One Communication Round is All It Needs for Federated Fine-Tuning
Foundation Models

Anonymous ACL submission

Abstract

The recent advancement of foundation mod-
els (FMs) has increased the demand for fine-
tuning these models on large-scale cross-
domain datasets. To address this, federated fine-
tuning has emerged, allowing FMs to be fine-
tuned on distributed datasets across multiple
devices while ensuring data privacy. However,
the substantial parameter size and the multi-
round communication in federated learning al-
gorithms result in prohibitively high communi-
cation costs, challenging the practicality of fed-
erated fine-tuning. In this paper, we are the first
to reveal, both theoretically and empirically,
that the traditional multi-round aggregation al-
gorithms may not be necessary for federated
fine-tuning large FMs. Our experiments reveal
that a single round of aggregation (i.e., one-shot
federated fine-tuning) yields a global model per-
formance comparable to that achieved through
multiple rounds of aggregation. Through rigor-
ous mathematical and empirical analyses, we
demonstrate that large FMs, due to their exten-
sive parameter sizes and pre-training on general
tasks, achieve significantly lower training loss
in one-shot federated fine-tuning compared to
smaller models. Our extensive experiments
show that one-shot federated fine-tuning not
only reduces communication costs but also en-
ables asynchronous aggregation, enhances pri-
vacy, and maintains performance consistency
with multi-round federated fine-tuning on both
text generation and text-to-image generation
tasks. Our findings have the potential to revo-
lutionize federated fine-tuning in practice, en-
hancing efficiency, reducing costs, and expand-
ing accessibility for FMs.

1 Introduction

Cutting-edge foundation models (FMs) demon-
strate remarkable versatility across various do-
mains. Notably, large language models (LLMs)
like GPT-4 (Achiam et al., 2023), Gemma (Team
et al., 2024), and Llama (Touvron et al., 2023b) ex-
cel in tasks such as translation, question answering

(QA), chat assistant, and math. Similarly, stable dif-
fusion models can generate diverse images based
on textual descriptions. Achieving such versatility
requires fine-tuning these FMs on cross-domain
datasets. However, this process faces significant
challenges in real-world scenarios due to the valu-
able datasets residing on devices owned by organi-
zations or individuals, raising privacy concerns. To
address these privacy issues, researchers have pro-
posed using federated learning (FL) (Zhang et al.,
2021) for distributed fine-tuning of FMs, a process
known as federated fine-tuning. Federated fine-
tuning allows distributed clients to collaboratively
fine-tune a global FM on specific tasks without
disclosing their private data.

Traditional FL requires multiple communication
rounds between clients and the server to ensure the
global model convergence (McMahan et al., 2017).
However, the substantial parameter size of FMs
(typically in billions) results in significant commu-
nication overhead. Many devices lack the capabil-
ity to repeatedly communicate model parameters of
this scale. While previous works adopt parameter-
efficient fine-tuning (PEFT) methods such as low-
rank adaptation (LoRA) (Hu et al., 2021) to reduce
the number of trainable and communicated param-
eters, the high communication requirements of fed-
erated fine-tuning remain a practical limitation.

Unexpectedly, our recent experiments have dis-
covered an emergent capability of FMs that could
fundamentally shift the approach to federated fine-
tuning. We find that with sufficient local fine-
tuning epochs, a single communication round is
all it needs to effectively fine-tune FMs, which
is called one-shot federated fine-tuning. Figure 1
highlights the performance comparisons between
one-shot FL and traditional multi-round FL, main-
taining the same total number of local epochs.
While one-shot FL underperforms multi-round FL
for smaller models (e.g., ResNet-18 and LSTM), it
achieves comparable performance for larger FMs
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Figure 1: The distinct performances of one-shot fed-
erated learning between small models and large FMs.
The horizontal axis represents multi-round FL accuracy,
while the vertical axis represents one-shot FL accuracy.
The ResNet-18 and LSTM are trained and tested on
CIFAR-10 and Shakespeare respectively. Other models
are fine-tuned on Wizard dataset and tested on ARC
Easy. The closer points are to the dashed line means the
closer accuracy between one-shot and multi-round FL.

(e.g., GPT-2, Llama, etc). This unique discovery
challenges the conventional belief that multiple
communication rounds are essential for the feder-
ated fine-tuning of FMs. Instead, we demonstrate
that FMs can achieve convergence with just a sin-
gle aggregation of well-fine-tuned local models.
This paper explores this innovative finding, provid-
ing rigorous theoretical analysis and compelling
empirical evidence to validate the effectiveness of
one-shot FL for federated fine-tuning FMs.

The introduction of one-shot FL brings trans-
formative benefits. First, it dramatically reduces
communication costs. One-Shot FL slashes com-
munication overhead by a factor of &, where T'
represents the number of communication rounds
in traditional federated fine-tuning. This reduc-
tion is a game-changer for devices with limited
bandwidth. Second, one-shot FL enables seamless
asynchronous training. This flexibility removes
the bottleneck of server waiting times, ensuring
uninterrupted training regardless of client connec-
tivity or resource limitations. The process becomes
far more robust and efficient. Third, one-shot FL
offers enhanced security against prevalent client-
side federated learning attacks. Attacks like client-
side model inversion and gradient inversion, which
depend on multiple global model updates, are ren-
dered ineffective. This significantly bolsters the
integrity of the training process.

Our key contributions are listed as follows:

* Novel Discovery: To the best of our knowl-
edge, we are the first to discover that one-
round aggregation is sufficient for federated

fine-tuning large FMs.

