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Abstract001

The recent advancement of foundation mod-002
els (FMs) has increased the demand for fine-003
tuning these models on large-scale cross-004
domain datasets. To address this, federated fine-005
tuning has emerged, allowing FMs to be fine-006
tuned on distributed datasets across multiple007
devices while ensuring data privacy. However,008
the substantial parameter size and the multi-009
round communication in federated learning al-010
gorithms result in prohibitively high communi-011
cation costs, challenging the practicality of fed-012
erated fine-tuning. In this paper, we are the first013
to reveal, both theoretically and empirically,014
that the traditional multi-round aggregation al-015
gorithms may not be necessary for federated016
fine-tuning large FMs. Our experiments reveal017
that a single round of aggregation (i.e., one-shot018
federated fine-tuning) yields a global model per-019
formance comparable to that achieved through020
multiple rounds of aggregation. Through rigor-021
ous mathematical and empirical analyses, we022
demonstrate that large FMs, due to their exten-023
sive parameter sizes and pre-training on general024
tasks, achieve significantly lower training loss025
in one-shot federated fine-tuning compared to026
smaller models. Our extensive experiments027
show that one-shot federated fine-tuning not028
only reduces communication costs but also en-029
ables asynchronous aggregation, enhances pri-030
vacy, and maintains performance consistency031
with multi-round federated fine-tuning on both032
text generation and text-to-image generation033
tasks. Our findings have the potential to revo-034
lutionize federated fine-tuning in practice, en-035
hancing efficiency, reducing costs, and expand-036
ing accessibility for FMs.037

1 Introduction038

Cutting-edge foundation models (FMs) demon-039

strate remarkable versatility across various do-040

mains. Notably, large language models (LLMs)041

like GPT-4 (Achiam et al., 2023), Gemma (Team042

et al., 2024), and Llama (Touvron et al., 2023b) ex-043

cel in tasks such as translation, question answering044

(QA), chat assistant, and math. Similarly, stable dif- 045

fusion models can generate diverse images based 046

on textual descriptions. Achieving such versatility 047

requires fine-tuning these FMs on cross-domain 048

datasets. However, this process faces significant 049

challenges in real-world scenarios due to the valu- 050

able datasets residing on devices owned by organi- 051

zations or individuals, raising privacy concerns. To 052

address these privacy issues, researchers have pro- 053

posed using federated learning (FL) (Zhang et al., 054

2021) for distributed fine-tuning of FMs, a process 055

known as federated fine-tuning. Federated fine- 056

tuning allows distributed clients to collaboratively 057

fine-tune a global FM on specific tasks without 058

disclosing their private data. 059

Traditional FL requires multiple communication 060

rounds between clients and the server to ensure the 061

global model convergence (McMahan et al., 2017). 062

However, the substantial parameter size of FMs 063

(typically in billions) results in significant commu- 064

nication overhead. Many devices lack the capabil- 065

ity to repeatedly communicate model parameters of 066

this scale. While previous works adopt parameter- 067

efficient fine-tuning (PEFT) methods such as low- 068

rank adaptation (LoRA) (Hu et al., 2021) to reduce 069

the number of trainable and communicated param- 070

eters, the high communication requirements of fed- 071

erated fine-tuning remain a practical limitation. 072

Unexpectedly, our recent experiments have dis- 073

covered an emergent capability of FMs that could 074

fundamentally shift the approach to federated fine- 075

tuning. We find that with sufficient local fine- 076

tuning epochs, a single communication round is 077

all it needs to effectively fine-tune FMs, which 078

is called one-shot federated fine-tuning. Figure 1 079

highlights the performance comparisons between 080

one-shot FL and traditional multi-round FL, main- 081

taining the same total number of local epochs. 082

While one-shot FL underperforms multi-round FL 083

for smaller models (e.g., ResNet-18 and LSTM), it 084

achieves comparable performance for larger FMs 085
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Figure 1: The distinct performances of one-shot fed-
erated learning between small models and large FMs.
The horizontal axis represents multi-round FL accuracy,
while the vertical axis represents one-shot FL accuracy.
The ResNet-18 and LSTM are trained and tested on
CIFAR-10 and Shakespeare respectively. Other models
are fine-tuned on Wizard dataset and tested on ARC
Easy. The closer points are to the dashed line means the
closer accuracy between one-shot and multi-round FL.

