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Figure 1: On the left, a close-up of the Gaussian function plotted over the point cloud with the center point highlighted in the red circle. In
the center, the ground truth for the matching of the points where we depict corresponding points with the same color. On the right, a heatmap
of the errors produced by our model compared to the ones of the baseline model.

Abstract
Current data-driven methodologies for point cloud matching demand extensive training time and computational resources, pre-
senting significant challenges for model deployment and application. In the point cloud matching task, recent advancements
with an encoder-only Transformer architecture have revealed the emergence of semantically meaningful patterns in the attention
heads, particularly resembling Gaussian functions centered on each point of the input shape. In this work, we further investigate
this phenomenon by integrating these patterns as fixed attention weights within the attention heads of the Transformer architec-
ture. We evaluate two variants: one utilizing predetermined variance values for the Gaussians, and another where the variance
values are treated as learnable parameters. Additionally we analyze the performances on noisy data and explore a possible
way to improve robustness to noise. Our findings demonstrate that fixing the attention weights not only accelerates the training
process but also enhances the stability of the optimization. Furthermore, we conducted an ablation study to identify the specific
layers where the infused information is most impactful and to understand the reliance of the network on this information.

CCS Concepts
• Computing methodologies → Machine learning; Shape analysis; • Theory of computation → Computational geometry;

1. Introduction

As consumer interest in augmented and mixed reality grows, 3D
data acquisition technologies are becoming increasingly accessi-

ble. This heightened interest underscores the need for more effi-
cient 3D algorithms to handle real-world imperfections while de-
livering high-quality results. Among various applications involv-
ing 3D data, human-related tasks are particularly significant due
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to their central role in human-machine interactions. These tasks
present considerable challenges because of the wide variety of hu-
man body shapes and sizes. Developing methods that work univer-
sally across this diversity is a complex problem, as even seemingly
reasonable assumptions often fall short when applied to real-world
data [Tre18]. Human data is often used not only in virtual reality
but also in other fields, such as surveillance, autonomous driving,
and medical applications, which require 3D reconstructions of pa-
tient bodies. These tasks often rely on geometric data and require
real-time processing [HZ∗17, CJB∗24]. Moreover, 3D data inher-
ently presents challenges due to its loosely structured nature. While
image and 2D data methods benefit from the well-defined structure
of pixel matrices, geometric data lacks such structure and is often
sparse.

In recent years, data-driven methods have emerged for various
3D tasks, including object annotation, segmentation, classification,
and geometry generation. In this work, we focus on the point cloud
matching task, which involves finding correspondences between
points discretizing a pair of shapes. This is a fundamental step
crucial for 3D registration. The Transformer architecture has been
successfully employed for shape matching and registration tasks,
either alone or as part of broader architectures, yielding impres-
sive results [WS19,FLLW21,TCM∗21,LXW∗22]. However, while
these architectures are relatively lightweight during inference, they
are notably resource-intensive during the training phase. Recently,
Raganato et al. [RPM23] observed the formation of Gaussian pat-
terns in the attention weights of Transformers used for point cloud
matching. In this work, we further investigate these patterns and ex-
plore how they can be exploited to enhance performance and reduce
the training time of encoder Transformer models for the match-
ing problem, thereby also reducing the environmental impact of
the process. Our studies demonstrate that injecting Gaussian infor-
mation into some self-attention heads in Transformer-based models
can stabilize optimization, reduce the parameter footprint, and im-
prove correspondence quality.

Our contributions can be summarized as follows: i) we improve
the training process and reduce the parameter count of a Trans-
former architecture by fixing the weights of some self-attention
heads to localized Gaussian functions. ii) we optimize the param-
eters of the Gaussians to identify the best configuration for human
shapes. iii) we study the robustness to noise of the methods and
explore a way to improve on it. iv) we analyze the impact of the
injected information on different components of the network.

