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ABSTRACT

Continual visual question answering with multimodal large language models is
promising because of their strong reasoning and generative capabilities, but it
remains hindered by catastrophic forgetting, concept drift across tasks, and the need
for compositional generalization. Previous work has mainly targeted forgetting
while overlooking the challenge of intertask composition, where real-world visual
question answering requires combining knowledge across tasks. We introduce dual-
purpose experts within a Mixture of Experts framework to address these challenges
without the need for a replay buffer. Our approach expands expert layers in the
multimodal space using low-rank adaptation and trains each expert jointly on
Visual Question Answering and Visual Question Generation with a shared MLLM
backbone. This unified design enriches multimodal knowledge, while knowledge
sharing through the extraction and fusion of information from past experts further
mitigates forgetting and enhances composition. A lightweight language-based
router then enables effective expert selection. To better evaluate this setting, we
also propose a compositional benchmark that reflects real compositional questions.
Experiments on diverse benchmarks demonstrate that our method substantially
reduces forgetting and improves compositional generalization compared to previous
generative continual visual question answering approaches.

1 INTRODUCTION

Continual learning (CL) seeks to emulate human learning, where models acquire new knowledge
sequentially while retaining prior information and avoiding catastrophic forgetting (CF), defined
as the loss of previously learned knowledge when acquiring new tasks (French, 1999). Despite
substantial progress, most continual learning research has focused on single-modal classification tasks
with closed output spaces. In such settings, common strategies, including replay buffers , architectural
constraints, or task-specific modules struggle to balance stability and plasticity (Wang et al., 2024).

Recently, multimodal architectures have gained traction for their ability to learn joint representations
across modalities. Yet these models are also prone to forgetting, and most multimodal CL approaches
remain confined to classification problems (Thengane et al., 2022). In parallel, the rise of multimodal
large language models (MLLMs) has shifted attention toward reasoning and generative capabilities,
offering a richer and more practical testbed for continual learning (Guo et al., 2025). Unlike closed-set
classification, generative continual learning requires preserving both knowledge and reasoning skills
while enabling transfer across tasks. This paradigm remains largely underexplored.

Visual Question Answering (VQA) exemplifies the challenges mentioned above. While VQA can
be framed as classification, the generative formulation is more natural and scalable. To probe
continual settings, Zhang et al. (2023) introduced a benchmark partitioning of VQA v2 (Goyal
et al., 2017) into tasks defined by linguistically driven question types, thereby testing the retention
of reasoning skills and multimodal understanding incrementally. Only a handful of works, notably
VQACL (Zhang et al., 2023) and CL-MoE (Huai et al., 2025a), have explored generative continual
VQA, with efforts focused primarily on mitigating forgetting. However, the open-ended nature of
VQA presents challenges beyond retention: questions often require linguistic composition, naturally
combining previously learned concepts. For example, a learner exposed first to a counting task
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Does the blanket seem to
be white?

no

What color is the
microwave oven on top of

the counter?

silver

Which part of the photo
is the apple in, the top or

the bottom?

bottom

yes white top1

How many different
colors of trucks?

3

Count, Color Recognition, Color Location, Color Location, Recognition

Ours Ours Ours Ours

CL-MoE CL-MoE CL-MoE CL-MoE

Figure 1: Comparison between Our MoE Design and CL-MoE on the Compositional Benchmark.
For instance, in the leftmost column, when a user poses a query that necessitates the integration of
skills from two distinct learned past tasks (Count and Color), CL-MoE fails. This limitation arises
because the CL-MoE approach assumes that test instances originate from separate clusters; however,
in real-world compositional settings, this assumption does not hold. In contrast, our design explicitly
facilitates the understanding of task compositions, thereby enabling the model to generate more
accurate and contextually appropriate responses.

(e.g., “How many trucks are there?”) and later to a color task (e.g., “What color is the flip flop?”)
should be able to generalize to queries such as “How many different colors of trucks are there?”
This reflects real-world scenarios, where tasks overlap and compose naturally during inference (soft
task boundaries), rather than being predefined and isolated (hard task boundaries). Addressing such
queries demands both compositional reasoning across seen tasks and richer visual understanding.
Yet the VQACL benchmark lacks compositional Q&As (Hudson & Manning, 2019), leading prior
work to overlook such scenarios and focus solely on per-task performance retention. For instance,
while CL-MoE (Huai et al., 2025a) leverages mixtures of experts, its routing assigns queries to a
single cluster and combines task- and instance-level weights using fixed parameters. This approach
effectively addresses forgetting (i.e., drops below zero; see Table 1) but leads to brittle integration
across multiple skills. As shown in Figure 1, even the current state-of-the-art method fails on simple
compositions, underscoring a critical gap in current approaches.

Inspired by the success of the Mixture of Experts (MoE) framework in addressing forgetting, we
adopt an MoE-based architecture and pose two central questions: (1) how can we maximize and
preserve per-task performance, and (2) how can the model be designed to reflect compositional
ability? To address the first, we introduce parameter isolation between experts, which stabilizes
past knowledge and prevents forgetting. However, isolation reduces compositional ability, and
a naı̈ve alternative, parameter sharing across tasks, quickly becomes a bottleneck as the number
of tasks increases, leading to overly general representations and renewed forgetting. Instead, we
maintain isolation while enabling inter-expert communication by making experts dual-purpose, where
visual question generation serves as an auxiliary task to visual question answering. As tasks grow,
this dual role fosters teacher–student interactions that promote knowledge fusion while preserving
isolated parameter spaces. Our unified architecture requires no memory buffer, reduces parameter
overhead through low-rank adaptation, and achieves scalability and task-agnostic generalization with
a lightweight language-based router.

