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Abstract

Document-level relation extraction (DocRE)001
aims to extract relations between entities in a002
whole document. One of the pivotal challenges003
of DocRE is to capture the intricate interde-004
pendencies between relations of entity pairs.005
Previous methods have shown that logical rules006
are able to explicitly help capture such interde-007
pendencies. These methods either learn logical008
rules to refine the output of a trained DocRE009
model, or first learn logical rules from anno-010
tated data and then inject the learnt rules to a011
DocRE model using auxiliary training objec-012
tive. In this paper, we argue that these learning013
pipelines may suffer from the issue of error014
propagation. To mitigate this issue, we propose015
Joint Modeling Relation extraction and Logi-016
cal rules or JMRL for short, a novel rule-based017
framework that jointly learns both a DocRE018
model and logical rules in an end-to-end fash-019
ion. Specifically, we parameterize a rule reason-020
ing module in JMRL to simulate the inference021
of logical rules, thereby explicitly modeling the022
reasoning process. We also introduce an auxil-023
iary loss and a residual conection mechanism024
in JMRL to better reconcile the DocRE model025
and the rule reasoning module. Experimental026
results on two benchmark datasets demonstrate027
that the proposed JMRL framework is consis-028
tently superior to existing rule-based frame-029
works on both datasets, improving five baseline030
models for DocRE by a significant margin.031

1 Introduction032

Relation extraction (RE) plays a vital role in in-033

formation extraction (IE). It aims at identifying034

relations between two entities in a given text. Early035

efforts focus mainly on sentence-level RE. In recent036

years, document-level relation extraction (DocRE)037

has received increasing attention. It aims at identi-038

fying relations of all entity pairs in a document.039

Nowadays, DocRE has been widely applied in040

downstream applications such as question answer-041

ing (QA) (Sorokin and Gurevych, 2017), knowl-042

Document Title: Parvathy Jayaram
[1] Ashwathy Kurup, better known by her stage name Parvathy, is an Indian film
actress and classical dancer … [2] Parvathy married film actor Jayaram who
was her co-star in many films on 7th September 1992 at Town Hall, Ernakulam.
[3] She has two children, Kalidas Jayaram and Malavika Jayaram. [4] …
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Logical rules:
hasChild 𝑥, 𝑦 ← hasSpouse 𝑥, 𝑧 	⋀	hasChild 𝑧, 𝑦 ,

hasChild 𝑥, 𝑦 ← hasSpouse 𝑥, 𝑧 	⋀	hasMother! 𝑧, 𝑦 ,
hasFather 𝑥, 𝑦 ← hasMother 𝑥, 𝑧 	⋀	hasSpouse 𝑧, 𝑦

Reasoning with logical rules:
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Figure 1: Examples in the DocRED dataset, where solid
arrows denote the correct predictions, dotted arrows the
missing predictions and r− the inverse relation of r.

edge graph construction (Luan et al., 2018), etc. 043

Compared to sentence-level RE, DocRE imposes 044

a greater challenge for modeling longer contexts 045

and capturing the more complex interdependencies 046

between entity pairs. 047

Most previous methods for DocRE focus on 048

capturing interdependencies between entity pairs 049

by learning powerful representations through 050

neural models, such as pre-trained language 051

models (Xu et al., 2021; Zhou et al., 2021a), 052

or graph neural networks (Peng et al., 2017; 053

Sahu et al., 2019; Zeng et al., 2020). However, 054

these methods are usually prone to lose the 055

reasoning ability. Figure 1 illustrates such an 056

example, where sub-figure (a) in Figure 1 shows 057

an example of a document in the DocRED dataset, 058

and sub-figure (b) shows the corresponding 059

predictions yielded by ATLOP, a state-of-the-art 060

(SOTA) method for DocRE. We can observe that 061

ATLOP (Zhou et al., 2021a) only extracts apparent 062

facts such as “(Parvathy, hasSpouse, Jayaram)” 063
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and “(Parvathy,hasChild,KalidasJayaram)”,064

but fails to identify potential facts such as065

“(KalidasJayaram, hasFather, Jayaram)” and066

“(Jayaram,hasChild,MalavikaJayaram)” since067

they are not explicitly mentioned in the document.068

In general, logical rules can be used to improve069

the reasoning ability for DocRE by inferring miss-070

ing facts from existing ones. Sub-figure (c) in Fig-071

ure 1 illustrates three logical rules, and sub-figure072

(d) shows their ability in inferring missing facts. To073

enhance existing DocRE models with logical rules,074

two rule-based frameworks have been proposed,075

namely LogicRE (Ru et al., 2021) and MILR (Fan076

et al., 2022). In more details, LogicRE first learns077

logical rules based on the output logits of a trained078

neural model and then refines its predicted relations079

by reasoning with the learnt rules, whereas MILR080

first learns logical rules from annotated data and081

then trains a neural model penalized by an auxil-082

iary loss for reflecting the violation of learnt rules.083

Although both LogicRE and MILR have shown084

promising results in enhancing performance for085

DocRE, they still suffer from the error propagation086

issue due to their pipeline natures.087

In this paper, we target jointly learning a neural088

module for DocRE and a neural module for approx-089

imating logical rules in an end-to-end fashion to090

avoid error propagation. To this end, we propose a091

novel framework named Joint Modeling Relation092

extraction and Logical rules or JMRL for short,093

as illustrated in Figure 2. The intuition of JMRL094

is to reduce the rule learning problem in discrete095

space to a parameter learning problem in continu-096

ous space, yielding a neural module for approxi-097

mating logical rules (called a rule reasoning mod-098

ule) and then integrating it into an existing DocRE099

model. The parameters of the rule reasoning mod-100

ule is tuned along with the parameters of the back-101

bone DocRE model so that the whole model can102

be trained in an end-to-end fashion. Furthermore,103

we introduce an auxiliary loss and a residual con-104

nection mechanism in JMRL to better incorporate105

the backbone DocRE model and the rule reasoning106

module, so as to further improve the performance.107

We impose JMRL to enhance five baseline108

models for DocRE, including LSTM (Yao et al.,109

2019), Bi-LSTM (Yao et al., 2019), GAIN (Zeng110

et al., 2020), ATLOP (Zhou et al., 2021a) and111

DREEAM (Ma et al., 2023). Experimental re-112

sults on two benchmark datasets DWIE (Zaporo-113

jets et al., 2021) and DocRED (Yao et al., 2019)114

demonstrate that the proposed JMRL framework115

is superior to all SOTA rule-based framework for 116

DocRE, improving the baseline models by a signifi- 117

cant margin on both datasets. Our analysis and case 118

study further clarify why JMRL is able to improve 119

the performance. 120

The main contributions of this work include: 121

(1) We propose a novel framework named JMRL 122

to integrate a neural module for approximating 123

logical rules (called a rule reasoning module) into 124

a baseline DocRE model, so that the enhanced 125

DocRE model can be trained in an end-to-end 126

fashion. As far as we know, this is the first end- 127

to-end approach for imposing logical rules upon 128

DocRE models. 129

(2) We theoretically analyze the faithfulness be- 130

tween the rule reasoning module and logical rules. 131

(3) We conduct extensive experiments on two 132

benchmark datasets, demonstrating that the pro- 133

posed JMRL framework pushes forward five base- 134

line SOTA DocRE models by a significant mar- 135

gin. In particular, up to the submission date 136

(2023/12/15), the JMRL-enhanced DREEAM 137

model (submissions under the username jmrl) 138

ranks the first in the public DocRED evaluation1. 139

2 Preliminaries 140

Problem formulation for DocRE. Given a doc- 141

ument d involving a set of named entities Ed = 142

{ei}1≤i≤ne , the task of DocRE aims at predict- 143

ing the relations among all entity pairs {(eh, et) | 144

eh, et ∈ Ed, eh ̸= et}. The set of predictable rela- 145

tions is defined as R+ = R ∪ {⊥}, where R is a 146

pre-defined relation set and ⊥ the “no relation”. 147

Atoms and facts. An atom is of the form r(x, y), 148

where r ∈ R is a predicate, x and y are entity 149

variables or entity constants. An atom is ground if 150

it does not contain any variable. A fact is a ground 151

atom of the form r(a, b), which is also expressed 152

as a triple (a, r, b) throughout the paper. 153

Logical rules. We focus on chain-like logical rules 154

(CRs). A CR is a datalog rule (Abiteboul et al., 155

1995) where all atoms are binary and every body 156

atom shares variables with the previous atom and 157

the next atom. A CR is called an L-CR if it has L 158

body atoms. An L-CR R is of the form: 159

H(x, y)← B1(x, z1)∧B2(z1, z2)∧...∧BL(zL−1, y) 160

where x the head entity, y the tail entity, and z1, 161

. . . , zL−1 variables. The part at the left (resp. right) 162

1https://codalab.lisn.upsaclay.fr/
competitions/365
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side of← is called the head (resp. body) of R. The163

