
Human Expertise in Algorithmic Prediction

Rohan Alur
EECS, LIDS

MIT
ralur@mit.edu

Manish Raghavan
EECS, LIDS, Sloan

MIT
mragh@mit.edu

Devavrat Shah
EECS, IDSS, LIDS, SDSC

MIT
devavrat@mit.edu

Abstract

We introduce a novel framework for incorporating human expertise into algorithmic
predictions. Our approach leverages human judgment to distinguish inputs which
are algorithmically indistinguishable, or “look the same" to predictive algorithms.
We argue that this framing clarifies the problem of human-AI collaboration in
prediction tasks, as experts often form judgments by drawing on information which
is not encoded in an algorithm’s training data. Algorithmic indistinguishability
yields a natural test for assessing whether experts incorporate this kind of “side
information", and further provides a simple but principled method for selectively
incorporating human feedback into algorithmic predictions. We show that this
method provably improves the performance of any feasible algorithmic predictor
and precisely quantify this improvement. We find empirically that although algo-
rithms often outperform their human counterparts on average, human judgment
can improve algorithmic predictions on specific instances (which can be identified
ex-ante). In an X-ray classification task, we find that this subset constitutes nearly
30% of the patient population. Our approach provides a natural way of uncovering
this heterogeneity and thus enabling effective human-AI collaboration.

1 Introduction

Despite remarkable advances in machine learning, human judgment continues to play a critical role in
many high-stakes prediction tasks. For example, consider the problem of triage in the emergency room,
where healthcare providers assess and prioritize patients for immediate care. On one hand, prognostic
algorithms offer significant promise for improving triage decisions; indeed, algorithmic predictions
are often more accurate than even expert human decision makers [13, 17, 30, 41, 44, 16, 15, 53]. On
the other hand, predictive algorithms may fail to fully capture the relevant context for each individual.
For example, an algorithmic risk score may only have access to tabular electronic health records
or other structured data (e.g., medical imaging), while a physician has access to many additional
modalities—not least of which is the ability to directly examine the patient!

These two observations—that algorithms often outperform humans, but humans often have access to a
richer information set—are not in conflict with each other. Indeed, [3] find exactly this phenomenon in
an analysis of emergency room triage decisions. This suggests that, even in settings where algorithms
outperform humans, algorithms might still benefit from some form of human input. Ideally this
collaboration will yield human-AI complementarity [6, 61], in which a joint system outperforms
either a human or algorithm working alone. Our work thus begins with the following question:

When (and how) can human judgment improve the predictions of any learning algorithm?

Example: X-ray classification. Consider the problem of diagnosing atelectasis (a partially or fully
collapsed lung; we study this task in detail in Section 5). Today’s state-of-the-art deep learning
models can perform well on these kinds of classification tasks using only a patient’s chest X-ray as
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input [35, 59, 1]. We are interested in whether we can further improve these algorithmic predictions
by incorporating a “second opinion” from a physician, particularly because the physician may have
access to information (e.g., by directly observing the patient) which is not present in the X-ray.

A first heuristic, without making any assumptions about the available predictive models, is to ask
whether a physician can distinguish patients whose imaging data are identical. For example, if
a physician can correctly indicate that one patient is suffering from atelectasis while another is
not—despite the patients having identical chest X-rays—the physician must have information that
the X-ray does not capture. In principle, this could form the basis for a statistical test: we could ask
whether the physician performs better than random in distinguishing a large number of such patients.
If so, even a predictive algorithm which outperforms the physician might benefit from human input.

Of course, we are unlikely to find identical observations in continuous-valued and/or high-dimensional
data (like X-rays). A natural relaxation is to instead consider observations which are sufficiently
“similar”, as suggested by [3]. In this work we propose a more general notion of algorithmic
indistinguishability, or coarser subsets of inputs in which no algorithm (in some rich, user-defined
class) has significant predictive power. We show that these subsets can be discovered via a novel
connection to multicalibration [33], and formally demonstrate that using human feedback to predict
outcomes within these subsets can outperform any algorithmic predictor (in the same user-defined
class). In addition to being tractable, this framework is relevant from a decision-theoretic perspective:
although we’ve focused thus far on algorithms’ fundamental informational constraints, it is also
natural to ask whether an expert provides signal which is merely difficult for an algorithm to learn
directly (due to e.g., limited training data or computational constraints). Our approach naturally
interpolates between these contexts by defining indistinguishability with respect to whichever class of
models is practically relevant for a given prediction task. We elaborate on these contributions below.

