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ABSTRACT

Identifying subpopulations that benefit most or least from a treatment is central to
scientific research and policy analysis. We propose an optimization-based frame-
work for learning such subgroups from observational data. The proposed methods
discover subgroups exhibiting maximal treatment-effect heterogeneity while en-
forcing covariate balance, thus directly controlling confounding without explicitly
modeling treatment or outcome mechanisms. The framework accommodates flexi-
ble subgroup definitions, allowing additional constraints such as fairness criteria to
be incorporated. We show that our approach admits flexible nonparametric estima-
tors and enjoys finite-sample error guarantees. We also introduce a principled rule
for subgroup assignment based on observed covariates. Simulated and real-world
experiments demonstrate substantial improvements over existing approaches.

1 INTRODUCTION

1.1 TREATMENT EFFECT HETEROGENEITY AND SUBGROUP ANALYSES

In causal inference, population-level measures, such as the average treatment effect (ATE), have
consistently been among the most sought-after effects. However, treatment effects often vary across
subpopulations, with some benefiting more, or even being harmed, while others see minimal change.
Such heterogeneity can be obscured by population averages (Cintron et al., 2022). Identifying
subgroups with distinct treatment responses is essential for advancing scientific insight and informing
policy decisions, especially in personalized medicine and healthcare research (Lipkovich et al., 2017).

We study treatment effect heterogeneity from a perspective that differs from conventional approaches.
To our knowledge, subgroup analysis in causal inference primarily follows two approaches. The
first, based on causal graphs or structural causal models, explores structural heterogeneity and the
associated subgroup structures (e.g., Kummerfeld & Ramsey, 2016; Hu et al., 2018; Huang et al.,
2019; Nagpal et al., 2020; Markham et al., 2022). The second approach emphasizes treatment effect
heterogeneity within the potential outcome or counterfactual framework, which is widely utilized in
statistics and epidemiology. This paper adopts the latter, focusing on effect-based heterogeneity.

To better understand treatment effect heterogeneity, investigators often estimate the conditional aver-
age treatment effect (CATE), a widely used estimand that enables personalized treatment assignments
based on individual covariate information. Numerous methods have been developed to improve the
accuracy and validity of CATE estimation, with recent advances focusing on utilizing supervised
machine learning techniques (e.g., Foster et al., 2011; Imai et al., 2013; van der Laan & Luedtke, 2014;
Athey & Imbens, 2016; Grimmer et al., 2017; Shalit et al., 2017; Zhang et al., 2017; Künzel et al.,
2017; Nie & Wager, 2017; Wager & Athey, 2018; Kennedy, 2020; Zhou & Zhu, 2021). Leveraging
accurate CATE estimates, most data-driven subgroup analysis studies identify subgroups where the
CATE exceeds a clinically relevant threshold, or through recursive partitions to form a tree whose
terminal nodes define the subgroups (e.g., Su et al., 2009; Zhao et al., 2013; Loh et al., 2015; Ondra
et al., 2016; Schnell et al., 2016; Chen et al., 2017; Ballarini et al., 2018; Loh et al., 2019; Dwivedi
et al., 2020; Hejazi et al., 2021; Qi et al., 2021; Wang & Rudin, 2022).

The CATE is often not the main focus. Instead, the emphasis may be on a lower-dimensional subset
of the covariate space X , or on identifying an optimal partition (or subgroup structure) under specific
criteria. This area of research remains relatively underexplored, with only a few prior contributions.
Kallus (2017) proposed a subgroup partition algorithm for determining a subgroup structure that
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minimizes the personalization risk. Building on techniques from unsupervised learning, Kim et al.
(2024a;b) introduced a novel framework for investigating heterogeneous treatment effects.

It is often the case that covariate balance between the treated and control units is not guaranteed within
the identified subgroups. This imbalance could potentially lead to confounding bias when estimating
subgroup effects in observational studies. Similarly, it has been noted that strong performance of a
CATE estimator does not necessarily ensure accurate estimation of subgroup effects (Dwivedi et al.,
2020). This line of research has received relatively little attention. Recently, some progress has been
made to reach a comprise between global and subgroup balance (e.g., Dong et al., 2020; Yang et al.,
2021; Ben-Michael et al., 2023). However, these methods require pre-specified subgroups and are
not directly applicable to data-driven approaches for identifying effect-based subgroups.