* Theoretical Analysis: We theoretically
demonstrate the relationship between the error
of one-shot federated fine-tuning and model
smoothness, fine-tuning model update, and
number of fine-tuning rounds. Our analysis,
supported by experiments, reveals that large
FMs are smoother, exhibit smaller model up-
dates, and require fewer fine-tuning epochs
than smaller models, resulting in significantly
lower one-shot federated fine-tuning errors.

* Experimental Validation: We conduct exten-
sive experiments on six FMs and three tasks,
demonstrating that one-shot federated fine-
tuning achieves performance comparable to
multi-round federated fine-tuning, particularly
for models with over 1 billion parameters. Ex-
perimental results also surprisingly show that
LoRA outperforms full fine-tuning in the con-
text of one-shot federated fine-tuning.

2 Preliminary

Federated Learning Paradigm of Small Mod-
els. In FL, the primary objective is to optimize a
global objective function F'(w), which is weighted
average of the local objective functions from m
clients (Wang et al., 2020b):

F(w) = piFi(w) (1)
=1

where w represents the model parameters and
p; is the scaling factor. To protect the data privacy
of each client, the server cannot access the local
dataset. Thus, the local objective function F;(w)
remains unknown to the server. FedAvg (McMahan
et al., 2017) algorithm provides a distributed train-
ing algorithm to facilitate privacy-conscious train-
ing. It allows multiple clients to train the model on
their local datasets and aggregates locally trained
models on the server at the end of each commu-
nication round. In ¢-th communication round, the
global model update rule of FedAvg is:

w0 gyt — (® iA@,t ,T—1] 2
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where w(®0) is the model weights in ¢-th round
and 0-th local epoch, which represents the global
model in ¢-th round. T is the total number of com-
munication rounds, a®) is the global learning rate,
and Al(-t) is the local model update in ¢-th round.



Agt) is the accumulative model update of %k local
stochastic gradient descent (SGD) steps:

k
A =3 5 gi (w7 3)
j=1
where gi(w,ft’j )) is the stochastic gradient over a

local mini-batch and Bft’] ) is the local learning rate.
Note that j here represents a mini-batch, and k is
the total number of mini-batches per client.

Local datasets in FL are typically heterogeneous,
leading to differences in local objectives. There-
fore, FL usually converges more slowly than cen-
tralized machine learning. This slow convergence
necessitates a large number of global communica-
tion rounds and local epochs to achieve satisfactory
performance. For example, experiment results in
(Reddi et al., 2020) show that the ResNet-18 model
requires more than 2000 and 4000 communica-
tion rounds to converge on CIFAR-10 (Krizhevsky
et al., 2009) and CIFAR-100 respectively. Even
for simple natural language processing tasks such
as Shakespeare, an RNN model needs more than
50 rounds to converge. The requirement for multi-
round communication rounds introduces several
significant drawbacks. First, clients must fre-
quently exchange model parameters with the server,
which can be prohibitively expensive in certain
constrained scenarios or on devices with limited
resources. Second, repeated invocation of compu-
tational resources for training increases the overall
computational overhead. Additionally, the multi-
round communication approach leads to excessive
energy consumption, synchronization difficulties,
and challenges in maintaining privacy protection.
Thus, optimizing FL algorithms to minimize the
number of communication rounds is an essential
research direction in FL.

Federated Fine-Tuning Foundation Models.
Foundation models (FMs) (Zhou et al., 2023) re-
fer to pre-trained deep learning models with a vast
number of parameters, typically in the order of
billions. These FMs are trained on broad data at
scale and are adaptable to a wide range of down-
stream tasks when fine-tuned on domain-specific
datasets (Bommasani et al., 2021). Since domain-
specific datasets are often distributed across multi-
ple devices, FL offers an important paradigm for
fine-tuning FMs while preserving data privacy.

Federated fine-tuning adopts the same FedAvg
algorithm in Eq. 1 and Eq. 2 to aggregate the lo-
cal model updates. The key difference lies in the

model parameter size. The parameter size of large
FMs is usually hundreds of times greater than that
of small models, resulting in a significant increase
in the computation resources and communication
overhead required for federated fine-tuning. Given
the network communication capabilities of com-
monly used devices, performing multi-round syn-
chronized communication of large model param-
eters between servers and clients is virtually im-
possible. Although parameter-efficient fine-tuning
algorithms like LoRA (Hu et al., 2021) have been
adopted, the communication overhead remains ex-
cessively high, hindering practical application.

One-Shot Federated Learning. To reduce com-
munication overhead in FL, recent works have fo-
cused on one-shot FL. (Jhunjhunwala et al., 2024;
Guha et al., 2019; Gong et al., 2021; Li et al., 2020;
Zhou et al., 2020; Yang et al., 2024), which uses a
single communication round to obtain the global
model. These algorithms often employ knowledge
distillation or neuron-matching methods to opti-
mize the global model. However, these approaches
require additional data or computation. Knowl-
edge distillation often necessitates auxiliary public
datasets or external generative models, and neu-
ron matching requires additional computation on
both clients and the server. Despite these addi-
tional resource requirements, the performance of
one-shot FL has historically been inferior to stan-
dard multi-round FL. For instance, experiments
in (Jhunjhunwala et al., 2024) show that one-shot
FL achieves only 50% accuracy on the CIFAR-
10 dataset, which is 20% lower than the accuracy
achieved with 5-round FL.