Contributions. We propose a novel framework for human-AI collaboration in prediction tasks. Our
approach uses human feedback to refine predictions within sets of inputs which are algorithmically
indistinguishable, or “look the same" to predictive algorithms. In Section 4 we present a simple
method to incorporate this feedback only when it improves on the best feasible predictive model (and
precisely quantify this improvement). This extends the “omnipredictors” result of [28] in the special
case of squared error, which may be of independent interest.1 In Section 5 we present experiments
demonstrating that although humans fail to outperform algorithmic predictors on average, there exist
specific (algorithmically indistinguishable) instances on which humans are more accurate than the
best available predictor (and these instances are identifiable ex ante).2 In Section 6 we consider the
complementary setting in which an algorithm provides recommendations to many downstream users,
who independently choose when to comply. We provide conditions under which a predictor is robust
to these compliance patterns, and thus be simultaneously optimal for all downstream users.

2 Related work

The relative strengths of humans and algorithms. Our work is motivated by large body of
literature which studies the relative strengths of human judgment and algorithmic decision making
[13, 17, 30, 44] or identifies behavioral biases in decision making [66, 11, 4, 60]. More recent work
also studies whether predictive algorithms can improve expert decision making [41, 53, 7, 1].

Recommendations, deferral and complementarity. One popular approach for incorporating human
judgment into algorithmic predictions is by deferring some instances to a human decision maker
[49, 58, 52, 37, 55, 38]. Other work studies contexts where human decision makers are free to override
algorithmic recommendations [20, 8, 14, 22, 1], which may suggest alternative design criteria for
these algorithms [5, 9, 34]. More generally, systems which achieve human-AI complementarity (as
defined in Section 1) have been previously studied in [2, 5, 69, 23, 64, 19, 47].

[61] develop a comprehensive taxonomy of this area, which generally takes the predictor as given, or
learns a predictor which is optimized to complement a particular model of human decision making.
In contrast, we give stronger results which demonstrate when human judgment can improve the
performance of any model in a rich class of possible predictors (Section 4), or when a single algorithm
can complement many heterogeneous users (Section 6).

1We provide additional technical results in Appendix A. We elaborate on connections to [28] in Appendix D.
2Code to replicate our experiments is available at https://github.com/ralur/heap-repl.
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Performative prediction. A recent line of work studies performative prediction [57], or settings
in which predictions influence future outcomes. For example, predicting the risk of adverse health
outcomes may directly inform treatment decisions, which in turn affects future health outcomes.
This can complicate the design and evaluation of predictive algorithms, and there is a growing
literature which seeks to address these challenges [10, 51, 31, 21, 36, 39, 50, 67, 32, 70, 48, 54, 56].
Performativity is also closely related to the selective labels problem, in which some historical
outcomes are unobserved as a consequence of past human decisions [45]. Though these issues arise
in many canonical human-AI collaboration tasks, we focus on standard supervised learning problems
in which predictions do not causally affect the outcome of interest. These include e.g., weather
prediction, stock price forecasting and many medical diagnosis tasks, including the X-ray diagnosis
task we study in Section 5. In particular, although a physician’s diagnosis may inform subsequent
treatment decisions, it does not affect the contemporaneous presence or absence of a disease. More
generally, our work can be applied to any “prediction policy problem”, where accurate predictions
can be translated into policy gains without explicitly modeling causality [42].