1.2 BALANCING APPROACH IN CAUSAL INFERENCE

Covariate balancing is central to causal inference in observational studies, where randomized assign-
ment is infeasible. Traditional modeling approaches focus on accurate estimation of the propensity
score, while modern balancing methods directly optimize sample weights to ensure covariate balance.
It has been shown that balancing methods substantially improve finite-sample performance and yield
more stable estimators by minimizing weight dispersion subject to covariate balance constraints. (e.g.,
Hainmueller, 2012; Zubizarreta, 2015; Chattopadhyay et al., 2020; Ben-Michael et al., 2021). Recent
advances incorporating kernel methods into balancing frameworks have enhanced their flexibility and
scalability, enabling effective application to high-dimensional settings and complex outcome model
spaces. (e.g., Wong & Chan, 2018; Hazlett, 2020; Kim et al., 2024c).

Moreover, since balancing approaches are formulated as optimization problems, they can naturally
incorporate practical constraints when defining causal subgroups. One important constraint of this
kind is subgroup fairness, the specific case we focus on in this work. It seeks subgroup structures
that are approximately independent of sensitive attributes such as race, gender, or socioeconomic
status, as measured by a variety of fairness metrics (e.g., Hardt et al., 2016; Corbett-Davies et al.,
2017; Barocas et al., 2023). Fairness-aware causal subgroup detection is particularly important when
the resulting subgroups are used for downstream policy learning (e.g., Nabi et al., 2019; Viviano &
Bradic, 2022; Kim & Zubizarreta, 2023; Suk et al., 2024). From a policymaker’s perspective, one
might also require that subgroups be defined in terms of other specific geographic or demographic
variables. However, a key gap in treatment-effect-based subgroup analysis remains: there is no
general framework to ensure that algorithmically discovered subgroups respect such user-specified
constraints. We shall show that balancing methods offer a promising approach to jointly control
confounding bias and accommodate flexible, user-defined constraints in subgroup analysis.

Contribution. We propose a novel optimization-based approach for uncovering treatment-responsive
subgroups under direct bias control. The method jointly optimizes subgroup indicators and balancing
weights to maximize between-subgroup heterogeneity while enforcing covariate balance and, when
required, additional constraints such as fairness. The proposed approach is entirely data-driven
and does not require a priori knowledge of subgroup selection criteria. We formulate the method
as a mixed-integer quadratic programming problem, which can be solved using readily-available
solvers. Notably, bias control is imposed directly at the subgroup level, obviating the need for explicit
modeling of the treatment or outcome models. In particular, we show that the subgroups can be found
by balancing flexible kernel basis functions in a large nonparametric model, providing consistency
guarantees without requiring structural assumptions on the nuisance components. We further describe
a procedure for identifying subgroup membership based on individual’s observed covariates, which
enables our approach to play a prescriptive role in policy settings.

2 FRAMEWORK

2.1 MOTIVATING ILLUSTRATION

We provide an illustrative example in which standard methods fail to adjust covariate imbalance in
finite samples and are unable to enforce subgroup fairness. We generate a sample of size n=2000
using a simple data-generating process with a covariate X , a binary treatment A, a binary sensitive
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Figure 1: (Left) Positive responders. (Center) Negative responders. (Right) Subgroup unfairness.

variable F , and an outcome Y , defined as follows:

F ∼ Bernoulli(0.5), X ∼ N(4F − 2, 2), A = 1{F + 0.5FX + ϵ1 > 0},

Y = AY 1 + (1−A)Y 0, Y 1 = X2 + Λ

(
X − 2

2

)
+ ϵ2, Y 0 = X2 + Λ

(
X + 2

2

)
+ ϵ2,

where we let Y a denote the potential outcome that would have been observed under the treatment
assignment A = a, Λ(x) := max(1− |x|, 0), and ϵ1, ϵ2 ∼ N(0, 1). The population naturally splits
into two subgroups characterized by positive and negative treatment effects, respectively.

