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ABSTRACT

Large language models (LLMs) have demonstrated remarkable capabilities across
a range of text-generation tasks. However, LLMs still struggle with problems
requiring multi-step decision-making and environmental feedback, such as online
shopping, scientific reasoning, and mathematical problem-solving. Unlike pure text
data, collecting large-scale decision-making data is challenging. Moreover, many
powerful LLMs are only accessible through APIs, which hinders their fine-tuning
for agent tasks due to cost and complexity. To address LLM agents’ limitations,
we propose a framework that can automatically learn a reward model from the
environment without human annotations. This model can be used to evaluate
the action trajectories of LLM agents and provide heuristics for task planning.
Specifically, our approach involves employing one LLM-based agent to navigate
an environment randomly, generating diverse action trajectories. Subsequently,
a separate LLM is leveraged to assign a task intent and synthesize a negative
response alongside the correct response for each trajectory. These triplets (task
intent, positive response, and negative response) are then utilized as training data
to optimize a reward model capable of scoring action trajectories. This reward
model can be integrated with LLM-based agents and various planning algorithms
to enhance task-solving performance. The effectiveness and generalizability of
our framework are demonstrated through evaluations conducted on different agent
benchmarks. In conclusion, our proposed framework represents a significant ad-
vancement in enhancing LLM agents’ decision-making capabilities. By automating
the learning of reward models, we overcome the challenges of data scarcity and API
limitations, potentially revolutionizing the application of LLMs in complex and
interactive environments. This research paves the way for more sophisticated AI
agents capable of tackling a wide range of real-world problems requiring multi-step
decision-making.

1 INTRODUCTION

Developing AI agents capable of perceiving environments, understanding instructions, and acting
to accomplish a wide range of tasks in interactive settings (Brooks, 1986) have many real-world
applications, including virtual human assistants (Reed et al., 2022; Casheekar et al., 2024), business
process management (Kirchdorfer et al., 2024), and robotic process automation (Rana et al., 2023;
Ahn et al., 2022; Palo et al., 2023).

The recent advent of large generative models has revolutionized numerous applications, such as
question answering (Rajpurkar et al., 2016), text summarization (Hermann et al., 2015), and multi-
modal understanding (Chen et al., 2015; Goyal et al., 2017; Yu et al., 2016). However, while these
models excel in text comprehension and generation tasks, their performance in decision-making
scenarios—such as online shopping and scientific reasoning falls relative short of human capabilities.
This disparity likely stems from the nature of the training data. Large generative models are typically
pre-trained on readily available image and text corpora from the internet. In contrast, trajectory data
for agent tasks, which require multi-step interaction with the environment, is more challenging to
collect and does not naturally occur on the internet. Furthermore, current state-of-the-art commercial
Language Learning Models (LLMs), such as GPT-4V (OpenAI et al., 2024) and Gemini (Reid et al.,
2024), often provide only limited APIs for general users. This restriction renders it either infeasible
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Figure 1: In Fig. 1 (a), we show that it is difficult for LLM agents to generate multi-step plans in an
interactive environment to achieve the instruction goal. However, it is relatively easy for an LLM to
learn a reward model that can evaluate whether the trajectories meet the task instructions, as shown in
Fig. 1 (b). In Fig. 1 (c), we show that a learned reward model can be used to guide the default policy
models to improve action planning.

or cost-prohibitive to fine-tune these models for specific agent tasks, further impeding progress in
this field.

Previous studies have explored the development of autonomous agents for decision-making tasks
using large language models (LLMs). Early research (Yao et al., 2023a; Zheng et al., 2024; Deng et al.,
2024) utilized instruction prompts with few-shot examples to direct LLMs in handling various agent
tasks. These methods do not require task-specific fine-tuning but have shown limited performance
on benchmarks requiring interaction with environments and precise action prediction. A different
research direction involves collecting human preference data (Hong et al., 2023) or distilling trajectory
data from advanced commercial LLM APIs (Zeng et al., 2023; Deng et al., 2024) and fine-tuning
smaller open-source LLMs to create new policy models for agent tasks. However, this distillation
process relies on advanced pre-trained agent models for trajectory data extraction, which are often
unavailable, expensive, or subject to commercial restrictions. For instance, data from models such as
GPT-4 or Gemini cannot be used for commercial purposes.

A fundamental premise of our approach is that, in most agent applications, evaluation is easier than
generation (Karp, 1975; Naor, 1996). As illustrated in Fig. 1 (a), generating a correct multi-step
solution to navigate to the target page is challenging since it needs to predict multiple actions and
interact with the environment. However, it is relatively simple to evaluate whether the output action
trajectories and environment states meet the provided intent to find a "vans sport canvas fashion
sneaker". Building on this premise, we suggest that developing a reward model is more feasible than
creating a policy model for agent tasks. With an effective reward model, it becomes possible to guide
LLMs in planning tasks both effectively and efficiently. For instance, as depicted in Fig. 1 (c), by
integrating the reward model with an LLM-based agent and the Monte Carlo Tree Search (MCTS)
algorithm (Silver et al., 2017; Coulom, 2006), we can simulate and evaluate the future states of
agent tasks, thereby making better decisions for subsequent actions. This approach is analogous to
mental simulation (Hegarty, 2004; Lake et al., 2017) in cognitive science, where humans envision the
outcomes of potential actions to make better decisions in problem-solving.

While reward models can assist LLM agents in planning, developing these reward models presents
significant challenges. Some prior studies have utilized powerful commercial LLM APIs as evaluators
for tasks (Kwon et al., 2023a). Although these approaches have demonstrated effectiveness in certain
applications, they rely on state-of-the-art LLM models for evaluation, which are often expensive and
difficult to scale. In this paper, we introduce an automated method to learn multi-modal reward models
without relying on state-of-the-art LLMs for guidance. Furthermore, previous work has not considered
integrating the learned reward models with various planning algorithms for problem-solving.

The process of learning the reward model involves three steps. Initially, we utilize an LLM-based
agent (e.g., Dubey et al. (2024)) to navigate in the environments, aiming to achieve a randomly
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proposed intent while collecting extensive action trajectory demonstrations. Subsequently, the LLM
model examines the collected trajectories and proposes a refine intent that the sampled trajectories
actually accomplish. Additionally, we prompt the LLM to generate negative trajectories that fail
to achieve the intended task. Finally, based on the synthetic data (intents, positive trajectories, and
negative trajectories) collected, we train a customized reward model using widely adopted vision-
language models such as VILA (Lin et al., 2023) to evaluate whether the user’s intent has been
fulfilled by the action trajectories. With this automatic reward model, we enhance the performance of
LLM-based agents in conjunction with various planning algorithms such as best of n, reflecxion, and
MCTS.

In summary, we introduce a novel framework ARMAP (autonomous Agents from automatic Reward
Modeling And Planning) for LLM-based agents incorporating an automatic reward model that
evaluates task completion, analogous to mental simulation in human cognition. This framework offers
several advantages: (1) Effectiveness: It enhances the performance of various LLM agents across
different tasks. (2) Flexibility: It eliminates the need for fine-tuning the LLMs themselves and allows
for optimization of custom reward targets during inference, enabling more controllable generation.
(3). Practicality: The training of the automatic reward model does not rely on labor-intensive labeling
or state-of-the-art commercial LLMs, making it more feasible and widely applicable.

2 RELATED WORK

LLMs for Agent tasks. Our research is related to deploying large language models (LLMs) as
agents for decision-making tasks in interactive environments (Liu et al., 2023; Zhou et al., 2023;
Shridhar et al., 2020; Toyama et al., 2021). Earlier works, such as (Yao et al., 2023a), fine-tuned
models like BERT (Devlin et al., 2019) for decision-making in simplified environments, such as
online shopping or mobile phone manipulation. With the advent of large language models (Brown
et al., 2020; OpenAI et al., 2024), it became feasible to perform decision-making tasks through
zero-shot or few-shot in-context learning. To better assess the capabilities of LLMs as agents, several
models have been developed (Deng et al., 2024; Xiong et al., 2024; Hong et al., 2023; Yan et al.,
2023). Most approaches (Zheng et al., 2024; Deng et al., 2024) provide the agent with observation and
action history, and the language model predicts the next action via in-context learning. Additionally,
some methods (Zhang et al., 2023; Li et al., 2023; Song et al., 2024) attempt to distill trajectories
from state-of-the-art language models to train more effective policy models. In contrast, our paper
introduces a novel framework that automatically learns a reward model from LLM agent navigation,
using it to guide the agents in making more effective plans.

LLM Planning. Our paper is also related to planning with large language models. Early re-
searchers (Brown et al., 2020) often prompted large language models to directly perform agent tasks.
Later, Yao et al. (2022) proposed ReAct, which combined LLMs for action prediction with chain-
of-thought prompting (Wei et al., 2022). Several other works (Yao et al., 2023b; Hao et al., 2023;
Zhao et al., 2023) have focused on enhancing multi-step reasoning capabilities by integrating LLMs
with tree search methods. Our model differs from these previous studies in several significant ways.
First, rather than solely focusing on text generation tasks, our pipeline addresses multi-step action
planning tasks in interactive environments, where we must consider not only historical input but also
multimodal feedback from the environment. Additionally, our pipeline involves automatic learning of
the reward model from the environment without relying on human-annotated data, whereas previous
works rely on prompting-based frameworks that require large commercial LLMs like GPT-4 (Ope-
nAI et al., 2024) to learn action prediction. Furthermore, ARMAP supports a variety of planning
algorithms beyond tree search.