Algorithmic monoculture. Our results can be viewed as one approach to mitigating algorithmic
monoculture, in which different algorithms make similar decisions and thus similar mistakes [43, 65].
This could occur because these systems are trained on similar datasets, or because they share similar
inductive biases. We argue that these are precisely the settings in which a “diversifying” human
opinion may be especially valuable. We find empirical evidence for this in Section 5: on instances
where multiple models agree on a prediction, human judgment adds substantial predictive value.

Multicalibration, omnipredictors and boosting. Our results make use of tools from theoretical
computer science, particularly work on omnipredictors [28] and its connections to multicalibration.
[24] show that multicalibration is tightly connected to a cryptographic notion of indistinguishability,
which serves as conceptual inspiration for our work. Finally, [27] provide an elegant boosting
algorithm for learning multicalibrated partitions that we make use of in our experiments, and [29]
provide results which reveal tight connections between a related notion of “swap agnostic learning”,
multi-group fairness, omniprediction and outcome indistinguishability.

3 Methodology and preliminaries

Notation. Let X ∈ X be a random variable denoting the inputs (or “features”) which are available for
making algorithmic predictions about an outcome Y ∈ [0, 1]. Let Ŷ ∈ [0, 1] be an expert’s prediction
of Y , and let x, y, ŷ denote realizations of the corresponding random variables. Our approach is
parameterized by a class of predictors F , which is some set of functions mapping X to [0, 1]. We
interpret F as the class of predictive models which are relevant (or feasible to implement) for a given
prediction task; we discuss this choice further below. Broadly, we are interested in whether the expert
prediction Ŷ provides a predictive signal which cannot be extracted from X by any f ∈ F .

Choice of model class F . For now we place no restrictions on F , but it’s helpful to consider a
concrete model class (e.g., a specific neural network architecture) from which, given some training
data, one could derive a particular model (e.g., via empirical risk minimization over F ). The choice
of F could be guided by practical considerations; some domains might require interpretable models
(e.g., linear functions) or be subject to computational constraints. We might also simply believe that
a certain architecture or functional form is well suited to the task of interest. In any case, we are
interested in whether human judgment can provide information which is not conveyed by any model
in this class, but are agnostic as to how this is accomplished: an expert may have information which
is not encoded in X , or be deploying a decision rule which is not in F — or both!

Another choice is to take F to model more abstract limitations on the expert’s cognitive process. In
particular, to model experts who are subject to “bounded rationality” [63, 40], F might be the set of
functions which can be efficiently computed (e.g., by a circuit of limited complexity). In this case,
an expert who provides a prediction which cannot be modeled by any f ∈ F must have access to
information which is not present in the training data. We take the choice of F as given, but emphasize
that these two approaches yield qualitatively different insight about human expertise.

Indistinguishability with respect to F . Our approach will be to use human input to distinguish
observations which are indistinguishable to any predictor f ∈ F . We formalize this notion of
indistinguishability as follows:

3



Definition 3.1 (α-Indistinguishable subset). For some α ≥ 0, a set S ⊆ X is α-indistinguishable
with respect to a function class F and target Y if, for all f ∈ F ,

|Cov(f(X), Y | X ∈ S)| ≤ α (1)

To interpret this definition, observe that the subset S can be viewed as generalizing the intuition
given in Section 1 for grouping identical inputs. In particular, rather than requiring that all x ∈ S
are exactly equal, Definition 3.1 requires that all members of S effectively “look the same" for the
purposes of making algorithmic predictions about Y , as every f ∈ F is only weakly related to the
outcome within S. We now adopt the definition of a multicalibrated partition [28] as follows:
Definition 3.2 (α-Multicalibrated partition). For K ≥ 1, S1 . . . SK ⊆ X is an α-multicalibrated
partition with respect to F and Y if (1) S1 . . . SK partitions X and (2) each Sk is α-indistinguishable
with respect to F and Y .3

Intuitively, the partition {Sk}k∈[K] “extract[s] all the predictive power" from F [28]; within each
element of the partition, every f ∈ F is only weakly related to the outcome Y . Thus, while knowing
that an input x lies in subset Sk may be highly informative for predicting Y — for example, it may be
that E[Y | X = x] ≈ E[Y | X = x′] for all x, x′ ∈ Sk — no predictor f ∈ F provides significant
additional signal within Sk. We provide a stylized example of such partitions in Figure 1 below.