2. Related work

2.1. Non-rigid shape matching

It is fundamental for many applications to map each point of a sur-
face to one point of a second surface that has undergone a non-
rigid deformation. For this problem, known as non-rigid shape
matching, many contributions have been raised with a number of
approaches. Descriptor-based methods long offered a solution by
computing a vector of features, invariant to a number of transfor-
mations, for each point. Then, the matches are assigned according
to a similarity score between points in the feature space [STDS14],
[SY11], [TBW∗11]. A more comprehensive review of the match-
ing methodologies can be found in [DYDZ22] and, in particular,

for the methods that extrinsically solve the correspondence prob-
lem in [Sah20]. While hand-crafted methods for shape correspon-
dence produce good results, they present high developmental costs
and are often domain-specific, making it difficult to apply them in
other fields. Thanks to the rise of machine learning, more data-
driven methods have been proposed, and the transformer architec-
ture has been proven to be a good solution for this problem and
to generalize well to a number of different contexts. Some meth-
ods involving an encoder-decoder architecture, naturally designed
to allow interactions between more inputs, have emerged; for ex-
ample, in [TCM∗21], the Perceiver architecture [JGB∗21], origi-
nally proposed to target classification tasks across various modali-
ties, is adapted to the shape matching task. Oppositely, in [RPM23],
the authors proposed a shape matching solution with state-of-the-
art competitive performances that exploits an encoder-only trans-
former architecture. This work pointed out the importance of in-
troducing positional information about the points and conducted an
extensive ablation study to identify the critical points of the archi-
tecture. In [RPM23], it has also been revealed that the attention pat-
terns produced by the model are close to Gaussians centered around
the points. Furthermore, it has been supposed that directly provid-
ing these patterns to the network could significantly speed up the
learning procedure; in this work, we aim to explore this possibility,
the advantages it brings and its drawbacks.

2.2. Attention in Transformers

Transformer architectures have been initially introduced to tackle
Natural Language Processing (NLP) tasks [VSP∗17] and have, over
the years, achieved better and better performances also in fields be-
yond NLP [KNH∗22,LLL∗23]. The typical input for Transformer-
based models is one or more sequences of tokens, in NLP those are
often a direct representation of words. The attention mechanism,
which is the core of the Transformer architecture, works by com-
puting weights that encode the relationships between a given token
and all other tokens in a sequence. In self-attention, this process is
applied within the same sequence, allowing the model to consider
the context of each token relative to all others in that sequence. In
cross-attention, instead, it is used to relate tokens from different
sequences. Multi-head attention enhances this mechanism by com-
puting multiple sets of attention weights, known as heads, in par-
allel. These heads are then concatenated, enabling the network to
capture different relationship aspects independently and learn com-
plex patterns.

Given their success and widespread usage, numerous studies
have focused on interpreting Transformer networks, particularly
analyzing attention mechanisms and the interpretability of their
weights and connections [CKLM19,LACB24,MRC22,WVC∗23].
These analyses have led to several advancements aimed at im-
proving the network’s efficiency and performance. For instance, in
the context of machine translation in NLP, multiple studies have
shown that certain attention patterns learned by Transformer ar-
chitectures reflect positional encoding of contextual information
[RT18, VTM∗19, RKR21]. These straightforward patterns can be
integrated into the architecture without the need for extensive train-
ing. [RST20] and [YSI20] significantly simplified the model by re-
placing some attention heads with fixed self-attention patterns or
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Gaussian patterns, respectively, which reduces the number of pa-
rameters while minimally impacting performance. A similar solu-
tion is reported in [TBM∗21]. The authors propose a model that
learns synthetic attention weights without token-token interactions.
By combining synthetic attention heads with dot-product attention
heads, the model outperforms the traditional transformer, showing
how the attention mechanism can often be improved with the use
of less complex functions.

3. Background

In this section, we describe the problem addressed in our work and
introduce the underlying concepts of the explored methodology.

3.1. The task

Broadly speaking, the shape matching task involves identifying a
bijective map between the points of two surfaces. When restricted
to discrete settings such as point clouds and meshes, this task can be
defined as finding a set ΠX ,Y ⊂ X ×Y , where (x,y) ∈ ΠX ,Y implies
that y corresponds to x for each point x ∈ X and y ∈Y . In the case of
meshes, the problem can incorporate additional constraints due to
the connectivity defined by the edges. In this work, we focus only
on unordered point clouds representing human bodies undergoing
non-rigid deformations.