However, our recent experiments have uncov-
ered greater potential for one-shot federated fine-
tuning large FMs. As shown in Figure 1, one-shot
FL for large models does not show a significant per-
formance gap compared to multi-round FL, which
is commonly observed with smaller models. In fact,
when the total number of local epochs is the same,
the performance of large models fine-tuned by one-
shot FL is comparable to that of multi-round FL.
Additionally, in fine-tuning larger models such as
Llama-13b, one-shot FL even performed slightly
better than multi-round FL. These results, along
with the experiment results in Section 4, suggest
that traditional multi-round FL algorithms may no
longer be necessary for federated fine-tuning large
FMs. Large FMs can effectively learn downstream
tasks from distributed clients with just a single com-
munication round, opening up new possibilities for



federated fine-tuning applications.

Although we have observed consistently good
performance with one-shot federated fine-tuning,
the reasons behind this phenomenon remain unex-
plored. In the next section, we will delve into this
phenomenon through theoretical analysis.

3 Theoretical Analysis of One-Shot
Federated Fine-Tuning

For a multi-round FL algorithm, if the total number
of communication rounds is 7" and the number of
local steps for each round is k, according to Eq. 2
the global model parameters after FL satisfy:

T

w9 =3 a0 zpz A®,
t=1

w(TaO)

where Agt) is defined by Eq. 3. For a specific client
1, the accumulated local model update A; is:

T k

T
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A;

In contrast, for one-shot FLL with T" = 1, the
accumulated local model update is:

A; = ZBOJ)

Here we set the number of steps per client to
Tk since we are trying to match the total number
of steps with the multi-round FL. The reason why
the one-shot FL performs worse than the multi-
round FL in small models lies in the difference
between the local model updates in Eq. 5 and Eq.
6. In Eq. 5, after the ¢-th communication round,
the local training starts from the updated global
model w®0), which is aggregated by all the local
models in ¢-th round and contains richer knowl-
edge. Therefore, the client can compute a more

(07])) (6)

accurate gradient gi(wl(t’] )) based on the updated
model. On the contrary, in one-shot FL (Eq. 6),
clients can only continuously train the local models
without global information. The poor performance
of one-shot FL is due to the gradients calculated
on the local models being less accurate than those
calculated on the aggregated global model. This
local error can be expressed in mathematical form:

) = giw™ ), @)

Tk ]
e= Y A (gi(w

j=kt1

where t = (%}, [-] means ceiling. Consider that

gi(w; (0 )) and gi('wgt’j 7“)) are the gradients com-
puted on the same mini-batch, the error € here is
only attribute to the different training start points
wgo’j ) and wgt’j ~*) Since the global model is ag-
gregated by local models, the global error can then

be bounded by the sum of local errors, which is:

< i&', (3
i—1

The global error can be further simplified by the
following assumptions.

Assumption 1 (Model Smoothness). The ob-
jective function of the pre-trained large FM is Lips-
chitz smooth with an L value, that is |V F;(w,) —
VFi(wy)|| < L||wy —wy||, L > 0, where VE;(-)
is the model gradient.

Assumption 2 (Bounded Model Updates). The
model updates during FL. are much smaller than
the initial model parameters in L2 norm, that is,
|w®) — w00 < 7)|lw®0], 0 <7 < 1.

Theorem 1. Under Assumptions 1 and 2, ignor-
ing the difference of learning rates in one-shot and
multi-round FL and the difference of client num-
bers (i.e., set client number m to 1), the error of
one-shot FL ¢ can be bounded as follows:

el < T|w®Y|, where T = LTk  (9)

This equation indicates that with lower values of
L, 7,T, k,and m, the model update of one-shot FL.
will be closer to that of multi-round FL. Conversely,
if a neural network has a highly complex loss land-
scape, large training dynamics, or requires a large
number of rounds to converge, the error € will be
large, leading to poor performance of one-shot FL.
Since our experiments have shown that LLMs ex-
hibit significant advantages over small models in
one-shot learning, we conduct experiments on the
factors in Equation 9 to provide a detailed explana-
tion of this phenomenon.

Foundation Models are Extremely Smooth
(Lpyr < 1). In Equation 9, the factor L represents
the smoothness of the model, with smaller L imply-
ing a smoother model. We argue that pre-trained
large FMs are much smoother than small models
and thus have much smaller L values. Large FMs
are pre-trained on large-scale datasets to obtain
general capabilities. During this pre-training pro-
cess, the parameters of FMs are optimized from the
ridges to the basins in the loss landscape. Addition-
ally, as observed in a previous work (Ainsworth



et al., 2022), wider models have more flattened
basins in the loss landscapes. With these pieces
of prior knowledge, we hold the contention that
the loss landscape in large FM fine-tuning is much
flatter and smoother than that in training small
models from scratch, resulting in much smaller L
values. To verify this argument, we estimate L by
L = HVFi(m):Zﬁj(wy)”. We randomly sample
a mini-batch of data in the training datasets and
compute the gradient on w9 and w Tk to get
VE;(w®9) and VF;(w™"). Then we visual-

: IV Ei(w(©0) -~V Fi (w™) |
ize the value of w000 o (75|

2(a). According to Figure 2(a), FMs (i.e., models
to the right of the red dash line) have much smaller
L values than small models, which is consistent
with our conjecture.