!! !" !#

(a)

!! !" !$

!#

(b)

Figure 1: Partitions which are approximately multicalibrated with respect to the class of hyperplane
classifiers (we consider the empirical distribution placing equal probability on each observation). In

both panels, no hyperplane classifier has significant discriminatory power within each subset.

It’s not obvious that such partitions are feasible to compute, or even that they should exist. We’ll
show in Appendix B however that a multicalibrated partition can be efficiently computed for
many natural classes of functions. Where the relevant partition is clear from context, we use
Ek[·],Vark(·),Covk(·, ·) to denote expectation, variance and covariance conditional on the event that
{X ∈ Sk}. For a subset S ⊆ X , we use ES [·],VarS(·) and CovS(·, ·) analogously.

Incorporating human judgment into predictions. To incorporate human judgment into predictions,
a natural heuristic is to first test whether the conditional covariance Covk(Y, Ŷ ) is nonzero within
some indistinguishable subset. Intuitively, this indicates that the expert prediction is informative
even though every model f ∈ F is not. This suggests a simple method for incorporating human
expertise: first, learn a partition which is multicalibrated with respect to F , and then use Ŷ to predict
Y within each indistinguishable subset. We describe this procedure in Algorithm 1 below, where we
define a univariate learning algorithm A as a procedure which takes one or more (ŷi, yi) ∈ [0, 1]2

training observations and outputs a function which predicts Y using Ŷ . For example, A might be an
algorithm which fits a univariate linear or logistic regression which predicts Y as a function of Ŷ .

Algorithm 1 simply learns a different predictor of Y as a function of Ŷ within each indistinguishable
subset. As we show below, even simple instantiations of this approach can outperform the squared
error achieved by any f ∈ F . This approach can also be readily extended to more complicated forms
of human input (e.g., freeform text, which can be represented as a high-dimensional vector rather
than a point prediction Ŷ ), and can be used to test whether human judgment provides information
that an algorithm cannot learn from the available training data. We turn to these results below.

3This is closely related to α-approximate multicalibration [28], which requires that Definition 3.1 merely
holds in expectation over the partition. We work with a stronger pointwise definition for clarity, but our results
can also be interpreted as holding for the ‘typical’ element of an α-approximately multicalibrated partition.
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Algorithm 1 A method for incorporating human expertise into algorithmic predictions

1: Inputs: Training data {xi, yi, ŷi}ni=1, a multicalibrated partition {Sk}k∈K , a univariate regres-
sion algorithm A, and a test observation (xn+1, ŷn+1)

2: Output: A prediction of the missing outcome yn+1

3: for k = 1 to K do
3: Zk ← {(ŷj , yj) : xj ∈ Sk}
3: ĝk ← A(Zk)
4: end for
5: k∗ ← the index of the subset Sk which contains xn+1

6: return ĝk∗(ŷn+1)

4 Technical results

In this section we present our main technical results. For clarity, all results in this section are presented
in terms of population quantities, and assume oracle access to a multicalibrated partition. We present
corresponding generalization arguments and background on learning multicalibrated partitions in
Appendices A and B, respectively. All proofs are deferred to Appendix C.

Theorem 4.1. Let {Sk}k∈[K] be an α-multicalibrated partition with respect to a model class F
and target Y . Let the random variable J(X) ∈ [K] be such that J(X) = k iff X ∈ Sk. Define
γ∗, β∗ ∈ RK as

γ∗, β∗ ∈ argmin
γ∈RK ,β∈RK

E
[(

Y − γJ(X) + βJ(X)Ŷ
)2

]
. (2)

Then, for any f ∈ F and k ∈ [K],

Ek

[(
Y − γ∗

k − β∗
k Ŷ

)2
]
+ 4Covk(Y, Ŷ )2 ≤ Ek

[
(Y − f(X))

2
]
+ 2α. (3)