To assess compositional reasoning, we created a human-annotated benchmark that combines two
or more tasks into a single QA on the same test set images as the traditional VQACL benchmark,
complemented by an additional public benchmark. Our method demonstrates effectiveness across
three different benchmarks, maintaining task-specific knowledge, mitigating forgetting, and enabling
compositional skills. Our contributions are as follows:

• Unified dual-purpose MoE framework: We propose an MoE-based architecture with
parameter isolation to stabilize past knowledge and mitigate forgetting, while introducing
dual-purpose experts with inter-expert communication to enhance compositional ability.

• Efficient design: Our approach avoids reliance on memory buffers, reduces parameter
overhead via low-rank adaptation, and employs a lightweight language-based router to
support task-agnostic generalization.
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• New compositional benchmark and empirical validation: We introduce a human-
annotated benchmark to assess compositional reasoning, and demonstrate that our method
preserves task-specific knowledge, alleviates forgetting, and enables compositional skills
across three different benchmarks.

2 RELATED WORK

Multimodal learning involves training models on two or more data modalities, such as audio, video,
text, or images (Wu et al., 2023). When these models are built on top of large language models
(LLMs) (e.g., OPT (Zhang et al., 2022), FlanT5 (Chung et al., 2024)) and process multiple modalities,
they are referred to as multimodal large language models (MLLMs) (Alayrac et al., 2022; Bai et al.,
2023). Examples such as BLIP-2 (Li et al., 2023), VLT5 (Cho et al., 2021), and PaLI-Gemma (Beyer
et al., 2024) illustrate how models can generalize across diverse vision-language tasks. More recently,
research has focused on enhancing the generative and reasoning capabilities of MLLMs, with GPT-4
serving as a prominent example (Achiam et al., 2023). Such generalization is particularly important
in the continual learning (CL) setting, where models must learn a sequence of tasks without revisiting
previously seen data (Wang et al., 2024). A core challenge in this setting is catastrophic forgetting,
where models tend to lose prior knowledge while learning new knowledge (Kirkpatrick et al., 2017).
Although MLLMs demonstrate impressive reasoning and generalization, they are not immune to
the forgetting issue (Li et al., 2023). Classical continual learning strategies, including parameter
regularization (Kirkpatrick et al., 2017), replay-based methods (Chaudhry et al., 2019; Buzzega et al.,
2020; Zhang et al., 2023), and architectural adaptations (Rusu et al., 2016) have been proposed to
address those issues, but they are not specifically tailored for MLLMs. This is a significant gap, as
MLLMs are critical for tackling problems that require reasoning skills.

Moreover, existing continual learning benchmarks were not built for multimodal LLMs and do not
fully capture their abilities. A practical and representative setting that requires reasoning skills is
Visual Question Answering (VQA) (Antol et al., 2015; Whitehead et al., 2021), which assesses
understanding both visual and textual modalities to produce open-ended, reasoning-driven responses.
Zhang et al. (2023) introduced a continual VQA for generative answers, offering a more suitable
evaluation setting for MLLMs. The authors proposed a memory-based method to tackle the challenges
of continual VQA. However, this approach lacks scalability, and does not fully prevent catastrophic
forgetting. Das et al. (2025) proposed a memory-free method based on generative questions.
Nevertheless, the effectiveness of their approach is highly dependent on the quality of the generated
questions and is further limited by catastrophic forgetting.

To mitigate forgetting, parameter isolation methods such as Mixture of Experts (MoEs) (Shazeer
et al., 2017; Huai et al., 2025b) have shown promise. Recently, Huai et al. (2025b) tackled this using
Dual-Router MoE (RMoE) and Dynamic Momentum MoE (MMoE). However, due to the limited
number of shared parameters, they still experience performance degradation over time. At the same
time, scaling up MLLMs has been shown to enhance performance (Li et al., 2023). Yet, their large
parameter counts make retraining from scratch or incorporating new knowledge through multiple
experts computationally impractical.

An alternative line of research, Visual Question Generation (VQG) (Li et al., 2018) leverages the
generative reasoning capabilities of MLLMs to produce meaningful questions. Inspired by this, we
remove the need for external memory entirely by fully exploiting MLLMs’ generative capacity to
preserve and transfer knowledge. Specifically, our approach focuses on information maximization
through dual-purpose task experts, aiming to improve both reasoning and compositional skills while
mitigating forgetting, without relying on memory.

3 PRELIMINARIES

We cast visual question answering (VQA) as a generative question answering task in a continual-
learning (CL) setting. Unlike conventional offline training regimes, real-world systems must handle
tasks that arrive sequentially, adapting to each without retraining from scratch. This online formulation
is particularly challenging because the model must integrate new skills while retaining prior ones,
without explicit access to past data. Formally, let Fθ : X → A denote a pre-trained multimodal
large language model (MLLM) with parameters θ that maps an input space X of image–question
pairs to a free-form textual answer space A. The model encounters T tasks (e.g., recognition,
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counting), arriving one at a time. At step t, it is given only the current task T t, defined by the dataset

Dt =
{ (

(vt
i , q

t
i), a

t
i

) }|Dt|
i=1

, where (vt
i , q

t
i) is an image–question pair and ati = (ati,1, . . . , a

t
i,|at

i|
)

is its tokenized answer sequence. The objective is to adapt Fθ to each new T t without catastrophic
forgetting of previous tasks, despite training only on Dt at each step. The model is finetuned
sequentially on each task with the language modeling loss L:

L(θ) =
1

|Dt|

|Dt|∑
i=1

− 1

|ati|

|at
i|∑

k=1

logPθ

(
ati,k

∣∣ ati,<k, v
t
i , q

t
i

) , t = 1, . . . , T. (1)

where ati,<k denotes the prefix tokens of the answer up to position k − 1. Importantly, during
evaluation, the task identity (e.g., recognition, counting) is unknown, making the continual setting
more challenging than task-aware formulations.