Learning from AI Feedback. In contrast to prior work on LLM planning, our approach also
draws on recent advances in learning from AI feedback (Bai et al., 2022; Lee et al., 2023; Yuan
et al., 2024; Sharma et al., 2024; Pan et al., 2024; Koh et al., 2024). These studies initially prompt
state-of-the-art large language models to generate text responses that adhere to predefined principles
and then potentially fine-tune the LLMs with reinforcement learning. Like previous studies, we also
prompt large language models to generate synthetic data. However, unlike them, we focus not on
fine-tuning a better generative model but on developing a classification model that evaluates how well
action trajectories fulfill the intended instructions. This approach is simpler, requires no reliance on
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Figure 2: The pipeline of our ARMAP framework. We first generate an initial task instruction using
LLMs with in-context learning and sample trajectories aligned with the initial language instructions
in the environment. Next, we use the LLM to summarize the sampled trajectories and generate
refined task instructions that better match these trajectories. We then modify specific actions within
the trajectories to perform new actions in the environment, collecting negative trajectories in the
process. Using the refined task instructions, along with both positive and negative trajectories, we
train a lightweight reward model to distinguish between matching and non-matching trajectories. The
learned reward model can then collaborate with various LLM agents to improve task planning.

state-of-the-art LLMs, and is more efficient. We also demonstrate that our learned reward model can
integrate with various LLMs and planning algorithms, consistently improving their performance.

3 MODEL

In this section, we provide a detailed introduction to our framework, autonomous Agents from
automatic Reward Modeling And Planning (ARMAP). The framework includes automated reward
data generation in section 3.2, reward model design in section 3.3, and planning algorithms in
section 3.4.

3.1 BACKGROUND

The planning tasks for LLM agents can be typically formulated as a Partially Observable Markov
Decision Process (POMDP): (X ,S,A,O, T ), where:

• X is the set of text instructions;
• S is the set of environment states;
• A is the set of available actions at each state;
• O represents the observations available to the agents, including text descriptions and visual

information about the environment in our setting;
• T : S × A → S is the transition function of states after taking actions, which is given by

the environment in our settings.

Given a task instruction x ∈ X and the initial environment state s0 ∈ S, planning tasks require the
LLM agents to propose a sequence of actions {an}Nn=1 that aim to complete the given task, where
an ∈ A represents the action taken at time step n, and N is the total number of actions executed
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in a trajectory. Following the n-th action, the environment transitions to state sn , and the agent
receives a new observation on . Based on the accumulated state and action histories, the task evaluator
determines whether the task is completed.

An important component of our framework is the learned reward model R, which estimates whether
a trajectory h has successfully addressed the task:

r = R(x , h), (1)

where h = {{an}Nn=1, {on}Nn=0}, {an}Nn=1 are the actions taken in the trajectory, {on}Nn=0 are the
corresponding environment observations, and r is the predicted reward from the reward model. By
integrating this reward model with LLM agents, we can enhance their performance across various
environments using different planning algorithms.

3.2 AUTOMATIC REWARD DATA GENERATION.

To train a reward model capable of estimating the reward value of history trajectories, we first
need to collect a set of training language instructions {xm}Mm=1, where M represents the number
of instruction goals. Each instruction corresponds to a set of positive trajectories {h+

m}Mm=1 that
match the instruction goals and a set of negative trajectories {h−

m}Mm=1 that fail to meet the task
requirements. This process typically involves human annotators and is time-consuming and labor-
intensive (Christiano et al., 2017; Rafailov et al., 2024). As shown in Fig. 8 of the Appendix. we
automate data collection by using Large Language Model (LLM) agents to navigate environments
and summarize the navigation goals without human labels.

Instruction Synthesis. The first step in data generation is to propose a task instruction for a given
observation. We achieve this using the in-context learning capabilities of LLMs. The prompt for
instruction generation is shown in Fig. 9 of the Appendix. Specifically, we provide some few-shot
examples in context along with the observation of an environment state to an LLM, asking it to
summarize the observation and propose instruction goals. In this way, we collect a set of synthesized
language instructions {xraw

m }Mm=1, where M represents the total number of synthesized instructions.

Trajectory Collection. Given the synthesized instructions xraw
m and the environment, an LLM-based

agent is instructed to take actions and navigate the environment to generate diverse trajectories
{xraw

m , hm}Mm=0 aimed at accomplishing the task instructions. Here, hm represents the m-th history
trajectory, which consists of N actions {an}Nn=1 and N + 1 environment observations {on}Nn=0.
Due to the limited capabilities of current LLMs, the generated trajectories hm may not always align
well with the synthesized task instructions xm. To address this, we ask the LLM to summarize the
completed trajectory hm and propose a refined goal xr

m. This process results in a set of synthesized
demonstrations {xr

m, hm}Mr
m=0, where Mr is the number of refined task instructions.

Pairwise Data Construction. To train a reward model capable of distinguishing between good and
poor trajectories, we also need trajectories that do not satisfy the task instructions. To create these,
we sample additional trajectories that differ from {xr

m, hm} and do not meet the task requirements
by modifying actions in hm and generating corresponding negative trajectories {h−

m}. For clarity,
we refer to the refined successful trajectories as {xm, h+

m} and the unsuccessful ones as {xm, h−
m}.

These paired data will be used to train the reward model described in Section 3.3, allowing it to
estimate the reward value of any given trajectory in the environment.

3.3 REWARD MODEL DESIGN.

Reward Model Architectures. Theoretically, we can adopt any vision-language model that can
take a sequence of visual and text inputs as the backbone for the proposed reward model. In our
implementation, we use the recent VILA model (Lin et al., 2023) as the backbone for reward modeling
since it has carefully maintained open-source code, show strong performance on standard vision-
language benchmarks like (Fu et al., 2023; Goyal et al., 2017; Hudson & Manning, 2019), and support
multiple image input.

The goal of the reward model is to predict a reward score to estimate whether the given trajectory
(xm, hm) has satisfied the task instruction or not, which is different from the original goal of VILA
models that generate a series of text tokens to respond to the task query. To handle this problem, we
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additionally add a fully-connected layer for the model, which linearly maps the hidden state of the
last layer into a scalar value.

Optimazation Target. Given the pairwise data that is automatically synthesized from the envi-
ronments in Section 3.2, we optimize the reward model by distinguishing the good trajectories
(xm, h+

m) from bad ones (xm, h−
m). Following standard works of reinforcement learning from human

feedback (Bradley & Terry, 1952; Sun et al., 2023b;a), we treat the optimization problem of the
reward model as a binary classification problem and adopt a cross-entropy loss. Formally, we have

L(θ) = −E(xm,h+
m,h−

m)[log σ(Rθ(xm, h+
m)−Rθ(xm, h−

m))], (2)

where σ is the sigmoid function and θ are the learnable parameters in the reward model R. By
optimizing this target, the reward model is trained to give higher value scores to the trajectories that
are closer to the goal described in the task instruction.

3.4 PLANNING WITH LARGE VISION-LANGAUGE REWARD MODEL.

After getting the reward model to estimate how well a sampled trajectory match the given task
instruction, we are able to combine it with different planning algorithms to improve LLM agents’
performance. Here, we summarize the typical algorithms we can adopt in this paper.

Best of N. This is a simple algorithm that we can adopt the learned reward model to improve the
LLM agents’ performances. We first prompt the LLM agent to generate n different trajectories
independently and choose the one with the highest predicted reward score as the prediction for
evaluation. Note that this simple method is previously used in natural language generation (Zhang
et al., 2024) and we adopt it in the context of agent tasks to study the effectiveness of the reward
model for agent tasks.

Reflecxion. Reflexion (Shinn et al., 2024) is a planning framework that enables large language
models (LLMs) to learn from trial-and-error without additional fine-tuning. Instead of updating
model weights, Reflexion agents use verbal feedback derived from task outcomes. This feedback is
converted into reflective summaries and stored in an episodic memory buffer, which informs future
decisions. Reflexion supports various feedback types and improves performance across decision-
making, coding, and reasoning tasks by providing linguistic reinforcement that mimics human
self-reflection and learning.

MCTS. We also consider tree search-based planning algorithms like Monte Carlo Tree Search
(MCTS) (Coulom, 2006; Silver et al., 2017) to find the optimal policy. There is a tree structure
constructed by the algorithm, where each node represents a state and each edge signifies an action.
Beginning at the initial state of the root node, the algorithm navigates the state space to identify action
and state trajectories with high rewards, as predicted by our learned reward model.

The algorithm tracks 1) the frequency of visits to each node and 2) a value function that records the
maximum predicted reward obtained from taking action a in state s. MCTS would visit and expand
nodes with either higher values (as they lead to high predicted reward trajectory) or with smaller visit
numbers (as they are under-explored). We provide more details in the implementation details and the
appendix section.