We aim to identify two subgroups that exhibit similar responses to the treatment A and assess the
fairness of each subgroup with respect to the sensitive feature F . Following the standard procedure
for the effect-based subgroup discovery outlined in Section 1.1, we first estimate the CATE and then
identify subgroups of positive and negative responders based on whether their CATE estimates exceed
or fall below a threshold t ≥ 0. The CATE is estimated using the kernel inverse probability weighting
estimator (Zhou & Zhu, 2021), and a threshold of t = 0 is used. However, we also confirmed that
using alternative methods of Athey & Imbens (2016); Wager & Athey (2018); Kennedy (2020) or
non-zero thresholds did not significantly alter the results. Covariate balance within each subgroup is
assessed using weights derived from the estimated propensity score via logistic regression.

Figure 1 reveal severe covariate imbalance in both subgroups despite the presence of sufficient overlap.
This issue is likely to be amplified in real-world settings, where high-dimensional covariates and noise
can cause subgroup discovery to capture spurious associations. Moreover, each subgroup exhibits
significant fairness concerns, as data-driven policymaking might disproportionately suggest treating
patients predominantly characterized by F = 1, which may result in policies that reinforce rather
than reduce existing disparities. Fairness constraints mitigate this risk by ensuring that “high-benefit”
groups are not artifacts of structural inequities and align with policy initiatives aimed at promoting
equity. For example, in allocating a costly Medicaid intervention, ignoring historical disparities
could result in disproportionate allocation to certain demographic groups even when true effects are
comparable across populations. Our approach is designed to prevent such outcomes.

2.2 PROBLEM AND SETUP

Consider a random sample (Z1, ..., Zn) of n tuples Z = (Y,A, F,X), where Y ∈ Rp represents
the outcome, A ∈ {0, 1} denotes a binary intervention, F ∈ {0, 1} is a binary sensitive feature,
and X ∈ X ⊆ Rd comprises observed covariates. Here, we accommodate multivariate outcomes;
while p = 1 is the most common case in practice, we allow p > 1. We label the subgroups with
the indicator variables S⃗ = (S1, ..., SR), where Sr = 1 if a subject belongs to the r-th subgroup
and Sr = 0 otherwise, r = 1, . . . , R. Let Sir denote the subgroup membership for each subject
i = 1, . . . , n. In our setting, the number of subgroups R is prespecified, yet each tuple of the subgroup
variables S⃗i ≡ (Si1, . . . , SiR) is unknown. For the sake of simplicity, we consider mutually exclusive
subgroups, thus

∑R
r=1 Sir = 1. However, this requirement can be relaxed with a minor modification

of the optimization problem that we will formulate subsequently.

Throughout, we rely on the following identification assumptions (e.g., Imbens & Rubin, 2015, Chapter
12): (C1) Consistency, Y = Y a if A = a; (C2) No unmeasured confounding, A ⊥⊥ Y a | X, S⃗; (C3)
Positivity, P(A = a|X, S⃗) ≥ ε a.s. for some ε > 0. Collectively, assumptions (C1) - (C3) imply that
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the average treatment effect of the r-th subgroup can be identified and expressed in a weighting form
as

τr = E(Y 1 − Y 0 | Sr = 1) = E

{(
A

πr(X)
− 1−A

1− πr(X)

)
Y

∣∣∣∣∣ Sr = 1

}
, (1)

where πr(X) = P(A = 1 | X,Sr = 1) is the subgroup propensity score. When πr is known,
covariate balance within the r-th subgroup can always be achieved by weighting the treated and
control units by 1/πr(Xi) and 1/ (1− πr(Xi)), respectively.

Subgroup covariate balance. Assuming knowledge of Sir for each (i, r), the subgroup effect τr in
1 can be estimated using the following normalized weighting estimator,

τ̂r =

∑n
i=1 AiSirwiYi∑n
i=1 AiSirwi

−
∑n

i=1(1−Ai)SirwiYi∑n
i=1(1−Ai)Sirwi

(2)

where wi are suitable weights (Yang et al., 2021). 2 is often referred to as the Hájek estimator. Recall
that condition Sr = 1 implies Sr′ = 0 for all r′ ̸= r due to mutual exclusivity. Arguably, the most
common approach to computing the weights is the inverse probability of treatment weighting, where
we first model the subgroup propensity score and then inverting the predicted propensities. However,
this requires modeling the nuisance function πr, making it susceptible to covariate imbalance arising
from model misspecification, small samples, or high-dimensional covariates. In addition, even under
near-violations of the positivity assumption (C3), this approach can yield highly variable weights and
thus produce unstable estimators (Kang & Schafer, 2007). To address these challenges, balancing
methods directly compute covariate-balancing weights. In our case, for example, covariate balance in
the r-th subgroup can be, at least approximately, achieved by enforcing∣∣∣∣∣

n∑
i=1

AiSirwiϕj(Xi)−
n∑

i=1

(1−Ai)Sirwiϕj(Xi)