3.2. Attention patterns

In [RPM23], insights into the functions of attention heads in Trans-
former models for point cloud matching are provided. The anal-
ysis reveals that the model generates attention heads that approx-
imate diagonal blocks in both directions. Given that the input of
the model is the concatenation of two point clouds, this suggests
that the attention heads specialize in producing self-attention and
cross-attention patterns. Furthermore, these patterns, when plotted
as signals over the shapes, resemble Gaussian distributions cen-
tered around the points of the shape. This indicates that the model
actively retrieves a neighborhood around each point to encode rele-
vant information about it. Figure 2 illustrates one such pattern (half
of a row in an attention head from [RPM23]) for a point on the left
hand. It is evident that the attention weights are larger around the
left hand (yellow) and decrease as the points get farther from the
target point, with values close to zero in the farthest regions, like
the feet (blue), as encoded by the colormap.

4. Methodology

The proposed architecture builds upon the framework presented
in [RPM23], referred to hereafter as APEAYN. Specifically, we in-
troduce modifications to the Transformer attention mechanism by
incorporating a pre-computed Gaussian function applied to the pro-
cessed points. Given two input point clouds, X and Y , containing
nX and nY points, respectively, we concatenate the coordinates fea-
tures of these point clouds separated by a separator token, SEP, of
shape 1× 3. Consequently, the input to the network is a matrix of
shape (nX +1+nY )×3. In the following, without loss of general-
ity, we consider n = nX = nY , and thus the input matrix with shape
(2n+1)×3.

Figure 2: Example of attention pattern in [RPM23] plotted over the
shape for one point (top left hand finger). The point colors represent
a heatmap with a spike on the left hand (yellow) and small values
on the feet (blue).

To align with the dimensionality requirements of the Trans-
former encoder, the two-point clouds are projected into a d-
dimensional space using a point-wise fully connected neural net-
work, with d = 512 as set in the the APEAYN model. This transfor-
mation operates independently for each point, resulting in a higher-
dimensional encoding of the original 3D coordinates. Instead, the
output of the Transformer network is similarly projected back into
a 3-dimensional space using a fully connected layer with learned
weights.

The Transformer encoder architecture comprises multiple multi-
head attention and feed-forward layers. Each multi-head attention
layer consists of h = 8 attention functions named heads. In our
proposed architecture, some heads employ the conventional dot-
product attention mechanism, while others utilize the Euclidean
Gaussian function for attention weights. In both cases, residual at-
tention is incorporated by adding the attention energy from the pre-
vious layer to the current layer.

The output of the network is a matrix of shape (2n + 1)× 3,
where each row corresponds to a point of the input mapped on
the other shape. This matrix can be split into two point clouds, X̂
and Ŷ , once removed the SEP element. X̂ contains the points of
X remapped to fit the shape of Y , and conversely, Ŷ contains the
points of Y remapped over X .

Dot-product attention heads. Given an input sequence of length
n and dimensionality d, for the i-th head in the j-th attention
layer, if the head is a dot-product one, three linear projections
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are computed: query Q j,i ∈ Rn×d̃ , keys K j,i ∈ Rn×d̃ and values

V j,i ∈Rn×d̃ , where d̃ = d/h. To incorporate positional information
into the Transformer, rotary positional encoding (RoPE [SAL∗24])
is used as in [RPM23], where it is shown to produce the best results
with this network architecture. This method applies rotation matri-
ces derived from the cosine and sine functions to the keys matrix.
The attention energy is then computed as:

ξ j,i = so f tmax

(
Q j,iRd̃

ΘKT
j,i√

d̃
+ξ j−1,i

)
(1)

where Rd̃
Θ is the block diagonal matrix with rotation matrices

for each input on its diagonal. In particular, we use Θ = {θi =

10000−2(i−1)/d̃ , i ∈ [1,2, ..., d̃/2]}. For the input at any given m
position the matrix Rd̃

Θ,m has the following matrices on its diago-
nals: (

cosmθi −sinmθi
sinmθi cosmθi

)
Gaussian attention heads. In Gaussian attention heads, the input
is projected only in the values matrix V j,i ∈ Rn×d̃ . The attention
energy for each point is computed as a Euclidean Gaussian around
the point:

ξ j,i = so f tmax

(
exp

(
− E2

2σ2
i

)
+ξ j−1,i

)
(2)

where σi is a fixed or learnable parameter of the network, and E
is a (2n+ 1)× (2n+ 1) matrix and Ep,q is the Euclidean distance
between the points p and q if they belong to the same shape, or 0 if
the two points belong to different shapes.