rule R is called r-specific if H = r. By HR and164

BR we denote the atom in the head of R and the165

set of atoms in the body of R, respectively. A rule166

is ground if it does not contain any variable. A rule167

R is a fact if BR is empty and HR is ground. To168

uniformly represent CRs with fixed-length bodies,169

we introduce the identity relation (denoted by I)170

to rule bodies. For example, the 1-CR r(x, y) ←171

p(x, y) can be converted into a 2-CR r(x, y) ←172

p(x, z) ∧ I(z, y).173

Given a set of facts G ⊂ E×R×E , we denote by174

G |= HR(a, b) if there exists a ground instance Rg175

of logical rule R such that HR(a, b) = HRg and176

BRg ⊆ G ∪ G− ∪ {I(e, e) | e ∈ E}, where G− =177

{(et, r−, eh) | (eh, r, et) ∈ G} and r− denotes the178

inverse relation of r. Let Σ be a set of r-specific179

CRs and (a, r, b) ∈ E × R × E an arbitrary fact.180

We denote by G |=Σ (a, r, b) if there exits a logical181

rule R ∈ Σ such that G |= HR(a, b).182

3 Related Work183

Document-level relation extraction. Early efforts184

for DocRE focus on better contextualized repre-185

sentations of relations by employing various tech-186

nologies such as attention mechanisms (Yao et al.,187

2019; Zhou et al., 2021a), pre-trained language188

models (Tang et al., 2020; Xu et al., 2021), and189

knowledge distillation (Tan et al., 2022; Ma et al.,190

2023). To capture more complex interdependencies191

between entity pairs, recent studies aim at enhanc-192

ing DocRE models with external modules such193

as graph neural networks (GNNs) (Christopoulou194

et al., 2019; Zhang et al., 2020; Zeng et al., 2020) or195

rule-based frameworks (Ru et al., 2021; Fan et al.,196

2022). Specifically, LogicRE (Ru et al., 2021) and197

MILR (Fan et al., 2022) are two SOTA rule-based198

frameworks for enhancing DocRE. LogicRE first199

learns logical rules based on the output logits of a200

trained neural model and then refines the predicted201

relations of the neural model by learnt rules. MILR202

first learns logical rules from annotated data and203

then trains a neural model penalized by an auxil-204

iary loss for reflecting the violation of learnt rules.205

However, the above two frameworks suffer from206

the error propagation issue due to their pipeline207

natures. In contrast, our proposed JMRL frame-208

work integrates a neural module for rule reasoning209

into a backbone DocRE model, enabling the whole210

model to be trained end-to-end and thus mitigating211

the error propagation issue.212

End-to-end rule learning. In recent years, there 213

is an emerging interest in exploiting neural-based 214

methods (Yang et al., 2017; Sadeghian et al., 2019; 215

Yang and Song, 2020; Xu et al., 2022) for end-to- 216

end rule learning. Inspired by their promising re- 217

sults, we also design a neural-based rule reasoning 218

module in JMRL to approximate logical rules for 219

DocRE. Different from previous methods, our ap- 220

proach can handle the training objective of relation 221

extraction, whereas previous methods are only de- 222

signed for specific tasks in knowledge graph com- 223

pletion such as link prediction (Bordes et al., 2013) 224

and triple classification (Lin et al., 2015). Further- 225

more, our approach can deal with the reasoning 226

scenario where existing facts in the background 227

knowledge are all uncertain (i.e., the existing facts 228

are predicted by a DocRE model with continuous 229

values for their truth degrees). 230

Rule injection in neural models. There exist ap- 231

proaches focusing on injecting logical rules into 232

neural models in different tasks of natural language 233

processing (NLP), including knowledge base con- 234

struction (Demeester et al., 2016; Ding et al., 2018), 235

natural language inference (Li and Srikumar, 2019), 236

sentiment analysis (Deng and Wiebe, 2015), knowl- 237

edge graph validation (Du et al., 2019) and informa- 238

tion extraction (Wang and Pan, 2020; Zhou et al., 239

2021b). These approaches require well-prepared 240

hand-crafted rules as input for the enhancement, 241

which may prevent them from being practically 242

used. In contrast, our proposed JMRL framework 243

does not require hand-crafted rules as input. 244

4 The JMRL Framework 245

To impose logical rules upon a DocRE model, we 246

propose a novel rule-based framework named Joint 247

Modeling Relation extraction and Logical rules 248

or JMRL for short, as illustrated in Figure 2. By 249

and large, JMRL first employs a DocRE model to 250

calculate output logits for all potential facts in a 251

document, and then feeds them into a rule reason- 252

ing module to produce the rule-enhanced logits. 253

The ultimately predicted logits are calculated by 254

the residual connection of the original DocRE log- 255

its and the rule-enhanced logits. Then the entire 256

model is trained by minimizing a weighted sum 257

of classification losses calculated from the original 258

DocRE logits and the ultimately predicted logits. 259

Furthermore, we can extract logical rules from the 260

parameter assignment of the rule reasoning module 261

to compose explanations for the predictions. 262
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Document Title: Parvathy Jayaram
[1] Ashwathy Kurup, better known by her stage
name Parvathy, is an Indian film actress and
classical dancer … [2] Parvathy married film
actor Jayaram who was her co-star in many films
on 7th September 1992 at Town Hall, Ernakulam.
[3] She has two children, Kalidas Jayaram and
Malavika Jayaram. [4] …

DocRE Model Rule Reasoning Module

Logical rules
hasChild 𝑥, 𝑦 ← hasSpouse 𝑥, 𝑧 	⋀	hasChild 𝑧, 𝑦

hasChild 𝑥, 𝑦 ← hasSpouse 𝑥, 𝑧 	⋀	hasMother! 𝑧, 𝑦
…

hasFather 𝑥, 𝑦 ← hasMother 𝑥, 𝑧 	⋀	hasSpouse 𝑧, 𝑦

(Jayaram, Parvathy)

(Malavika J., Parvathy)
…

Loss ℒ! Lossℒ"Total loss	𝜆ℒ! + ℒ"

Minimalization Objective

Input

Output

Residual connection

OutputIntput

Rule
extraction

Classification loss Classification loss

Input documents

Extracted logical rules

Neural networks

Training losses

Output logits

(Jayaram, Parvathy)

(Malavika J., Parvathy)
…

+

Explanations

Figure 2: The overview of the proposed JMRL framework.