4 EXPERIMENTS

In this section, we conduct a series of experiments to demonstrate the effectiveness of the proposed
framework for agent tasks. First, we evaluate the framework’s performance on standard agent
benchmarks (Yao et al., 2023a; Wang et al., 2022; Yao et al., 2023b), detailed in Section 4.2. Next,
we show how customizing the reward target during inference allows us to generate more tailored
action plans, as described in Section 4.3. Finally, we conduct ablation studies in Section 4.4. Before
delving into the experimental results, we provide an overview of our experimental setup.

4.1 EXPERIMENTAL SETUP

Environments. We evaluate the ARMAP framework in three different environments:
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• Webshop is a well-known environment for online shopping (Yao et al., 2023a), where the
agent must search for and select products on the website to obtain a final result. Following
the setup of AgentBench (Liu et al., 2023) for LLM evaluation, we test the model on the
validation split, using the default matching reward as the evaluation metric.

• ScienceWorld (Wang et al., 2022) is an interactive benchmark designed for embodied
science experiments. It places agents in a simulated text-based environment where they
must perform elementary science experiments by navigating the environment, manipulating
objects, and observing outcomes. The aim is to assess whether AI models can apply scientific
knowledge, rather than merely retrieve or assemble information. We evaluate the framework
on both seen and unseen splits.

• Game of 24 is a mathematical game where the agent is given four numbers and must use
arithmetic operations (addition, subtraction, multiplication, and division) to make the number
24. For instance, given the input ’3, 5, 7, 11,’ one possible solution is ’(7−3)∗(11−5) = 24’.
Following Yao et al. (2023b), we selected 100 challenging puzzles, specifically those indexed
from 901 to 1,000, and the performance metric is the success rate across these puzzles.
As shown in Fig. 7 of the Appendix, we use the chain-of-thought prompting technique,
prompting the LLM agents to output intermediate steps followed by the final answer. Each
step of the solution is considered an action.

LLM Setup. Our framework requires LLM models to act as agents, generating synthetic task
instructions from the environment along with few-shot examples in the prompt context. We also
deploy agents to perform these synthetic tasks in the environment, collecting diverse trajectories
for further analysis. In this paper, we primarily use the Llama3-70b-instruct model (Dubey et al.,
2024) to synthesize training data for the automatic reward models, as it is open-source, easy to deploy
locally, and delivers robust performance. We avoid state-of-the-art commercial models like GPT-4 or
Gemini due to their high costs and the complexity of reproducing results caused by frequent model
updates, making them less suitable for our research objectives.

To evaluate the performance of various LLM agents, we serve a representative set of LLM APIs
locally, balancing model diversity with affordable serving costs. We identify the LLMs by their
model family and size. Specifically, these are Llama70B, Llama8B, Mistral7B, and Phi3.8B. We note
that these open-source model families are frequently updated, and we provide the current model links
in the Appendix A.3. All models can be easily set up using the vLLM library (Kwon et al., 2023b)
and a single H100 GPU.

Baselines. We implement our ARMAP framework using different planning algorithms, including
Reflexion, Best-of-N, and MCTS, which we denote as ARMAP-R, ARMAP-B, and ARMAP-M,
respectively. We limit the maximum number of trajectories our ARMAP can explore to 10 in the
ScienceWorld and Webshop environments to systematically evaluate the pipeline’s effectiveness
across different LLM agent backbones. We also compare the model with two baselines that do not
use reward model guidance: Sampling and Greedy. For the Game of 24 environment, we follow the
setup of a previous study (Yao et al., 2023b) and set the maximum number of explored trajectories
to 100. For Sampling, we set the model temperature to 1 and sample action trajectories using
chain-of-thought prompting (Wei et al., 2023). For Greedy, we set the temperature to 0, generating
the action sequence with the highest probability. Further implementation details are provided in the
Appendix. We will release all the code, model, and data for easy reproduction upon acceptance.

4.2 EFFECTIVENESS FOR REWARD PLANNING.

In this section, we investigate the effectiveness of the framework across different language mod-
els (Dubey et al., 2024; Jiang et al., 2023; Abdin et al., 2024) and various planning algorithms. The
results are shown in Table 1. Based on the table, we have the following observations. First, our
proposed pipeline is effective, as it consistently outperforms the Sampling and Greedy baselines
across different planning algorithms. Additionally, we observe that the average improvement is more
significant on weaker models, such as Phi (Abdin et al., 2024) and Mistral-7B (Jiang et al., 2023),
compared to stronger models like Llama3-1-70B (Dubey et al., 2024). We believe this is because
weaker models explore more low-reward trajectories, providing greater opportunities for the reward
model to improve performance.
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Backbone Algorithms Webshop ScienceWorld Game24 Averageseen unseen

Llama70B

Sampling 52.0 53.9 50.6 9.6 38.0
Greedy 50.4 57.2 55.1 6.0 37.5
ARMAP-R 56.5 59.0 56.7 16.0 43.5
ARMAP-B 62.0 57.3 57.0 19.0 46.1
ARMAP-M 66.8 58.2 55.9 24.0 49.3

Llama8B

Sampling 56.4 24.5 20.6 2.0 27.0
Greedy 57.7 29.9 23.8 2.0 28.9
ARMAP-R 58.3 31.2 28.0 6.0 31.3
ARMAP-B 59.3 35.7 28.1 11.0 34.1
ARMAP-M 60.2 32.5 24.9 9.0 32.6

Mistral7B

Sampling 17.7 18.4 17.1 1.0 12.2
Greedy 37.2 21.1 19.6 1.0 19.5
ARMAP-R 54.1 21.7 19.7 2.0 25.6
ARMAP-B 54.4 24.5 21.2 2.0 26.4
ARMAP-M 58.2 30.0 23.4 4.0 29.6

Phi3.8B

Sampling 34.7 10.0 7.6 2.0 15.2
Greedy 42.4 9.5 6.5 2.1 17.5
ARMAP-R 53.3 9.6 7.2 4.0 21.9
ARMAP-B 52.1 20.0 17.0 9.0 26.5
ARMAP-M 53.7 28.3 24.3 10.0 30.0

Table 1: Effectiveness of the proposed method on different benchmarks. Our ARMAP framework
consistently outperforms the baselines across different language models.

Algorithms Action↓ Price ↓ Reward ↑
Greedy 4.6 102.4 50.4
ARMAP-B 4.7 102.2 62.0
ARMAP-M 4.5 97.9 66.8

ARMAP-B+Length-Penalty 3.9 98.8 60.3
ARMAP-M+Length-penalty 4.0 102.1 65.5

ARMAP-B+Price-penalty 5.0 65.5 57.5
ARMAP-M+Price-penalty 4.3 69.0 62.4

Table 2: Controllable Trajectory Generation. We show that we can generate controllable trajectories
like shorter action lengths and lower prices by customizing reward targets. We use Llama70B as the
default API for action prediction.
Among the three planning algorithms, MCTS performs the best on average, likely due to its superior
mechanisms for identifying higher-reward trajectories and searching less-explored trajectories. We
also notice that Reflexion performs the worst on weaker models like Mistral7B and Phi3.8B. We
suspect this is because Reflexion was designed for ChatGPT-family-based agents and requires the
LLM agent to possess strong capabilities for learning from trial and error. Finally, we present
qualitative results of different methods in Fig. 3, where it is clear that our ARMAP generates better
trajectories than the baselines, aided by the guidance of automatic reward models. In Appendix A.5,
we analyze several failure cases, offer more detailed insights into the limitations of the current
approach, and suggest potential improvements in reward modeling.

4.3 CONTROLLABLE GENERATION.

Another benefit of our ARMAP pipeline is that we can customize our reward targets during inference,
allowing us to generate more controllable action sequences, rather than solely maximizing the
predicted rewards. Agent fine-tuning methods (Li et al., 2023; Zeng et al., 2023) find it challenging
to achieve this goal since agent behaviors are typically fixed during inference. We conducted
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search[furniture]

click[back to search]

search[living room dining 
room furniture]

click[B09MQFMCL8]

search[furniture]

click[B09LYLKLVX]

click[Buy Now]

I'm looking for furniture to make my living room and 
dinning room so nice, and price lower than 300 dollars.

Search … Search 

click[Buy Now]

search[blue women 
coat price < 80.00]

click[B09LRVC4K2]

click[blue]

click[Buy Now] click[Buy Now]

click[B09LRVC4K2]

search[blue sherpa wool 
sweatshirt price < 80.00]

click[large]

I need a blue women coat, and price lower than 80 dollars.

Back to Search 

Table Set for 4 Price: 
$259.99

Restroom Mirror,
$2488.95

...

Buy Now

...

Price: $9.19 to $10.96
Color:    blue     purple    black

B09LYLKLVX B07D54V8HT

Table Set for 6 Price: 
$853.29

... ...
B09MQFMCL8 B08J9WPMJ8

Back to Search 

Reading Room Set,
$957.34

... ...