4 METHODOLOGY

Our method, illustrated in Figure 2, unifies two objectives in a Mixture of Experts (MoE) framework.
We introduce a parameter isolation technique with a knowledge fusion strategy for compositional
reasoning, and define a language-based router for task-agnostic expert selection.

4.1 PARAMETER ISOLATION THROUGH MOES

Inspired by the success of low-rank adaptation (LoRA) (Hu et al., 2022) in LLMs, we extend it to the
multimodal space of MLLMs to construct task-specific experts within an MoE framework. Unlike
prior approaches that combine parameter isolation and parameter sharing, the latter often reintroduces
forgetting due to a shared parameter bottleneck. In contrast, our design leverages LoRA adapters to
enforce complete isolation, meaning that experts remain independent during training even though new
experts may be initialized from previous ones. This ensures that each expert preserves task-specific
knowledge while avoiding the forgetting issue.

Concretely, we insert LoRA (Hu et al., 2022) adapters into the pretrained BERT-based Q-Former (Li
et al., 2023) with a dual-level design, applying them to both self-attention and feed-forward layers.
In self-attention, we augment the query (Wq), key (Wk), and value (Wv) projections to capture
task-specific queries, which are passed through frozen cross-attention to extract visual features.
Feed-forward adapters then translate these outputs into task-specific representations. Together, these
modules form a single expert Et

VQA(·, ·) with parameters Φt. To train each expert, we use the language
modeling loss from Equation 1, which can be reformulated as:

Lt
VQA(Φ

t) =

|Dt|∑
i=1

− 1

|ati|

|at
i|∑

k=1

logPθ+∆θ(Φt)

(
ati,k

∣∣ ati,<k, v
t
i , q

t
i

) , t = 1, . . . , T. (2)

Where ∆θ(Φt) denotes the task T t specific low-rank updates applied across the designated projection
and feed-forward layers. This design preserves knowledge because when a new task T t+1 arrives
parameters Φt+1 starts from prior knowledge of Φt while only optimizing Φt+1. As a result, the
task-specific parameters of T t remain frozen while allowing the new expert to adapt. However, as
others remain frozen, there is no communication between experts, causing experts to learn in isolation.
This isolation prevents forgetting at the cost of sacrificing compositional ability. In joint training, all
task samples are available within a batch, enabling the model to build shared representations and
implicitly acquire some compositional skills. In contrast, continual learning lacks access to prior task
samples, and the multi-expert design further restricts implicit sharing because prior knowledge of
Φt+1 is being overwritten either partially or completely by the current task. To overcome this, we
build expert communication while maintaining expertise, effectively enabling independent experts
with fusion, but without parameter sharing.

4.2 INTER-EXPERT KNOWLEDGE FUSION

We adopt knowledge fusion via teacher–student learning to bridge communication across experts.
A naive solution is replay, but multimodal replay is memory-intensive since both visual and textual
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LLM

Visual 
Encoder

Feed Forward

Cross-Attention

Self-Attention

Fully Connected

Experts

Experts

Router Router

<generated text>

< im
age >

< text >

VQA VQG

Low Rank Experts Pool

Tokenizer

VQA VQG

Expert 1 Expert n

Queries

Task 1 Task n

VQA VQG

VQA VQG

Q-former

Frozen

Trainable

Figure 2: Overview of the proposed dual-purpose MoE framework. For both VQA and VQG,
low-rank adapters are applied in parallel to the self-attention and feedforward layers. In the cross-
attention layer, the experts’ outputs, combined with the frozen self-attention output, serve as the query
for the cross-attention mechanism, helping to extract task-specific features from the input image.
Collectively, we refer to this as an Expert. During training, we optimize task loss LV QA and LV QG,
along with the LSTM-based router, while all other components except the task experts remain frozen.

data must be stored, and controversial due to privacy concerns. Instead, our knowledge fusion via
teacher–student learning, where the expert (or an auxiliary generator) synthesizes pseudo-samples
from prior tasks. In this dual role of generator and solver, the backbone enables access to past
experiences without requiring raw data.

Prior studies suggest that teacher–student learning can transfer knowledge effectively without signifi-
cant information loss (Robins, 1995; Shin et al., 2017). However, fine-tuning the low rank expert
Et

VQA(·, ·) on the current VQA task induces catastrophic forgetting of question generation. Although
the frozen backbone can still be utilized, its zero-shot distribution diverges from the task-specific
distribution, leading to expert mismatch. Moreover, zero-shot generalization remains unreliable in
low-resource or specialized domains (e.g., medical, legal, or scientific applications) due to limited
domain coverage during pretraining. Following Li et al. (2018), who unified VQA and VQG, we
introduce an auxiliary objective that aligns generated questions with the task-specific distribution,
thereby mitigating distributional drift and improving continual knowledge fusion.