In general, due to how the concatenation is performed, E will
have null upper-right and lower-left quadrants as shown in Figure
3. This represents a self-attention head as all the matrix portions
representing cross-shape relations are null.

Figure 3: Attention weights of four Gaussian attention heads with
different sigmas.

Finally, the output of each attention head is computed as the
weighted average of the values V j,i:

Att(ξ j,i,V j,i) = ξ j,iV j,i (3)

The outputs of the h attention heads are then concatenated and fed
to a feed-forward block composed of two linear layers with ReLU
activation functions. To improve training stability a layer normal-
ization module is placed before and after the feed-forward block.

Loss computation. Given the two output point clouds X̂ and Ŷ ,
that map the points of X over the shape of Y and vice versa, using
the ground truth correspondence maps ΠX ,Y and ΠY,X we order the
point clouds to respect the matching, meaning that (xi,yi) ∈ ΠX ,Y
and (yi,xi) ∈ ΠY,X for any index i. This correspondence allows to
compute a simple loss as the sum of two losses lX ,Y and lY,X defined
as:

l = lX ,Y + lY,X = ||Ŷ −X ||22 + ||X̂ −Y ||22 (4)

To improve the capability of the network to discriminate between
which shape the points belong to, an additional mean squared error
loss over the separator SEP is defined, as described in [RPM23].

5. Experimental settings and evaluation

In this section, we outline the experimental settings, including the
training and testing datasets, and define the evaluation metrics. We
then present the results achieved by our models and compare them
with the baseline model.

5.1. Datasets and settings

We begin by detailing the training data and the data augmentation
methods applied. We then define the parameters of the trained mod-
els and the baseline model, followed by a description of the test data
and evaluation metrics.

Training data. Following the setup of [RPM23], we utilize the
same training set, which consists of 10,000 point clouds, each
containing 1,000 points, extracted from the SURREAL dataset
[VRM∗17]. The correspondence of the points is known by con-
struction, as the 1,000 selected points are consistent across each
shape, and this is used as ground truth during the training process.

Applied augmentations. To enhance the model’s robustness to ro-
tations, for each input shape, we randomly apply one selected rota-
tion from the following five possibilities: i) random rotation along
all three axes within the interval [0,2π]; ii) random rotation along
the x-axis within the interval [0,2π]; iii) random rotation along the
y-axis within the interval [0,2π]; iv) random rotation along the z-
axis within the interval [0,2π]; v) no rotation. Furthermore, to en-
sure the network is independent of the order of points in the point
cloud and to prevent it from learning the order, a random permuta-
tion is applied to the input points in each shape before concatenat-
ing the two shapes. This permutation is then applied to the points
before computing the losses to ensure the correct use of the ground
truth correspondence.

© 2024 The Authors.
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Gaussian attention heads. We conduct our experiments using a
multi-head attention Transformer encoder model with four Gaus-
sian heads and four standard dot-product attention heads. We train
two configurations:

• 4gh600: In this configuration, the sigma values are fixed based
on the intuition that having different heads focus on neighbor-
hoods of varying sizes allows the network to learn both fine and
coarse details of the point cloud. The selected values for the σ

parameter in Equation 2 are [0.05, 0.1, 0.5, 1] fixed as absolute
values over the shapes after the pre-processing phase, which, as
illustrated in Figure 4, approximately describe a bell curve over
different regions of human shapes: the finger, the hand, the hand
and forearm, and the whole arm, respectively.