Back to Search 

... ...
B09LRVC4K2 B08J9WPMJ8

Back to Search 

... ...
B09LRVC4K2 B08J9WPMJ8

Price: $9.19 to $10.96

Size:    large     medium    

Default
Policy Model

Automatic
Reward ModelSearch … Search 

Figure 3: Two qualitative results of the Webshop task. The figure shows two examples utilizing the
advantages of our ARMAP framework and we are able to correct errors made by existing methods.
In the top example, when the search results do not meet the requirements, our ARMAP method
leverages the advantage of the tree structure to backtrack and search again, thereby retrieving the
appropriate target item. In contrast, existing methods fail to backtrack when the target item is not
found. In the bottom example, by using the ARMAP to evaluate different states in the environment,
our method is able to select the color that offers a higher reward and better meets the requirements
when choosing between size and color, rather than mistakenly selecting the wrong size. These two
examples sufficiently demonstrate the advantages of our method compared to traditional approaches.

Models Model Base ScienceWorld ( seen )

Greedy Phi3.8B 9.6
SFT-Policy VILA3B 18.6

ARMAP-B w/o R Llama70B and Phi3.8B 16.0
ARMAP-M w/o R 26.5

ARMAP-B VILA3B and Phi3.8B 20.0
ARMAP-M 28.3

Table 3: Ablation study of the proposed framework. Our ARMAP framework is more effective than
directly finding a policy model and using the general LLM for reward generation.

experiments in the Webshop environment to evaluate the impact of customizable reward targets.
In addition to the original objective of maximizing the predicted reward R(x, h), we defined two
additional optimization targets. First, we aimed to minimize the number of actions in the trajectory
history, defining the reward target as R(x, h)−NumberOfAction(h). Second, we sought to minimize
the price of the target product, with a customized target of R(x, h) − PriceOfProduct(h). Table 2
presents the results. By applying a length penalty on the reward target for ARMAP-M, we reduced the
average action length from 4.5 to 4 and the average product price from 97.9 to 69.0, while maintaining
comparable performance on the default matching reward. Similar performance was observed for
ARMAP-B. Additionally, we provide a qualitative example in Fig. 4. From this example, we can
see that our customized reward target successfully guided the LLM agent to purchase products with
fewer action steps while still finding the target product.
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shaker triple blend flakes price < 
30.00]
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...
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Action8: click[Buy Now]
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Price: 
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Action3: click[back to search]
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Price: 
$13.15
Size: 
    1 lb      1 oz
Flavor:
     triple blend flakes

Action7: click[triple blend flakes]

Action5: click[B0007SMLUM]

B0007SMLUM

...
Action1: search[organic sea salt 
shaker triple blend flakes 1 pound  
price < 30.00]

Action3: click[1 pound (pack of 1)]
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Action5: click[Buy Now]

Action4: click[triple blend flakes]

Action2: click[B0007SMLUM]

B01GGWDB8S

Succeed with Reward = 1.0, Steps = 8 Succeed with Reward = 1.0, Steps = 5

... Price: 
$13.15
Size: 
    1 lb      1 oz
Flavor:
     triple blend flakes

Figure 4: A typical example of customized reward target for shorter trajectory generation. On the
left, we show the default greedy decoding generates a long trajectory without finding the target
product. In the middle, we show our default reward can guide the LLM agent to generate a correct
but long trajectory. On the right, we show our framework with a customized reward target for shorter
trajectories, which finds a correct and short trajectory for the target product.

4.4 ABLATION STUDIES.

We conduct ablation studies to investigate the effectiveness of the framework. Specifically, we aim
to answer the following questions: Q1. Can we train a policy model with fully supervised learning
to handle multi-step tasks from the synthesized trajectory data? Q2. Can a large, general language
model be used as the reward model to perform guidance without automatic reward learning?

We conducted experiments using the ScienceWorld benchmark, and the results are shown in Table 3.
When comparing our pipeline to the SFT model trained using our reward backbone VILA3B,
we observed that although the policy model trained through fully supervised learning performed
reasonably well (18.6), it still lagged behind the performance of our planning framework (28.3). This
suggests that learning a policy model is more challenging than learning a reward model, highlighting
the effectiveness of our proposed ARMAP pipeline (answering Q1).

Next, we replaced our smaller 3B reward model with a much larger language model, Llama3-1-70B,
and used few-shot prompting to predict the reward of the extracted trajectories. We found that this
larger model also improved performance compared to the default greedy model, demonstrating the
effectiveness of our planning framework. However, it still performed worse than our pipeline using
automatic reward learning, despite the Llama3-1-70B being about 20 times larger, further showcasing
the efficiency and effectiveness of our approach (answering Q2).

We provide additional ablation experiments in the Appendix A.2, including the data quality from
various LLMs, reward modeling target and computational efficiency.

5 CONCLUSION

We propose a framework, ARMAP, for large language model (LLM) agents to manage tasks that
require multi-step decision-making and environmental feedback, such as online shopping or scientific
reasoning. This framework allows LLM-based agents to enhance task planning by autonomously
learning a reward model from the environment, without the need for human labeling. The method
utilizes pre-trained LLM agents to generate diverse action trajectories within an environment, which
are then evaluated by a separate LLM based on the task’s intent. These evaluations help train a
reward model that strengthens the agents’ decision-making capabilities. The framework enhances the
performance of LLM agents in addressing complex tasks and mitigates issues related to data scarcity
and API limitations. Its effectiveness is demonstrated across various benchmarks, representing a
significant advancement in the development of AI agents for real-world, multi-step problem-solving.
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A APPENDIX

In this section, we provide supplementary material for the main paper.

A.1 EXPERIMENTS ON ALFWORLD AND AGENTCLINIC.

We extend our experiment on ALFWorld (Shridhar et al., 2021), a classic environment for House-
Holding, where the agent must accomplish tasks in physical house-holding environments, like
“Put a pan on the dining table”. Following the setup of AgentBench (Liu et al., 2023) for LLM
evaluation, we test the model on the dev and std split, using the default success rate as the evaluation
metric. Specifically, we used LLaMa-3.1-70B to generate around 1600 pairs of positive and negative
samples with our data generation pipeline. Then we train a reward model with these synthesized data.
We evaluate our ARMAP framework on ALFWorld using various planning algorithms, including
Reflexion and Best-of-N, which we refer to as ARMAP-R and ARMAP-B, respectively. Additionally,
we compare our approach with two baseline methods that do not incorporate reward model guidance:
Sampling and Greedy. The results are shown below. As shown in Table 4, our model still performs
well in this challenging environment, which contains diverse scenes and long-horizon planning tasks.

Models ALFWorld-std ALFWorld-dev

Sampling 0.13 0.14
Greedy 0.18 0.30
ARMAP-R 0.22 0.35
ARMAP-B 0.30 0.45

Table 4: Experimental Results on ALFWorld.

We also extended our experiments to ClinicalAgent (Schmidgall et al., 2024), an environment
designed for medical decision-making tasks. ClinicalAgent evaluates models on their ability to
interpret clinical scenarios and make accurate, high-stakes decisions. Results of ClinicalAgent are
provided in Table 5, further supporting the versatility of ARMAP in domains requiring precise
reasoning.

Models AgentClinic-MedQA

Sampling 11.89
Greedy 14.02
ARMAP-B 44.33

Table 5: Experiments Results on AgentClinic.

A.2 ABLATION STUDY.

Dependence on Quality of Synthetic Data from Various LLMs. We choose ScienceWorld and
conduct experiments to study the effectiveness of different reward models. As shown in Table 6, the
left column represents the results of using LLaMA-8B greedy directly and the Best of N results of
LLaMA-8B with the reward model trained by the data generated from LLaMA-70B, LLaMA-8B,
Mistral-7B, and Phi-3.8B, respectively. Greedy is our baseline result and it can be observed that
using the reward model leads to better experimental outcomes. Among all the results, LLaMA-70B
achieves the best performance. Compared to the other three models, LLaMA-70B has the largest
scale and is naturally the most capable model. LLaMA-8B and Mistral-7B have a similar number of
parameters, and in the ScienceWorld task, Mistral-7B performs better than LLaMA-8B. Phi-3.8B
is the smallest of these models, yet it still achieved very good results. Notably, compared to the
larger-scale LLaMA-8B and Mistral-7B, Phi-3.8B still scored better. These results indicate that
our method exhibits good robustness when faced with LLMs of different scales and capabilities.
Even with the smallest model, our method can still achieve good results. From these experimental
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Models SciWorld-seen SciWorld-unseen

Greedy 29.9 23.8
Llama70B 35.7 28.1
Llama8B 32.2 24.7
Mistral7B 33.7 26.5
Phi3.8B 34.7 26.9

Table 6: Experiments of training data generated from various LLMs.

outcomes, it is clear that our method does not overly rely on the capabilities of language models. In
other words, our method is highly efficient and robust.

Reward Modeling Target. To further investigate the optimization target of the reward model, we
conduct experiments to compare the performance of pairwise comparison and binary classification
as learning methods for the reward model. Specifically, in the classification setting: each input pair
is treated as a positive and a negative example. The model is trained to predict a score of 1 for
positive examples and 0 for negative examples. The comparative results are shown in Table 7. Across
all settings, pairwise comparison consistently outperforms binary classification. This confirms that
pairwise comparison captures nuanced preferences more effectively than binary classification, leading
to better reward modeling and overall task performance.