Foundation Models Have Much Smaller
Model Updates in Fine-Tuning (77; < 1). An-
other crucial distinction in our analysis lies in the
different tasks in FL: fine-tuning and training
from scratch. Since the fine-tuning task updates
the model parameters to adapt to downstream tasks
without compromising its performance on the gen-
eral task, it only slightly updates the model parame-
ters. Therefore, the model parameter updates in the
fine-tuning process are much smaller than the pre-
trained model parameters, i.e., || w®*7) —w(©9)|| <«
|[w(©0)]||. In this case, the federated fine-tuning
task would have a very small 7 in Equation 9. To

verify this, we conduct experiments to estimate the
™k (0.0 T,k)

[[w ©-00]]
sents the model update after the entire fine-tuning
process on the training datasets. We visualize the
estimated 7 values of different models in Figure
2(b), which illustrates that the 7 values in FMs are

much smaller than those in small models.

in Figure

T values by , where w( repre-

Large Foundation Models Require Less Fine-
Tuning Epochs (Tkpy < Tkgma). Different
from training a small model from scratch, fine-
tuning a large model typically doesn’t require a
large number of total training steps to ensure con-
vergence. This is mainly because the pre-trained
models will be overfitting on the fine-tuning data
with too many epochs, which will destroy the
model’s ability on the general tasks. As a result, the
Tk values of large FMs are also smaller than those
in small models. Table. 4 in the Appendix displays
the 7" and k£ numbers adopted by our experiments.

We also visualize ||w(®?|| in Figure 2(c). Al-
though the ||w(®?)|| value of the small model is
relatively small, it does not exhibit a clear trend pos-

itively correlated with model size (e.g., TinyLlama
has a similar ||w(%?)|| value with BERT, but has 10
times more parameters than BERT, Gemma-2b has
much larger [|w(®9 || value than Llama-13b).

Large Foundation Models Have Smaller One-
Shot Federated Fine-tuning Error <. Based on
the discussion before regarding the L, 7, T'k, and
|w(©9)| values of the model with various sizes,
we conclude that large FMs have smaller L, T,
and Tk values, while ||w(®9|| is not strongly re-
lated to the model size. We finally visualize the
lel| = T||w©9]| values of different models in
Figure 3. The results in Figure 3 clearly demon-
strate that large FMs (GPT-2 and all models to its
right) have significantly lower ||¢|| values than the
small models, with larger FMs having lower values.
According to Eq. 9, smaller ||¢|| means a smaller
difference between one-shot and multi-round FL.
Consequently, FMs have much better one-shot FLL
performance than small models. The larger FM has
lower errors in one-shot federated fine-tuning.

In summary, there are three main reasons why
FMs have smaller errors in one-shot federated
fine-tuning. First, the pre-trained FMs have ex-
tremely smooth loss landscapes in fine-tuning, i.e.,
Lpy < 1. Second, the fine-tuning model up-
dates are particularly small compared to the pre-
trained parameters, i.e., Ty < 1. Third, FM
fine-tuning requires far fewer epochs than train-
ing small models from scratch, i.e., Tkry <
Tksmai- These three factors lead to much smaller
error ¢ in one-shot federated fine-tuning of F Ms.

4 Experiment

4.1 Experimental Setups

Models and Datasets. To demonstrate the perfor-
mance of FMs in different sizes, we selected mul-
tiple models ranging in parameter size from 1b to
13b for experiments. The language FMs we experi-
mented with range in parameter size from smallest
to largest as follows: TinyLlama (1.1b) (Zhang
et al., 2024b), Gemma-2b (Team et al., 2024),
Llama-7b, and Llama-13b (Touvron et al., 2023a).
We use the MMLU (Hendrycks et al., 2020) train-
ing dataset and Wizard (Luo et al., 2023) dataset to
federated fine-tune these models. For evaluation,
we leverage MMLU and ARC Challenge (Clark
et al., 2018) in Eval-Harness (Gao et al., 2023) to
evaluate the model ability of QA tasks, and the
GPT-4 evaluation in MT-bench (Zheng et al., 2023)
for the chat assistant task.
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Figure 2: Experiment on L, 7, and ||w(®?|| in different models. We use CIFAR-10 to compute the gradient on
ResNet18 (He et al., 2016). We use the Wizard dataset on all the language models. Models to the left of the red
dashed line are small models, while those to the right are foundation models (FMs). The figures indicate that FMs
have significantly smaller L and 7 values compared to small models. Additionally, ||[w(®%)|| does not increase
proportionally with the model size. Thus, the value of T'||w(®:?) || significantly decreases as the model size increases.
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Figure 3: The estimated log ||| in different models
calculated by log ||¢|| = log(L7Tk||w -0 )).

Federated Fine-Tuning Settings. For fine-
tuning on a single MMLU or Wizard dataset, we
randomly split the dataset into 10 clients. We also
have a strongly non-iid setting, which assigns the
MMLU dataset to 10 clients and the Wizard dataset
to another 10 clients, and lets the 20 clients fine-
tune the FM. For the baseline, we use a multi-
round FedAvg algorithm on both LoRA and full
fine-tuning. To ensure fairness, we keep the total
number of local epochs the same between multi-
round and one-shot federated fine-tuning. e.g., ,
if the setting in multi-round federated fine-tuning
is 3 communication rounds, 1 local epoch in each
round, the setting in one-shot should be 1 commu-
nication round, 3 local epoch in that round.