(e.g., GPT-2, Llama, etc). This unique discovery086

challenges the conventional belief that multiple087

communication rounds are essential for the feder-088

ated fine-tuning of FMs. Instead, we demonstrate089

that FMs can achieve convergence with just a sin-090

gle aggregation of well-fine-tuned local models.091

This paper explores this innovative finding, provid-092

ing rigorous theoretical analysis and compelling093

empirical evidence to validate the effectiveness of094

one-shot FL for federated fine-tuning FMs.095

The introduction of one-shot FL brings trans-096

formative benefits. First, it dramatically reduces097

communication costs. One-Shot FL slashes com-098

munication overhead by a factor of 1
T , where T099

represents the number of communication rounds100

in traditional federated fine-tuning. This reduc-101

tion is a game-changer for devices with limited102

bandwidth. Second, one-shot FL enables seamless103

asynchronous training. This flexibility removes104

the bottleneck of server waiting times, ensuring105

uninterrupted training regardless of client connec-106

tivity or resource limitations. The process becomes107

far more robust and efficient. Third, one-shot FL108

offers enhanced security against prevalent client-109

side federated learning attacks. Attacks like client-110

side model inversion and gradient inversion, which111

depend on multiple global model updates, are ren-112

dered ineffective. This significantly bolsters the113

integrity of the training process.114

Our key contributions are listed as follows:115

• Novel Discovery: To the best of our knowl-116

edge, we are the first to discover that one-117

round aggregation is sufficient for federated118

fine-tuning large FMs. 119

• Theoretical Analysis: We theoretically 120

demonstrate the relationship between the error 121

of one-shot federated fine-tuning and model 122

smoothness, fine-tuning model update, and 123

number of fine-tuning rounds. Our analysis, 124

supported by experiments, reveals that large 125

FMs are smoother, exhibit smaller model up- 126

dates, and require fewer fine-tuning epochs 127

than smaller models, resulting in significantly 128

lower one-shot federated fine-tuning errors. 129

• Experimental Validation: We conduct exten- 130

sive experiments on six FMs and three tasks, 131

demonstrating that one-shot federated fine- 132

tuning achieves performance comparable to 133

multi-round federated fine-tuning, particularly 134

for models with over 1 billion parameters. Ex- 135

perimental results also surprisingly show that 136

LoRA outperforms full fine-tuning in the con- 137

text of one-shot federated fine-tuning. 138

2 Preliminary 139

Federated Learning Paradigm of Small Mod- 140

els. In FL, the primary objective is to optimize a 141

global objective function F (w), which is weighted 142

average of the local objective functions from m 143

clients (Wang et al., 2020b): 144

F (w) =
m∑
i=1

piFi(w) (1) 145

where w represents the model parameters and 146

pi is the scaling factor. To protect the data privacy 147

of each client, the server cannot access the local 148

dataset. Thus, the local objective function Fi(w) 149

remains unknown to the server. FedAvg (McMahan 150

et al., 2017) algorithm provides a distributed train- 151

ing algorithm to facilitate privacy-conscious train- 152

ing. It allows multiple clients to train the model on 153

their local datasets and aggregates locally trained 154

models on the server at the end of each commu- 155

nication round. In t-th communication round, the 156

global model update rule of FedAvg is: 157

w(t+1,0) −w(t,0) = α(t)
m∑
i=1

pi∆
(t)
i , t ∈ [0, T − 1] (2) 158

where w(t,0) is the model weights in t-th round 159

and 0-th local epoch, which represents the global 160

model in t-th round. T is the total number of com- 161

munication rounds, α(t) is the global learning rate, 162

and ∆
(t)
i is the local model update in t-th round. 163
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∆
(t)
i is the accumulative model update of k local164