Backbone Algorithms Classification Comparative
Seen Unseen Seen Unseen

LLaMA-70B ARMAP-R 57.0 55.4 59.0 56.7
ARMAP-B 47.2 43.3 57.3 57.0

LLaMA-8B ARMAP-R 29.0 24.2 31.2 28.0
ARMAP-B 27.5 22.2 35.7 28.1

Mistral-7B ARMAP-R 17.8 18.2 21.7 19.7
ARMAP-B 19.1 17.3 24.5 21.1

Phi-3.8B ARMAP-R 8.6 4.8 9.6 7.2
ARMAP-B 17.7 13.7 20.0 17.0

Table 7: Comparison of the Classification target and Comparison target on ScienceWorld.

Computational Efficiency Analysis. We further study the data demands of the reward modelings.
We show the performance of using different amounts of training data. In Table 8 and Table 9, we
selected ScienceWorld and used ARMAP-B as the experimental setting. In the leftmost column, we
listed the different LLMs used in our study. In the first row, we introduced VILA-3B, VILA-13B,
and LLaVA-13B, to compare the impact of different sizes and types of reward models on the final
outcomes. In the last two columns, we trained the reward models using 1/5 and 1/25 of the original
training dataset size, respectively, to assess how varying amounts of training data affect our method.
(1) As seen, the effectiveness of our method continues to improve with increasing reward model
sizes. However, in the experiments with LLaMA-8B and Phi-3.8B, despite using more potent reward
models, there was no improvement in results. We believe that in the processes of planning and
reasoning, the capability of the policy model still plays a dominant role. If the policy model is more
robust, and concurrently, if we enhance the capability of the reward model, we can continuously
achieve better results. (2) We also observe that the performance of LLaVA-13B is not as good
as VILA-13B. We attribute this to VILA being an improved version of LLaVA, and it utilizes an
interleaved image-text dataset in its training, which better aids the model in perceiving, understanding,
and handling multimodal information. Hence, VILA outperforms LLaVA. (3) From the Table 8 and
Table 9, it is evident that regardless of whether the data is seen or unseen, increasing the model size
improves the final experimental results. If we use the results of the VILA-3B model as a benchmark
and compare it with the two settings, 1/5 data and 1/25 data, it is clear that increasing the training
data enhances the outcomes. Conversely, even when using extremely limited data amounts like 1/5
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or 1/25 of the original dataset, we can still achieve a capable model, and the performance does not
dramatically decrease.

These results demonstrate that our method can still yield good results in a low-resource environment.
In other words, our approach does not rely on large volumes of data and the strong capability of large
models; it is succinct and efficient, capable of performing well in extremely low-resource settings.

Backbone VILA-3B VILA-13B LLaVA-13B 1/5 Data 1/25 Data

LLaMA-70B 57.3 61.2 44.3 52.1 50.6
LLaMA-8B 35.7 34.3 26.0 31.4 29.3
Mistral-7B 24.5 26.0 19.5 22.6 21.7
Phi-3.8B 20.0 19.5 16.7 17.9 13.9

Table 8: Comparison of reward model selection and data demands on ScienceWorld seen set.

Backbone VILA-3B VILA-13B LLaVA-13B 1/5 Data 1/25 Data

LLaMA-70B 57.0 60.7 48.2 50.0 47.7
LLaMA-8B 28.1 27.5 22.2 26.8 24.2
Mistral-7B 21.1 22.9 19.2 21.6 19.7
Phi-3.8B 17.0 15.3 13.7 14.2 11.7

Table 9: Comparison of reward model selection and data demands on ScienceWorld unseen set.

Ablation on Visual Input. We also train a new reward model without visual information. As shown
in Table 10, we can see that, in different settings, the reward model with visual information performs
better than the model without visual information, which shows the importance of visual context in
the Webshop task.

Backbone Algorithms w/o visual w/ visual

LLaMA-70B ARMAP-R 56.1 56.5
ARMAP-B 61.6 62.0

Mistral-7B ARMAP-R 53.6 54.1
ARMAP-B 51.3 54.4

Table 10: Ablation of the visual input.

Overhead in Data Synthesis. We calculate the tokens we have used for task instruction generation
and trajectory exploration. We summarize these overheads in Table 11. To provide a more intuitive
comparison, we first calculated the average tokens per sample for these different tasks. We found that
although Game of 24 overall consumes the most tokens, the average number of tokens spent per Game
of 24 sample is relatively the least. In contrast, Webshop has the fewest total samples but the highest
average number of tokens spent per sample. ScienceWorld falls in between these two. The reason
Webshop has a higher average number of tokens compared to Game of 24 is that the environment
required for Webshop is more complex, involving more diverse elements and possibilities.

Tasks Samples Tokens Tokens per Sample

ScienceWorld 4064 2541255 625
Webshop 2436 6645746 2728

Game of 24 37885 12846182 339

Table 11: Tokens of data generation in three different tasks.

Proprietary Models as Training Data Generators and Policy Models. In the main content, we
mainly consider using open-source models to act as training data generators and policy models. In
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order to investigate the upper bounds of our proposed method, we also conduct some experiments
by using powerful proprietary models. However, to serve as the training data generator, closed-
source models have several drawbacks, including high costs, limited commercial access, and lack of
reproducibility. In contrast, our approach achieves strong results without relying on closed-source
models. Given the expense associated with API-based models like GPT-4o for generating training
datasets, we have opted not to pursue this method for now.

For API-based proprietary models serving as policy models, the high cost of GPT-4o and API access
rate limitations prompted us to focus our experiments primarily on ALFWorld. Specifically, we used
GPT-4o-2024-08-06 to sample five trajectories each on ALFWorld’s Dev and Std sets, then conducted
experiments using our automatic reward model. As shown in Table 12, our reward model is able to
help the powerful GPT-4o gain better performance, demonstrating the effectiveness of our framework.

GPT-4o Std Dev

Sampling 0.74 0.88
Greedy 0.82 0.90
ARMAP-B 0.84 0.95

Table 12: Experiments of using the proprietary model on ALFWorld

A.3 IMPLEMENTATION DETAILS.

Large Pretrain Model Setup. We serve a diverse set of open-source LLM APIs to evaluate the
effectiveness of the proposed pipeline. We list all the open-source models and their weights on
huggingface in table 13. All these models can be easily setup and reproduced with the VLLM
libarary (Kwon et al., 2023b). We prove the effectiveness of our ARMAP framework across different
LLM APIs.

Acronym Model description and weight on huggingface websites

Llama70B https://huggingface.co/hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4
Llama8B https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
Mistral7B https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
Phi3.8B https://huggingface.co/microsoft/Phi-3.5-mini-instruct

VILA3B https://huggingface.co/Efficient-Large-Model/VILA1.5-3b

Table 13: Agent models, the reward model, and their associated description on huggingface websites.

Environment Setup. We build our environments based on the environment setup of the previous
works (Liu et al., 2023; Song et al., 2024; Yao et al., 2023b; Shridhar et al., 2021; Schmidgall
et al., 2024). For Webshop and ALFWorld environment, we start these docker environments from
AgentBench (Liu et al., 2023) and implement different planning algorithms, Reflexion, Best-of-N
and MCTS on it. Similarly, we build our ScienceWorld, Game of 24 and AgentClinic environments
from Song et al. (2024), Yao et al. (2023b) and Schmidgall et al. (2024), respectively.

Planning Algorithm Details. We compare the performance of different planning algorithms by
limiting their maximum explored trajectory number. We set the maximum number to be 10 on
Webshop and ScieneWorld in consideration of effectiveness and efficiency. We set the maximum
number to be 100 on Game of 24 following the setup of Yao et al. (2023b). In Webshop, ScienceWorld,
ALFWorld and AgentClinic benchmarks, we only consider the top 10 available actions suggested by
the LLM agent at each state to reduce search space. We also set a trajectory’s maximal action number
length to 10 for simplicity.

For Reflexion, we set the maximum trial number to be 10 for all tasks. For different tasks and models,
we set the threshold of Reflexion separately. During the iteration process, if the reward of the current
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trail’s trajectory exceeds the threshold, the iteration will stop, and the current trail will be taken as
the result. If the maximum number of trials is reached, the last trial will be taken as the result in
Webshop and Game of 24, while the first trial will be taken as the result in ScienceWorld.

Data Generation. In total, we generate 2,436, 4,064 and 37,885 pairs of data for Webshop,
ScienceWorld and Game of 24, respectively. Sampled synthesized data sample can be seen in
Fig. 5, Fig. 6 and Fig. 7. We provide the sampled prompt we use for data generation from Fig. 8 to
Fig. 11. In Fig. 8, we show an example how we prompt the LLM to generate language instruction for
ScienceWorld. In Fig. 9, we show how we refine the language instruction to refine the instruction goal.
In Fig. 10 and Fig. 11, we show the prompt how the LLM agent synthesizes positive and negative
trajectories, respectively.
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Training Data Example for Webshop

Task Instruction: I need 2 long-lasting bluetooth radio speaker units for a soundbar with
4ohm impedance and 6w power, and price lower than 50.00 dollars.