• 4gh600.lis: In this configuration, the sigma values are initialized
to [0.05, 0.1, 0.5, 1] but are then optimized as parameters of the
network.

All configurations are trained for a total of 600 epochs with batch
sizes of 24 shapes (paired up into 12 couples).

Baseline. A configuration with no Gaussian attention heads, iden-
tified by the code 0gh600, is trained for 600 epochs with a batch
size of 24. This configuration reproduces the APEAYN model with
a reduced number of epochs, from 5000 to 600, to have a fairer
comparison to the other trained models.

Test data. The models are tested on the shape matching task using
the Faust1k dataset [BRLB14]. This dataset comprises 10 subjects
in 10 different poses, represented by the same mesh, totaling 100
shapes with 1,000 points each. Additionally the models are tested
on a noisy version of the same dataset, as done in [RPM23], to
assess the robustness to noise of the methods. The noise on the test
set is extracted from a normal distribution N(0,0.01) and added on
every point in the dataset.

Metrics. The evaluation of the results follows the setup in
[TCM∗21, RPM23]. From the Faust1k dataset, 100 random pair-
ings are selected as a test set. Each inference on a pair produces
two output point clouds, X̂ containing the points of X remapped
over the shape of Y , and Ŷ remapping Y over X . These constitute
the data to compute two matchings, πX ,Y and πY,X , which map the
points of X to Y and vice versa, respectively. To select which match-
ing is to be computed, for each inferred point cloud we compute the
chamfer loss against the ground truth. The couple that produces the
lower chamfer error is used to compute the matching. In particular,
in the case X̂ and Y produce the lower loss value, for each point x
in the source point cloud X we select the matching point yx in Y
as the point in Y closest to x̂, mapping of x over the target shape
Y . The error value is then defined as the geodesic distance between
yx and y, point in Y such that (x,y) ∈ ΠX ,Y , ground truth match-
ing. It is important to note that the network processes the mesh as a
point cloud, retaining no information on connectivity. The geodesic
distances are used solely as an evaluation metric.

The implementation of the training process, the evaluation and
the models used for the experiments can be found at this repository:
github.com/ariva00/GaussianAttention4Matching.

5.2. Results

The results on the Faust1k dataset are presented in Table 1. For
each trained model, two checkpoints are listed: one at 600 epochs
and another at the epoch that produced the smallest loss.

Table 1: Comparison of the trained models results. For each model,
we report the average geodesic error on the clean dataset (F1k er-
ror) and on the noisy dataset (F1knoise error), the number of epochs
of its learning, and the number of parameters. For the models we
propose and for the baseline, we consider both the version obtained
after 600 epochs and the one that reaches the best minimization of
the loss (denoted as best.).

Model F1k error F1knoise error Epochs Parameters

0gh600 0.0231 0.0379 600 19.25M
4gh600 0.0227 0.1234 600 17.68M
4gh600.lis 0.0198 0.1264 600 17.68M
best.0gh600 0.0206 0.0365 578 19.25M
best.4gh600 0.0171 0.1358 576 17.68M
best.4gh600.lis 0.0223 0.1578 574 17.68M
APEAYN [RPM23] 0.0124 0.0282 5000 19.25M

It is evident that with the same number of epochs, the model uti-
lizing Gaussian attention heads produces better results and reduces
the number of parameters. The error is approximately 15% less than
that of the baseline model. The improved architecture achieves an
average matching error of only 160% of the error of the APEAYN
model in just 12% of the training time, the latter being trained for
5K epochs. Moreover, the 0gh600 model produces an error that
is 200% of that of the APEAYN model. Interestingly, the errors
recorded by the models at the epoch with the best training loss do
not rank in the same order, indicating a potential instability in the
loss descent.

The resulting four σ values of the 4gh600.lis model are 0.03,
0.09, 0.22, and 0.87. The distribution of these parameters after
training suggests that the initial values were too large, but adopt-
ing multiple scales is a beneficial approach.