∣∣∣∣∣ ≤ δ, (3)

for a finite set of basis functions {ϕj} and a tolerance level δ ≥ 0. Here, the weights w = {wi} are
normalized within subgroups: i.e.,

∑n
i=1 AiSirwi =

∑n
i=1(1 − Ai)Sirwi = 1. In Section 4, we

analyze how this balancing condition controls the bias of the estimator τ̂r.

Subgroup fairness. While our framework is capable of incorporating various types of constraints in
subgroup definition, in this work we focus specifically on subgroup fairness. To evaluate unfairness
within each subgroup, we utilize the fairness function uf : Y × X × {0, 1}2 → R, which accommo-
dates a broad range of (counterfactual) fairness measures (e.g., Mishler & Kennedy, 2022; Kim &
Zubizarreta, 2023; Suk et al., 2024). Using the fairness function, our subgroup fairness criterion can
be expressed at the population level as:

|E {uf(Z) · Sr}| ≤ δ′, ∀r, (4)

where δ′r represents the acceptable fairness threshold for the r-th subgroup. For instance, the criterion
of independence or statistical parity, arguably one of the most widely recognized fairness criteria,
can be implemented by defining the fairness function as:

uf(Z) =
1− F

E(1− F )
− F

E(F )
, (5)

which leads to |P (Sr = 1 | F = 0)− P (Sr = 1 | F = 1)| ≤ δ′, ∀r. This requires our identified
subgroups to be marginally (approximately) independent of the given sensitive feature. In our
estimator, we will use the empirical version of 4 as our fairness constraint:

∣∣∣Pn

{
ûf(Z) · Sr

}∣∣∣ ≤ δ′,

where we let Pn denote the empirical measure over (Z1, ..., Zn).

The sensitive variable F within each subgroup could be protected using other fairness measures as
well, such as conditional statistical parity, equalized odds, or balance for the positive class, with their
corresponding fairness functions (see (Mishler & Kennedy, 2022, Section 3) and (Kim & Zubizarreta,
2023, Section 2.3) for examples). Our framework allows for the simultaneous application of multiple
fairness measures. The proposed methods remain valid even without subgroup fairness, or other
user-defined, constraints. In some real-world subgroup discovery problems, fairness constraints may
not be required at all. These constraints are included only to accommodate practical considerations
when fairness is a priority.
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Subgroup discovery. We aim to find subgroups with markedly different responses to a specified
treatment relative to the overall population, while maintaining a high degree of homogeneity within
each subgroup. To determine subgroup membership and improve interpretability, we define separation
function Dsep as the sum of pairwise distances between subgroup effects with respect to some distance
metric d : Rp×Rp → R+, which thus measures the cumulative separation of distinct subgroup effects.
Specifically, given a sample of size n and balancing weights w, we determine the memberships
{S⃗i}ni=1 by maximizing the empirical separation:

D̂sep :=
∑
r ̸=r′

d(τ̂r, τ̂r′ ; {S⃗i}ni=1) (6)

The (maximum) number of subgroups R could be chosen in advance based on the experimental
design or research goal. Practically the most commonly-used cases would be R = 2. This is
essentially because identifying the most and least benefiting subgroups should be of highest concern
to policy-makers. Setting R = 2 gives an immediate solution to this problem. However, one may also
choose R in a data-driven way, based on the elbow method in a similar spirit to the cluster analysis.

In our framework, subgroups are identified by maximizing empirical separation while simultaneously
ensuring covariate balance and, if necessary, fairness conditions within each subgroup. Ours can
be viewed as a more generalized, distribution-free version of targeting subgroup through a scoring
system, i.e., thresholding the CATE function (e.g., Zhao et al., 2013; Wang & Rudin, 2022). The
proposed approach can be viewed as a generative model for heterogeneous treatment effects, treating
subgroup indicators as random variables drawn from a distribution that maximizes separation.