4.2.1 THE VQG EXPERT

To build a unified framework, we adopt the same architecture for the VQG module as for the
VQA module. We extend our expert definition to incorporate both components, denoting each
expert as Et = {Et

V QA, Et
V QG}, ψt = {Φt

V QA,Φ
t
V QG}, where Et

V QA and Et
V QG are the task-

T t dual purpose components, respectively, and Φt
V QA, Φt

V QG are their corresponding low-rank
parameters. The VQG component is trained together using the same task dataset as the VQA
component, but with input–output roles reversed. Specifically, instead of receiving a question
and predicting an answer, the expert takes a text prompt and an image as input and generates the
corresponding question. This setup poses no issue during training, since both question–answer pairs
are available. However, to ensure that generated questions follow the real, task-specific distribution,
we explicitly condition the model with a structured prompt of the form pt = Generate a {T t}
question for the image where the possible answers are {at}. The ground-
truth questions from the dataset are used as the output target, and the expert is optimized using the
language modeling loss defined in Equation 3.
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Task: Recognition 
Q: What is the bench made of?
A: Wood

Task: Location
Q: Where are the birds?
A: Sidewalk

Task: Judge
Q: Are there any people in       
    the picture?
A: Yes

Task: Commonsense
Q: Does this look like a     
     park?
A: Yes

Task: Count
Q: How many pigeons are         
    there?
A: 4

Task: Action
Q: What is the person on the             
     bench doing?
A: Sitting

Task: Color
Q: What color are the birds?
A: Black

Task: Type
Q: What kind of birds are     
     those? 
A: Pigeons

Task: Subcategory
Q: What time of day is it?
A: Evening

Task: Causal
Q: Why are the birds only appearing as black silhouettes? 
A: Sun

Notations
Q: Question
A: Answer

Figure 3: Compositional learning process. Traditional VQA is limited to a single-step learning
setting (gray outer box), where each training instance is only a

(
(vt

i , q
t
i), a

t
i

)
∈ Dt triple. In contrast,

our approach expands learning into a compositional space (dotted box), where multiple diverse
Q&A types are asked about the same image. This enables richer multimodal reasoning, including
compositional skills, leading to deeper understanding beyond the traditional scope.

Lt
V QG =

|Dt|∑
i=1

− 1

|qti |

|qti |∑
k=1

logPθ+∆θ(Φt
V QG)

(
qti,k

∣∣ qti,<k, v
t
i , p

t
) , (3)

Here, qti=(q
t
i,1, . . . , q

t
i,|qti |

) denotes the tokenized question sequence. Together equations 2 and 3
ensure expert Ets task-specific knowledge is preserved. During the continual learning process,
Em used on vt ∈ Dt to generate (q̃m, ãm) where m range from 1 to t − 1. To ensure the quality
of the generated questions, we employ confidence-based filtering. For each generated question
q̃mi = (q̃mi,1, . . . , q̃

m
i,|q̃mi |), we define the confidence score as the average log-likelihood of its tokens:

C(q̃mi ) =
1

|q̃mi |

|q̃mi |∑
k=1

logPθ,Φm
V QG

(
q̃mi,k

∣∣ q̃mi,<k, v
t
i , p

m
)
. (4)

We retain only those generated questions whose confidence exceeds a threshold τ , i.e., Qm
filtered =

{ q̃mi | C(q̃mi ) ≥ τ }. This filtering step discards low-confidence generations and ensures that only
high-quality, task-relevant questions are used. Finally, for each question in Qm

filtered, we associate it
with its corresponding image and leverage corresponding Em

VQA to generate answers, resulting in
question–image–answer triples that fuse the knowledge derived from past experts into the current task.
We denote this as

{ (
(vt

i , q̃
m
i ), ãmi

) ∣∣ q̃mi ∈ Qm
filtered

}
. Differently from existing methods, the fusion

serves as a knowledge bridge rather than a knowledge-preserving replay. While parameter isolation
preserves prior expertise, our approach enables independent experts to acquire task-specific question
distributions that guide compositional reasoning. As shown in Figure 3, each expert generates
complementary views of an image from a shared backbone expert pool, providing supervision that
strengthens multimodal reasoning and facilitates compositional knowledge fusion across tasks.

Overall, our dual-purpose expert within a unified architecture addresses both catastrophic forgetting
and compositional reasoning. To further enable task-agnostic generalization, we introduce a language-
based routing mechanism that dynamically assigns inputs to the appropriate experts.

4.3 LANGUAGE-BASED ROUTING

To enable task-agnostic inference, we introduce a language-based router. The intuition is that the
surface form of a question contains strong semantic cues about the underlying task (e.g., counting,
recognition, color), which can be exploited to predict which expert should be activated without relying
on explicit task identifiers at inference time. Given a tokenized question sequence q of length |q|, we
embed the tokens through a learnable embedding layer and process them with a recurrent encoder.
Specifically, a single-layer LSTM encodes the sequence into a hidden representation hq ∈ Rdh ,
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which is passed through a fully connected layer to produce task logits: r(q) = softmax(Wfc hq) ,

where Wfc is the classification head. The predicted task is given by t̂ = argmax r(q), which is
then used to select the corresponding expert E t̂. Because the number of tasks grows over time, the
router is trained in an incremental fashion with corresponding Et. The training objective is standard
cross-entropy over the expert pool (i.e., seen tasks) as targets:

Lrouter = − 1

|Qt|

|Qt|∑
i=1

log r(qti)[t], (5)

where Qt denotes the set of training questions at task T t, and t is the ground-truth expert index for
question qti . The router itself is also susceptible to forgetting. To retain past routing capabilities
in the continual setting, we also ensure teacher-student knowledge fusion from E≤t

VQG experts (See
Section: 3) to the router. Specifically, for each past task T m, we include q̃m, ensuring that the router
preserves discriminative ability across all previously seen tasks. This integration makes the router
robust to forgetting, while maintaining negligible overhead since training is performed solely on a
single modality. Consequently, the router provides a scalable and task-agnostic mechanism for expert
selection during inference. Figure 2 shows the overview of our proposed framework.

