0.9583 0.9283 0.9216 | 0.7392 0.664 0.6115 | 0.7032 0.5684 | 0.380 0.170

Robust model on substitute adv. images | 0.9657 0.9469 0.9249 | 0.7529 0.6776 0.5318 | 0.7528 0.7528 | 0.371 0.296

PGD-40
Img + edge model (redetect inference)
Substitute model on clean images 0.9391 0.9344 0.9257 | 0.7531 0.7408 0.7303 | 0.756 0.194 | 0.008 0.006
Substitute model on adv. images 0.8906 0.4455 0.0196 | 0.6473 0.2745 0.0096 | 0.020 0.003 | 0.000 0.000
Robust model on clean images 0.9782 0.9751 0.9654 | 0.7938 0.7652 0.7442 | 0.788 0.179 | 0.395 0.157
Robust model on adv. images 0.9599 0.9132 0.8039 | 0.7336 0.6289 0.6068 | 0.504 0.152 | 0.242 0.018

Robust model on substitute adv. images | 0.9667 0.9477 0.9079 | 0.7603 0.6656 0.4263 | 0.646 0.170 | 0.352 0.103

Img + redetected edge model (redetect inference)

Substitute model on clean images 0.9385 0.9363 0.9329 | 0.7503 0.7471 0.7415 | 0.804 0.730 | 0.008 0.008
Substitute model on adv. images 0.8888 0.4617 0.0211 | 0.6458 0.2687 0.01 0.016 0.000 | 0.000 0.000
Robust model on clean images 0.975 0.9732 0.9682 | 0.7998 0.7793 0.7715 | 0.834 0.766 | 0.425 0.328
Robust model on adv. images 0.9581 0.9449 0.9386 | 0.7435 0.6943 0.6902 | 0.662 0.375 | 0.206 0.074

Robust model on substitute adv. images | 0.9665 0.9575 0.9417 | 0.7661 0.681 0.5037 | 0.767 0.700 | 0.380 0.279

14

C Robustness against Carlini-Wagner (CW) and Boundary attacks

Performance of our method against o CW attack [5] on MNIST dataset is shown in Table To make
experiments tractable, we set the number of attack iterations to 10. With even 10 iterations, the original Edge
and Img models are severely degraded. Img2Edge and Img+(Edge Redetect) models, however, remain robust.
Adversarial training with CW attack results in robust models in all cases.

Performance of the the EAT defense against the [Carlini-Wagner attack [S] with the following parameters:

attack = CW(net, targeted=False, c=le-4, kappa=0, iters=10, 1r=0.001)

Table 17: Robustness against Carlini-Wagner (CW) and Boundary attacks

Orig. model Robust model Average
O/clean adv. O/clean adv. Rob. models

Edge 0.964 0.106 0.948 0.798 0.873
Img2Edge ’ 0.962 » 0.949 0.949
Img 0.973 0.103 0.949 0.856 0.903
Img+Edge 0.972 0.097 0.945 0.845 0.895
Redetect ’ 0.971 » 0.942 0.944
Img + Redetected Edge 0.947 0.819 0.883
Redetect » 0.946 0.946

15

D Robustness against Boundary attack

Results against the decision-based Boundary attack [2] over MNIST and Fashion MNIST datasets are shown
below. Edge, Img, and Img+Edge models perform close to zero over adversarial images. Img+(Edge Redetect)
model remains robust since the Canny edge map does not change much after the attack, as is illustrated in Fig. @

Performance of the the edge augmented model against the Boundary attack [2] with the following parameters:

BoundaryAttack(init_attack=None, steps=25000, spherical_step=0.01,
source_step=0.01, source_step_convergance=1e-07,

step_adaptation=1.5, tensorboard=False,
update_stats_every_k=10)

Table 18: Results over 500 images from the MNIST dataset

Orig. model
O/clean adv. (boundary)
Edge 0.964 0.000
Img 0.973 0.003
Img+Edge 0.972 0.000
Redetect ' 0.945
Img+Redetected Edge (adversarially trained using FGSM ¢ = 8/255) 0.974 0.001
Redetect ' 0.965

Table 19: Results over 500 images from the Fashion MNIST dataset

Orig. model
O/clean adv. (boundary)
Edge 0.776 0.005
Img 0.798 0.018
Img+Edge 0.809 0.003
Redetect ’ 0.747
Img+Redetected Edge (adversarially trained using FGSM ¢ = 8/255) 0.789 0.003
Redetect ’ 0.770

MNIST

Adv. Img

Edge from Adv. Img

Fashion MNIST

Figure 6: Sample images from the Boundary attack.