That is, the squared error incurred by the univariate linear regression of Y on Ŷ within each
indistinguishable subset outperforms that of any f ∈ F . This improvement is at least 4Covk(Y, Ŷ )2,
up to an additive approximation error 2α. We emphasize that F is an arbitrary class, and may
include complex, nonlinear predictors. Nonetheless, given a multicalibrated partition, a simple
linear predictor can improve on the best f ∈ F . Furthermore, this approach allows us to selectively
incorporate human feedback: whenever Covk(Y, Ŷ ) = 0, we recover a coefficient β∗

k of 0.4

Nonlinear functions and high-dimensional feedback. Theorem 4.1 corresponds to instantiating
Algorithm 1 with a univariate linear regression, but the same insight generalizes readily to other
functional forms. For example, if Y is binary, it might be desirable to instead fit a logistic regression.
We provide a similar guarantee for generic nonlinear predictors via Corollary A.1 in Appendix A.
Furthermore, while the results above assume that an expert provides a prediction Ŷ ∈ [0, 1], the same
insight extends to richer forms of feedback. For example, in a medical diagnosis task, a physician
might produce free-form clinical notes which contain information that is not available in tabular
electronic health records. Incorporating this kind of feedback requires a learning algorithm better
suited to high-dimensional inputs (e.g., a deep neural network), which motivates our following result.

Corollary 4.2. Let S be an α-indistinguishable subset with respect to a model class F and target Y .
Let H ∈ H denote expert feedback which takes values in some arbitrary domain (e.g., freeform text,
which might be tokenized to take values in Zd for some d > 0), and let g : H → [0, 1] be a function
which satisfies the following approximate calibration condition for some η ≥ 0 and for all β, γ ∈ R:

ES [(Y − g(H))2] ≤ ES [(Y − γ − βg(H))2] + η. (4)

Then, for any f ∈ F ,

4Recall that the population coefficient in a univariate linear regression of Y on Ŷ is Cov(Y,Ŷ )

Var(Ŷ )
.
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ES

[
(Y − g(H))2

]
+ 4CovS(Y, g(H))2 ≤ ES

[
(Y − f(X))

2
]
+ 2α+ η. (5)

To interpret this result, notice that (4) requires only that the prediction g(H) cannot be significantly
improved by any linear post-processing function. For example, this condition is satisfied by any
calibrated predictor g(H).5 Furthermore, any g(H) which does not satisfy (4) can be transformed
by letting g̃(H) = minγ,β E[(Y − γ − βg(H))2]; i.e., by linearly regressing Y on g(H), in which
case g̃(H) satisfies (4). This result mirrors Theorem 4.1: a predictor which depends only on human
feedback H can improve on the best f ∈ F within each element of a multicalibrated partition.

Testing for informative experts. While we have thus far focused on incorporating human judgment
to improve predictions, we may also be interested in the related question of simply testing whether
human judgment provides information that cannot be conveyed by any algorithmic predictor. For
example, such a test might be valuable in deciding whether to automate a given prediction task.

Theorem 4.1 suggests a heuristic for such a test: if the conditional covariance Covk(Y, Ŷ ) is large,
then we might expect that Ŷ is somehow “more informative” than any f ∈ F within Sk. While
covariance only measures a certain form of linear dependence between random variables, we now
show that, in the special case of binary-valued algorithmic predictors, computing the covariance of
Y and Ŷ within an indistinguishable subset serves as a stronger test for whether Ŷ provides any
predictive information which cannot be expressed by the class F .

Theorem 4.3. Let {Sk}k∈[K] be an α-multicalibrated partition for a binary-valued model class
Fbinary and target outcome Y . For all k ∈ [K], let there be f̃k ∈ F such that Y ⊥⊥ Ŷ | f̃k(X), X ∈
Sk. Then, for all k ∈ [K], ∣∣∣Covk(Y, Ŷ )

∣∣∣ ≤√
α

2
. (6)

That is, if each indistinguishable subset has a corresponding predictor f̃k which “explains" the
signal provided by the human, then the covariance of Y and Ŷ is bounded within every Sk. The
contrapositive implies that a sufficiently large value of Covk(Y, Ŷ ) serves as a certificate for the
property that no f ∈ F can fully explain the information that Ŷ provides about Y within each
indistinguishable subset. This can be viewed as a finer-grained extension of the test proposed in [3].