stochastic gradient descent (SGD) steps:165

∆
(t)
i =

k∑
j=1

β
(t,j)
i gi(w

(t,j)
i ) (3)166

where gi(w
(t,j)
i ) is the stochastic gradient over a167

local mini-batch and β
(t,j)
i is the local learning rate.168

Note that j here represents a mini-batch, and k is169

the total number of mini-batches per client.170

Local datasets in FL are typically heterogeneous,171

leading to differences in local objectives. There-172

fore, FL usually converges more slowly than cen-173

tralized machine learning. This slow convergence174

necessitates a large number of global communica-175

tion rounds and local epochs to achieve satisfactory176

performance. For example, experiment results in177

(Reddi et al., 2020) show that the ResNet-18 model178

requires more than 2000 and 4000 communica-179

tion rounds to converge on CIFAR-10 (Krizhevsky180

et al., 2009) and CIFAR-100 respectively. Even181

for simple natural language processing tasks such182

as Shakespeare, an RNN model needs more than183

50 rounds to converge. The requirement for multi-184

round communication rounds introduces several185

significant drawbacks. First, clients must fre-186

quently exchange model parameters with the server,187

which can be prohibitively expensive in certain188

constrained scenarios or on devices with limited189

resources. Second, repeated invocation of compu-190

tational resources for training increases the overall191

computational overhead. Additionally, the multi-192

round communication approach leads to excessive193

energy consumption, synchronization difficulties,194

and challenges in maintaining privacy protection.195

Thus, optimizing FL algorithms to minimize the196

number of communication rounds is an essential197

research direction in FL.198

Federated Fine-Tuning Foundation Models.199

Foundation models (FMs) (Zhou et al., 2023) re-200

fer to pre-trained deep learning models with a vast201

number of parameters, typically in the order of202

billions. These FMs are trained on broad data at203

scale and are adaptable to a wide range of down-204

stream tasks when fine-tuned on domain-specific205

datasets (Bommasani et al., 2021). Since domain-206

specific datasets are often distributed across multi-207

ple devices, FL offers an important paradigm for208

fine-tuning FMs while preserving data privacy.209

Federated fine-tuning adopts the same FedAvg210

algorithm in Eq. 1 and Eq. 2 to aggregate the lo-211

cal model updates. The key difference lies in the212

model parameter size. The parameter size of large 213

FMs is usually hundreds of times greater than that 214

of small models, resulting in a significant increase 215

in the computation resources and communication 216

overhead required for federated fine-tuning. Given 217

the network communication capabilities of com- 218

monly used devices, performing multi-round syn- 219

chronized communication of large model param- 220

eters between servers and clients is virtually im- 221

possible. Although parameter-efficient fine-tuning 222

algorithms like LoRA (Hu et al., 2021) have been 223

adopted, the communication overhead remains ex- 224

cessively high, hindering practical application. 225

One-Shot Federated Learning. To reduce com- 226

munication overhead in FL, recent works have fo- 227

cused on one-shot FL (Jhunjhunwala et al., 2024; 228

Guha et al., 2019; Gong et al., 2021; Li et al., 2020; 229

Zhou et al., 2020; Yang et al., 2024), which uses a 230

single communication round to obtain the global 231

model. These algorithms often employ knowledge 232

distillation or neuron-matching methods to opti- 233

mize the global model. However, these approaches 234

require additional data or computation. Knowl- 235

edge distillation often necessitates auxiliary public 236

datasets or external generative models, and neu- 237

ron matching requires additional computation on 238

both clients and the server. Despite these addi- 239

tional resource requirements, the performance of 240

one-shot FL has historically been inferior to stan- 241

dard multi-round FL. For instance, experiments 242

in (Jhunjhunwala et al., 2024) show that one-shot 243

FL achieves only 50% accuracy on the CIFAR- 244

10 dataset, which is 20% lower than the accuracy 245

achieved with 5-round FL. 246

However, our recent experiments have uncov- 247

ered greater potential for one-shot federated fine- 248

tuning large FMs. As shown in Figure 1, one-shot 249

FL for large models does not show a significant per- 250

formance gap compared to multi-round FL, which 251

is commonly observed with smaller models. In fact, 252

when the total number of local epochs is the same, 253

the performance of large models fine-tuned by one- 254

shot FL is comparable to that of multi-round FL. 255

Additionally, in fine-tuning larger models such as 256

Llama-13b, one-shot FL even performed slightly 257

better than multi-round FL. These results, along 258