16

E Robustness against adaptive attacks

E.1 Robustness against adaptive attacks over Imagenette2-160 dataset

We use the PyTorch implementatiorﬂ of the HED edge detector proposed by [24]]. Here, a classifier is first trained
on top of the edge maps from the HED. Then, the entire pipeline (Ing — HED — Classifier’) is attacked
to generate an adversarial image. The performance of this classifier is measured on both clean and adversarial
images. The adversarial image is also fed to the classifier trained on Canny edge maps (i.e., Img?®~HED __,
Canny —> Classifier®®™™). Results are shown in Table below. As it can be seen, adversarial examples crafted

for HED fail to completely fool the model trained on Canny edges (i.e., they do not transfer).

Table 20: Results over 500 images from the Imagenette2-160 dataset against the FGSM and PGD-5
(e = 8/255) attacks.

Orig. model
0/clean | adv. (FGSM) | adv. (PGD-5)

Img2Edge (Img — HED — Classifier’ 77) 0.793 0.052 0.003
Img2Edge (Img®?~7ED __, Canny — Classifier®®""V) | 0.767 0.542 0.548
adversarial image HED edge map Canny edge map

80 100 120 140

il

80 100 120 140

Figure 7: Two sample adversarial images (FGSM) along with their edge maps using HED and Canny
edge detection methods.

E.2 Robustness against adaptive attacks over MNIST dataset

Here, we attempt to explicitly approximate the Canny edge detector using a differentiable convolutional
autoencoder. In our pipeline, a classifier (CNN) is stacked after the convolutional autoencoder (with sigmoid
output neurons). We first freeze the classifier and train the autoencoder using the MSE loss with (input, output)
pair being (image, canny edge map). We then freeze the autoencoder and train the classifier using Cross Entropy
loss. After training the network, we then craft adversarial examples for it and feed them to a classifier trained on

*https://github.com/sniklaus/pytorch-hed

17

https://github.com/sniklaus/pytorch-hed

Canny edges (original models or robust models as was mentioned in the main text). Fig. [8]shows the pipeline
and some sample approximated edge maps. Fig. |§| shows the architecture details in PyTorch.

The top panel in Fig. [T0]shows results using the FGSM and PGD-40 attacks against the pipeline itself, and
also against the Img2Edge model (trained over clean edges or adversarial oneg’). As can be seen, both attacks
are very successful against the pipeline but they do not perform well against the Canny edge map classifier
(i.e., crafted adversarial examples for the pipeline do not transfer well to the Imge2Edge trained over Canny
Edge map; img— Canny — class label). Notice, that here we only used the model trained on edge maps. It is
likely to gain even better robustness against the adaptive attacks in using the img+edge+redetect.

The bottom panel in Fig.[T0|shows sample adversarial digits (constructed using the adaptive attack) and their
edge maps under the FGSM and PGD-40 attacks. Notice how PGD-40 attack preserves the edges (compered to
FGSM). This is because it needs less perturbation to fool the classifier. Also, notice that the perturbations shown
are perceptible which results in edges maps having noise. If we limit ourselves to imperceptible perturbations,
then edge maps will not change much compared to the original edge maps on clean images.

sigmoid
activation

Convolutional
AutoEncoder

class label

image
Canny edge map

cross entropy
loss

MSE loss

1. Freeze the CNN (requires_grad = False) and train the AutoEncoder

2. Freeze the AutoEncoder (requires_grad = False) and train the CNN

3. Unfreeze all the network (requires_grad = True) and attack it

4. Feed the adeversarial image to a CNN trained with Canny edge maps

Canny Digit

AutoEncoder

Figure 8: Top: our pipeline to approximate the Canny edge detector and our approach for crafting
adversarial examples, Bottom: Sample digits and their generated edge maps.

“Here we used the model adversarially trained at eps=8/255 and test it against other perturbations; unlike the
main text where we trained robust models separately for each epsilon.