4.1 Document-level Relation Extraction263

Given a document d involving a set of named en-264

tities Ed = {ei}1≤i≤ne , a typical DocRE model265

F calculates a logit F(eh, et, d) ∈ Rn+1 for each266

entity pair in {(eh, et) | eh, et ∈ Ed, eh ̸= et},267

where n = |R|, [F(eh, et, d)]i denotes the logit268

for a normal relation for all 1 ≤ i ≤ n, and269

[F(eh, et, d)]n+1 denotes the logit for ⊥.270

A DocRE model is usually trained by minimiz-271

ing the binary cross-entropy (BCE) loss (Yao et al.,272

2019; Zeng et al., 2020) or the adaptive threshold-273

ing (AT) loss (Zhou et al., 2021a), a variant of cross-274

entropy. In the inference phase, the set of predicted275

facts {(eh, r, et) | [σ(F(eh, et, d))]r > ϵ} are ob-276

tained by thresholding the predicted probabilities277

of each entity pair, where ϵ is a given threshold, σ is278

an activation function such as the sigmoid function279

or the softmax function.280

4.2 The Rule Reasoning Module281

The rule reasoning module is a neural module pa-282

rameterized to simulate the inference of logical283

rules, approximating outputs as a rule system does.284

This module is trained along with the DocRE model285

to optimize a certain training objective.286

Let N be the maximum number of rules to287

be learnt, L the maximum number of atoms in288

each rule and R∗ = R ∪ R− ∪ {I}. Suppose289

R = {ri}1≤i≤n, its corresponding set of inverse290

relations R− = {ri}n+1≤i≤2n, and I = r2n+1.291

We define an extended logit F+(x, y, d) ∈ R2n+1,292

where [F+(x, y, d)]i = [σ(F(x, y, d))]i for all293

1 ≤ i ≤ n, [F+(x, y, d)]i+n = [σ(F(y, x, d))]i294

for all 1 ≤ i ≤ n, and [F+(x, y, d)]2n+1 = 1 if 295

x = y or 0 otherwise. The goal of our rule reason- 296

ing module is to estimate a truth degree s(N,L)
r,x,y,d for 297

every fact (x, r, y) ∈ Ed ×R∗ × Ed in every doc- 298

ument d, where the estimated truth degree s(N,L)
r,x,y,d 299

reflects the degree of whether the fact (x, r, y) can 300

be inferred by N L-CRs. For every normal relation 301

r ∈ R, 1 ≤ k ≤ N, 1 ≤ l ≤ L, the intermediate 302

estimated truth degree s(k,l)r,x,y,d for the lth atom in 303

the kth rule is defined as: 304

s
(k,l)
r,x,y,d =



2n+1∑
i=1

w
(r,k,l)
i [F+(x, y, d)]i, l = 1

2n+1∑
i=1

w
(r,k,l)
i

∑
(z,ri,y)∈

Ed×R∗×Ed

s
(k,l−1)
r,x,z,d , l > 1

(1) 305

where w(r,k,l) ∈ [0, 1]2n+1 denotes the trainable 306

weights on predicate selection for the lth body atom 307

of the kth rule whose head atom is on r. w(r,k,l) 308

is confined to [0, 1] by a softmax layer. Intuitively, 309

w
(r,k,l)
i = 1 indicates that the ith relation ri is 310

selected as the predicate of the lth body atom. 311

Different from normal relations in R, for the 312

head relation ⊥, we allow ⊥ and its reverse rela- 313

tion to appear in predicates of body atoms. To 314

this end, we alter Equation (1) for r = ⊥ by 315

looping i from 1 to 2n + 3, redefining w(r,k,l) ∈ 316

[0, 1]2n+3, R∗ = R ∪ {⊥} ∪ R− ∪ {⊥−, I}, 317

[F+(x, y, d)]i = [σ(F(x, y, d))]i for all 1 ≤ i ≤ 318

n + 1, [F+(x, y, d)]i+n+1 = [σ(F(y, x, d))]i for 319

all 1 ≤ i ≤ n + 1, and [F+(x, y, d)]2n+3 = 1 if 320

x = y or 0 otherwise. 321
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The ultimate truth degree is calculated by aggre-322

gating the intermediate degrees of N rules:323

s
(N,L)
r,x,y,d =

N∑
k=1

α(k)
r s

(k,L)
r,x,y,d (2)324

where α(k)
r ∈ [−1, 1] is a trainable weight for the325

kth rule for the head relation r, which is confined326

to [−1, 1] by a tanh layer. Intuitively, α(k)
r denotes327

the confidence score of the kth rule for r.328

By introducing the following notion of induced329

parameter assignment, we show in Theorem 1 that330

the formalization of the proposed rule reasoning331

module is faithful to a certain set of CRs.332

Definition 1. Given a set of r-specific L-CRs333

Σ = {Rk}1≤k≤N for Rk of the form r(x, y) ←334

pk,1(x, z1) ∧ · · · ∧ pk,L(zL−1, y), where pk,l ∈335

R ∪ {⊥} ∪ R− ∪ {⊥−, I} if r = ⊥, or pk,l ∈336

R∪R− ∪ {I} otherwise, we call a parameter as-337

signment of the rule reasoning module θ(N,L)
r =338

{w(r,k,l)
i }1≤k≤N,1≤l≤L,1≤i≤m ∪ {α

(k)
r }1≤k≤N Σ-339

induced if it satisfies the following conditions:340

(1) ∀1 ≤ k ≤ N, 1 ≤ l ≤ L, 1 ≤ i ≤ m :341

w
(r,k,l)
i = 1 if pk,l = ri or w(r,k,l)

i = 0 otherwise,342

where m = 2n + 3 if r = ⊥ or m = 2n + 1343

otherwise.344

(2) ∀1 ≤ k ≤ N, 1 ≤ l ≤ L : α
(k)
r = 1.345

Theorem 1. Suppose [σ(F(x, y, d))]r = 1 if the346

fact (x, r, y) is predicted to be true in document d,347

or [σ(F(x, y, d))]r = 0 otherwise. Let R† = R+348

if r = ⊥ orR† = R otherwise, Gd = {(x, r, y) ∈349

Ed × R† × Ed | [σ(F(x, y, d))]r = 1} be the set350

of predicted true facts for d, Σ = {Rk}1≤k≤N a351

set of r-specific L-CRs and θ(N,L)
r the Σ-induced352

parameter assignment of the rule reasoning module.353

Then for any fact (a, r, b) ∈ Ed×R†×Ed, s(N,L)
r,a,b,d ≥354

1 if and only if Gd |=Σ (a, r, b).355

The proof of Theorem 1 is provided in Ap-356

pendix A. Theorem 1 enables us to extract explain-357

able logical rules from the parameter assignment358

of the learnt neural module. The rule extraction359

algorithm is shown in Appendix B.360

Residual connection. Considering that there ex-361

ist DocRE scenarios where logical reasoning is362

useless, we introduce the well-known residual con-363

nection mechanism to incorporate the output logits364

from the original DocRE model and the estimated365

truth degrees from the rule reasoning module. The366

ultimately predicted logit is calculated by:367

ϕ(x,y,d)r = [F(x, y, d)]r + s
(N,L)
r,x,y,d (3)368

Dataset Split #Doc. #Rel. #Ent. #Facts.

DWIE
train 602

65
16,494 14,403

dev 98 2,785 2,624
test 99 2,623 2,495

DocRED

train 3,053

96

59,493 38,180
dev 998 19,578 12,323
test 1,000 19,539 -
test† 500 9,779 17,448

Table 1: Statistics on datasets, where Doc. (resp. Rel or
Ent) abbreviates documents (resp. relations or entities).