5 EXPERIMENTS

We first evaluate our method on the standard VQACL setting. We then extend the evaluation to the
linguistic compositional setting and perform comprehensive ablation studies.

5.1 EXPERIMENTAL SETUP

Backbone & Baselines & Metrics. In our experiments, we adopt MLLMs as backbones. Fol-
lowing prior studies, we evaluate three representative architectures: VL-T5 (Cho et al., 2021),
LLaVA-7B (Liu et al., 2023), and BLIP-2 (Li et al., 2023). We benchmark performance under
standard continual learning baselines. For replay-based methods, we consider ER (Chaudhry et al.,
2019), DER (Buzzega et al., 2020), and VS (Wan et al., 2022), while for regularization-based meth-
ods, we include EWC (Kirkpatrick et al., 2017) and MAS (Aljundi et al., 2018). In addition, we
compare against frameworks designed specifically for open-ended language generation, including
VQACL (Zhang et al., 2023), GaB (Clustering) (Das et al., 2025), and the most recent CL-MoE (Huai
et al., 2025a). We include Vanilla, which refers to incrementally training without any continual
learning method. Joint Training means training all tasks together. In our case, the upper bound
is when, for a sample, any expert generates the correct answer. We adopt two standard continual
learning metrics: Final Average Performance (AP) and Average Forgetting (AF) (Zhang et al., 2023).
Let αi,j denote the test performance on task with index j after completing training on task with
index i, and T the total number of tasks. AP measures overall performance after continual fine-
tuning, defined as AP = 1

T

∑T
t=1 αT,t. AF quantifies knowledge loss on past tasks, defined as

AF = 1
T−1

∑T−1
t=1 (αt,t − αT,t).

Implementation Details. We use BLIP-2 (Li et al., 2023) as the backbone MLLM architecture, with
ViT-g/14 (Fang et al., 2023) as the frozen vision encoder and FlanT5-XL (Chung et al., 2024) as
the large language model. The multimodal Q-Former block of the backbone is configured with a
fixed query size of 32. For our MoE implementation, we apply LoRA (Hu et al., 2022) for low-rank
adaptation, fine-tuning only the LoRA layers on the self-attention and feed-forward modules of the
BLIP-2 Q-Former block. We set the LoRA rank to 64 with a dropout rate of 0.1. During evaluation,
we use the prompt template ”Question: {} Short answer: {}”. The VQG threshold τ is set to the
90th percentile. For memory-based methods, to ensure fair comparison, we fix the replay buffer size
to 5000 across all baselines. For the MoE-based baseline CL-MoE (Huai et al., 2025a), to ensure
fairness, we reproduce the results with the official codebase by setting the number of experts to 8,
while keeping all other settings the same as reported in the original paper. We use publicly available
results whenever possible. See Appendix D for more on implementation details.

5.2 MAIN RESULTS ON THE TRADITIONAL VQACL

Setting. We conduct our experiments in the VQACL setting (Zhang et al., 2023), which is derived
from the VQA v2 benchmark (Goyal et al., 2017). The VQA v2 dataset consists of open-ended,
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Table 1: Performance comparison of different methods and backbones on the VQACL tasks. We
report both average performance (AP) and average forgetting (AF) in percentage (%).

Methods Rec. Loc. Jud. Com. Cou. Act. Col. Typ. Sub. Cau. AP (↑) AF (↓)
VL-T5 backbone
Vanilla 7.39 4.94 22.29 32.30 0.71 12.14 12.10 10.69 27.29 15.10 14.49 30.15
EWC 6.73 8.43 27.22 47.10 0.14 12.40 1.76 10.98 31.05 11.85 15.77 28.38
MAS 30.81 8.07 25.50 4.00 31.90 32.39 26.24 24.75 19.85 2.75 20.56 21.97
ER 18.64 21.36 61.27 64.17 30.29 52.84 43.39 23.31 42.75 11.85 36.99 4.80
DER 14.55 13.83 62.88 65.16 30.96 51.19 40.51 19.04 42.87 12.55 35.35 6.58
VS 15.66 19.21 59.86 32.16 27.28 47.79 32.32 20.44 41.38 10.20 34.03 11.68
VQACL 22.83 19.82 30.66 44.24 28.25 42.82 64.13 66.5 57.2 15.2 39.16 2.42
LLaVA-7B backbone
Vanilla 19.25 14.81 54.59 56.97 24.23 46.20 27.58 26.09 36.47 18.89 32.51 20.69
EWC 28.12 23.02 61.50 61.08 26.13 54.29 23.65 32.25 44.97 17.83 37.28 15.27
MAS 31.54 22.09 60.85 46.32 32.48 56.47 30.05 35.69 42.73 18.83 37.71 14.91
ER 29.31 25.74 63.46 65.78 31.92 58.39 45.17 34.55 46.24 18.96 41.95 10.20
DER 26.95 21.43 64.88 66.17 31.01 55.92 44.60 32.85 47.09 20.74 41.16 11.28
VS 28.48 24.09 61.37 67.20 29.56 54.64 33.98 32.91 45.82 19.89 39.79 12.70
VQACL 34.14 32.19 66.15 63.00 33.01 60.91 34.64 38.48 47.94 24.42 43.49 9.10
CL–MoE 34.54 32.34 67.83 65.28 34.70 61.40 34.31 40.88 49.56 22.58 44.34 -0.01
BLIP-2 backbone
ER 45.76 25.64 72.87 66.91 15.35 67.12 53.28 50.70 49.87 15.20 46.36 9.75
DER 44.87 24.06 71.12 65.41 38.78 60.52 46.17 36.77 48.90 14.90 45.15 8.93
GaB 28.03 29.05 79.99 77.8 45.29 65.3 59.96 32.3 50.02 11.6 47.93 2.40
VQACL 47.92 25.70 75.95 69.86 41.42 64.63 49.31 39.27 52.22 15.92 48.22 5.76
Ours 47.78 35.02 79.43 74.18 48.23 73.20 69.53 56.38 57.06 20.0 56.08 -0.43
Joint Training 48.33 32.73 78.89 73.82 45.41 71.96 64.69 54.45 56.00 17.50 54.37 -
Upper Bound 58.42 47.72 90.28 88.02 61.58 83.36 77.48 64.08 64.09 31.34 66.64 -