Positive Example:
Thought: ...
Action: ...
Current Screenshot: ...
Observation: ...
Thought: The option B09STMXYR5 matches the required characteristics. I should select it.
Action: click[B09STMXYR5]
Current Screenshot:

JUSTQIJUN 2pcs 1.5 Inch Bluetooth Radio Speaker Unit 
4 Ohm 6W Sound Bar Horn 18 Core 45mm Music 
Portable Loudspeaker Rubber Edge Compatible with 
Altavoces Bookshelf Speakers (Color : 40mm 4 ohm 6W) 

Price: $28.36 

Rating: N.A. 

Description Features Reviews

< Prev

Back to Search

Buy Now

Instruction:
I need 2 long-lasting bluetooth radio speaker units for a soundbar with 4ohm impedance and 

6w power, and price lower than 50.00 dollars 

Observation: Instruction: [SEP] i need 2 long-lasting bluetooth radio speaker units for a
soundbar with 4ohm impedance and 6w power, and price lower than 50.00 dollars [SEP]
Back to Search [SEP] < Prev [SEP] JUSTQIJUN 2pcs 1.5 Inch Bluetooth Radio Speaker
Unit 4 Ohm 6W Sound Bar Horn 18 Core 45mm Music Portable Loudspeaker Rubber Edge
Compatible with Altavoces Bookshelf Speakers (Color : 40mm 4 ohm 6W) [SEP] Price:
$28.36 [SEP] Rating: N.A. [SEP] Description [SEP] Features [SEP] Reviews [SEP] Buy
Now
Thought: I should click on the ’Buy Now’ button to proceed with the purchase.
Action: click[buy now]

Negative Example:
Thought: ...
Action: ...
Current Screenshot: ...
Observation: ...
Thought: I think I should click on the product I need, which is B09SWKXBY5, since it
matches the requirements of 4ohm impedance and 6w power and the price is lower than 50.00
dollars.
Action: click[B09SWKXBY5]
Current Screenshot:

< Prev

Back to Search

Buy Now

Instruction:
I need 2 long-lasting bluetooth radio speaker units for a soundbar with 4ohm impedance and 

6w power, and price lower than 50.00 dollars

JUSTQIJUN 2pcs Full Range 2 Inch Speaker 15W DIY 
Soundbar Boombox Unit Portable Radio 10W 20w 4 
Ohm Speaker HiFi Bluetooth Speakers 55mm Bookshelf
Speakers (Color : 4 ohm 20W) 

Price: $42.66  

Rating: N.A. 

Description Features Reviews

Color:      4 ohm 10w     4 ohm 15w    4 ohm 20w

Observation: Instruction: [SEP] i need 2 long-lasting bluetooth radio speaker units for a
soundbar with 4ohm impedance and 6w power, and price lower than 50.00 dollars [SEP]
Back to Search [SEP] < Prev [SEP] color [SEP] 4 ohm 10w [SEP] 4 ohm 15w [SEP] 4 ohm
20w [SEP] JUSTQIJUN 2pcs Full Range 2 Inch Speaker 15W DIY Soundbar Boombox
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Unit Portable Radio 10W 20w 4 Ohm Speaker HiFi Bluetooth Speakers 55mm Bookshelf
Speakers (Color : 4 ohm 20W) [SEP] Price: $42.66 [SEP] Rating: N.A. [SEP] Description
[SEP] Features [SEP] Reviews [SEP] Buy Now
Thought: I think I should click on the ’Buy Now’ button to purchase the product.
Action: click[buy now]

Figure 5: Training Data Example for Webshop.

Training Data Example for ScienceWorld

Task Instruction: You are a helpful assistant to do some scientific experiment in an
environment. In the environment, there are several rooms: kitchen, foundry, workshop,
bathroom, outside, living room, bedroom, greenhouse, art studio, hallway You should explore
the environment and find the items you need to complete the experiment. You can teleport to
any room in one step. All containers in the environment have already been opened, you can
directly get items from the containers.
The available actions are:
open OBJ: open a container
close OBJ: close a container
...
wait1: task no action for a step
Task Description: Your task is to find a non-living thing in the environment. Focus on the jug
in the greenhouse. When you are done, move the jug to the green box in the kitchen.

Positive Example:
Action: look around
Observation:This room is called the hallway. In it, you see:
the agent, a substance called air, a picture
You also see:
A door to the art studio (that is open), A door to the bedroom (that is open), A door to the
greenhouse (that is open), A door to the kitchen (that is open), A door to the living room (that
is open), A door to the workshop (that is open)
Action: teleport to the greenhouse
Observation: You teleport to the greenhouse.
Action: look around
Observation: This room is called the greenhouse. In it, you see:
the agent, a substance called air, a adult bee, a adult bee, a adult bee, a adult bee, a bee hive.
The bee hive door is open. In the bee hive is: a adult bee. a flower pot 2 (containing a peach
tree in the adult stage, soil), a flower pot 4 (containing a substance called water), a flower pot
5 (containing a substance called water), a flower pot 6 (containing a banana tree in the adult
stage, soil), a flower pot 7 (containing a apple tree in the adult stage, soil), a jug (containing
nothing), a shovel, a sink, which is turned off. In the sink is: nothing.
You also see:
A door to the hallway (that is open), A door to the outside (that is open)
Action: focus on the jug
Observation: You focus on the jug.

Negative Example:
Action: look around
Observation:This room is called the hallway. In it, you see:
the agent, a substance called air, a picture
You also see:
A door to the art studio (that is open), A door to the bedroom (that is open), A door to the
greenhouse (that is open), A door to the kitchen (that is open), A door to the living room (that
is open), A door to the workshop (that is open)
Action: teleport to the greenhouse
Observation: You teleport to the greenhouse.
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Action: connect painting to kitchen
Observation: terminal 1 on painting is now connected to terminal 1 on kitchen
Action: connect agent to bathtub
Observation: No known action matches that input.

Figure 6: Training Data Example for ScienceWorld.

Training Data Example for Game of 24

Task Instruction: You are a start agent and generate data for Game24. Game24 requires
users to use numbers and basic arithmetic operations (+ - * /) to obtain 24.
You task is to generate a new input (4 digital number) for Game 24.
1. each new input number should be in the range of 1 to 13.
2. People can use numbers and basic arithmetic operations (+ - * /) to obtain 24. At each step,
people are only allowed to choose two of the remaining numbers to obtain a new number.
Here are the few-shot examples.
3. since there is only four number input and the intermediate steps should only be three.
Input: 12 10 8 4

Positive Example:
Steps: 10 - 8 = 2 (left: 2 4 12)
12 / 2 = 6 (left: 4 6)
6 * 4 = 24 (left: 24)
Answer: (12 / (10 - 8)) * 4 = 24

Negative Example:
Steps: 10 - 12 = -2 (left: -2 4 8)
8 / 4 = 2 (left: -2 2)
-2 * 2 = 4 (left: 4)
Answer: ((10 - 12) * (8 / 4)) = 4

Figure 7: Training Data Example for Game of 24.

Instruction Generation Prompt for ScienceWorld

Task Instruction: You are a helpful assistant to do some scientific experiments in an
environment.

In the environment, there are several rooms: kitchen, foundry, workshop, bathroom,
outside, living room, bedroom, greenhouse, art studio, and hallway.

The available actions are:
open OBJ: open a container
. . .

You will be given a dialogue between you (assistant) and a human user. You need
to generate the task description after understanding the dialogue given to you. In order to
help you better generate the task description, I will give you an example below.

In this example, a human user gives a Task Description at first. Then you work as
an assistant and talk with user to finish the task step by step using the available actions above.
Thought and Action are your reasoning and the actions you take at each step. Observation is
provided by the human user; it is an observation of the surrounding environment after you
have executed the action. In the end, you need to restore the Task Description based on the
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whole dialogue.

Example:
User
Task Description
Assistant
Thought: I need to find materials to create green paint, which are likely to be found in an art

studio.
Action: look around
User
Observation: This room is called the bedroom. In it, you see:
...
User
Observation: Blue and yellow paint mix to produce green paint.
Assistant

Thought: The task is to create green paint and then focus on it. Now that the green
paint is made, I should concentrate on the final product.
Action: focus on green paint

Task Description: Your task is to use chemistry to create green paint. When you
are done, focus on the green paint.

Here is the task you need to do:
...

You should generate the Task Description following the format like examples below
and generate it based on the dialogue above without any other words.
Examples:
Your task is to boil ice cream. For compounds without a boiling point, combusting the
substance is also acceptable. First, focus on the substance. Then, take actions that will cause
it to change its state of matter.
Your task is to use chemistry to create violet paint. When you are done, focus on the violet
paint.
Your task is to find a(n) living thing. First, focus on the thing. Then, move it to the red box in
the bathroom.

Task Description:

Figure 8: Instruction Generation Prompt for ScienceWorld.

Instruction Refinement Prompt for ScienceWorld

Task Instruction: You are a helpful assistant to do some scientific experiments in an
environment.
In the environment, there are several rooms: kitchen, foundry, workshop, bathroom, outside,
living room, bedroom, greenhouse, art studio, and hallway.
The available actions are:
open OBJ: open a container
. . .