Taken together, our results demonstrate that algorithmic indistinguishability provides a principled
way of reasoning about the complementary value of human judgment. Furthermore, this approach
yields a concrete methodology for incorporating this expertise: we can simply use human feedback
to predict Y within subsets which are indistinguishable on the basis of X alone. Operationalizing
these results depends critically on the ability to learn multicalibrated partitions, e.g., via the boosting
algorithm proposed in [27]. We provide additional detail on learning such partitions in Appendix B.

5 Experiments

5.1 Chest X-ray interpretation

We now instantiate our framework in the context of the chest X-ray classification task outlined in
Section 1. We consider the eight predictive models studied in [59], which were selected from the
leaderboard of a large public competition for X-ray image classification. These models serve as a
natural benchmark class F , against which we investigate whether radiologist assessments provide
additional predictive value. These models were trained on a dataset of 224,316 chest radiographs
collected across 65,240 patients [35], and then evaluated on a holdout set of 500 randomly sampled
radiographs. This holdout set was annotated by eight radiologists for the presence (Y = 1) or absence
(Y = 0) of five selected pathologies; the majority vote of five radiologists serves as a ground truth
label, while the remaining three are held out to assess the accuracy of individual radiologists [59].

5A calibrated predictor is one where ES [Y | g(H)] = g(H). This is a fairly weak condition; for example, it
is satisfied by the constant predictor g(H) ≡ ES [Y ] [18, 25].
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In this section we focus on diagnosing atelectasis (a partial or complete collapse of the lung); we
provide results for the other four pathologies in Appendix G. We first show, consistent with [35, 59],
that radiologists fail to consistently outperform algorithmic classifiers on average. However, we
then demonstrate that radiologists do outperform all eight leaderboard algorithms on a large subset
(nearly 30% of patients) which is indistinguishable with respect to this class of benchmark predictors.
Because radiologists in this experimental setting only have access to the patient’s chest X-ray, and
because we do not apply any postprocessing to the radiologist assessments (i.e., ĝk, as defined in
Algorithm 1, is simply the identity function, which is most natural when Y and Ŷ are binary), we
interpret these results as providing a lower bound on the improvement that radiologists can provide
relative to relying solely on algorithmic classifiers.

Algorithms are competitive with expert radiologists. We first compare the performance of the
three benchmark radiologists to that of the eight leaderboard algorithms in Figure 2. Following [59],
we use the Matthew’s Correlation Coefficient (MCC) as a standard measure of binary classification
accuracy [12]. The MCC is simply the rescaled covariance between each prediction and the outcome,
which corresponds directly to Definition 3.1. In Figure 2 we see that radiologist performance is
statistically indistinguishable from that of the algorithmic classifiers.
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Figure 2: The relative performance of radiologists and predictive algorithms for detecting atelectasis.
Each bar plots the Matthews Correlation Coefficient between the corresponding prediction and the
ground truth label. Point estimates are reported with 95% bootstrap confidence intervals.

Radiologists can refine algorithmic predictions. We now apply the results of Section 4 to investigate
heterogeneity in the relative performance of humans and algorithms. First, we partition the patients
into a pair of approximately indistinguishable subsets, which are exceptionally straightforward
to compute when the class F has a finite number of predictors (we provide additional detail in
Appendix F). We plot the conditional performance of both the radiologists and the eight leaderboard
algorithms within each of these subsets in Figure 3.

While Figure 2 found no significant differences between radiologists’ and algorithms’ overall per-
formance, Figure 3 reveals a large subset — subset 0, consisting of 29.6% of our sample — where
radiologists achieve a better MCC than every algorithm. In particular, every algorithm predicts a
positive label for every patient in this subset, and radiologists identify a sizable fraction of true
negatives that the algorithms miss. For example, radiologist 1 achieves a true positive rate of 84.0%
and a true negative rate of 42.9%, while the algorithms achieve corresponding rates of 100% and 0%.