human-annotated question–answer pairs grounded in images, comprising approximately 1.1M ques-
tions over 200k images sourced from the MS COCO dataset (Lin et al., 2014). Within VQACL,
the benchmark is partitioned into ten linguistically driven ten tasks: Recognition, Location, Judge,
Commonsense, Count, Action, Color, Type, Subcategory, and Causal. This division ensures a hard
task boundary. See Appendix C for more details about the benchmark.

Analysis. We report the main results on the traditional VQACL setting in Table 1. The benchmark
defines task boundaries through linguistic cues and evaluates continuous reasoning adaptability across
diverse tasks. It also presents varying levels of difficulty. Among them, causal reasoning is the
most challenging and produces the lowest AP. Our results show this varying difficulty trend, as
performance varies across task types and some categories remain consistently difficult. We organize
the results by backbone. VL-T5 has the smallest parameter count, while LLaVA-7 billion and BLIP-2
(5 billion) are comparable in scale, although most of their parameters remain frozen. Our method
achieves the highest AP of 56.08% (∆ +16.29% increase compared to second best) and the lowest
forgetting among all methods, while remaining competitive or superior on individual tasks. These
results show that parameter isolation effectively preserves past knowledge and reduces forgetting.
The negative sign indicates that, on average, knowledge gain surpasses forgetting. This phenomenon
arises in the MoE-based method under open-ended settings (such as generative VQA), where any
expert can produce the correct answer, as illustrated in the Upper Bound row.

5.3 RESULTS ON THE COMPOSITIONAL VQA FOR CL

Setting. While VQACL provides fine-grained linguistic tasks, it does not explicitly target composi-
tionality (Hudson & Manning, 2019). In VQACL, tasks in the train, validation, and test splits are
divided by hard linguistic boundaries. For example, the question “How many people are there?” is clas-
sified only under the count task. In contrast, we focus on composition, where a single question may
require knowledge from multiple past tasks. For instance, if a CL model is trained on recognition
and location tasks, we evaluate whether it can answer questions that require knowledge from
both (e.g., “Where is the bottle that is filled with water?”). This setting better reflects real-world
scenarios, as humans naturally compose knowledge rather than strictly querying about a single task.
We measure compositional performance using two benchmarks. The first is the GQA dataset (Hudson
& Manning, 2019), which contains compositional questions over real-world images. Unlike VQACL,
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Table 2: Impact of the VQG component on task performance, where Improvement denotes gains with
VQG over without, and Self Improvement reflects intra-task performance.

Component Rec. Loc. Jud. Com. Cou. Act. Col. Typ. Sub. Cau.
w/o VQG 41.25 29.49 74.72 69.27 3.17 66.16 52.31 45.91 48.63 19.82
w/ VQG 43.62 31.05 77.67 72.53 36.14 71.27 54.92 51.11 51.31 20.28

Improvement +2.37 +1.56 +2.95 +3.26 +32.97 +5.11 +2.61 +5.2 +2.68 +0.46
Self Improvement - +3.99 +1.19 +1.06 +1.21 +1.66 +0.57 +0.99 +1.93 +0.46

which is constructed from human-annotated Q&As, GQA relies on structured scene graphs and
an automated question engine. To complement this, we construct a human-annotated
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Figure 4: Compositional performance.

subset of compositional Q&As (referred to as composi-
tional VQA) from MS COCO images, providing a more
natural evaluation setting. Additional details for both bench-
marks are provided in the Appendix C.

Analysis. In Figure 4, we compare our method with three
other MLLM-based generative continual VQA approaches
on two compositional benchmarks. Our method achieves
the best performance on both COCO-GQA and human-
annotated compositional VQA. Specifically, our method
improves over prior methods by a large margin on COCO-
GQA, reaching 63.78% compared to 56.68% for the next
best method. On the human-annotated compositional VQA
benchmark, our method also leads with 54.76%, showing
consistent gains. The CL-MoE lags on COCO-GQA than
compositional VQA, likely due to distributional change
between the task questions and benchmark questions. Overall, figure 4 demonstrates the effectiveness
of our inter-expert knowledge fusion.

5.4 ABLATION STUDY

Impact of VQG. One of the key components of our method that bridges communication through
teacher–student knowledge fusion is VQG. Consequently, the quality of knowledge being fused
directly impacts overall performance. To illustrate its effect, we evaluate the last expert’s per-task
performance. As shown in Table 2, incorporating VQG consistently enhances outcomes across all
tasks. We also report the self-improvement in the last column, which reflects within-task performance
gains and offers supporting evidence for Figure 3. See Appendix E for more details.

Table 3: Task trainable parameters.