You will be given a task description and a corresponding trajectory. The task de-
scription concludes what you have done in this trajectory. You need to elaborate this
description based on this environment by adding more details.
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Example:
Task Description: Your task is to grow an apple. You can find seeds in the kitchen. You
should focus on the grown apple.
Corresponding Trajectory:
look around
This room is called the hallway. In it, you see:
...
open door to kitchen
The door is already open.
go to kitchen
You move to the kitchen.
...

Refined Task Description: Your task is to grow an apple. This will require grow-
ing several plants, and them being crosspollinated to produce fruit. Seeds can be found in the
kitchen. To complete the task, focus on the grown apple.

Here is the task description you need to refine, and the corresponding trajectory is
also provided:
...

Refined Task Description:

Figure 9: Instruction Refinement Prompt for ScienceWorld.

Positive Trajectory Synthesis Prompt for ScienceWorld

Task Instruction: You are a helpful assistant to do some scientific experiments in an
environment.

In the environment, there are several rooms: kitchen, foundry, workshop, bathroom,
outside, living room, bedroom, greenhouse, art studio, and hallway.

The available actions are:
open OBJ: open a container
. . .

Based on this environment, you need to randomly propose a Task Description, which
concludes what you have done in this environment.

Here are some examples:
Your task is to use chemistry to create green paint. When you are done, focus on the green
paint.
Your task is to determine whether tall plant height is a dominant or recessive trait in the pea
plant. If the trait is dominant, focus on the red box. If the trait is recessive, focus on the green
box.
. . .
Once you obtain the Task Description, you need to navigate through the environment to
complete the instruction and generate a trajectory.

Example:
Task Description: Your task is to use chemistry to create green paint. When you are done,
focus on the green paint.
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Trajectory:
Thought: I need to find materials to create green paint, which are likely to be found in an art
studio.
Action: look around
. . .

Generated Trajectory:

Figure 10: Positive Trajectories Synthesis Prompt for ScienceWorld.

Negative Trajectory Synthesis Prompt for ScienceWorld

Task Instruction: You are a helpful assistant to do some scientific experiments in an
environment.

In the environment, there are several rooms: kitchen, foundry, workshop, bathroom,
outside, living room, bedroom, greenhouse, art studio, and hallway.

The available actions are:
open OBJ: open a container
. . .

You will be given a task description and a corresponding trajectory. Based on them,
you need to generate a negative sample that is similar to the correct trajectory but different
from it. The generated trajectory should not meet all requirements of the task description.
Moreover, the generated trajectory should satisfy all requirements of the environment.

Example:
Task Description: Your task is to focus on the life stages of the apple plant, starting from
earliest to latest. The plants are located outside.

Positive Trajectory:
look around
This room is called the hallway. In it, you see:
. . .
open door to outside
The door is already open
. . .

Negative Trajectory:
look around
This room is called the hallway. In it, you see:
. . .
open door to kitchen
The door is already open.

go to kitchen
You move to the kitchen.
. . .

Here is the task you need to do:
...
Negative Trajectory:
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Figure 11: Negative Trajectories Synthesis Prompt for ScienceWorld.

Reward Model Training Details. The detailed hyperparameters we use for reward model during
training and inference are shown in Table 14. We employ identical hyperparameters for reward
models of different environments. For Webshop, we use checkpoint of 1100 steps in ARMAP-B, and
checkpoint of 1200 steps in ARMAP-R and ARMAP-M.

Name ScienceWorld Webshop Game of 24

lora r 64
lora alpha 16

lora dropout 0.0
lora target modules q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj

epochs 10 3 10
batch size 8 1 4

batch size per device 1 1 1
gradient accumulation steps 16 4 16

learning rate 1e-5 2e-5 1e-5
warmup ratio 0.2 0.1 0.25

checkpoint steps 160 1100, 1200 1500
temperature 0.0 0.0 0.0

Table 14: Detailed hyperparameters used in reward model.

Implementation Details of Ablation baselines. For SFT, we use all positive examples from the
reward model training as the training data. The training objective is to enable the model to predict the
output of the LLM in the positive examples.

For using few-shot prompting to guide the LLMs to predict the reward of historical trajectories, we
use the following format of the few-shot prompt:

Few-shot Prompt for LLMs Directly Serving as ScienceWorld Reward Model

Task Instruction: You are an autonomous intelligent agent tasked with evaluating the
trajectories of the past experience. You will be given the history of a past experience
in which you were placed in an environment and given a task to complete. These
tasks will be accomplished through the use of specific actions. Now you are trying to
evaluate the performance on a past task. You will be given the objective of the task, the
history of interaction including the observations you had and the actions you issued, and
the status of the task. Your goal is to think about the strategy and provided path to pro-
duce a score ranging from 0 to 1 to measure whether the objective of the task has been reached.

Here are 2 examples:

Example1:

Human: You are a helpful assistant to do some scientific experiment in an environ-
ment. In the environment, there are several rooms: kitchen, foundry, workshop, bathroom,
outside, living room, bedroom, greenhouse, art studio, hallway. You should explore the
environment and find the items you need to complete the experiment. You can teleport to any
room in one step. All containers in the environment have already been opened, you can
directly get items from the containers. The available actions are: open OBJ: open a container,
close OBJ: close a container, activate OBJ: activate a device, deactivate OBJ: deactivate a
device, connect OBJ to OBJ: connect electrical components, disconnect OBJ: disconnect
electrical components, use OBJ [on OBJ]: use a device/item, look around: describe the
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current room, examine OBJ: describe an object in detail, look at OBJ: describe a container’s
contents, read OBJ: read a note or book, move OBJ to OBJ: move an object to a container,
pick up OBJ: move an object to the inventory, pour OBJ into OBJ: pour a liquid into a
container, mix OBJ: chemically mix a container, teleport to LOC: teleport to a specific room,
focus on OBJ: signal intent on a task object, wait: task no action for 10 steps, wait1: task no
action for a step
Task Description: Your task is to find a(n) non-living thing. First, focus on the thing. Then,

move it to the purple box in the living room. Please only output one Thought and one Action.
The available actions are: open OBJ: open a container, close OBJ: close a container, activate
OBJ: activate a device, deactivate OBJ: deactivate a device, connect OBJ to OBJ: connect
electrical components, disconnect OBJ: disconnect electrical components, use OBJ [on OBJ]:
use a device/item, look around: describe the current room, examine OBJ: describe an object
in detail, look at OBJ: describe a container’s contents, read OBJ: read a note or book, move
OBJ to OBJ: move an object to a container, pick up OBJ: move an object to the inventory,
pour OBJ into OBJ: pour a liquid into a container, mix OBJ: chemically mix a container,
teleport to LOC: teleport to a specific room, focus on OBJ: signal intent on a task object,
wait: task no action for 10 steps, wait1: task no action for a step. Please strictly follow the
format of the actions.
Assistant: Thought: I need to find a non-living thing, which could be an object in any room,
so I should start by looking around the current room. Action: look around
Human: Observation: This room is called the bathroom. In it, you see: the agent, a substance
called air, a bathtub, which is turned off. In the bathtub is: nothing. a drawing, a glass cup
(containing nothing), a sink, which is turned off. In the sink is: nothing. a toilet. In the toilet
is: A drain, which is open, a substance called water. You also see: A door to the kitchen
(that is open). Please only output one Thought and one Action. The available actions are:
open OBJ: open a container, close OBJ: close a container, activate OBJ: activate a device,
deactivate OBJ: deactivate a device, connect OBJ to OBJ: connect electrical components,
disconnect OBJ: disconnect electrical components, use OBJ [on OBJ]: use a device/item,
look around: describe the current room, examine OBJ: describe an object in detail, look at
OBJ: describe a container’s contents, read OBJ: read a note or book, move OBJ to OBJ:
move an object to a container, pick up OBJ: move an object to the inventory, pour OBJ into
OBJ: pour a liquid into a container, mix OBJ: chemically mix a container, teleport to LOC:
teleport to a specific room, focus on OBJ: signal intent on a task object, wait: task no action
for 10 steps, wait1: task no action for a step. Please strictly follow the format of the actions.
Assistant: Thought: The glass cup in the bathroom is a non-living thing, so I should focus
on it. Action: focus on glass cup.
...
Assistant: Thought: I’ve found the purple box, and now I need to move the glass cup into it.
Action: move glass cup to purple box.
Human: Observation: No known action matches that input.
Human: Please evaluate whether you complete the ’Task Description’ or not.
Following your definitions, the task completion score is <0.750>

Example2: ...

Now is your turn:

Figure 12: Few-shot Prompt for LLMs Directly Serving as ScienceWorld Reward Model.

A.4 MORE QUALITATIVE RESULTS.