4.3 Training Objective 369

JMRL is trained by minimizing a classification loss 370

(BCE or AT, inherited from the backbone DocRE 371

model) calculated by ϕ(x,y,d)r . The formal defini- 372

tions of BCE and AT are given in Appendix C. 373

In practice, it is hard to accurately train the rule 374

reasoning module at the early stage of training, as 375

the facts predicted by the backbone DocRE model 376

are inaccurate at the early stage. To tackle this 377

issue, we introduce an auxiliary loss in JMRL to 378

improve the efficiency of the entire training pro- 379

cess. The classification loss on the output logits 380

F(x, y, d) of the backbone DocRE model is treated 381

as the auxiliary loss. By L1∆ and L2∆ we denote 382

the auxiliary loss and the original loss, respectively, 383

the entire JMRL-enhanced model is trained by min- 384

imizing λL1∆ + L2∆, where ∆ ∈ {BCE,AT} and 385

λ is a hyper-parameter to trade-off the two losses. 386

5 Evaluation 387

5.1 Experimental Setup 388

Datasets and metrics. Two benchmark datasets 389

DWIE (Zaporojets et al., 2021) and DocRE (Yao 390

et al., 2019) were used to evaluate JMRL. For a 391

fair comparison with MILR (Huang et al., 2022) 392

on DocRED, we followed (Huang et al., 2022) by 393

using the same relabeled test set. Statistics for ex- 394

perimental datasets are reported in Table 1, where 395

test† denotes the relabeled test set. Following Yao 396

et al. (2019), we use F1-score and Ign F1-score 397

as evaluation metrics, where Ign F1-score extends 398

F1-score by omitting facts appearing in the inter- 399

section of the training set and the dev (resp. test) 400

set for evaluation on the dev (resp. test) set. 401

Baselines. To compare JMRL with the SOTA rule- 402

based frameworks LogicRE (Ru et al., 2021) and 403

MILR (Fan et al., 2022), we enhanced four base- 404

line models, including LSTM (Yao et al., 2019), 405

Bi-LSTM (Yao et al., 2019), GAIN (Zeng et al., 406

2020) and ATLOP (Zhou et al., 2021a). For a more 407
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Method PLM Dev Test p-valueIgn F1 (%) F1 (%) Ign F1 (%) F1 (%)
ChatGPT (5-shot) (Han et al., 2023) ChatGPT - - - 26.72 -
LSTM (Yao et al., 2019) GloVe 31.71 38.35 31.65 41.42 2.5e-2
LogicRE-LSTM (Ru et al., 2021) GloVe 32.02 (+0.31) 38.48 (+0.13) 32.58 (+0.93) 42.03 (+0.61) 2.2e-2
MILR-LSTM (Fan et al., 2022) GloVe 33.12 (+1.41) 39.95 (+1.60) 33.75 (+2.10) 43.35 (+1.93) 3.9e-2
JMRL-LSTM (this work) GloVe 36.11 (+5.40) 42.87 (+4.52) 43.16 (+11.51) 50.34 (+8.92) -
BiLSTM (Yao et al., 2019) GloVe 32.14 39.66 33.88 43.54 8.0e-3
LogicRE-BiLSTM (Ru et al., 2021) GloVe 32.39 (+0.25) 40.32 (+0.66) 34.21 (+0.33) 43.95 (+0.45) 1.1e-2
MILR-BiLSTM (Fan et al., 2022) GloVe 34.05 (+1.91) 41.22 (+1.56) 35.09 (+1.21) 44.65 (+1.11) 2.2e-2
JMRL-BiLSTM (this work) GloVe 37.88 (+5.74) 43.68 (+4.02) 42.68 (+8.80) 50.70 (+7.16) -
GAIN (Zeng et al., 2020) BERTbase 58.89 63.81 61.36 67.45 1.8e-3
LogicRE-GAIN (Ru et al., 2021) BERTbase 58.98 (+0.09) 64.90 (+1.09) 61.58 (+0.22) 68.71 (+1.26) 3.4e-2
MILR-GAIN (Fan et al., 2022) BERTbase 61.22 (+2.33) 65.85 (+2.04) 62.77 (+1.41) 69.23 (+1.78) 1.5e-1
JMRL-GAIN (this work) BERTbase 61.62 (+2.73) 66.03 (+2.22) 64.59 (+3.23) 69.66 (+2.21) -
ATLOP (Zhou et al., 2021a) BERTbase 63.37 69.87 67.29 75.13 4.0e-3
LogicRE-ATLOP (Ru et al., 2021) BERTbase 64.54 (+1.17) 70.66 (+0.79) 68.13 (+0.84) 75.67 (+0.54) 3.5e-3
MILR-ATLOP (Fan et al., 2022) BERTbase 67.18 (+3.81) 72.05 (+2.97) 69.84 (+2.55) 76.51 (+1.38) 3.9e-3
JMRL-ATLOP (this work) BERTbase 68.41 (+5.04) 73.91 (+4.04) 70.92 (+3.63) 77.85 (+2.72) -

Table 2: Comparison results on the DWIE dataset.

comprehensive comparison, we also applied JMRL408

to enhance the SOTA neural model DREEAM (Ma409

et al., 2023) and compared with other SOTA meth-410

ods SSAN (Xu et al., 2021) and KD-DocRE (Tan411

et al., 2022). Note that these baseline models adopt412

different loss functions, where the BCE loss is used413

by LSTM, Bi-LSTM and GAIN, and the AT loss is414

used by ATLOP and DREEAM. We also compared415

JMRL with large language models (LLMs) such416

as ChatGPT (Han et al., 2023), GPT-4 (Peng et al.,417

2023) and FLAN-UL2 (Peng et al., 2023).418

Implementation details. We implemented all419

JMRL-enhanced models by Pytorch 2.0.0 on an420

NVIDIA A100 GPU2. We utilized the public repos-421

itories of backbone models such as LSTM and Bi-422

LSTM3, GAIN4, ATLOP5, and DREEAM6 to im-423

plement our experiments. The hyper-parameter λ424

for JMRL is set to 1 in all experiments. We provide425

detailed hyper-parameter settings in Appendix D,426

where all hyper-parameters were tuned to maxi-427

mize the Ign F1-score on the dev set.428

5.2 Main Results429

We use JMRL-X (resp. LogicRE-X or MILR-X)430

to denote the enhanced models, where X denotes431

an original DocRE model. Table 2 (resp. Table 3)432

reports the comparison results on the DWIE (resp.433

DocRED) dataset. where the results of baselines434

in Table 3 are sourced from (Fan et al., 2022). Re-435

2Code and data about our implementations are available
at: [link removed during double blind reviewing]

3https://github.com/thunlp/DocRED
4https://github.com/DreamInvoker/GAIN
5https://github.com/wzhouad/ATLOP
6https://github.com/YoumiMa/dreeam

Method Test (using test†)
Ign F1 (%) F1 (%)

ChatGPT (5-shot) - 28.89
GAIN 41.26 41.68
LogicRE-GAIN 41.53 (+0.27) 41.89 (+0.21)
MILR-GAIN 42.89 (+1.63) 43.17 (+1.49)
JMRL-GAIN 47.85 (+6.59) 49.58 (+7.90)
ATLOP 41.67 41.95
LogicRE-ATLOP 42.47 (+0.80) 42.73 (+0.78)
MILR-ATLOP 44.30 (+2.63) 44.72 (+2.77)
JMRL-ATLOP 47.32 (+5.65) 47.54(+5.59)

Table 3: Comparison results on the DocRED dataset.