Noisy data. It is possible to notice how the performances of the
models with gaussian heads drastically decrease when faced with
noisy data. The error on the noisy version of the Faust1k dataset is
more than five times the error on the clean version for the 4gh600
and 4gh600.lis models, while it is only 65% more in the case of
the 0gh600 model. This is due to the nature of the selected neigh-
borhood in the gaussian heads, which is based solely on euclidean
distances and is inherently very susceptible to noise. To mitigate
this problem the 4gh600.lis.noise model has been introduced, it
is trained identically to the 4gh600.lis model, with the addition of
noise in the training set. The noise is injected on 50% of the points
and extracted from a normal distribution N(0,0.02), this additional
data augmentation should also help in avoiding overfitting issues.
The results, reported in Table 2 shows that the model is indeed more
robust to noise with respect to the 4gh600.lis model but the perfor-
mances on the clean dataset also decrease to the point it is slightly
worse than the baseline, revealing that this is not the best solution
to the problem and that further studies need to be conducted.
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Figure 4: Fixed attention patterns provided to the model in the 4gh600 configuration plotted for two points. The first point is localized on
the left hand of the shape (left), the other on the lower abdomen (right). We encode the value of the attention weights by the colormap. For
each Gaussian, the value of the σ selected is reported on the top of the visualization.

Figure 5: Training loss through the epochs of the models. The curves are reported unfiltered (dashed line) and smoothed (solid line) for a
clearer visualization.

Table 2: Comparison of the trained models results with the ad-
ditional model trained with noisy data 4gh600.lis.noise. For each
model, we report the average geodesic error on the clean and noisy
datasets

Model F1k error F1knoise error

0gh600 0.0231 0.0379
4gh600 0.0227 0.1234
4gh600.lis 0.0198 0.1264
4gh600.lis.noise 0.0249 0.0395

6. Analysis and Ablation

To better understand the results obtained by the models, we plot
the loss descent through the epochs in Figure 5. It is evident that all
the loss curves exhibit significant noise, yet the spikes in the Gaus-
sian heads models appear less intense, particularly in the 4gh600.lis
model that optimizes the sigma values. This suggests that the train-
ing loss is not an ideal metric for identifying the best model, indi-
cating the need for a better validation method.

The smoothed version of the curves shows that the 4gh600.lis
model consistently produces lower loss values, suggesting that the
injection of fixed Gaussian attention improves the training pro-
cess as expected. Notably, in the initial epochs, both the 4gh600.lis
and 4gh600 models demonstrate a smoother and faster descent. All

© 2024 The Authors.
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models still exhibit improvement close to epoch 600, indicating that
additional training could achieve better results.

The model trained with the noisy dataset results in loss values
higher than all the other models along all the epochs but the first
ones, where it registers loss values lower than the baseline. This
is not unexpected as the loss values are computed on noisy data
that is intrinsically more complex and challenging. It is however
interesting to notice how the minimum loss epoch occurs earlier
with respect to the other models and the plateau seems to be more
pronunced. This suggests that the addition of noise in training helps
the method adapt to noisy situations but also slows down the loss
decrease, at least with the selected noise distribution.

Figure 6: Error values for a pair of point clouds obtained by the
4gh600 model. The colormap encodes the error: zero errors are
white, while larger errors are darker.

Figure 6 illustrates a pair of shapes on which the 4gh600 model
records one of the highest matching errors on the test set. The er-
rors are localized around the hands and between the left foot and
the right knee. This is due to the close proximity of points from
different regions; the model lacks information about point connec-
tivity and thus cannot distinguish between points that are close in
3D space but far apart on the underlying manifold. For visualiza-
tion purposes, we render the mesh under the point clouds with the
same colors to better visualize the error areas.

Figure 7 compares the matchings produced by the trained mod-
els. The example on the left shows an optimal case where the lack
of connectivity information does not cause significant errors. Con-
versely, the right side shows another example of a critical situation,
similar to Figure 6. Overall, our architectures demonstrate lower
and more localized errors than the 0gh600 model, although the crit-
ical regions are consistent across all models.

Table 3 showcases the performance of the models when random
rotations and permutations are applied to the input point clouds. It

Table 3: Comparison of the trained models under random rotations
and random permutations applied to the input point clouds.