3 ESTIMATION

For estimation, we jointly optimize three objectives in a single optimization process: covariate
balance (3), subgroup fairness (4), and maximal separation of subgroup effects (6).

Constraints. Our decision variables consist of two components; the integer variables S⃗1, . . . , S⃗n,
S⃗r ∈ {0, 1}R, r = 1, . . . , R, which determine subgroup membership, and the continuous variables
w = (wi, . . . , wn), wi ∈ [0, 1], which are the weights of each observation. The constraints associated
with our causal subgroup discovery problem are:

τ̂r =
∑
i

AiSirwiYi −
∑
i

(1−Ai)SirwiYi, ∀r, (7a)∑
i

AiSirwir =
∑
i

(1−Ai)Sirwir = 1, ∀r, (7b)

max
j∈{1,...,B}

∣∣∣∑
i

AiSirwiϕj(Xi)−
∑
i

(1−Ai)Sirwiϕj(Xi)
∣∣∣ ≤ δ, ∀r, (7c)∣∣∣Pn

{
ûf(Z) · Sr

}∣∣∣ ≤ δ′, ∀r, (7d)∑
i

SirAi ≥ nmin,
∑
i

Sir(1−Ai) ≥ nmin, ∀r, (7e)∑
r

Sir = 1, ∀i, (7f)

wi ≥ 0, ∀i (7g)

(7a) and (7b) together define the subgroup effect estimator τ̂r, r = 1, . . . , R. As discussed in the
previous section, (7c) ensures that covariate balance is achieved within each subgroup. It is desirable to
choose a flexible set of basis functions {ϕ1, ..., ϕK} that spans a general model space for the response
surface; examples include power series, kernel, splines. For example, building on recent work
(Hazlett, 2020; Kim et al., 2024c), we may employ a kernel basis by setting ϕj(Xi) = K(Xj , Xi)
for a kernel (Gram) matrix K. This enables flexible balancing in a reproducing kernel Hilbert space,
with further details provided in the next section.

The subgroup fairness constraints (7d) depend on the choice of fairness measures, and thereby corre-
sponding fairness functions. One of the most widely used group-fairness criteria is statistical parity,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

which gives Pn

{
ûf · Sr

}
= Pn

[{
(1−F )

Pn(1−F ) −
F

Pn(F )

}
Sr

]
. This sample-average type estimator

converges quickly at root-n rates to the original population-level functional 4. Note that in our setting,
multiple fairness constraints can be employed, such as uf1, uf2, and so on.

The tolerance levels are usually determined by user beforehand. When feasible in the data setting,
investigators always can choose smaller values for δ, δ′ hoping to reduce imbalances. (7e) ensures
that the number of treated and control units within each subgroup is at least nmin, which typically
increases with n. This could be useful when we want to avoid formation of extremely small-size
subgroups. (7f) is used for mutual exclusivity across subgroups. Finally, (7g) restricts the weights
to be positive, which forces all weight-based adjustments to be an interpolation as opposed to an
extrapolation of the observed data (Zubizarreta, 2015).

Objectives. The objective function to be maximized consists of the empirical separation function 6
and a weight regularization term Ω(w) with penalty parameter λ ≥ 0:∑

r ̸=r′

d(τ̂r, τ̂r′ ; {S⃗i}ni=1)− λΩ(w).

A natural choice for d is Lq-norm, q ≥ 1, which reduces to the absolute value function for univariate
outcomes. The regularization term is set to restrain the variability in the weights, thereby preventing
extreme weights (Chattopadhyay et al., 2020). Different choices of Ω(·) have been used in the
balancing literature; for instance, Hainmueller (2012) used the Kullback entropy divergence and
Zubizarreta (2015) used the sum of the squared weights. We set Ω(w) =

∑n
i=1 w

2
i based on the

theoretical analysis presented in Section 4.

Our estimator can be formulated as a mixed-integer quadratic program. Increasing R may lead
to a considerable rise in computational cost. So we propose an alternative sequential procedure
for practical implementation in a spirit similar to tree-based modeling: we begin by solving the
problem with R = 2 (the most interpretable case) and iteratively identify additional splits within each
subgroup until a predefined stopping criterion is met (e.g., infeasibility). More effective heuristics
should be explored in future work.