sults show that the proposed JMRL framework im- 436

proves all original DocRE models by a significant 437

margin in both F1-scores and Ign F1-scores with 438

p-values < 0.05 by two-tailed t-tests. These results 439

demonstrate a ubiquitous effectiveness of JMRL 440

across a variety of backbone models which use dif- 441

ferent kinds of word embedding, language models 442

and loss functions. Furthermore, we can observe 443

that JMRL consistently outperforms both the SOTA 444

rule-based frameworks LogicRE and MILR. Specif- 445

ically, JMRL-ALTOP outperforms MILR-ATOP by 446

a significant margin of 1.08% (resp. 3.02%) in Ign 447

F1-score on the DWIE (resp. DocRED) dataset. 448

This is in line with our expectation that a joint 449

training framework (e.g. JMRL) is better than a 450

pipeline framework (e.g. LogicRE and MILR) due 451

to the mitigation of error propagation. From the 452

results reported in Table 4 for comparing with the 453

SOTA DocRE model DREEAM, we see that JMRL- 454

DREEAM achieves new SOTA performance on Do- 455

cRED, namely 67.91% (resp. 65.69%) in F1-score 456

(resp. Ign F1-score). This improvement beyond 457
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Method PLM Dev Test (using test) p-valueIgn F1 (%) F1 (%) Ign F1 (%) F1 (%)
ChatGPT (5-shot) (Han et al., 2023) ChatGPT - 32.21 - - -
GPT-4 (2-shot) (Peng et al., 2023) GPT-4 - - - 27.90 -
FLAN-UL2 (FT) (Peng et al., 2023) FLAN-UL2 (20B) - - - 54.50 -
SSAN (Xu et al., 2021) RoBERTalarge 63.76 65.69 63.78 65.92 3.9e-6
KD-DocRE (Tan et al., 2022) RoBERTalarge 65.27 67.12 65.24 67.28 3.0e-3
DREEAM (Ma et al., 2023) RoBERTalarge 65.52 67.41 65.47 67.53 2.4e-2
JMRL-DREEAM (this work) RoBERTalarge 65.64 67.61 65.69 67.91 -

Table 4: Comparison results on the original DocRED dataset.

Method DWIE DocRED p-val.IF1 F1 IF1 F1
JMRL-ATLOP 70.92 77.85 47.32 47.54 -
- residual connection 66.04 73.75 43.70 43.88 8.1e-4
- auxiliary loss 69.62 76.73 44.55 44.75 2.2e-2
Using NeuralLP 68.66 76.60 44.30 44.45 1.1e-2
Using DRUM 69.90 77.08 44.70 44.85 4.0e-2

Table 5: Ablation study on the DWIE test set and origi-
nal DocRED test set, where p-val. abbreviates p-value.

SOTA is also statistically significant with a p-value458

< 0.05. This confirms that JMRL is able to further459

enhance SOTA DocRE models.460

Besides, we also compared JMRL with LLMs,461

including ChatGPT, GPT-4 and FLAN-UL2 (FT).462

The comparison results reported in Table 2,3,4463

show that LLMs achieve relatively lower perfor-464

mance on both DWIE and DocRED, even though465

they were fine-tuned on the training data. The rea-466

sons are two-fold. On one hand, LLMs like Chat-467

GPT and GPT-4 can hardly make full use of the468

training data for adapting to a new task. On the469

other hand, LLMs are generative models that are470

too general to fit the DocRE task, which is a classifi-471

cation task, when compared with JMRL-enhanced472

models that are discriminative models. We provide473

more detailed discussions on LLMs in Appendix E.474

5.3 Analysis475

Ablation study. Table 5 reports our results for abla-476

tion study. In the first variant model, we omitted the477

residual connection mechanism in JMRL. Results478

show that the performance of this variant signif-479

icantly drops compared to JMRL-ATLOP with a480

low p-value=8.1e-4 by a two-tailed t-test. In the481

second variant model, we omitted the auxiliary loss482

in JMRL. Results show that the use of auxiliary loss483

results in a significant performance gain with a p-484

value=2.2e-2. These results demonstrate the effec-485

tiveness of key components in JMRL. For the third486

and the fourth variant models, we respectively al-487

tered the rule reasoning module by the well-known488
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Figure 3: Comparison results for different distances.

end-to-end rule learning models NeuralLP (Yang 489

et al., 2017) and DRUM (Sadeghian et al., 2019). 490

Results show that JMRL-ATOP significantly out- 491

performs these two variants with p-values < 0.05. 492

The reason why our proposed rule reasoning mod- 493

ule outperforms both NeuralLP and DRUM may lie 494

in the fact that both NeuralLP and DRUM introduce 495

an extra LSTM network to express the relevance 496

of weights for predicate selection in adjacent body 497

atom, while this extra component introduces more 498

parameters that can hardly be optimized by noisy 499

facts output from the backbone DocRE model. 500

Analysis on long-range dependencies. To ver- 501

ify whether logical rules are benefit for captur- 502

ing long-range dependencies between entity men- 503

tions, we separate the set of entity pairs into four 504

groups according to the distances between entity 505

pairs, where the distance between two entities is 506

measured by the minimum number of tokens be- 507

tween the mentions of these two entities in a docu- 508

ment. Figure 3 shows the comparison results on the 509

dev set of DWIE. We can see that JMRL-ATLOP 510

consistently outperforms the baselines in all four 511

groups. Moreover, the performance generally de- 512

creases with increasing distances. However, JMRL- 513

ATLOP achieves better performance in the range 514

[100, 200) than in the range [0, 100). These results 515

imply that JMRL is more effective in capturing 516
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German Chancellor Angela Merkel has confirmed that she
will stand for the chancellery in the 2017 election, German
media reports. The Christian Democrat Leader ( CDU ) first
took office in 2005. After months of speculation, German
Chancellor Angela Merkel reportedly told her fellow
Christian Democrats ( CDU ) in Berlin on Sunday that she is
prepared to lead the party into next year ‘s election. An
official statement …

Documents Predictions (MILR-ATLOP) Predictions (JMRL-ATLOP)

German

Angela Merkel

Christian Democrats 
( CDU )

base_in

head_of_govhead
_of

German

Angela Merkel

Christian Democrats 
( CDU )

base_in

head_of_govhead
_of

This will not change although Israel has criticized and will
continue to criticize the agreement with Iran . What do you
think is behind the thinking of the Iranian leadership ? The
Iranians see two models - in terms of non - proliferation or
in terms of dismantling the nuclear capabilities . They see
Libya under the Gadhafi model and ... IranGadhafi

head_of_state

citizen_of

LibyaGadhafi
head_of_state

citizen_of

𝛿 = 4.173

𝛿 = 5.503

Figure 4: Case study for MILR-ATLOP and JMRL-ATLOP on the DWIE test set, where black solid lines denote
true predictions, red lines denote false predictions, and dashed lines denote missing predictions.
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Figure 5: Analysis on the hyper-parameter λ.