4.2 Main Results

One-Shot Federated Fine-Tuning in QA Tasks.
We first evaluate the performance of one-shot feder-
ated fine-tuning in QA tasks and display the results
in Table 1. The columns with titles MMLU, Wiz-
ard, and M-W represent the model fine-tuned by
MMLU, Wizard, and the mixture of MMLU and
Wizard datasets respectively. The rows with the ti-
tle MMLU and ARC represent the model accuracy

evaluated by the MMLU test set and ARC Chal-
lenge. The Methods columns mean the fine-tuning
is performed by LoRA or full fine-tuning, while
the rows with a star (*) represent one-shot feder-
ated fine-tuning. According to Table 1, the perfor-
mance of one-shot federated fine-tuning is gener-
ally comparable to that of multi-round federated
fine-tuning. In some settings, one-shot fine-tuning
achieves higher accuracy. For example, the Llama-
13b one-shot fine-tuned by LoRA on the Wizard
dataset achieves 47.93% accuracy on MMLU and
58.11% on ARC Challenge, which is higher than
the 46.83% and 55.72% accuracy of multi-round
fine-tuning. In full fine-tuning, multi-round fine-
tuning performs better in some settings. For in-
stance, the Llama-13b multi-round full fine-tuned
on the Wizard dataset outperforms one-shot fine-
tuning on both MMLU and ARC Challenge. These
observations align with our previous theoretical
analysis. Full fine-tuning involves greater parame-
ter updates compared to LoRA, resulting in a larger
7 value, and thus a larger € value. Consequently,
the performance of one-shot full fine-tuning may
sometimes be inferior to LoRA fine-tuning. How-
ever, this does not affect our overall conclusion: for
FMs, one-shot federated fine-tuning can effec-
tively replace multi-round federated fine-tuning.
One-shot fine-tuning provides comparable perfor-
mance to multi-round fine-tuning while signifi-
cantly reducing communication costs.

One-Shot Federated Fine-Tuning in Chat As-
sistant Tasks. We evaluate the performance of
FMs in chat assistant tasks, where models gener-
ate answers to several questions and are scored by
GPT-4. The score from MT-bench is the average
score across all questions. Table 2 shows the scores
of multi-round and one-shot federated fine-tuned



Table 1: Performance of one-shot federated fine-tuning in Q&A tasks. The rows with star (*) are the results of

one-shot federated fine-tuning.

Tasks  Methods ‘ TinyLlama Gemma-2b Llama-7b Llama-13b
| MMLU Wizard M-W MMLU Wizard M-W MMLU Wizard M-W MMLU Wizard M-W
LoRA | 2508 2507 2498 3843 3775 37.69 3616 3507 3537 4722 4683 46.82
MvLy LORA* | 2501 2504 2503 3824 3655 3514 3586 3591 3484 4840 4793 4743
FullFT | 27.30 2484 2546 4202 3460 2836 4561 3052 2881 50.24 4212 3291
Full FT* | 2639 2487 2499 4093 3386 2871 4420 3397 2905 4830 3962 29.76
LoRA | 3549 3728 3669 43.09 4326 4206 5043 5094 5119 5572 5572 5563
Arc LORA* | 3686 3677 3626 4061 4249 4215 5085 5188 5213 5640  S811 5674
FullFT | 3276  37.03 3302 41.04 4548 3746 4326 4024 37.15 4241 4757 4275
Full FT* | 33.19 3626 33.87 39.85 4592 3447 4172 4352 3703 4462 4505 4021
Models ~ Methods | MMLU Wizard M-W | AVG. | Base
LoRA 3.59 344 365 | 3.56
. LoRA* | 333 345 374 | 351
TinyLlama g ver | 202 376 297 | 292 | >V
Full FT* | 191 421 238 | 283
LoRA 3.36 348 346 | 343
LoRA* | 323 377 366 | 3.55
Gemma-2b LT | 216 436 275 | 309 | 0
Full FT* | 1.92 427 250 | 2.90
LoRA 3.01 3.27 2.99 3.09 0.3389 0.3026 0.3517 0.3441
& 3 . n M "
Llama.7  LORA 269 390 354 | 338 |, . Figure 4: "A photo of a dog in a bucket" generated by
Full T 185 418 231 1 2.78 LoRA fine-tuned stable diffusion model
Full FT* | 156 479 221 | 2.85 0 ¢-tuned stable dittusion models.
LoRA 258 268 286 | 271
LoRA* | 3.02 427 326 | 3.52
Llama-13b 2.69 . . .
Full FT | 243 463 3.05 | 3.37 Dreambooth (Ruiz et al., 2023) dataset with 5 dis-
Full FT* | 181 474 262 | 3.06

Table 2: Performance of one-shot federated fine-tuning
on chat assistant tasks. Wizard has better performance
than MMLU on MT-bench. We use AVG. column to
show the averaging performance of specific methods.

models. The averaging scores of three fine-tuning
datasets indicate that larger FMs perform better in
one-shot federated fine-tuning. Specifically, multi-
round fine-tuning outperforms one-shot fine-tuning
in both LoRA and full fine-tuning on the Tinyllama
model, which is the smallest model in our experi-
ments. On the contrary, for larger models, such as
Gemma-7b and Llama-13b, one-shot fine-tuning
performs better than multi-round fine-tuning. This
observation aligns with our previous theoretical
analysis that larger models have smaller one-shot
fine-tuning errors. The superior performance of
one-shot fine-tuning in larger models might be at-
tributed to the larger number of local epochs per
round, which leads to a slower local learning rate
decay. The chat assistant’s capabilities may benefit
from this smoother learning rate decay process.
One-Shot Federated Fine-Tuning in Text-To-
Image Generation Tasks. In addition to test-
ing LLMs, we also evaluated the effectiveness of
one-shot federated fine-tuning in the text-to-image
generation tasks. We use LoRA to fine-tune a
stable-diffusion-v1-5 (Rombach et al., 2022) on the

tributed clients. In the multi-round setting, we have
5 global rounds, with 5 local epochs in each round.
In the one-shot setting, we have 1 global round with
25 local epochs. After fine-tuning, we evaluated
the models by the CLIP (Hessel et al., 2021) score
with ViT-B-32 (Dosovitskiy et al., 2020) to assess
the quality of generated images. Figure 4 shows
the images generated with the prompt "A photo of
a dog in a bucket" The right column displays the
result of multi-round federated fine-tuning, while
the left column shows the result from the one-shot
setting. The numbers to the right of the images rep-
resent the CLIP scores. The qualities of the images
generated by both methods are essentially the same.
The average CLIP score in the one-shot setting is
0.3343, while the score in the multi-round setting
is 0.3341. These results indicate that the effective-
ness of one-shot federated fine-tuning extends to
fine-tuning stable diffusion models.