with the experiment results in Section 4, suggest 259

that traditional multi-round FL algorithms may no 260

longer be necessary for federated fine-tuning large 261

FMs. Large FMs can effectively learn downstream 262

tasks from distributed clients with just a single com- 263

munication round, opening up new possibilities for 264

3



federated fine-tuning applications.265

Although we have observed consistently good266

performance with one-shot federated fine-tuning,267

the reasons behind this phenomenon remain unex-268

plored. In the next section, we will delve into this269

phenomenon through theoretical analysis.270

3 Theoretical Analysis of One-Shot271

Federated Fine-Tuning272

For a multi-round FL algorithm, if the total number273

of communication rounds is T and the number of274

local steps for each round is k, according to Eq. 2275

the global model parameters after FL satisfy:276

w(T,0) −w(0,0) =

T∑
t=1

α(t)
m∑
i=1

pi∆
(t)
i , (4)277

where ∆(t)
i is defined by Eq. 3. For a specific client278

i, the accumulated local model update ∆i is:279

∆i =
T∑
t=1

∆
(t)
i =

T∑
t=1

k∑
j=1

β
(t,j)
i gi(w

(t,j)
i ), (5)280

In contrast, for one-shot FL with T = 1 , the281

accumulated local model update is:282

∆i =
Tk∑
j=1

β
(0,j)
i gi(w

(0,j)
i ), (6)283

Here we set the number of steps per client to284

Tk since we are trying to match the total number285

of steps with the multi-round FL. The reason why286

the one-shot FL performs worse than the multi-287

round FL in small models lies in the difference288

between the local model updates in Eq. 5 and Eq.289

6. In Eq. 5, after the t-th communication round,290

the local training starts from the updated global291

model w(t,0), which is aggregated by all the local292

models in t-th round and contains richer knowl-293

edge. Therefore, the client can compute a more294

accurate gradient gi(w
(t,j)
i ) based on the updated295

model. On the contrary, in one-shot FL (Eq. 6),296

clients can only continuously train the local models297

without global information. The poor performance298

of one-shot FL is due to the gradients calculated299

on the local models being less accurate than those300

calculated on the aggregated global model. This301

local error can be expressed in mathematical form:302

εi =

Tk∑
j=k+1

β
(0,j)
i [(gi(w

(0,j)
i )− gi(w

(t,j−kt)
i )], (7)303

where t = ⌈ j
k⌉, ⌈·⌉ means ceiling. Consider that 304

gi(w
(0,j)
i ) and gi(w

(t,j−kt)
i ) are the gradients com- 305

puted on the same mini-batch, the error ε here is 306

only attribute to the different training start points 307

w
(0,j)
i and w

(t,j−kt)
i . Since the global model is ag- 308

gregated by local models, the global error can then 309

be bounded by the sum of local errors, which is: 310

ε ≤
m∑
i=1

εi, (8) 311

The global error can be further simplified by the 312

following assumptions. 313

Assumption 1 (Model Smoothness). The ob- 314

jective function of the pre-trained large FM is Lips- 315

chitz smooth with an L value, that is ∥∇Fi(wx)− 316

∇Fi(wy)∥ ≤ L∥wx−wy∥, L > 0, where ∇Fi(·) 317

is the model gradient. 318

Assumption 2 (Bounded Model Updates). The 319

model updates during FL are much smaller than 320

the initial model parameters in L2 norm, that is, 321

∥w(t,j) −w(0,0)∥ ≤ τ∥w(0,0)∥, 0 < τ < 1. 322

Theorem 1. Under Assumptions 1 and 2, ignor- 323

ing the difference of learning rates in one-shot and 324

multi-round FL and the difference of client num- 325

bers (i.e., set client number m to 1), the error of 326

one-shot FL ε can be bounded as follows: 327

∥ε∥ ≤ Γ∥w(0,0)∥, where Γ = LτTk (9) 328

This equation indicates that with lower values of 329

L, τ , T , k, and m, the model update of one-shot FL 330

will be closer to that of multi-round FL. Conversely, 331

if a neural network has a highly complex loss land- 332

scape, large training dynamics, or requires a large 333

number of rounds to converge, the error ε will be 334

large, leading to poor performance of one-shot FL. 335

Since our experiments have shown that LLMs ex- 336

hibit significant advantages over small models in 337

one-shot learning, we conduct experiments on the 338

factors in Equation 9 to provide a detailed explana- 339

tion of this phenomenon. 340

Foundation Models are Extremely Smooth 341

(LFM ≪ 1). In Equation 9, the factor L represents 342

the smoothness of the model, with smaller L imply- 343

ing a smoother model. We argue that pre-trained 344

large FMs are much smoother than small models 345

and thus have much smaller L values. Large FMs 346

are pre-trained on large-scale datasets to obtain 347

general capabilities. During this pre-training pro- 348

cess, the parameters of FMs are optimized from the 349

ridges to the basins in the loss landscape. Addition- 350

ally, as observed in a previous work (Ainsworth 351
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et al., 2022), wider models have more flattened352