Method #Trainable Params ↓
CL-MoE 53.03M
Ours 39.17M

We evaluate the efficiency and scalability of our model
in terms of the number of trainable parameters per task,
as reported in Table 3. In our approach, three distinct
components are fine-tuned when a new task arrives This
design requires updating only 39.17M parameters, which
represents a significant reduction compared to the 53.03M
parameters required by alternative MoE-based framework. This corresponds to an approximate 26%
decrease in parameter burden during task training, highlighting the efficiency of our method.

6 CONCLUSION

In this paper, we introduce dual-purpose experts within the Mixture of Experts (MoE) framework for
continual visual question answering. Our proposed parameter isolation with a knowledge transfer
mechanism mitigates the forgetting effect and enhances compositional generalization. The unified
design avoids reliance on external memory or replay buffers. Finally, the routing mechanism
ensures task-agnostic inference. We also propose a human-annotated compositional benchmark to
evaluate the method on real-world images. Through extensive experiments on both compositional
and standard VQACL benchmarks, we show that our approach consistently matches or surpasses
baselines. However, compositionality in the current framework remains limited to past task knowledge
within the continual learning setting. Still, the results highlight a promising path toward unseen
compositional generalization.

9
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A APPENDIX

We organize the appendix into several sections to provide comprehensive supporting material. First,
we provide additional details of the expert architecture. Then, we present details on each benchmark:
compositional VQA, the COCO GQA benchmark, and the traditional VQACL. Next, we provide
additional implementation details, including workstation setups to aid reproducibility. We also include
additional experiments, such as task dependency studies. Finally, we discuss the limitations of our
method and provide instructions to access the source code.

B ADDITIONAL DETAILS OF EXPERT ARCHITECTURE

We define each expert as Et = {Et
V QA, Et

V QG}, ψt = {Φt
V QA,Φ

t
V QG}, where Et

V QA and Et
V QG

are the task-specific dual-purpose components, respectively, and Φt
V QA, Φt

V QG are the purpose
specific corresponding low-rank parameters. However, each component shares the same underlying
architecture. Specifically, we adopt LoRA (Hu et al., 2022) as the low-rank adapter.

As described in Section 4.1, we apply an adapter in the multi-modal space of MLLMs. Now denote
a given layer with input x ∈ Rdin and weight matrix W ∈ Rdout×din , the original transformation is
y = Wx. With LoRA, an adapter introduces a low-rank update ∆y = A(Bx), where A ∈ Rdout×r

and B ∈ Rr×din are low-rank matrices (r ≪ min(din, dout)). The final output is computed as
y′ = Wx+ α ·A(Bx), where α is a scaling factor. In our expert setting, each task T t is assigned an
isolated low-rank parameter space while the pre-trained backbone θ remains frozen (i.e., both vision
encoder and LLM). A component (i.e., VQA or VQG) output for task T t is thus parameterized as:

Et(vt, qt) = Fθ+∆θ(Φt)(v
t, qt),

where ∆θ(Φt) denotes the collection of all low-rank updates applied across the designated projection
and feed-forward layers.

C ADDITIONAL DETAILS OF BENCHMARK

C.1 VQACL BENCHMARK

The VQACL benchmark is based on the VQA v2 dataset (Antol et al., 2015). The VQA v2 contains
human-annotated question and answer pairs over real-world images. The continual visual question
answering (i.e., VQACL (Zhang et al., 2023)) benchmark is based on the VQA v2 benchmark’s
Karpathy splits of MSCOCO Karpathy & Fei-Fei (2015); Lin et al. (2014). Zhang et al. (2023)
specifically designed ten linguistically driven tasks: Recognition, Location, Judge, Commonsense,
Count, Action, Color, Type, Subcategory, and Causal. This design creates language-based hard
task boundaries. However, images are shared between multiple tasks. The splits contain 131,478
(Recognition), 12,580 (Location), 160,179 (Judge), 25,211 (Commonsense), 62,156 (Count), 33,633
(Action), 50,872 (Color), 23,932 (Type), 31,594 (Subcategory), and 5,868 (Causal) train set questions.
See Table 4 for dataset statistics.

C.2 COCO GQA BENCHMARK

The GQA (Hudson & Manning, 2019) dataset is based on compositional question answering. The
compositional setup requires multi-step reasoning to answer a question. The dataset, however, is
created using the Visual Genome scene graph and question engine. The Visual Genome shares many
images with the COCO dataset, which was used in the VQACL benchmark. The VQACL test task
questions are based on 5,000 COCO images. Based on those images, we filter GQA questions. A
total of 41,981 questions from the GQA test set share the same images as the VQACL test tasks. We
select all of these questions as the COCO-GQA compositional benchmark. See Table 4 for dataset
statistics.

C.3 COMPOSITIONAL VQA

Background. Existing benchmarks have notable limitations for compositional reasoning in VQA.
For example, the VQACL (Zhang et al., 2023) benchmark does not include compositional questions,
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Table 4: Statistics of Traditional Linguistic-Driven VQA Tasks and Compositional Linguistic-Driven
Tasks (all tasks share the same image source: MS COCO).

Type Task Test Set Examples

Recognition 5628 What is the chair made of?,
What is on the floor?

Location 611 Where is the giraffe?,
Where is the food served in?

Judge 7194 Is the boy playing baseball?,
Are the windows big?

Commonsense 1100 Could this be a multi-purpose room?,
Has this pizza been baked yet?

Linguistic Count 2658 How many pictures are there?,
How many chairs are in the photo?

Action 1373 Is the man looking at the camera?,
Is he happy or sad?

Color 2192 What color are the gym shoes?,
What color is the flip flop?

Type 1089 What kind of room is this?,
What kind of flowers are here?