long-range dependencies betwen entity mentions.517

Analysis on the hyper-parameter λ. We con-518

ducted analysis on the hyper-parameter λ, where519

the experiments were conducted on the dev set of520

DocRED, based on JMRL-ATLOP. Figure 5 illus-521

trates the comparison results. It can be observed522

that both F1-score and Ign F1-score only moder-523

ately fluctuate when λ ranges from 0 to 1.8, and that524

both of them reach the maximum when λ = 1.0.525

Therefore, we set λ = 1.0 in all our experiments.526

Case study. We conducted case study for527

comparing MILR-ATLOP with JMRL-ATLOP528

on the DWIE test set, as shown in Figure 4.529

We first introduce a metric δ to estimate, in530

the residual connection, the ratio of the de-531

gree that the rule-enhance logit dominates the532

ultimately predicted logit to the degree that533

the DocRE logit dominates the ultimately pre-534

dicted logit; formally, δ = dis(vori, vori +535

vrule)/dis(vrule, vori + vrule), where vori and vrule536

denote the DocRE logit and the rule-enhanced537

logit, respectively, and dis is the Euclidean dis-538

tance function. In the first case, MILP-ATLOP539

fails to predict the true relation “head_of” be-540

tween “Angela Merkel” and “Christian Democrats 541

(CDU)”, whereas JMRL-ATLOP predicts this true 542

relation. The correct prediction of JMRL-ATLOP 543

can be explained by a rule “head_of(x, y) ← 544

head_of_gov(x, z) ∧ base_in−(z, y)” extracted 545

from the parameter assignment of the rule rea- 546

soning module, while MILP-ATLOP fails to dis- 547

cover this rule. In the second case, MILP- 548

ATLOP predicts two false relations between 549

“Gadhafi” and “Iran”, whereas JMRL-ATLOP 550

predicts true relations between “Gadhafi” and 551

“Libya”. Although both MILP-ATLOP and JMRL- 552

ATLOP may discover the rule “citizen_of(x, y)← 553

head_of_state(x, y)”, MILP-ATLOP propagates 554

the false relation “head_of_state” between “Gad- 555

hafi” and “Iran” to final predictions, while JMRL- 556

ATLOP can avoid error propagation by its end-to- 557

end nature. Besides, JMRL-ALTOP has δ > 4 in 558

both cases, implying that it is the rule reasoning 559

module that dominates the ultimate prediction. 560

6 Conclusion and Future work 561

In this paper we have proposed an end-to-end learn- 562

ing framework named JMRL to empower existing 563

DocRE models with stronger reasoning abilities. 564

Notably, we have proposed a novel rule reasoning 565

module in JMRL to simulate the inference of logi- 566

cal rules, thereby enhancing the reasoning ability. 567

Furthermore, we have shown theoretically that the 568

parameterization of this module is faithful to the 569

formalization of logical rules. Experimental results 570

on two benchmark datasets verify the effectiveness 571

of JMRL. Future work will extend JMRL to jointly 572

learn named entity recognition (NER), DocRE and 573

more expressive rules in an end-to-end fashion. 574
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7 Limitations575

The main limitations of JMRL are two-fold. On576

one hand, the rule reasoning module in JMRL simu-577

lates the inference of chain-like logical rules. How-578

ever, chain-like logical rules may not be sufficiently579

expressive in some complex reasoning scenarios,580

e.g., they cannot express type constraints (Wu et al.,581

2022) on individual entities. The limited expres-582

sivity of chain-like logical rules may impair the583

reasoning ability of JMRL. On the other hand,584

JMRL is a rule-based framework for enhancing the585

DocRE task, whereas the task of DocRE requires586

a set of entities involved in the given document as587

input. Therefore, applying JMRL to the real-world588

scenarios requires a preprocess of named entity589

recognition (NER). Errors coming from an imper-590

fect NER model may propagate to JMRL, resulting591

in performance degradation. We will make up for592

the above deficiencies in future work, by extending593

JMRL to learn more expressive logical rules and594

extending JMRL to jointly train an NER module.595

8 Ethics Statement596

JMRL is a SOTA solution for the DocRE task with597

high effectiveness and interpretability. Therefore,598

JMRL may be used to extract private information599

among different users. To mitigate this concern,600

we only use public benchmark datasets for evalua-601

tion. These datasets do not involve users’ private602

information. Moreover, the proposed JMRL frame-603

work should not be used to extract and analyze any604

private information without user authorization.605
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A Proof 744

A.1 Proof of Lemma 1 745

To prove Theorem 1, we first introduce Lemma 1. 746

Lemma 1. Suppose [σ(F(x, y, d))]r = 1 if the 747

fact (x, r, y) is predicted to be true in document d, 748

or [σ(F(x, y, d))]r = 0 otherwise. Let R† = R+ 749

if r = ⊥ orR† = R otherwise, Gd = {(x, r, y) ∈ 750

Ed × R† × Ed | [σ(F(x, y, d))]r = 1} be the set 751

of predicted true facts for d, R an r-specific L-CR 752

of the form r(x, y)← r1(x, z1)∧ r2(z1, z2)∧ ...∧ 753

rL(zL−1, y), and θ(1,L)r the {R}-induced param- 754

eter assignment of the rule reasoning module in 755

JMRL. Then for any fact (a, r, b) ∈ Ed ×R† × Ed, 756

we have: (1) s(1,L)r,a,b,d ≥ 1 if Gd |= HR(a, b), and (2) 757

s
(1,L)
r,a,b,d = 0 if Gd ̸|= HR(a, b). 758

Proof. Let Kd = Gd ∪ G−d ∪ {(e, I, e) | e ∈ Ed}, 759

where Ed is the set of entities appearing in Gd. 760

(I) Consider the case where Gd |= HR(a, b). 761

There exists at least one ground instance Rg of 762

R such that HR(a, b) = HRg and BRg ⊆ Kd. 763

There will be a sequence of entities c1, . . . , cL−1 764

and a sequence of relations r1, . . . , rL such that 765

(a, r1, c1), (c1, r2, c2). . . , (cL−1, rL, b) ∈ Kd. Sup- 766

pose r1 is the kth relation inR†∪R−
† ∪{I}, then by 767

Condition 1 in Definition 1, we have w(r,1,1)
k = 1 768

for some k. By Equation (1), we further have 769

s
(1,1)
r,a,c1,d

≥ 1. Likewise, suppose r2 is the kth rela- 770

tion inR†∪R−
† ∪{I}, then by Condition 1 in Def- 771

inition 1, we have w(r,1,2)
k = 1. By Equation (1), 772

we further have s(1,2)r,a,c2,d
≥ 1. In the same way, we 773

can show that s(1,3)r,a,c3,d
≥ 1, . . . , s(1,L−1)

r,a,cL−1,d
≥ 1 and 774

s
(1,L)
r,a,b,d ≥ 1 in turn. Therefore, we have s(1,L)r,a,b,d ≥ 1 775

if Gd |= HR(a, b). 776

(II) Consider the case where Gd ̸|= HR(a, b). 777

Suppose s(1,L)r,a,b,d ≥ 1, then by Equation (1), there 778

10

https://proceedings.neurips.cc/paper/2019/hash/0c72cb7ee1512f800abe27823a792d03-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0c72cb7ee1512f800abe27823a792d03-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0c72cb7ee1512f800abe27823a792d03-Abstract.html
https://doi.org/10.18653/v1/p19-1423
https://doi.org/10.18653/v1/p19-1423
https://doi.org/10.18653/v1/p19-1423
https://doi.org/10.18653/v1/p19-1423
https://doi.org/10.18653/v1/p19-1423
https://doi.org/10.18653/v1/d17-1188
https://doi.org/10.18653/v1/d17-1188
https://doi.org/10.18653/v1/d17-1188
https://doi.org/10.18653/v1/d17-1188
https://doi.org/10.18653/v1/d17-1188
https://doi.org/10.18653/v1/2022.findings-acl.132
https://doi.org/10.18653/v1/2022.findings-acl.132
https://doi.org/10.18653/v1/2022.findings-acl.132
https://doi.org/10.1007/978-3-030-47426-3_16
https://doi.org/10.1007/978-3-030-47426-3_16
https://doi.org/10.1007/978-3-030-47426-3_16
https://doi.org/10.1609/aaai.v34i05.6460
https://doi.org/10.1609/aaai.v34i05.6460
https://doi.org/10.1609/aaai.v34i05.6460
https://doi.org/10.1609/aaai.v34i05.6460
https://doi.org/10.1609/aaai.v34i05.6460
https://proceedings.kr.org/2022/51/
https://doi.org/10.1609/aaai.v35i16.17665
https://doi.org/10.1609/aaai.v35i16.17665
https://doi.org/10.1609/aaai.v35i16.17665
https://doi.org/10.1609/aaai.v35i16.17665
https://doi.org/10.1609/aaai.v35i16.17665
https://openreview.net/forum?id=SJlh8CEYDB
https://openreview.net/forum?id=SJlh8CEYDB
https://openreview.net/forum?id=SJlh8CEYDB
https://doi.org/10.24963/ijcai.2019/435
https://doi.org/10.24963/ijcai.2019/435
https://doi.org/10.24963/ijcai.2019/435
https://openreview.net/forum?id=SJlh8CEYDB
https://openreview.net/forum?id=SJlh8CEYDB
https://openreview.net/forum?id=SJlh8CEYDB
https://doi.org/10.18653/v1/p19-1074
https://doi.org/10.18653/v1/p19-1074
https://doi.org/10.18653/v1/p19-1074
https://doi.org/10.1016/j.ipm.2021.102563
https://doi.org/10.1016/j.ipm.2021.102563
https://doi.org/10.1016/j.ipm.2021.102563
https://doi.org/10.1016/j.ipm.2021.102563
https://doi.org/10.1016/j.ipm.2021.102563
https://doi.org/10.18653/v1/2020.emnlp-main.127
https://doi.org/10.18653/v1/2020.emnlp-main.127
https://doi.org/10.18653/v1/2020.emnlp-main.127
https://doi.org/10.18653/v1/2020.coling-main.143
https://doi.org/10.18653/v1/2020.coling-main.143
https://doi.org/10.18653/v1/2020.coling-main.143
https://doi.org/10.1609/aaai.v35i16.17717
https://doi.org/10.1609/aaai.v35i16.17717
https://doi.org/10.1609/aaai.v35i16.17717
https://doi.org/10.1609/aaai.v35i16.17717
https://doi.org/10.1609/aaai.v35i16.17717
https://doi.org/10.1609/aaai.v35i16.17721
https://doi.org/10.1609/aaai.v35i16.17721
https://doi.org/10.1609/aaai.v35i16.17721
https://doi.org/10.1609/aaai.v35i16.17721
https://doi.org/10.1609/aaai.v35i16.17721