basins in the loss landscapes. With these pieces353

of prior knowledge, we hold the contention that354

the loss landscape in large FM fine-tuning is much355

flatter and smoother than that in training small356

models from scratch, resulting in much smaller L357

values. To verify this argument, we estimate L by358

L =
∥∇Fi(wx)−∇Fi(wy)∥

∥wx−wy∥ . We randomly sample359

a mini-batch of data in the training datasets and360

compute the gradient on w(0,0) and w(T,k) to get361

∇Fi(w
(0,0)) and ∇Fi(w

(T,k)). Then we visual-362

ize the value of ∥∇Fi(w
(0,0))−∇Fi(w

(T,k))∥
∥w(0,0)−w(T,k)∥ in Figure363

2(a). According to Figure 2(a), FMs (i.e., models364

to the right of the red dash line) have much smaller365

L values than small models, which is consistent366

with our conjecture.367

Foundation Models Have Much Smaller368

Model Updates in Fine-Tuning (τFM ≪ 1). An-369

other crucial distinction in our analysis lies in the370

different tasks in FL: fine-tuning and training371

from scratch. Since the fine-tuning task updates372

the model parameters to adapt to downstream tasks373

without compromising its performance on the gen-374

eral task, it only slightly updates the model parame-375

ters. Therefore, the model parameter updates in the376

fine-tuning process are much smaller than the pre-377

trained model parameters, i.e., ∥w(t,j)−w(0,0)∥ ≪378

∥w(0,0)∥. In this case, the federated fine-tuning379

task would have a very small τ in Equation 9. To380

verify this, we conduct experiments to estimate the381

τ values by ∥w(T,k)−w(0,0)∥
∥w(0,0)∥ , where w(T,k) repre-382

sents the model update after the entire fine-tuning383

process on the training datasets. We visualize the384

estimated τ values of different models in Figure385

2(b), which illustrates that the τ values in FMs are386

much smaller than those in small models.387

Large Foundation Models Require Less Fine-388

Tuning Epochs (TkFM ≪ Tksmall). Different389

from training a small model from scratch, fine-390

tuning a large model typically doesn’t require a391

large number of total training steps to ensure con-392

vergence. This is mainly because the pre-trained393

models will be overfitting on the fine-tuning data394

with too many epochs, which will destroy the395

model’s ability on the general tasks. As a result, the396

Tk values of large FMs are also smaller than those397

in small models. Table. 4 in the Appendix displays398

the T and k numbers adopted by our experiments.399

We also visualize ∥w(0,0)∥ in Figure 2(c). Al-400

though the ∥w(0,0)∥ value of the small model is401

relatively small, it does not exhibit a clear trend pos-402

itively correlated with model size (e.g., TinyLlama 403

has a similar ∥w(0,0)∥ value with BERT, but has 10 404

times more parameters than BERT, Gemma-2b has 405

much larger ∥w(0,0)∥ value than Llama-13b). 406

Large Foundation Models Have Smaller One- 407

Shot Federated Fine-tuning Error ε. Based on 408

the discussion before regarding the L, τ , Tk, and 409

∥w(0,0)∥ values of the model with various sizes, 410

we conclude that large FMs have smaller L, τ , 411

and Tk values, while ∥w(0,0)∥ is not strongly re- 412

lated to the model size. We finally visualize the 413

∥ε∥ = Γ∥w(0,0)∥ values of different models in 414

Figure 3. The results in Figure 3 clearly demon- 415

strate that large FMs (GPT-2 and all models to its 416

right) have significantly lower ∥ε∥ values than the 417

small models, with larger FMs having lower values. 418

According to Eq. 9, smaller ∥ε∥ means a smaller 419

difference between one-shot and multi-round FL. 420

Consequently, FMs have much better one-shot FL 421

performance than small models. The larger FM has 422

lower errors in one-shot federated fine-tuning. 423

In summary, there are three main reasons why 424

FMs have smaller errors in one-shot federated 425

fine-tuning. First, the pre-trained FMs have ex- 426

tremely smooth loss landscapes in fine-tuning, i.e., 427

LFM ≪ 1. Second, the fine-tuning model up- 428

dates are particularly small compared to the pre- 429

trained parameters, i.e., τFM ≪ 1. Third, FM 430

fine-tuning requires far fewer epochs than train- 431

ing small models from scratch, i.e., TkFM ≪ 432

Tksmall. These three factors lead to much smaller 433

error ε in one-shot federated fine-tuning of FMs. 434

4 Experiment 435

4.1 Experimental Setups 436

Models and Datasets. To demonstrate the perfor- 437

mance of FMs in different sizes, we selected mul- 438

tiple models ranging in parameter size from 1b to 439

13b for experiments. The language FMs we experi- 440

mented with range in parameter size from smallest 441

to largest as follows: TinyLlama (1.1b) (Zhang 442

et al., 2024b), Gemma-2b (Team et al., 2024), 443

Llama-7b, and Llama-13b (Touvron et al., 2023a). 444

We use the MMLU (Hendrycks et al., 2020) train- 445

ing dataset and Wizard (Luo et al., 2023) dataset to 446

federated fine-tune these models. For evaluation, 447

we leverage MMLU and ARC Challenge (Clark 448

et al., 2018) in Eval-Harness (Gao et al., 2023) to 449

evaluate the model ability of QA tasks, and the 450

GPT-4 evaluation in MT-bench (Zheng et al., 2023) 451

for the chat assistant task. 452
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Figure 2: Experiment on L, τ , and ∥w(0,0)∥ in different models. We use CIFAR-10 to compute the gradient on
ResNet18 (He et al., 2016). We use the Wizard dataset on all the language models. Models to the left of the red
dashed line are small models, while those to the right are foundation models (FMs). The figures indicate that FMs
have significantly smaller L and τ values compared to small models. Additionally, ∥w(0,0)∥ does not increase
proportionally with the model size. Thus, the value of Γ∥w(0,0)∥ significantly decreases as the model size increases.
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Figure 3: The estimated log ∥ε∥ in different models
calculated by log ∥ε∥ = log(LτTk∥w(0,0)∥).

Federated Fine-Tuning Settings. For fine-453

tuning on a single MMLU or Wizard dataset, we454

randomly split the dataset into 10 clients. We also455

have a strongly non-iid setting, which assigns the456

MMLU dataset to 10 clients and the Wizard dataset457

to another 10 clients, and lets the 20 clients fine-458

tune the FM. For the baseline, we use a multi-459

round FedAvg algorithm on both LoRA and full460

fine-tuning. To ensure fairness, we keep the total461

number of local epochs the same between multi-462

round and one-shot federated fine-tuning. e.g., ,463

if the setting in multi-round federated fine-tuning464

is 3 communication rounds, 1 local epoch in each465

round, the setting in one-shot should be 1 commu-466

nication round, 3 local epoch in that round.467

4.2 Main Results468

One-Shot Federated Fine-Tuning in QA Tasks.469

We first evaluate the performance of one-shot feder-470

ated fine-tuning in QA tasks and display the results471

in Table 1. The columns with titles MMLU, Wiz-472

ard, and M-W represent the model fine-tuned by473

MMLU, Wizard, and the mixture of MMLU and474

Wizard datasets respectively. The rows with the ti-475

tle MMLU and ARC represent the model accuracy476

evaluated by the MMLU test set and ARC Chal- 477

lenge. The Methods columns mean the fine-tuning 478

is performed by LoRA or full fine-tuning, while 479

the rows with a star (*) represent one-shot feder- 480

ated fine-tuning. According to Table 1, the perfor- 481

mance of one-shot federated fine-tuning is gener- 482

ally comparable to that of multi-round federated 483

fine-tuning. In some settings, one-shot fine-tuning 484

achieves higher accuracy. For example, the Llama- 485

13b one-shot fine-tuned by LoRA on the Wizard 486

dataset achieves 47.93% accuracy on MMLU and 487

58.11% on ARC Challenge, which is higher than 488

the 46.83% and 55.72% accuracy of multi-round 489

fine-tuning. In full fine-tuning, multi-round fine- 490

tuning performs better in some settings. For in- 491

stance, the Llama-13b multi-round full fine-tuned 492

on the Wizard dataset outperforms one-shot fine- 493

tuning on both MMLU and ARC Challenge. These 494

observations align with our previous theoretical 495

analysis. Full fine-tuning involves greater parame- 496

ter updates compared to LoRA, resulting in a larger 497

τ value, and thus a larger ε value. Consequently, 498

the performance of one-shot full fine-tuning may 499

sometimes be inferior to LoRA fine-tuning. How- 500

ever, this does not affect our overall conclusion: for 501

FMs, one-shot federated fine-tuning can effec- 502

tively replace multi-round federated fine-tuning. 503

One-shot fine-tuning provides comparable perfor- 504

mance to multi-round fine-tuning while signifi- 505

cantly reducing communication costs. 506

One-Shot Federated Fine-Tuning in Chat As- 507

sistant Tasks. We evaluate the performance of 508

FMs in chat assistant tasks, where models gener- 509

ate answers to several questions and are scored by 510

GPT-4. The score from MT-bench is the average 511

score across all questions. Table 2 shows the scores 512

of multi-round and one-shot federated fine-tuned 513
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Table 1: Performance of one-shot federated fine-tuning in Q&A tasks. The rows with star (*) are the results of
one-shot federated fine-tuning.