Model F1k error
Random Random
Rotation Permutation

0gh600 0.0231 0.0231 0.0185
4gh600 0.0227 0.0227 0.0216
4gh600.lis 0.0198 0.0207 0.0140
best.0gh600 0.0206 0.0213 0.0183
best.4gh600 0.0171 0.0176 0.0145
best.4gh600.lis 0.0223 0.0232 0.0127
APEAYN [RPM23] 0.0124 0.0127 0.0112

is evident that the trained models do not suffer significant degrada-
tion due to these transformations, reflecting that the augmentations
during training are sufficient to ensure robustness.

6.1. Ablation study

In this section we report and analyze the results of two ablation
studies conducted on the models:

• Heads ablation. To better understand the contribution of each
attention head and the importance of the information it carries
for the matching problem, for every model we completely mask
out the attention of each head, one at a time, and compare the
results on the test set with those of the complete model. Table 4
reports the results of the different models with each head masked
out.

• Layers ablation. To identify the specific layers where the Gaus-
sian information is most impactful, we train six additional mod-
els for 100 epochs. Each of these models uses only one multi-
head attention layer with fixed attention weights, while the other
layers are kept with the standard dot-product attention. The re-
sults of the tests are shown in Table 5.

Before delving into the analysis, it is essential to define what
self-attention and cross-attention heads mean in the context of this
work. Conventionally, a self-attention head computes attention be-
tween the input and itself, while a cross-attention head computes
attention between two different input sequences. For the scope of
this study, we define:

• Self-Attention Heads: Heads that produce attention weight ma-
trices with higher values in the upper-left and lower-right quad-
rants than in the upper-right and lower-left quadrants. These
heads provide more information regarding the relationships be-
tween points within the same shape. In Figure 8 the left head is
a self-attention head.

• Cross-Attention Heads: Heads that produce attention weight ma-
trices with higher values in the upper-right and lower-left quad-
rants. These heads focus more on the relationships between
points from different shapes. The right head in 8 classifies as
cross-attention head.

By masking out one head at a time and evaluating the impact on

© 2024 The Authors.
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Figure 7: Qualitative comparison of the matching results on two pairs of shapes with the trained models. On the left, an optimal case, on the
right, a more challenging one. In the first row, we report the estimated correspondence using color coding. In the second row, we depict the
geodesic error encoded by the colormap.

Table 4: Results of the ablation study on the attention heads. Each column AblationN reports the results with the N-th attention head masked
out. In brackets, we report the sigma values for the Gaussian heads.

Model Full model Ablation1 Ablation2 Ablation3 Ablation4 Ablation5 Ablation6 Ablation7 Ablation8

0gh600
- cross self self cross self self self self
0.0231 0.1001 0.2585 0.1570 0.0458 0.0485 0.2851 0.2026 0.1896

4gh600
- self cross cross self self [0.05] self [0.10] self [0.50] self [1.00]
0.0227 0.0513 0.1791 0.1576 0.0965 0.2950 0.3333 0.3807 0.2891

4gh600.lis
- self cross cross self self [0.03] self [0.09] self [0.22] self [0.87]
0.0198 0.0423 0.1179 0.3273 0.1029 0.2858 0.3930 0.3597 0.3370

APEAYN [RPM23]
- self self cross self self self cross self
0.0124 0.0282 0.2462 0.2254 0.3166 0.0210 0.0156 0.1300 0.0476

performance, we can gain insights into the specific roles and im-
portance of self-attention and cross-attention heads in the matching
process.

Heads ablation. In Table 4, the results of the ablation study on the
heads are presented. Each column shows the matching error with
the corresponding head masked out, as well as the type of head,
whether it was self-attention or cross-attention.

The 0gh600 model has 2 out of 8 heads designated as cross-
attention heads. The ablation results indicate that the model relies
primarily on the self-attention heads, though not uniformly. The
error among the self-attention heads ranges from 200% to 1200%
of the baseline error. No head is particularly redundant or super-
fluous, as even the smallest error recorded in the ablation tests is
almost double the error registered by the full model.