We show more qualitative results of our ARMAP in Fig. 13 and Fig. 14. Based on the examples, we
can see that the automatic reward models in our pipeline can distinguish good trajectories from bad
ones and guide LLMs to generate better trajectories to finish the tasks.
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Qualitative Visualization for ScienceWorld

Task Description: Task Description: Your task is to find a(n) non-living thing. First, focus
on the thing. Then, move it to the orange box in the living room.
Trajectory A:
Observation: You teleport to the living room.
Thought: Now that I’m in the living room, I should look around to find a non-living thing
that I can move to the orange box. Action: look around
Observation: This room is called the living room. In it, you see:
the agent, a substance called air, a chair. On the chair is: nothing. a couch. On the couch is: a
white pillow. a finger painting a orange box (containing nothing) a table. On the table is:
nothing.
You also see: A door to the hallway (that is open).
Thought: I see several objects in the living room, but I need to find a non-living thing that I
can move to the orange box. Action: examine white pillow
ARMAP Aborted

Trajectory B:
Observation: This room is called the workshop. In it, you see:
the agent, a substance called air, a table. On the table is: a battery, a blue wire, a orange
light bulb, which is off, a red light bulb, which is off, a red wire, a switch, which is off, a
yellow light bulb, which is off, a yellow wire. a ultra low temperature freezer. The ultra low
temperature freezer door is open. In the ultra low temperature freezer is: nothing. You also
see:
A door to the hallway (that is open)
Thought: I see several objects in the workshop that could be considered non-living things,
such as the battery, blue wire, or light bulbs. I should focus on one of these objects to
complete the task. Action: focus on battery
Observation:You focus on the battery.
Thought: Now that I’ve focused on the battery, I need to move it to the orange box in the
living room. Action: teleport to living room
Observation:You teleport to the living room.
Thought: Now that I’m in the living room, I should look around to find the orange box and
move the battery into it. Action: look around
Observation: This room is called the living room. In it, you see:
the agent, a substance called air, a chair. On the chair is: nothing. a couch. On the couch is: a
white pillow. a finger painting a orange box (containing nothing) a table. On the table is:
nothing.
You also see: A door to the hallway (that is open)
Thought: I’ve found the orange box in the living room, and now I can move the battery into
it. Action: move battery to orange box
ARMAP Selected

Figure 13: Qualitative Visualization for ScienceWorld. Based on the comparison of the two
trajectories, it is evident that the final action of trajectory B brings the resulting state closer to the task
objective. Therefore, our model identifies trajectory B as the superior option.
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Qualitative Visualization for Game of 24

Input A: 2 5 8 11
Trajectory A1:
Steps: 8 * 2 = 16 (left: 5 11 16)
11 + 5 = 16 (left: 16 16)
16 + 16 = 32 (not 24, not valid)
11 - 5 = 6 (left: 2 6 8)
8 / 2 = 4 (left: 4 6)
4 * 6 = 24 (left: 24)
Answer: (8 / 2) * (11 - 5) = 24
ARMAP Selected

Trajectory A2:
Steps:
8 - 5 = 3 (left: 2 3 11)
11 - 3 = 8 (left: 2 8)
2 * 8 = 16 (left: 16)
16 + 8 = 24 (left: 24)
Answer: (((8 - 5) - 8) * 2) + 8 = 24
ARMAP Aborted

Input B: 2 3 6 9
Trajectory B1:
Steps: 9 - 3 = 6 (left: 2 6 6)
6 + 6 = 12 (left: 2 12)
2 * 12 = 24 (left: 24)
Answer: 2 * (6 + (9 - 3)) = 24
ARMAP Selected

Trajectory B2:
Steps:
9 - 3 = 6 (left: 2 6 6)
6 - 2 = 4 (left: 4 6)
6 * 4 = 24 (left: 24)
Answer: (6 * (9 - 3)) = 24
ARMAP Aborted

Figure 14: Qualitative Visualization for Game of 24. Trajectory A and Trajectory B correspond to
input A and input B respectively. Results show that our ARMAP can accurately pick out the correct
trajectory.

A.5 FAILURE CASE ANALYSIS

In this section, we investigate the common failure cases of our framework, aiming to provide data
points and insights for future research.

The most common error occurs when there are multiple restrictions in the instruction, the reward
model overlooks some of these key conditions. A representative example is illustrated in Fig. 15,
the model focuses on price and size but ignores the details about ’Fluoride’ hidden in the product
description.

Another common failure mode occurs when commonsense knowledge is involved. As demonstrated
in Fig. 16, the agent was tasked with buying a blackout shade but failed to choose both the color
and the size. While, in everyday life, size is generally more important, the reward model prioritized
color instead. In Fig. 17, the reward model cannot assess the lifespan of dragonflies and chipmunks
because it lacks the necessary biological knowledge.

Discussion. The analysis of failure modes highlights the significant potential of our framework. To
improve its performance, we propose two possible strategies for improvements in reward modeling:
(a) Constructing Data with Focus on Complex and Detailed Conditions: enhancing the dataset to
include scenarios with higher complexity and more nuanced conditions will help the framework
better handle intricate situations and edge cases. (b) Intervening in Reward Scoring with External
Knowledge: incorporating external knowledge by combining a prompted Large Language Model
with the trained reward model. This approach allows the LLM’s generalized knowledge to calibrate
the reward scores in a controllable manner, improving the overall accuracy and robustness of the
reward model.
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B07L2L64XL

...Action1: search[fluoride free 
toothpaste 3.5 oz pack of 4 price < 
50.00]

Action2: click[b07l2l64xl]

Instruction: I need a fluoride free toothpaste for fresh breath. I will need a pack of 4 in 3.5 ounce 
size, and price lower than 50.00 dollars.

B08DR4SDLJ

Action3: click[pack of 4]

GT Reward = 1.0

B08DQS3T87

...Action1: search[toothpaste fresh 
breath fluoride free 4 pack 3.5 oz 
price < 50.00]

Action2: click[B08DQS3T87]

B07L2LN685

Action4: click[Buy Now]

Action3: click[pack of 4]

GT Reward = 0.75

Price: 
$12.69
Size:
    3.5 ounce (pack of 2)
    3.5 ounce (pack of 4)

Price: 
$12.69
Size:
    3.5 ounce (pack of 2)
    3.5 ounce (pack of 4)

Action4: click[Buy Now]

Price: 
$23.27
Size:
    3.5 ounce (pack of 2)
    3.5 ounce (pack of 4)

Price: 
$23.27
Size:
 3.5 ounce (pack of 2)
    3.5 ounce (pack of 4)

ARMAP SelectedARMAP Aborted

SprinJene Natural Toothpaste with Fluoride 
for Cavity Protection of Teeth

SprinJene Natural Fluoride Free Toothpaste 
for Clean and Strong Teeth

Figure 15: Failure Example from Webshop. The reward model ignores certain key conditions in
the task instruction.

B097KXCWP7

...Action1: search[white blackout 
shades 66 x 66 easy install price < 
90.00]

Action2: click[B097KXCWP7]

Instruction: I want to find white blackout shades that are 66 inches in width and 66 inches in 
height. they need to be easy to install, and price lower than 90.00 dollars

B09GP34TDR

Action3: click[66"w x 66"h]

Missing color! 

GT Reward = 0.8

B08GFTCMQH

...Action1: search[white blackout 
shades 66x66 easy install price < 
90.00]

Action2: click[B08GFTCMQH]

B08R8H4R4B

Action4: click[Buy Now]

Action3: click[white]

GT Reward = 0.4

Price: 
$78.49
Size: 
 66"w x 66"h      …
Color:
    Black White …

Price: 
$78.49
Size: 
 66"w x 66"h      …
Color:
    Black White …

Action4: click[Buy Now]

Price: 
$89.99
Color:
    Black White …

Price: 
$89.99
Color:
    Black White …

Missing size! 

ARMAP SelectedARMAP Aborted

Figure 16: Failure Example from Webshop. The reward model misjudged the importance of
different conditions, such as the size and color in this case.
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Action1: look around

Action2: teleport to outside

Instruction: Your task is to find the animal with the longest life span, then the shortest life span. 
First, focus on the animal with the longest life span.  Then, focus on the animal with the shortest life 

span. The animals are in the 'outside' location.

Action3: look around
Observation3: Here you see: … an axe, a baby chipmunk, 
a baby dragonfly … a parrot egg

Action5: focus on baby dragonfly (Thought: Dragonflies are 

known to have a relatively short life span, typically ranging from a few weeks 
to a few months.)

GT Reward = 1.0 GT Reward = 0.83
ARMAP SelectedARMAP Aborted

Observation1: This room is called the art studio. In it, you 
see: the agent, a substance called air, a large cupboard. 

Observation2: You teleport to the outside.

Action4: focus on parrot egg (Thought: A parrot is a type of bird, and 

birds are known to live for many years. The life span of a parrot can be quite 
long, often exceeding 30 years in some species. )

Observation4: You focus on the parrot egg.

Observation5: You focus on the baby dragonfly.

Action1: look around

Action2: teleport to outside

Action3: look around
Observation3: Here you see: … an axe, a baby chipmunk, 
a baby dragonfly … a parrot egg

Action5: focus on baby chipmunk (Thought: I need to focus on 

the animal with the shortest life span, which is the baby chipmunk.)

Observation1: This room is called the art studio. In it, you 
see: the agent, a substance called air, a large cupboard. 

Observation2: You teleport to the outside.

Action4: focus on parrot egg (Thought: A parrot is a type of bird, and 

birds are known to live for many years. The life span of a parrot can be quite 
long, often exceeding 30 years in some species. )

Observation4: You focus on the parrot egg.

Observation5: You focus on the baby chipmunk .

Figure 17: Failure Example from ScienceWorld. Reward models have problems when common-
sense knowledge is involved, such as the inability to determine the shortest life span.
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