Tasks Methods TinyLlama Gemma-2b Llama-7b Llama-13b

MMLU Wizard M-W MMLU Wizard M-W MMLU Wizard M-W MMLU Wizard M-W

MMLU

LoRA 25.08 25.07 24.98 38.43 37.75 37.69 36.16 35.07 35.37 47.22 46.83 46.82
LoRA* 25.01 25.04 25.03 38.24 36.55 35.14 35.86 35.91 34.84 48.40 47.93 47.43
Full FT 27.30 24.84 25.46 42.02 34.60 28.36 45.61 30.52 28.81 50.24 42.12 32.91

Full FT* 26.39 24.87 24.99 40.93 33.86 28.71 44.20 33.97 29.05 48.30 39.62 29.76

ARC

LoRA 35.49 37.28 36.69 43.09 43.26 42.06 50.43 50.94 51.19 55.72 55.72 55.63
LoRA* 36.86 36.77 36.26 40.61 42.49 42.15 50.85 51.88 52.13 56.40 58.11 56.74
Full FT 32.76 37.03 33.02 41.04 45.48 37.46 43.26 40.24 37.15 42.41 47.57 42.75

Full FT* 33.19 36.26 33.87 39.85 45.92 34.47 41.72 43.52 37.03 44.62 45.05 40.21

Models Methods MMLU Wizard M-W AVG. Base

TinyLlama

LoRA 3.59 3.44 3.65 3.56

3.47
LoRA* 3.33 3.45 3.74 3.51
Full FT 2.02 3.76 2.97 2.92

Full FT* 1.91 4.21 2.38 2.83

Gemma-2b

LoRA 3.36 3.48 3.46 3.43

3.60
LoRA* 3.23 3.77 3.66 3.55
Full FT 2.16 4.36 2.75 3.09

Full FT* 1.92 4.27 2.50 2.90

Llama-7b

LoRA 3.01 3.27 2.99 3.09

2.86
LoRA* 2.69 3.90 3.54 3.38
Full FT 1.85 4.18 2.31 2.78

Full FT* 1.56 4.79 2.21 2.85

Llama-13b

LoRA 2.58 2.68 2.86 2.71

2.69
LoRA* 3.02 4.27 3.26 3.52
Full FT 2.43 4.63 3.05 3.37

Full FT* 1.81 4.74 2.62 3.06

Table 2: Performance of one-shot federated fine-tuning
on chat assistant tasks. Wizard has better performance
than MMLU on MT-bench. We use AVG. column to
show the averaging performance of specific methods.

models. The averaging scores of three fine-tuning514

datasets indicate that larger FMs perform better in515

one-shot federated fine-tuning. Specifically, multi-516

round fine-tuning outperforms one-shot fine-tuning517

in both LoRA and full fine-tuning on the Tinyllama518

model, which is the smallest model in our experi-519

ments. On the contrary, for larger models, such as520

Gemma-7b and Llama-13b, one-shot fine-tuning521

performs better than multi-round fine-tuning. This522

observation aligns with our previous theoretical523

analysis that larger models have smaller one-shot524

fine-tuning errors. The superior performance of525

one-shot fine-tuning in larger models might be at-526

tributed to the larger number of local epochs per527

round, which leads to a slower local learning rate528

decay. The chat assistant’s capabilities may benefit529

from this smoother learning rate decay process.530

One-Shot Federated Fine-Tuning in Text-To-531

Image Generation Tasks. In addition to test-532

ing LLMs, we also evaluated the effectiveness of533

one-shot federated fine-tuning in the text-to-image534

generation tasks. We use LoRA to fine-tune a535

stable-diffusion-v1-5 (Rombach et al., 2022) on the536

Figure 4: "A photo of a dog in a bucket" generated by
LoRA fine-tuned stable diffusion models.

Dreambooth (Ruiz et al., 2023) dataset with 5 dis- 537

tributed clients. In the multi-round setting, we have 538

5 global rounds, with 5 local epochs in each round. 539

In the one-shot setting, we have 1 global round with 540

25 local epochs. After fine-tuning, we evaluated 541

the models by the CLIP (Hessel et al., 2021) score 542

with ViT-B-32 (Dosovitskiy et al., 2020) to assess 543

the quality of generated images. Figure 4 shows 544

the images generated with the prompt "A photo of 545

a dog in a bucket" The right column displays the 546

result of multi-round federated fine-tuning, while 547

the left column shows the result from the one-shot 548

setting. The numbers to the right of the images rep- 549

resent the CLIP scores. The qualities of the images 550

generated by both methods are essentially the same. 551

The average CLIP score in the one-shot setting is 552

0.3343, while the score in the multi-round setting 553

is 0.3341. These results indicate that the effective- 554

ness of one-shot federated fine-tuning extends to 555

fine-tuning stable diffusion models. 556

5 Discussion 557

One-Shot Federated Fine-Tuning Saves Commu- 558

nication Cost. In FL, the server sends the model 559

parameters to all the selected clients and receive 560

the clients’ model updates in each communication 561

round. Thus, the total number of communicated pa- 562

rameters in multi-round should be 2mTS, where S 563

is the model size. In one-shot federated fine-tuning, 564

the server and the clients only perform one-round 565

7
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Figure 5: The MT-bench score of the global model
merged by a varied number of clients.