The 4gh600 model heavily relies on the fixed Gaussian heads
(heads from 5 to 8), as their removal results in the highest errors.
Specifically, the ablation of each Gaussian head shows an error
ranging from 1300% to 1700% of the complete model error. The
other errors range from double to ten times the full model error,
indicating no significant information redundancy across the heads.
Interestingly, among the dot-product heads, the model relies most
on the cross-attention ones, contrasting with the reliance pattern ob-
served in the 0gh600 model. The reliance on fixed attention heads
suggests that valuable information has been present since the be-
ginning of epoch one, unlike the randomly initialized heads.

The 4gh600.lis model behaves similarly to the 4gh600 model,
relying heavily on the Gaussian heads and showing no particular
signs of redundancy. The main difference is found in the error for
the masked head 3. In both models, this head is a cross-attention

© 2024 The Authors.
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Figure 8: Attention weights of two dot-product attention heads of
the 4gh600 model in the final attention layer. The left head shows a
self attention pattern, the right one shows a cross-attention pattern.

head, but in the model with learned sigma values, masking this head
produces significantly worse results, even worse than masking head
5, one of the Gaussian heads.

In addition to the trained models, the APEAYN model is also
used for the ablation study. The results reveal some redundancy,
particularly in the ablation of head 6, which shows very little error
difference. Overall, the errors introduced by removing one head at
a time are smaller than those of the other models but still signifi-
cant. Unlike the other models, the cross-attention specialized heads
appear more crucial for the model’s performance than most self-
attention heads.

Layers ablation. Table 5 presents the results of the ablation study
on the attention layers. Six models were trained for 100 epochs
each, with only one of the six attention layers utilizing the Gaus-
sian heads. The best results were achieved by the Layer4 model,
which employed Gaussian attention in its fourth layer. Overall, the
network benefits more from the additional information when it is
provided in the deeper layers. This suggests that deeper layers are
more effective at integrating and leveraging the fine-grained details
captured by the Gaussian heads, thereby enhancing the model’s per-
formance.

6.2. Limitations

In this work, we focused on the shape matching task between hu-
man shapes only. Moreover, the tests were performed on a dataset
that exclusively comprises point clouds of the same cardinality.
With our work we aim to analyze in depth which type of geo-
metric information enables a transformer architecture to achieve
state-of-the-art results. For this reason, in our experiments, we limit
our comparison to the most recent data-driven solution for shape
matching based on transformers. Extensive testing on diverse and
more challenging datasets, including both human and non-human
shapes, is required to fully assess the applicability, generalizability,
and potential drawbacks of the proposed methodology, as well as
a broader comparison to state-of-the-art methods. The performaces

Table 5: Results of the ablation study on the attention layers. Each
row LayerN reports the results of the model with the N-th atten-
tion layer that uses four fixed Gaussian attention heads, while all
the other layers present full standard dot-product attention heads.
Each model is trained for 100 epochs.

Model F1k error

Layer0 0.0945
Layer1 0.1207
Layer2 0.0740
Layer3 0.0694
Layer4 0.0497
Layer6 0.0901
4gh100 0.0360

on noisy data of the 4gh600.lis.noise show how the methodology
could work but does require further studies to limit the matching
deterioration on the clean dataset.

7. Conclusions

In this work, we showed that in a Transformers-based approach to
the shape matching task, substituting dot-product attention heads
with Gaussian attention heads in the Transformer architecture sig-
nificantly accelerates the training process, particularly during the
initial stages. The enhanced architecture not only exhibited im-
proved performance metrics but also showed a smoother loss de-
scent. The robustness to noise can be improved via injection of
noise in the training set, however it causes a performance decrease
when performed in the current configuration, thus requiring further
studies. Furthermore, our ablation study highlighted the importance
of the fixed attention heads within the architecture and the optimal
depth at which Gaussian information can be effectively injected.

While our testing has not been exhaustive, we believe that with
further refinement and an enhanced training process, a similar ar-
chitecture that leverages localized Gaussians could further reduce
training time and yield more stable results. In future work, we
plan on validating these findings across a broader range of datasets
[MMR∗19, DZL∗20] to confirm the robustness and versatility of
our approach.
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