4 ANALYSIS

4.1 ADDITIVE MODEL

Given the pivotal role of the subgroup estimator τ̂r in (7a) within our proposed subgroup discovery
procedure, it is essential to theoretically assess its estimation accuracy for any given subgroup
membership indicators. Unlike conventional modeling approaches, our method does not rely on any
modeling assumptions for nuisance functions such as πr. In the balancing approach, the performance
of estimator rather critically depends on the function space for the outcome surface, spanned by the
basis set {ϕ1, . . . , ϕB}. As in Yang et al. (2021), one may start with positing the following simple
parametric additive models where the treatment effect is homogeneous within a subgroup:

Y a =

R∑
r=1

βrSr +

R∑
r=1

Sr

B∑
j=1

βrjϕj(X) + a

R∑
r=1

τrSr + ϵa, ∀a ∈ {0, 1}, (8)

where ϵa is a mean-zero random vector in Rp. If the normalization and balancing conditions (7c),
(7b) hold, then by (Yang et al., 2021, Proposition 2), one may bound the bias for τ̂r in terms of δ, i.e.,
∥E (τ̂r − τr)∥1 ≤ δ

∑B
j=1 ∥βrj∥1, where ∥·∥q denotes the Lq-norm. In the next theorem, we go one

step further and derive error bounds for the subgroup weighting estimator (2).
Theorem 4.1. Suppose that the outcome surface satisfies the additive model 8, where the variance
of each noise element ϵa is finitely bounded by σ2

∞. Given the subgroup membership S⃗1, . . . , S⃗n

and any weights w that satisfy the conditions delineated in (7a), (7b), and (7c), when the pairwise
distance d and the separation Dsep =

∑
r ̸=r′ d(τr, τr′) are defined with respect to the Lq distance, it

follows that

E {d(τr, τ̂r)} ≤ δ

B∑
j=1

∥βrj∥q + pσ∞

√√√√n

n∑
i=1

w2
i ,

6
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E
∣∣∣D̂sep −Dsep

∣∣∣ ≤ δR

 R∑
r=1

B∑
j=1

∥βrj∥q

+ pσ∞R2

√√√√n

n∑
i=1

w2
i .

If we further assume that {ϵai}ni=1 are independent sub-Gaussian random vectors with parameter σa,
then with probability at least 1− ξ, ξ > 0, we have that

d(τr, τ̂r) ≤ δ

B∑
j=1

∥βrj∥q + p (σ0 + σ1)

√√√√2 log

(
2

ξ

) n∑
i=1

w2
i ,

∣∣∣D̂sep −Dsep

∣∣∣ ≤ δR

R∑
r=1

B∑
j=1

∥βrj∥q +R2p (σ0 + σ1)

√√√√2 log

(
2

ξ

) n∑
i=1

w2
i .

4.2 KERNEL BASIS

The outcome surface could be considered within a substantially larger nonparametric model, avoiding
the need to specify structural components as in the additive model in 8. In this subsection, we explore
such possibilities based on kernel methods. The additive model 8 has certain drawbacks: (1) it
requires explicitly specifying the functional relationship between the potential outcome and the basis
functions, and (2) it assumes a constant treatment effect within each subgroup. Here, we attempt to
address the first limitation by employing the kernel basis. By Moore-Aronszajn, for every symmetric,
positive definite kernel K : X × X → R, there exists a unique reproducing kernel Hilbert space
(RKHS) HK associated with the kernel K. Given our choice of such a kernel K, we construct the
kernel matrix K of size n × n, then let ϕj(Xi) = Kij . This enables to consider a more flexible
outcome surface model, as formally stated in the following theorem.
Theorem 4.2. Suppose that the outcome surface satisfies

Y a =

R∑
r=1

Srm(X,Sr = 1) + a

R∑
r=1

τrSr + ϵa, ∀a ∈ {0, 1}, (9)

for each m(·, Sr = 1) ∈ HK , an RKHS induced by a Mercer kernel K, where var(ϵa) < σ2
∞. We

assume that {ϵai}ni=1 are independent sub-Gaussian random vectors with parameter σa, and that we
draw X1, . . . , Xn i.i.d. from P where P has full support on X . Then given the subgroup membership
S⃗1, . . . , S⃗n and any weights w that satisfy the conditions in 7a, 7b, 7c, we obtain that, for some {αi}
depending on n and {Xi},

d(τr, τ̂r) = O

δ

√√√√ n∑
j=1

α2
j

+OP

√√√√ n∑
i=1

w2
i

+ oP(1),

and d(τr, τ̂r) ≍
∣∣∣D̂sep −Dsep

∣∣∣,
Next, we tackle the second limitation by fully relaxing the assumption of a constant treatment
effect within each subgroup, allowing for greater flexibility in modeling treatment heterogeneity.
Specifically, we posit the outcome surface