communication, so the number of communicated566

parameters is only 2mS. This reduction in commu-567

nication overhead is significant, especially when568

fine-tuning large FMs. For instance, the Llama-569

13b model has approximately 50GB parameters,570

i.e., S = 50GB. In our experiments, the 3-round571

federated fine-tuning on Llama-13b needs to com-572

municate 3000GB data between the server and the573

clients, which may be unaffordable in scenarios574

with tight communication budgets. However, one-575

shot federated fine-tuning reduces this amount to576

1000GB. This substantial reduction in communi-577

cation makes federated fine-tuning of large FMs578

more practical and affordable in real-life scenarios.579

One-Shot Federated Fine-Tuning Supports580

Asynchronous Global Aggregation. In tradi-581

tional multi-round FL, clients need to train lo-582

cal models synchronously. The server can only583

perform the aggregation and send the new global584

model to clients after receiving all local model up-585

dates. This requirement poses challenges for fed-586

erated learning applications. For example, if local587

computation resources are occupied by other tasks588

or if the connection between the server and clients589

is unstable, the training process will be halted. One-590

shot federated fine-tuning effectively addresses this591

problem. The server can update the global model592

with local updates as soon as they are received,593

allowing for real-time model updates. Therefore,594

even if some clients fail to send model updates595

promptly due to various reasons, the global model596

on the server can still be updated by most clients,597

resulting in a usable global model. To further illus-598

trate this point, we sequentially aggregated local599

model updates from client 1 to client 10 in one-shot600

federated fine-tuning of Llama-7b on the Wizard601

dataset. We tested the global model’s performance602

on the MT-bench as we aggregated updates from603

1, 2, 3, ..., and up to 10 clients. The results are 604

displayed in Figure 5. The model score increases 605

as more clients contribute their local updates to the 606

global model, indicating that each individual local 607

model update provides an immediate improvement 608

in global model performance. The red dash line 609

represents the model score in the synchronous FL 610

setting, which is equal to the score of aggregating 611

ten clients in asynchronous FL. 612

One-Shot Federated Fine-Tuning Naturally Mit- 613

igates Client-Side Privacy Threatens. In tra- 614

ditional FL algorithms, clients repeatedly receive 615

new global model parameters each round, which 616

could lead to client-side privacy issues. Malicious 617

clients can exploit model inversion (Fredrikson 618

et al., 2015; Zhang et al., 2020) and gradient in- 619

version attacks (Huang et al., 2021) to recover pri- 620

vate training samples or user inputs from other 621

clients (Wei et al., 2023). These attacks heavily 622

rely on access to the global model parameters and 623

certain data distribution information. However, in 624

one-shot FL, the server can choose not to send back 625

global parameters and only provide an API of the 626

fine-tuned model. By doing this, it can eliminate 627

the possibility of client-side privacy leakage. 628

6 Conclusion 629

In this paper, we tackle the critical issue of high 630

communication costs that limit the practical appli- 631

cation of federated fine-tuning. Through a series of 632

experiments, we demonstrate that multi-round com- 633

munication is not necessary for fine-tuning FMs, as 634

one-shot federated fine-tuning achieves comparable 635

performance. We then provide a theoretical analy- 636

sis to explain why one-shot federated fine-tuning is 637

effective for FMs and validate our findings with em- 638

pirical evidence. Our extensive experiments show 639

that one-shot federated fine-tuning performs on par 640

with multi-round federated fine-tuning across 5 dif- 641

ferent FMs and 3 diverse tasks. This method signif- 642

icantly reduces communication overhead, making 643

federated fine-tuning more feasible and efficient, 644

especially for large-scale models. Moreover, one- 645

shot federated fine-tuning supports asynchronous 646

local updates and enhances security by minimizing 647

data exposure during the training process. These 648

findings make it possible to harness the power of 649

FMs in environments with limited communication 650

resources, thereby broadening the accessibility and 651

utility of advanced AI technologies. 652
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7 Limitation653

This work has two main limitations. (1) The paper654

is limited in federated fine-tuning tasks since we655

lack the computation resources to conduct feder-656

ated pre-training experiments. (2) Since common657

stable diffusion models do not vary significantly in658

parameter size, this work does not observe the per-659

formance of different-sized stable diffusion models660

in one-shot federated fine-tuning. The impact of661

model parameter size on one-shot federated fine-662

tuning in text-to-image generation tasks still needs663

to be explored.664
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A Related Work874