5 Discussion

One-Shot Federated Fine-Tuning Saves Commu-
nication Cost. In FL, the server sends the model
parameters to all the selected clients and receive
the clients’ model updates in each communication
round. Thus, the total number of communicated pa-
rameters in multi-round should be 2mT'S, where S
is the model size. In one-shot federated fine-tuning,
the server and the clients only perform one-round
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communication, so the number of communicated
parameters is only 2m.S. This reduction in commu-
nication overhead is significant, especially when
fine-tuning large FMs. For instance, the Llama-
13b model has approximately 5S0GB parameters,
i.e., S = 50GB. In our experiments, the 3-round
federated fine-tuning on Llama-13b needs to com-
municate 3000GB data between the server and the
clients, which may be unaffordable in scenarios
with tight communication budgets. However, one-
shot federated fine-tuning reduces this amount to
1000GB. This substantial reduction in communi-
cation makes federated fine-tuning of large FMs
more practical and affordable in real-life scenarios.

One-Shot Federated Fine-Tuning Supports
Asynchronous Global Aggregation. In tradi-
tional multi-round FL, clients need to train lo-
cal models synchronously. The server can only
perform the aggregation and send the new global
model to clients after receiving all local model up-
dates. This requirement poses challenges for fed-
erated learning applications. For example, if local
computation resources are occupied by other tasks
or if the connection between the server and clients
is unstable, the training process will be halted. One-
shot federated fine-tuning effectively addresses this
problem. The server can update the global model
with local updates as soon as they are received,
allowing for real-time model updates. Therefore,
even if some clients fail to send model updates
promptly due to various reasons, the global model
on the server can still be updated by most clients,
resulting in a usable global model. To further illus-
trate this point, we sequentially aggregated local
model updates from client 1 to client 10 in one-shot
federated fine-tuning of Llama-7b on the Wizard
dataset. We tested the global model’s performance
on the MT-bench as we aggregated updates from

1, 2, 3, ..., and up to 10 clients. The results are
displayed in Figure 5. The model score increases
as more clients contribute their local updates to the
global model, indicating that each individual local
model update provides an immediate improvement
in global model performance. The red dash line
represents the model score in the synchronous FL.
setting, which is equal to the score of aggregating
ten clients in asynchronous FL.

One-Shot Federated Fine-Tuning Naturally Mit-
igates Client-Side Privacy Threatens. In tra-
ditional FL algorithms, clients repeatedly receive
new global model parameters each round, which
could lead to client-side privacy issues. Malicious
clients can exploit model inversion (Fredrikson
et al., 2015; Zhang et al., 2020) and gradient in-
version attacks (Huang et al., 2021) to recover pri-
vate training samples or user inputs from other
clients (Wei et al., 2023). These attacks heavily
rely on access to the global model parameters and
certain data distribution information. However, in
one-shot FL, the server can choose not to send back
global parameters and only provide an API of the
fine-tuned model. By doing this, it can eliminate
the possibility of client-side privacy leakage.

6 Conclusion

In this paper, we tackle the critical issue of high
communication costs that limit the practical appli-
cation of federated fine-tuning. Through a series of
experiments, we demonstrate that multi-round com-
munication is not necessary for fine-tuning FMs, as
one-shot federated fine-tuning achieves comparable
performance. We then provide a theoretical analy-
sis to explain why one-shot federated fine-tuning is
effective for FMs and validate our findings with em-
pirical evidence. Our extensive experiments show
that one-shot federated fine-tuning performs on par
with multi-round federated fine-tuning across 5 dif-
ferent FMs and 3 diverse tasks. This method signif-
icantly reduces communication overhead, making
federated fine-tuning more feasible and efficient,
especially for large-scale models. Moreover, one-
shot federated fine-tuning supports asynchronous
local updates and enhances security by minimizing
data exposure during the training process. These
findings make it possible to harness the power of
FMs in environments with limited communication
resources, thereby broadening the accessibility and
utility of advanced Al technologies.



7 Limitation

This work has two main limitations. (1) The paper
is limited in federated fine-tuning tasks since we
lack the computation resources to conduct feder-
ated pre-training experiments. (2) Since common
stable diffusion models do not vary significantly in
parameter size, this work does not observe the per-
formance of different-sized stable diffusion models
in one-shot federated fine-tuning. The impact of
model parameter size on one-shot federated fine-
tuning in text-to-image generation tasks still needs
to be explored.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha
Srinivasa. 2022. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint
arXiv:2209.04836.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lIut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Gary Cheng, Karan Chadha, and John Duchi. 2021.
Fine-tuning is fine in federated learning. arXiv
preprint arXiv:2108.07313, 3.