Subcategory 1416 Name the type of flower that is in the vase?,
What animal is on the man’s shirt?

Causal 200 Why do the boats not have their sails up?,
Why are all these zebra together?

Compositional

COCO GQA 41981

What is the person in front of the walls doing?
(Location, Action),
Is the bird brown and small?
(Color and Judge)

Compositional VQA 200

Does the person with red cap holding a camera?
(Judge, Action, Color),
How many people are there not carrying a bag in hands?
(Count, Action)

Q: Where are the teddy 
bears sitting?

Q: What is color of the 
truck?

Q: How many donuts are 
there?

What has learned

Q: How many yellow 
truck in the parking lot?

Q: How many people 
sitting in the boat?

Novel Composed Tasks

Task 1: Count Task 2: Position Task 3: Color

Open world

Figure 5: Compositional Visual Question Answering (VQA) Challenge. The model is trained incrementally
on isolated tasks such as counting, object position, and color recognition. At test time, it must generalize to
novel, composed queries that require combining previously learned concepts (e.g., “How many yellow trucks are
in the parking lot?”). This illustrates the core challenge of continual VQA: robust compositional reasoning under
continual task exposure without revisiting past data.

while GQA (Hudson & Manning, 2019) is automatically generated (not human-annotated) and
was not designed with continual learning in mind. Consequently, these datasets lack explicit tags
identifying compositional tasks (i.e., task identities are not available). In contrast, compositional
questions are more practical and reflective of real-world settings. In practice, a VQA learner acquires
tasks sequentially, but during deployment, human users rarely restrict themselves to asking questions

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

tied to a single task. Instead, it is natural for humans to ask compositional questions that combine
multiple learned concepts. Figure 5 illustrates such a compositional VQA scenario. Due to the
absence of benchmarks targeting compositionality, prior continual VQA methods have primarily
focused on mitigating catastrophic forgetting. However, given the open-ended nature of the VQA
task, compositional questions, which require multi-step visual reasoning, are both more practical
and more reflective of real-world usage. As described in Section 4, we design our continual learning
framework to solve such a practical application. To further test our method on human-annotated
compositional questions, we create a benchmark, which in this paper we refer to as compositional
VQA.

Benchmark Design. To create a composed test set, we selected all images from the VQACL test
tasks. In total, the ten VQACL tasks share 5,000 images from MSCOCO. We divided these 5,000
images into five groups of students and collected a small subset of composed questions. During the
annotation process, we also recorded the task identities to which each composed question belongs.
Annotating task identities is important because our goal is to evaluate continual learners only on
compositions of previously learned tasks. Table 4 for dataset statistics. Figure 6 shows our sample
annotation form. We will make our test subset publicly available.

Figure 6: Sample Annotation Form. During the annotation process, annotators were presented
with the corresponding images along with all human-asked questions associated with those images.
This context was provided to help annotators reason more effectively when creating compositional
questions.

D ADDITIONAL IMPLEMENTATION DETAILS

For our implementation, we adopt LoRA with a scalar of 0.1, dropout set to 0.1, and a bottleneck
dimension of 64, without applying layer normalization. The base LLM is Flan-T5-XL, configured
with 5 beams, a length penalty of –1, deterministic decoding (nucleus sampling disabled), and a
temperature of 1. The Q-Former is initialized with 32 queries, while the vision encoder employs the
EVA-CLIP-G ViT model with an image resolution of 224 and FP16 precision. All parameters are
frozen except the adapters within the Q-Former. Training is conducted using the AdamW optimizer
(β ranging from 0.9 to 0.999) with a learning rate of 1e-5, weight decay of 0.05, a layer-wise learning
rate decay factor of 1, and 1000 warmup steps.
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Figure 7: Past vs Self Improvement.

E ADDITIONAL RESULTS

Past vs Self Improvement. We conduct experiments to evaluate the effectiveness of our method in
improving both inter-task and intra-task performance. Specifically, we select each expert individually
and measure their performance on the tasks, with and without the knowledge fusion mechanism.
Figure 7 presents the performance improvements relative to the setting without inter-expert knowledge
fusion. The diagonal entries denote self-improvement. Overall, the heatmap illustrates how our
method bridges the knowledge gap among experts.

Task Dependency. To further analyze Figure 7 and provide additional explanation, we examine the
impact of learning each task on the performance of other tasks. Figure 8 illustrates how knowledge
transfer occurs across tasks. We observe that recognition and subcategory exert the strongest influence
on other tasks, whereas count and color exhibit the weakest influence. To quantify these dependencies,
we employ VL-T5 with a randomly initialized language model backbone.

E.1 WORKSTATION SETUP

The experiments were conducted on a workstation equipped with three NVIDIA A100 PCIe GPUs
(40 GB each), providing a total of 120 GB GPU memory.

F LIMITATIONS

Our method addresses both catastrophic forgetting and compositional knowledge in the continual
visual question answering setting. The current design focuses on compositions of previously learned
tasks, which aligns well with the continual learning paradigm. However, handling future composi-
tional questions (i.e., zero-shot compositions) remains a limitation and lies outside the scope of this
work.

G SOURCE CODE

We provide a link to the anonymous source code in the ICLR 2026 OpenReview discussion forum as
a comment.

H USAGE OF LARGE LANGUAGE MODELS

We use Large Language Models (LLMs) solely for polishing writing and correcting grammar.
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(a) Recognition (b) Location

(c) Judge (d) Commonsense

(e) Count (f) Action

(g) Color (h) Type

(i) Subcategory (j) Causal

Figure 8: Analysis of impact of learning one task to another.
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