One-Shot Federated Learning. One-shot feder-875

ated learning refers to learning the parameters of876

the global model in a single round of communi-877

cation between clients and the server (Guha et al.,878

2019). There are two main strategies for optimizing879

one-shot FL, neuron matching and knowledge dis-880

tillation. Neuron matching is based on the permuta-881

tion symmetry of neural networks (Ainsworth et al.,882

2022), which means that client model parameters883

can be aligned according to a common ordering and884

then be averaged. Previous works use algorithms885

such as the Fisher information matrix (Jhunjhun-886

wala et al., 2024) and permutation matrix (Wang887

et al., 2020a) to match the local model parame-888

ters. The knowledge distillation methods aim at889

distilling knowledge from well-trained local mod-890

els through public data (Gong et al., 2021; Li et al.,891

2020; Heinbaugh et al., 2022). Some works also892

use distilled data to transfer knowledge between893

clients and the server (Zhou et al., 2020). Re-894

cent works adopt generative models to help gen-895

erate substitute data for the local dataset on the896

server (Yang et al., 2024; Zhang et al., 2022).897

Federated Fine-Tuning. Federated fine-898

tuning (Orescanin et al., 2021; Cheng et al., 2021)899

aims to fine-tune FMs by cross-domain on-device900

datasets while preserving data privacy. Recent901

works use PEFT methods such as LoRA (Hu902

et al., 2021) in federated fine-tuning (Zhang et al.,903

2024a) to save communication and computation904

costs. Federated fine-tuning also faces similar905

research problems as FL. Current works have906

discussed the non-IID problem (Cho et al., 2024)907

and personalized federated fine-tuning (Wagner908

et al., 2024).909

B Additional Experimental Setups910

Computer Resources. We used a 256GB AMD911

EPYC 7763 64-Core Processor on Linux v4.18.0912

to run the experiments. For LoRA fine-tuning on913

all the models and full fine-tuning on all the models914

except Llama-13b, we used 4 NVIDIA RTX A6000915

GPUs. For Llama-13b full fine-tuning, we use 8916

NVIDIA A100 GPUs.917

Hyperparameter Settings. For LoRA fine-918

tuning across all the models and datasets, we set the919

local LoRA rank to 16, the local learning rate to 3e-920

4, and the batch size to 64. For full fine-tuning, we921
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Figure 6: The MT-bench score of global model in 1-5
global rounds.

reduced the learning rate to 3e-5 and set the learn- 922

ing rate to 8. For multi-round settings, the numbers 923

of global communication rounds and local epochs 924

in each round in different models and datasets are 925

listed in Table 3. The one-shot setting satisfies 926

T = 1 and k equals Tk in the multi-round setting. 927

The number of rounds and epochs we selected can 928

ensure convergence and avoid overfitting. We show 929

a simple example in Appendix C to demonstrate 930

this point. 931

C Additional Experimental Results 932

Zero-Shot Results. We test the zero-shot perfor- 933

mance of models used in Table 1 for reference. The 934

results are displayed in Table 5 935

Standalone Results of Local Models. To fur- 936

ther demonstrate the effectiveness of federated fine- 937

tuning, we performed the standalone experiment 938

to compare the performance of the global model 939

and the local model only trained on local datasets. 940

We did the experiments on the llama-7b model and 941

Wizard dataset and displayed the results in Table 942

6. The results show that the accuracy of most lo- 943

cal models is slightly lower than that of the global 944

model, with some local models outperforming the 945

global model. This is reasonable in the context 946

of the federated fine-tuning task because the mod- 947

els have already been pre-trained. Therefore, even 948

though clients have less training data, the perfor- 949

mance of local models does not differ significantly 950

from the global model. 951

More Global Round Settings. We also tested the 952

model performance when we had more and fewer 953

global rounds in a multi-round setting. We evalu- 954

ated the global model in 1, 2, 3, 4, and 5 global 955

rounds when fine-tuning the Llama-7b model on 956

Wizard dataset. The results are shown in Figure 957
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Table 3: Global rounds and local epochs settings in multi-round experiments.

Models TinyLlama Gemma-2b Llama-7b Llama-13b
MMLU Wizard M-W MMLU Wizard M-W MMLU Wizard M-W MMLU Wizard M-W

T 3 3 3 3 3 3 3 3 3 3 3 3
k 1 2 1 1 2 1 2 1 1 1 1 1

Table 4: Tk settings in experiments. T is the number of global communication rounds. k is the total number of
local SGD steps, which is computed by (dataset length × epoch number / batch size).

ResNet-18 BERT GPT-2 TinyLlama Gemma-2b Llama-7b Gemma-7b Llama-13b

T 50 50 5 3 3 3 3 3

k 7812 3906 5625 3750 1875 1875 1875 1875

Tk 390600 195300 28125 11250 5625 5625 5625 5625

Table 5: Zero-Shot results of models on MMLU and
ARC Challenge.

Tasks TinyLlama Gemma-2b Llama-7b Llama-13b

MMLU 24.90 34.63 34.44 46.23
ARC 35.41 40.25 45.65 51.79

6. In the first round, the MT-bench score increases958

from the 2.86 in base model to around 3.80. Then,959

it slightly increases towards 3.90 in the 3rd round960

and begins to decrease afterward. A similar phe-961

nomenon can be seen in other datasets and models962

that the model performance will increase in the ini-963

tial 2-4 rounds and then gradually decline due to964

overfitting. Thus, we use 3 global rounds in all of965

the multi-round experiments.966

D Proof of Theorem 1967

According to Eq. 7 and Eq. 8, ignoring the learning968

rates, the difference of the global model can be969

bounded by:970

ε ≤
m∑
i=1

Tk∑
j=k+1

[(gi(w
(0,j)
i )− gi(w

(t,j−kt)
i )], (10)971

Considering Assumption 1, we have:972

ε ≤
Tk∑

j=k+1

Lm∥(w(0,j)
i −w

(t,j−kt)
i ∥, (11)973

According to Assumption 2, we can deduce:974

ε ≤
Tk∑

j=k+1

Lτm∥w(0,0)∥, (12)975

Thus we have:976

ε ≤ LτTkm∥w(0,0)∥, (13)977

which is Theorem 1.978
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Table 6: Standalone results of 3-epochs federated fine-tuning on Llama-7b with Wizard dataset. The numeric header
columns indicate the ARC Challenge accuracy of the local models only fine-tuned on their local dataset for 3
epochs.

One-Shot 0 1 2 3 4 5 6 7 8 9

51.88 50.79 51.02 50.05 50.43 52.33 51.22 51.28 52.30 51.21 51.11
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