18

combined network
LeNet Model definition
class MNIST Net combined(nn.Module):
def _ init_ (self, net type='gray'):
super (MNIST_Net_combined, self). init_ ()

self.encoder = nn.Sequential(# like the Composition layer you built
nn.Conv2d(1l, 16, 3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(16, 32, 3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, 7)
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(64, 32, 7),

nn.ReLU(),

nn.ConvTranspose2d(32, 16, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),

nn.ConvTranspose2d(16, 1, 3, stride=2, padding=1, output_padding=1),
nn.Sigmoid()

self.convl = nn.Conv2d(1l, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()

self.fcl = nn.Linear (320, 50)

self.fc2 = nn.Linear(50, 10)

def forward(self, x):
z = self.encoder(x)
x_auto = self.decoder(z) # reconstructed egde
X_auto = x_auto.view(x_ auto.shape[0],1, 28,28)
X = F.relu(F.max_pool2d(self.convl(x_auto), 2))
= F.relu(F.max pool2d(self.conv2_drop(self.conv2(x)), 2))
= x.view(-1, 320)
F.relu(self.fcl(x))
= F.dropout(x, training=self.training)
= self.fc2(x)
return x, x_autd

LT I
1

Figure 9: PyTorch code of our pipeline shown in Fig

19

Accuracy vs Epsilon (FGSM atatck) Accuracy vs Epsilon (PGD-40 attack)

== auto_encoder 10 == auto_encoder
== mnist_edge == mnist_edge
== mnist_edge_robust == mnist_edge_robust
09 08
06
0.8
= =
&]
S S
o o
< kS
04
07
02
0.6
0.0
0 01 02 03 o 01 0z 0.3
Epsilon Epsilon
N
LN
N
S~
(9]
W
(%)
Q.
)
N
N
o
~
<t
o}
Il
(%)
o
()

Figure 10: Top: Performance of the adaptive attack, Bottom: Samples adversarial images and their
edge maps using the Canny edge detector.

20

F Sample generated images by the conditional GAN in GAN-based Shape
Defense (GSD)

GSD: Regular training

MNIST Fashion MMIST lcons-50 CIFAR 10

alalammii®

BE il -
HHAHA EE
IIII] LIKI -,
CEE i (Sj

Original edqe generated
image map image

GSD: Training over adversarial images

MMIST Fashion MNIST
eps=32/255 eps=64/255 eps=32/255 eps = 64/255

M e
EEE HE
™

" R
[-][l -_5'.:5'1}
TS

Figure 11: Top) GSD with a classifier trained on images generated (by pix2pix) only from the edge
maps of the clean images, Bottom) GSD with edge maps derived from adversarial examples. Columns
from left to right: adversarial images by the FGSM attack, their edge maps, and generated images by
pix2pix.

21

G Shape-based extensions of vanilla PGD adversarial training, free
adversarial training (FreeAT), and fast adversarial training (FastAT)
algorithms

Algorithm 3 Shape-based PGD adversarial training for 7" epochs, given some radius ¢, adversarial
step size « and N PGD steps and a dataset of size M for a network fy. 8 € {edge, img, imgedge}
indicates the net_type and redetect_train mean edge redetection during training.

fort=1...T do
fori=1...M do
// Perform PGD adversarial attack
6 = 0// or randomly initialized
forj=1...Ndo
6 =0+ a-sign(Vsl(fo(z; +0),y:))
0 = max(min(d, €), —¢)
end for
if redetect_train & 3 == imgedge then
Z; = detect_edge(Z;) // recompute and replace the edge map
end if
0 =0 —Vol(fo(Z;),y:) // Update model weights with some optimizer, e.g. SGD
end for
end for

Algorithm 4 Shape-based “Free” adversarial training for 7" epochs, given some radius €, N minibatch
replays, and a dataset of size M for a network fy. § € {edge, img, imgedge} indicates the net_type
and redetect_train mean edge redetection during training.

0=0
// Iterate T/N times to account for minibatch replays and run for T total epochs
fort=1...7T/N do
fori=1...M do
// Perform simultaneous FGSM adversarial attack and model weight updates T times
forj=1...Ndo
T;=x;+90
if redetect_train & (8 == imgedge then
Z; = detect_edge(Z;) // recompute and replace the edge map
end if
// Compute gradients for perturbation and model weights simultaneously
Vs, Vo = VL fo(Z:),s)
d =0+ e-sign(Vy)
0 = max(min(0, €), —¢)
0 = 0 — Yy // Update model weights with some optimizer, e.g. SGD
end for
end for
end for

22

Algorithm 5 Shape-based FGSM adversarial training for 7' epochs, given some radius €, N PGD
steps, step size «, and a dataset of size M for a network fy. 5 € {edge,img,imgedge} indicates
the net_type and redetect_train mean edge redetection during training.

fort=1...Tdo
fori=1...M do
// Perform FGSM adversarial attack
0 = Uniform(—e, €)
6 =0+ a-sign(Vsl(fo(x; +6),9:))
0 = max(min(d, €), —¢)
T;=x;+9
if redetect_train & 3 == imgedge then
Z; = detect_edge(Z;) / recompute and replace the edge map
end if
0 =0 —Vol(fo(Z;),y;) // Update model weights with some optimizer, e.g. SGD
end for
end for

Table 21: Performance of the Fast Adversarial Training (FastAT) method over three runs.