Y a = E(Y a | X, S⃗) + ϵa = µA=a,S⃗(X) + ϵa (10)

Then we have the identifying expression for τr as

τr = E {µ1,r(X)− µ0,r(X) | Sr = 1} ,
where µa,r(X) ≡ µA=a,Sr=1(X). In what follows, we show that when µa,r ∈ HK , it is possible to
achieve error bounds comparable to those established in Theorem 4.2.
Theorem 4.3. Suppose that the outcome surface satisfies 10 where µa,r ∈ HK and var(ϵa) < σ2

∞.
We adopt the same assumptions as in Theorem 4.2, except that, in place of 7c, we impose the following
balancing condition:

max
j

∣∣∣∣∣∑
i

1(Ai = a)SirwiKij −
1
n

∑n
i=1 SirKij

Pn(Sr)

∣∣∣∣∣ ≤ δ, (11)
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∀a, r. Then, for some {αi} depending on n and {Xi}, we have d(τr, τ̂r) = O
(
δ
√∑n

j=1 α
2
j

)
+

OP

(√∑n
i=1 w

2
i

)
+ oP(1) and d(τr, τ̂r) ≍

∣∣∣D̂sep −Dsep

∣∣∣,
Condition 11 ensures that the weighted sample kernel mean of treated/control units within the
subgroup closely approximates the kernel mean of the subgroup’s target population. Both 9 and
10 have not been previously considered in the context of subgroup analysis. Especially, 10 enables
significantly more flexible modeling of the outcome surface. However, incorporating the balancing
condition 11 into the constraint set introduces significant non-linearity to the optimization problem,
potentially leading to increased computational complexity. Thus, we propose solving a relaxed
problem by fixing Pn(Sr) = zr, m ≤ zr ≤ n − (R − 1)m for r = 1, . . . , R, evaluating the
optimization at discrete points on the grid {zr}Rr=1 ⊆ [m,n− (R− 1)m]R.

Theorems 4.1 - 4.3 establish error bounds for τ̂r and D̂sep, considering different outcome surface mod-
els. Importantly, the finite-sample error bounds we derive hold uniformly over all subgroup–weight
pairs that satisfy the constraints. Consequently, inference is anchored to the entire feasible set
rather than to a single, ex-post selected subgroup. In other words, we do not require the subgroup
indicators to be fixed in advance; instead, we control estimation error uniformly over all admissible S,
thereby mitigating the risk of selective inference and overfitting that can arise in classical constrained
M-estimation. They also motivate our choice of weight regularization as Ω(w) =

∑n
i=1 w

2
i .

4.3 ESTIMATING SUBGROUP MEMBERSHIP

In subgroup analysis, it is also essential to determine subgroup membership for a new individual
based on their observed covariates. In this subsection, we outline a simple nonparametric approach
for identifying subgroup membership by estimating the membership probability P(Sr = 1 | X). We
first construct the kernel density estimator of pr(x) ≡ P(X = x | Sr = 1) given by the formula

p̂r,h(x) =

∑n
i=1 Th,x(Xi)1(Sir = 1)

nr
1(nr > 0), (12)

where we let Th,x = 1
hd k

(
∥X−x∥2

h

)
and nr =

∑n
i=1 1(Sir = 1), with a kernel function k : Rd → R

that is an integrable function satisfying
∫
K(u)du = 1 and the bandwidth h. Then the the Bayes’

theorem suggests the following estimator for P(Sr = 1 | X):

P̂(Sr = 1 | X = x) =
p̂r,h(x)Pn(Sr)∑
r′ p̂r′,h(x)Pn(Sr′)

. (13)