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, and
Gauri Joshi. 2024. Heterogeneous low-rank approxi-
mation for federated fine-tuning of on-device founda-
tion models. arXiv preprint arXiv:2401.06432.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
2015. Model inversion attacks that exploit confi-
dence information and basic countermeasures. In
Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security, pages
1322-1333.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Xuan Gong, Abhishek Sharma, Srikrishna Karanam,
Ziyan Wu, Terrence Chen, David Doermann, and
Arun Innanje. 2021. Ensemble attention distillation
for privacy-preserving federated learning. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 15076-15086.

Neel Guha, Ameet Talwalkar, and Virginia Smith.
2019. One-shot federated learning. arXiv preprint
arXiv:1902.11175.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770—
778.

Clare Elizabeth Heinbaugh, Emilio Luz-Ricca, and Hua-
jie Shao. 2022. Data-free one-shot federated learn-
ing under very high statistical heterogeneity. In The
Eleventh International Conference on Learning Rep-
resentations.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le
Bras, and Yejin Choi. 2021. Clipscore: A reference-
free evaluation metric for image captioning. arXiv
preprint arXiv:2104.08718.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li,
and Sanjeev Arora. 2021. Evaluating gradient in-
version attacks and defenses in federated learning.
Advances in Neural Information Processing Systems,
34:7232-7241.

Divyansh Jhunjhunwala, Shigiang Wang, and Gauri
Joshi. 2024. Fedfisher: Leveraging fisher informa-
tion for one-shot federated learning. In International
Conference on Artificial Intelligence and Statistics,
pages 1612-1620. PMLR.

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learn-
ing multiple layers of features from tiny images.

Qinbin Li, Bingsheng He, and Dawn Song. 2020. Prac-
tical one-shot federated learning for cross-silo setting.
arXiv preprint arXiv:2010.01017.


https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273—-1282. PMLR.

Marko Orescanin, Mehmet Ergezer, Gurminder Singh,
and Matthew Baxter. 2021. Federated fine-tuning
performance on edge devices. In 2021 20th IEEE
International Conference on Machine Learning and
Applications (ICMLA), pages 1174-1181. IEEE.

Sashank Reddi, Zachary Charles, Manzil Zaheer,
Zachary Garrett, Keith Rush, Jakub Konecny,
Sanjiv Kumar, and H Brendan McMahan. 2020.
Adaptive federated optimization. arXiv preprint
arXiv:2003.00295.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
10684-10695.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael
Pritch, Michael Rubinstein, and Kfir Aberman. 2023.
Dreambooth: Fine tuning text-to-image diffusion
models for subject-driven generation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 22500-22510.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and efficient
foundation language models (2023). arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Nicolas Wagner, Dongyang Fan, and Martin Jaggi.
2024. Personalized collaborative fine-tuning for
on-device large language models. arXiv preprint
arXiv:2404.09753.

10

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dim-
itris Papailiopoulos, and Yasaman Khazaeni. 2020a.
Federated learning with matched averaging. arXiv
preprint arXiv:2002.06440.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi,
and H Vincent Poor. 2020b. Tackling the objective
inconsistency problem in heterogeneous federated
optimization. Advances in neural information pro-
cessing systems, 33:7611-7623.

Jiaheng Wei, Yanjun Zhang, Leo Yu Zhang, Chao Chen,
Shirui Pan, Kok-Leong Ong, Jun Zhang, and Yang
Xiang. 2023. Client-side gradient inversion against

federated learning from poisoning. arXiv preprint
arXiv:2309.07415.

Mingzhao Yang, Shangchao Su, Bin Li, and Xiangyang
Xue. 2024. Exploring one-shot semi-supervised fed-
erated learning with pre-trained diffusion models. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 16325-16333.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li,
and Yuan Gao. 2021. A survey on federated learning.
Knowledge-Based Systems, 216:106775.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan
Li, Ruiyi Zhang, Tong Yu, Guoyin Wang, and Yiran
Chen. 2024a. Towards building the federatedgpt:
Federated instruction tuning. In ICASSP 2024-2024
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6915-6919.
IEEE.

Jie Zhang, Chen Chen, Bo Li, Lingjuan Lyu, Shuang
Wu, Shouhong Ding, Chunhua Shen, and Chao Wu.
2022. Dense: Data-free one-shot federated learning.
Advances in Neural Information Processing Systems,

35:21414-21428.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024b. Tinyllama: An open-source small
language model. Preprint, arXiv:2401.02385.

Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang,
Bo Li, and Dawn Song. 2020. The secret revealer:
Generative model-inversion attacks against deep neu-
ral networks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 253-261.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu,
Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan,
Lifang He, et al. 2023. A comprehensive survey on
pretrained foundation models: A history from bert to
chatgpt. arXiv preprint arXiv:2302.09419.

Yanlin Zhou, George Pu, Xiyao Ma, Xiaolin Li, and
Dapeng Wu. 2020. Distilled one-shot federated learn-
ing. arXiv preprint arXiv:2009.07999.


https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A Related Work

One-Shot Federated Learning. One-shot feder-
ated learning refers to learning the parameters of
the global model in a single round of communi-
cation between clients and the server (Guha et al.,
2019). There are two main strategies for optimizing
one-shot FL, neuron matching and knowledge dis-
tillation. Neuron matching is based on the permuta-
tion symmetry of neural networks (Ainsworth et al.,
2022), which means that client model parameters
can be aligned according to a common ordering and
then be averaged. Previous works use algorithms
such as the Fisher information matrix (Jhunjhun-
wala et al., 2024) and permutation matrix (Wang
et al., 2020a) to match the local model parame-
ters. The knowledge distillation methods aim at
distilling knowledge from well-trained local mod-
els through public data (Gong et al., 2021; Li et al.,
2020; Heinbaugh et al., 2022). Some works also
use distilled data to transfer knowledge between
clients and the server (Zhou et al., 2020). Re-
cent works adopt generative models to help gen-
erate substitute data for the local dataset on the
server (Yang et al., 2024; Zhang et al., 2022).