Run 1 Run 1 Run 1 Average
Model Clean PGD-10 | Clean PGD-10 | Clean PGD-10 | Clean PGD-10
Edge 0.559 0.384 0.581 0.187 0.608 0.586 0.582 0.386
RGB 0.813 0.368 0.598 0.205 0.889 0.569 0.767 0.381
Img + Edge 0.863 0.590 0.882 0.334 0.878 0.878 0.874 0.386
Redetect ' 0.593 ’ 0.341 ' 0.245 ’ 0.393
RGB + Redet. Edge | 0.892 0.001 0.817 0.115 0.889 0.105 0.866 0.074
Redetect . 0.265 " 0.656 . 0.326 . 0.416

Table 22: Performance of the Free Adversarial Training (FreeAT) method over three runs.

Run 1 Run 1 Run 1 Average
Model Clean PGD-10 | Clean PGD-10 | Clean PGD-10 | Clean PGD-10
Edge 0.674 0.672 0.704 0.702 0.660 0.659 0.679 0.678
RGB 0.783 0.450 0.768 0.450 0.772 0.447 0.774 0.449
Img + Edge 0.784 0.432 0.779 0.447 0.782 0.448 0.782 0.442
Redetect " 0.447 ” 0.448 ” 0.449 ” 0.448
RGB + Redet. Edge | 0.776 0.451 0.776 0.454 0.780 0.447 0.777 0.451
Redetect ’ 0.452 ” 0.456 ’ 0.448 » 0.452

23

H Analysis of parameter o in Alg. 1 (EAT defense)

Table 23: Results (Top-1 acc.) over MNIST corresponding to o = 0 (i.e., adversarial training only on
adversarial examples taking part in the loss function). See also Table 1 in the main text.

Rob. model (8) | Rob. model (32) | Rob. model (64) Average
€ O/clean 8 O/clean 32 O/clean 64 Rob. models
FGSM
Img+Edge 0.963 0938 | 0.959 0.869 0.931 0.684 0.891
Redetect ” 0.943 » 0.887 ' 0.727 0.902
Img + Redetected Edge 0.963 0.936 | 0.944 0.588 0.937 0.030 0.733
Redetect ” 0.948 ” 0.911 " 0.916 0.937
PGD-40
Img+Edge 0.966 0940 | 0.960 0.859 0.928 0.607 0.877
Redetect ” 0.946 » 0.883 ’ 0.657 0.890
Img + Redetected Edge | 0.963 0.933 | 0.947 0.469 0.936 0.000 0.708
Redetect ” 0.946 » 0.913 ’ 0.915 0.937

Table 24: Results (Top-1 acc.) over Fashion MNIST corresponding to o = 0 (i.e., adversarial training
only on adversarial examples taking part in the loss function). See also Table[zl_:] in the main text.

Rob. model (8) | Rob. model (32) | Rob. model (64) Average
€ O/clean 8 O/clean 32 O/clean 64 Rob. models
FGSM
Img+Edge 0.756 0.701 0.732 0.619 0.683 0.487 0.663
Redetect ” 0.707 ’ 0.635 » 0.481 0.666
Img + Redetected Edge | 0.768 0.705 | 0.739 0.481 0.693 0.040 0.571
Redetect ” 0.727 » 0.660 ,» 0.635 0.704
PGD-40
Img+Edge 0.768 0.702 | 0.749 0.573 0.718 0.432 0.657
Redetect ” 0.714 ’ 0.593 » 0.510 0.675
Img + Redetected Edge | 0.778 0.702 | 0.762 0.414 0.750 0.001 0.568
Redetect ” 0.725 " 0.632 ” 0.615 0.710

24

	Introduction
	Proposed methods
	Experiments and results
	Datasets and Models
	Results
	Edge-guided Adversarial Training
	GAN-based Shape defense

	Fast & free adversarial training with shape defense
	Limitations and future work
	Supplementary results
	Robustness against substitute model attacks
	Robustness against Carlini-Wagner (CW) and Boundary attacks
	Robustness against Boundary attack
	Robustness against adaptive attacks
	Robustness against adaptive attacks over Imagenette2-160 dataset
	Robustness against adaptive attacks over MNIST dataset

	Sample generated images by the conditional GAN in GAN-based Shape Defense (GSD)
	Shape-based extensions of vanilla PGD adversarial training, free adversarial training (FreeAT), and fast adversarial training (FastAT) algorithms
	Analysis of parameter in Alg. 1 (EAT defense)