must be some k ∈ {1, . . . ,m} such that w(r,1,1)
k =779

1, where m = 2n + 3 if r = ⊥ or 2n + 1780

otherwise, there exists (a, rk, c1) ∈ Kd fulfilling781

s
(1,1)
r,a,c1,d

≥ 1. Since s(1,1)r,a,c1,d
≥ 1, by Equation (1),782

there must be also some k ∈ {1, . . . ,m} such that783

w
(r,1,2)
k = 1, where m = 2n + 3 if r = ⊥ or784

2n + 1 otherwise, there exists (c1, rk, c2) ∈ Kd785

fulfilling s(1,2)r,a,c2,d
≥ 1. In the same way, we can786

show that there exists relation ru and entity cu787

such that (cu−1, ru, cu) ∈ Kd and s(1,u)r,a,cu,d
≥ 1 for788

u = 3, . . . , L − 1 in turn, while there exists rela-789

tion rL such that (cL−1, rL, b) ∈ Kd. Hence there790

exists a sequence of entities c1, . . . , cL−1 and a se-791

quence of relations r1, . . . , rL such that (a, r1, c1),792

(c1, r2, c2). . . , (cL−1, rL, b) ∈ Kd. These two793

sequences constitute a ground instance Rg of R794

such that HR(a, b) = HRg and BRg ⊆ Kd, con-795

tradicting Gd ̸|= HR(a, b). Thus s(1,L)r,a,b,d < 1.796

By Equation (1), Condition 1 in Definition 1 and797

∀(x, r, y) ∈ Ed × R† × Ed : [σ(F(x, y, d))]r ∈798

{0, 1}, we further have s(1,L)r,a,b,d = 0. Therefore, we799

have s(1,L)r,a,b,d = 0 if Gd ̸|= HR(a, b).800

A.2 Proof of Theorem 1801

Proof. Lemma 1 implies that, for all Rk ∈ Σ,802

s
(k,L)
r,a,b,d ≥ 1 if Gd |= HRk

(a, b) and s(k,L)r,a,b,d = 0803

otherwise.804

(⇒) Suppose s(N,L)
r,a,b,d ≥ 1. Then by Equation (2)805

and Condition 2 in Definition 1, there exists at least806

one r-specific L-CR Rk ∈ Σ such that s(k,L)r,a,b,d ≥ 1.807

By Lemma 1 we have Gd |= HRk
(a, b). Since808

Gd |= HRk
(a, b) and Rk ∈ Σ, we have Gd |=Σ809

(a, r, b).810

(⇐) Suppose Gd |=Σ (a, r, b). Then we have811

Gd |= HRk
(a, b) for some Rk ∈ Σ. By Lemma 1812

we have s(k,L)r,a,b,d ≥ 1 and for all k′ ̸= k, s(k
′,L)

r,a,b,d ≥ 0.813

By Equation (2) and Condition 2 in Definition 1,814

we have s(N,L)
r,a,b,d ≥ 1.815

B Rule Extraction816

Based on the theoretical result of Theorem 1, we817

can interpret chain-like rules (CRs) from the pa-818

rameter assignment of the rule reasoning module819

in JMRL. The process of interpretation is shown820

in Algorithm 1. Intuitively, Algorithm 1 interprets821

CRs from the parameter assignment of the rule rea-822

soning module in JMRL using beam search, where823

b is the beam size, fl is the set of (R′, ψ)-pairs for824

the lth atom, and where R′ is the currently inter-825

preted (partial) rule and ψ its estimated score. It826

Algorithm 1: Interpreting r-specific L-
CRs

1 Input: beam size b ≥ 1 and a parameter
assignment of the rule reasoning module in
JMRL for the head relation r, namely
θ
(N,L)
r = {w(r,k,l)

i }1≤k≤N,1≤l≤L,1≤i≤m ∪
{α(k)

r }1≤k≤N where m = 2n+ 3 if r = ⊥
or m = 2n+ 1 otherwise.

2 Output: a set of up to bN r-specific L-CRs
3 R← ∅;
4 for 1 ≤ k ≤ N do
5 f0 ← {(∆L, 1)} where ∆ denotes a

placeholder to be filled;
6 ∀1 ≤ l ≤ L : fl ← ∅;
7 for 1 ≤ l ≤ L do
8 for (R,ψ) ∈ fl−1 do
9 for 1 ≤ i ≤ m do

10 R′ ← R with the lth

placeholder replaced with
ri;

11 fl ← fl ∪ {(R′, w
(r,k,l)
i ψ)};

12 sort fl = {(R,ψ)j}1≤j≤bm in the
descending order of ψ and preserve
the top-b in fl;

13 Q← {R′ rewritten from R to the form
of a CR | (R,ψ) ∈ fL} ;

14 R← R ∪Q;

15 return R;

should be noted that the process for interpreting r- 827

specific L-CRs outputs up to b interpreted rules for 828

a target rule, where all interpreted rules for the kth 829

target rule share the same confidence score α(k)
r . 830

C Formalization of Loss Functions 831

Due to space limitation, we omit the detailed for- 832

malization of the BCE loss function and the AT 833

loss function in Section 4. In the following, we 834

supplement these formalization as follows. 835

Let D = {di}1≤i≤ND be the set of documents 836

for training, Ed the set of mentioned entities in doc- 837

ument d ∈ D, and Gd = {(eh, r, et)i}1≤i≤NGd
the 838

set of annotated facts in document d ∈ D, where 839

eh, et ∈ Ed, r ∈ R+, ND denotes the number of 840

documents in D, and NGd
the number of facts in 841

Gd. Then the BCE loss function J (x,y,d)
BCE for the 842
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Hyper-parameter
DWIE DocRED

LSTM Bi-LSTM GAIN ALTOP GAIN ALTOP DREEAM

Number of rules N for each relation 20 20 20 20 20 20 20
Maximum length L of each rule 2 2 2 2 2 2 2
Optimizer for training Adam Adam AdamW AdamW AdamW AdamW AdamW
Maximum number of training epoch 300 300 300 300 20 20 10
Learning rate for the DocRE model 1e-3 1e-3 2e-5 2e-5 2e-5 2e-5 1e-6
Learning rate for the rule reasoning module 1e-1 1e-1 3e-1 3e-1 3e-1 3e-1 1e-2
Batch size for training 4 4 4 4 4 4 4
Dropout rate 0.2 0.2 0.1 0.1 0.1 0.1 0.1
Warmup ratio 0.0 0.0 0.0 0.06 0.0 0.06 0.1
Weight decay 0.0 0.0 1e-4 0.0 1e-4 0.0 0.0
λ for trading-off two losses 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 6: Hyper-parameter settings on different datasets.