Note that Pn(Sr), nr are known. Once we have computed 13 for r = 1, . . . , R, we may determine
the subgroup membership for an individual with X = x as

r̂∗ = argmax
r∈{1,...,R}

P̂(Sr = 1 | X = x),

which allows our proposed method to play a prescriptive role in policy making as well. The estimated
membership probability could be used as a confidence level when making recommendations on a
new sample. The next proposition gives conditions under which the proposed estimator to determine
subgroup membership is consistent.
Proposition 4.4. Consider a probability distribution P from which a set of independent random
vectors {(Xi, Ai, Yi, S⃗i)}ni=1 is drawn, each having a common mean and finite second and third
central moments. Assume that the conditional distribution of X given Sr = 1 is absolutely continuous
with respect to the Lebesgue measure on Rd. Let pr be a density function in the Hölder class with
parameters (β, L), and k be a kernel of order ⌊β⌋ satisfying

∫
∥u∥β1 |k(u)|du < ∞ and ∥k∥∞ < ∞.

If n−1h−d + h2β = o(1) and Pn{Sr}
p−→ P(Sr = 1), then the proposed estimator 13 is consistent,

and
P(r̂∗ ̸= r∗) → 0,

where r∗ = argmax
r

P(Sr = 1 | X = x).

See Definition B.1 in Appendix B for the formal definition of the Hölder class density functions and
high-order kernels.
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Figure 2: Distributions of risk fac-
tors for S1 after adjustment.

Figure 3: Distributions of risk fac-
tors for S2 after adjustment.

Figure 4: Ethnic group distribu-
tions

Subgroup (effect) Hemophilia Homosexuality Drug use White/Non-White ratio
S1 (+118) 0.10 (0.09) 0.67 (0.22) 0.13 (0.10) 1.05
S2 (–85) 0.05 (0.05) 0.42 (0.25) 0.06 (0.04) 1.07

Table 1: Estimated subgroup effects and key summary characteristics across subgroups.

5 EXPERIMENTS

5.1 SIMULATION STUDY

By extending our motivating example in Section 2.1, we conduct a simulation study to illustrate
the proposed methods, where we compare the proposed methods with widely-used CATE-based
approaches under both correctly specified and misspecified covariate settings, while also assessing
their ability to satisfy the required fairness criterion. The results demonstrate that the proposed
methods not only achieve the desired level of fairness within subgroups but also provide more
accurate subgroup effect estimates compared to the baselines. Due to the page limit, we defer the
detailed simulation setup and results to Appendix A.1.

5.2 CASE STUDY

Here, we apply our proposed methods to analyze the effect of combined antiretroviral therapy in
the treatment of HIV. The data used in this analysis are derived from the ACTG 175 randomized
trial (Hammer et al., 1996). The treatment is whether patients received combination therapy (A = 1)
versus zidovudine alone (A = 0), and the outcome is CD4 count. Our objective is to identify two
subgroups in which the combination therapy shows the greatest (S1) and least (S2) effectiveness,
i.e., an increase in the CD4 count. Just for illustrative purposes, we assume that ethnicity has no
genetic effect on treatment efficacy and seek to ensure the absence of ethnicity-related bias within
each subgroup. Figures 2 and 3 show the distribution of the three key risk factors after adjustment,
indicating that covariates are well balanced within each subgroup under the estimated weights, thereby
ensuring negligible bias. Figure 4 presents the ethnicity distributions across subgroups, confirming
that the fairness criterion is met. We present the estimated subgroup effects, along with the mean and
variance of key risk factors in Table 1. We observe substantial effect heterogeneity, with estimated
subgroup effects of 118 for S1 and -85 for S2, aligning with the findings of Kennedy et al. (2023).
Table 1 suggests that the inferior performance of subgroup S2 may be partly attributable to its lower
prevalence of hemophilia, homosexuality, and drug use. More results can be found in Appendix A.2.

6 LIMITATIONS

Two caveats merit discussion. First, our results do not fully resolve issues of valid post-selection
inference. Although our finite-sample bounds hold uniformly over all admissible subgroup–weight
pairs, they do not constitute selective p-values. This limitation is shared with the broader balancing
literature and remains an open challenge in our framework. This is the price we pay to gain the key
advantage of our framework: bias and fairness can be directly and flexibly controlled without explicit
CATE modeling. Second, there is a trade-off between enforcing balance/fairness and weight stability,
governed by tuning parameters (δ, δ′, λ), whose optimal choice remains open, particularly when
additional constraints are included. Future work should provide theoretical guidance on these issues.

9
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