Federated  Fine-Tuning. Federated fine-
tuning (Orescanin et al., 2021; Cheng et al., 2021)
aims to fine-tune FMs by cross-domain on-device
datasets while preserving data privacy. Recent
works use PEFT methods such as LoRA (Hu
et al., 2021) in federated fine-tuning (Zhang et al.,
2024a) to save communication and computation
costs. Federated fine-tuning also faces similar
research problems as FL. Current works have
discussed the non-IID problem (Cho et al., 2024)
and personalized federated fine-tuning (Wagner
et al., 2024).

B Additional Experimental Setups

Computer Resources. We used a 256GB AMD
EPYC 7763 64-Core Processor on Linux v4.18.0
to run the experiments. For LoRA fine-tuning on
all the models and full fine-tuning on all the models
except Llama-13b, we used 4 NVIDIA RTX A6000
GPUs. For Llama-13b full fine-tuning, we use 8
NVIDIA A100 GPUs.

Hyperparameter Settings. For LoRA fine-
tuning across all the models and datasets, we set the
local LoRA rank to 16, the local learning rate to 3e-
4, and the batch size to 64. For full fine-tuning, we
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reduced the learning rate to 3e-5 and set the learn-
ing rate to 8. For multi-round settings, the numbers
of global communication rounds and local epochs
in each round in different models and datasets are
listed in Table 3. The one-shot setting satisfies
T =1 and k equals T'k in the multi-round setting.
The number of rounds and epochs we selected can
ensure convergence and avoid overfitting. We show
a simple example in Appendix C to demonstrate
this point.

C Additional Experimental Results

Zero-Shot Results. We test the zero-shot perfor-
mance of models used in Table 1 for reference. The
results are displayed in Table 5

Standalone Results of Local Models. To fur-
ther demonstrate the effectiveness of federated fine-
tuning, we performed the standalone experiment
to compare the performance of the global model
and the local model only trained on local datasets.
We did the experiments on the llama-7b model and
Wizard dataset and displayed the results in Table
6. The results show that the accuracy of most lo-
cal models is slightly lower than that of the global
model, with some local models outperforming the
global model. This is reasonable in the context
of the federated fine-tuning task because the mod-
els have already been pre-trained. Therefore, even
though clients have less training data, the perfor-
mance of local models does not differ significantly
from the global model.

More Global Round Settings. We also tested the
model performance when we had more and fewer
global rounds in a multi-round setting. We evalu-
ated the global model in 1, 2, 3, 4, and 5 global
rounds when fine-tuning the Llama-7b model on
Wizard dataset. The results are shown in Figure



Table 3: Global rounds and local epochs settings in multi-round experiments.

Models TinyLlama Gemma-2b Llama-7b Llama-13b
MMLU Wizard M-W MMLU Wizard M-W MMLU Wizaad M-W MMLU Wizard M-W
T 3 3 3 3 3 3 3 3 3 3 3 3
k 1 2 1 1 2 1 2 1 1 1 1 1

Table 4: Tk settings in experiments. 7" is the number of global communication rounds. k is the total number of
local SGD steps, which is computed by (dataset length x epoch number / batch size).

| ResNet-18  BERT | GPT-2 TinyLlama Gemma-2b Llama-7b Gemma-7b Llama-13b

T | 50 50 | s 3 3 3 3 3
k | 7812 3906 | 5625 3750 1875 1875 1875 1875
Tk | 390600 195300 | 28125 11250 5625 5625 5625 5625

Table 5: Zero-Shot results of models on MMLU and
ARC Challenge.

Tasks | TinyLlama Gemma-2b Llama-7b Llama-13b

MMLU 24.90 34.63 34.44 46.23
ARC 35.41 40.25 45.65 51.79

6. In the first round, the MT-bench score increases
from the 2.86 in base model to around 3.80. Then,
it slightly increases towards 3.90 in the 3rd round
and begins to decrease afterward. A similar phe-
nomenon can be seen in other datasets and models
that the model performance will increase in the ini-
tial 2-4 rounds and then gradually decline due to
overfitting. Thus, we use 3 global rounds in all of
the multi-round experiments.

D Proof of Theorem 1

According to Eq. 7 and Eq. 8, ignoring the learning
rates, the difference of the global model can be
bounded by:

m Tk
e < [(gi (™) = g; (w7 (10)
i=1 j=k+1

Considering Assumption 1, we have:

Tk
0,5 tj—kt
e< S Imf(w® —w™ ), an
j=k+1

According to Assumption 2, we can deduce:

Tk
e< Y Lrm|w @9, (12)
Jj=k+1
Thus we have:
e < LTTkm||w®?]|, (13)

which is Theorem 1.
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Table 6: Standalone results of 3-epochs federated fine-tuning on Llama-7b with Wizard dataset. The numeric header
columns indicate the ARC Challenge accuracy of the local models only fine-tuned on their local dataset for 3
epochs.

One-Shot | 0 1 2 3 4 5 6 7 8 9
51.88 | 50.79 51.02 50.05 50.43 5233 51.22 5128 5230 5121 5111
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