entity pair (x, y) in document d is defined as843

J (x,y,d)
BCE = −

∑
r∈R+

I((x, r, y) ∈ Gd) log σ(ϕ(x,y,d)r )

+ I((x, r, y) /∈ Gd) log(1− σ(ϕ(x,y,d)r ))
(4)844

where σ denotes the sigmoid function, and I(C) is845

an indicator function that returns 1 if C is true or846

0 otherwise. The adaptive thresholding (AT) loss847

J (x,y,d)
AT for the entity pair (x, y) in d is defined as848

J (x,y,d)
AT = −

∑
r∈Rpos

exp(ϕ
(x,y,d)
r )∑

r′∈Rd
pos∪{⊥} exp(ϕ

(x,y,d)
r′ )

−
exp(ϕ

(x,y,d)
⊥ )∑

r′∈Rd
neg∪{⊥} exp(ϕ

(x,y,d)
r′ )

(5)849

where Rd
pos = {r | (x, r, y) ∈ Gd, r ∈ R} and850

Rd
neg = {r | (x, r, y) /∈ Gd, r ∈ R}. Then the851

entire loss function is calculated by:852

L∆ =
∑
d∈D

∑
x,y∈Ed,x ̸=y

J (x,y,d)
∆ (6)853

where ∆ ∈ {BCE,AT}.854

D Hyper-parameter Details855

To help reproduce our results, we provide the hyper-856

parameter settings used in our experiments. Ta-857

ble 6 reports the detailed hyper-parameter settings858

in regard to different baseline models and datasets.859

These hyper-parameters are set to maximize the860

Ign F1-scores on the development set.861

E Discussion on LLMs862

In this section, we provide detailed discussions on863

comparing JMRL with the current SOTA LLMs,864

Method F1-score

ChatGPT (2-shot ICL) 12.4
Davinci (2-shot ICL) 22.9
GPT-4 (2-shot ICL) 27.9
FLAN-UL2 (2-shot ICL) 1.9
FLAN-UL2 (fine-tuned) 54.5

JMRL-DREEAM (this work) 67.9

Table 7: Comparison results on DocRED for LLMs.

including ChatGPT, GPT-4, Davinci and FLAN- 865

UL2. Table 7 reports the comparison results on the 866

DocRED dataset, where the results of LLMs are 867

sourced from (Peng et al., 2023). Results show that 868

there is a huge performance gap between the SOTA 869

LLMs and JMRL-DREEAM on DocRED. We can 870

also observe that the performance of FLAN-UL2 871

significantly improves after being fine-tuned on the 872

training data. It implies that LLMs with few-shot 873

ICL can hardly leverage the full domain knowledge 874

within the training data. Besides, it can also be ob- 875

served that JMRL-DREEAM still significantly out- 876

performs FLAN-UL2 even after FLAN-UL2 was 877

fine-tuned on the training data. The reasons may be 878

two-fold. On one hand, FLAN-UL2 is too general 879

to fit the DocRE task, which is a classification task, 880

when compared with JMRL-enhanced models that 881

are discriminative models. There is a significant 882

gap between the generative training objective and 883

the discriminative training objective for classifica- 884

tion tasks. On the other hand, LLMs inherently 885

suffer from the hallucination issue (Ji et al., 2023), 886

e.g., LLMs may generate unexpected relations as 887

the final predictions. This issue cannot be fully 888

addressed by fine-tuning on the training data. In 889

summary, these comparison results demonstrate 890

that JMRL remains an effective solution for the 891

DocRE task with SOTA performances on bench- 892
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Dataset Logical rules Weight

DWIE

head_of_gov(x, y)← head_of_state(x, z) ∧ in−(z, y) 0.9999
agency_of(x, y)← agency_of(x, z) ∧ based_in(z, y) 0.9999
appears_in(x, y)← player_of(x, z) ∧ appears_in(z, y) 0.9999

in(x, y)← in(x, z) ∧ based_in−(z, y) 0.9999
⊥(x, y)← in(x, z) ∧ ⊥(z, y) 0.9999

mayor_of(x, y)← citizen_of(x, y) -0.9774

DocRED

child(x, y)← father−(x, z) ∧ sibling(z, y) 0.9998
production_company(x, y)← series(x, z) ∧ production_company(z, y) 0.9976

publisher(x, y)← series(x, z) ∧ developer(z, y) 0.9589
mother(x, y)← spouse(x, z) ∧ sibling−(z, y) 0.8394

⊥(x, y)← ⊥−(x, y) 0.5716
residence(x, y)← child(x, y) ∧ residence(z, y) -0.9997

Table 8: Case study of learnt rules, where r− denotes the reverse relation of r.

Method Total size Extra size Ratio
ATLOP 115,087,170 0 0.0%
JMRL-ALTOP 117,369,453 2,282,283 1.9%
Using NeuralLP 175,386,173 60,299,003 34%
Using DRUM 175,485,113 60,397,943 34%

Table 9: Comparison on parameter sizes.
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Figure 6: Comparison results on the inference time.

mark datasets. Furthermore, compared with LLMs,893

the JMRL-enhanced models have evident advan-894

tages in terms of memory cost and inference speed.895

F Analysis on Model Efficiency896

JMRL introduces external parameters to learn logi-897

cal rules. To clarify whether JMRL is efficient in898

the DocRE task, we analyze the model efficiency.899

First, we compared the model parameters of ATOP,900

JMRL-ATOP and other variant models, as reported901

in Table 9. It can be seen that JMRL-ATLOP intro-902

duces only 1.9% extra model parameters, while the903

other variants of JMRL-ALTOP that use NeurlLP904

or DRUM as the rule reasoning module require to905

introduce more than 30% extra model parameters.906

These results indicate that JMRL is parameter ef-907

ficient. Second, we compared the inference time908

of ATOP, JMRL-ATOP and other variant models. 909

Figure 6 illustrates the comparison results between 910

different methods on the average inference time 911

in seconds. It can be seen that the employment of 912

JMRL increases the inference time by about 0.03 913

seconds, whereas both the two variants of JMRL 914

increase the inference time by about 0.3 seconds. 915

These results imply that JMRL is able to signif- 916

icantly improve performance of the DocRE task 917

with a small overhead on the inference time. 918

G Case Study of Learnt Rules 919

We showcase in Table 8 some logical rules ex- 920

tracted from the parameter assignment of the rule 921

reasoning module in JMRL-ATLOP for both the 922

DWIE and DocRED datasets. These rules are ex- 923

tracted by applying Algorithm 1 with the beam size 924

set to 100 and then simplified by omitting identity 925

body atoms. The weight of each rule is sourced 926

from α
(r)
r in Equation (2). It can be observed that 927

expressive logical rules with different weights and 928

different numbers of body atoms can be extracted 929

for both the DWIE and DocRED datasets. More- 930

over, some rules for inferring the head relation ⊥ 931

can also be discovered by JMRL, see the fifth rule 932

for DWIE and the fifth rule for DocRED. It should 933

be noted that LogicRE and MILR do not learn rules 934

for the head relation ⊥. The introduction of logical 935

rules for the head predicate ⊥ could make the pre- 936

diction of no-relation between two entities more 937

accurate since extra information is exploited. This 938

is also a potential reason for explaining why JMRL 939

outperforms both LogicRE and MILR. 940
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