This partition is not necessarily unique, and in principle an analyst could compare the performance of
radiologists and algorithms across different subsets which could yield an even starker difference in
conditional performance. However, even for discrete-valued data, searching over all possible subsets
is computationally and statistically intractable; instead, our approach provides a principled way of
identifying the particular subsets in which human judgment is likely to add predictive value.

Other pathologies. Although we focus here on atelectasis, and the findings above are consistent for
two of the other four pathologies considered in [59] (pleural effusion and consolidation): although
radiologists fail to outperform algorithms on average, at least two of the radiologists outperform
algorithmic predictions on a sizable minority of patients. Results for cardiomegaly and edema appear
qualitatively similar, but we lack statistical power. We present these results in Appendix G.
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Figure 3: Conditional performance for atelectasis. Within subset 0 (n = 148), all algorithms predict
Y =1, thus achieving true positive rate (TPR) 1, true negative rate (TNR) 0, and an MCC of 0. Radiolo-
gists achieve a corresponding (TPR, TNR) of (84.0%, 42.9%), (72.6%, 47.6%) and (93.4%, 19.0%),
respectively. Subset 1 (n = 352) contains the remaining patients. The baseline is a random permuta-
tion of the labels. Confidence intervals for algorithmic performance are not strictly valid (subsets are
chosen conditional on the predictions), but are included for reference. All else is as in Figure 2.

5.2 Prediction of success in human collaboration

We next consider the visual prediction task studied in [62]. In this work, the authors curate photos
taken of participants after they attempt an Escape the Room’ puzzle—“a physical adventure game
in which a group is tasked with escaping a maze by collectively solving a series of puzzles” [62].
A separate set of subjects are then asked to predict whether the group in each photo succeeded in
completing the puzzle. Subjects in the control arm perform this task without any form of training,
while subjects in the remaining arms are first provided with four, eight and twelve labeled examples,
respectively. Their performance is compared to that of five algorithmic predictors, which use 33
high-level features extracted from each photo (e.g., number of people, gender and ethnic diversity, age
distribution etc.) to make a competing prediction. We provide a full list of features in Appendix H.

Accuracy and indistinguishability in visual prediction. As in the X-ray diagnosis task, we first
compare the performance of human subjects to that of the five off-the-shelf predictive algorithms
considered in [62]. We again find that although humans fail to outperform the best predictive
algorithms, their predictions add significant predictive value on instances where the algorithms agree
on a positive label. As our results are similar to those in the previous section, we defer them to
Appendix I. We now use this task to illustrate another feature of our framework, which is the ability
to incorporate human judgment into a substantially richer class of models.

Multicalibration over an infinite class. While our previous results illustrate that human judgment
can complement a small, fixed set of predictive algorithms, it’s possible that a richer class could
obviate the need for human expertise. To explore this, we now consider an infinitely large but
nonetheless simple class of shallow (depth ≤ 5) regression trees. We denote this class by FRT5.

As in previous sections, our first step will be to learn a partition which is multicalibrated with respect
to FRT5. However, because FRT5 is infinitely large, enumerating each f ∈ FRT5 and clustering
observations according to their predictions is infeasible. Instead, we apply the boosting algorithm
proposed in [27] to construct a predictor h : X → [0, 1] such that no f ∈ FRT5 can substantially
improve on the squared error of h within any of its approximate level sets {x | h(x) = 0}, {x |
h(x) ∈ (0, .1] . . . {x | h(x) ∈ [.9, 1]}.6 We plot the correlation of the human subjects’ predictions
with the true label within these level sets in Figure 4.

Figure 4 highlights a key insight provided by our framework. On one hand, the predictions made by h
are more accurate out of sample (72.2%) than even the best performing cohort (67.3%). Nonetheless,
the predictions made by all four cohorts of human subjects are predictive of the outcome within every

6We discuss the connection between this condition and multicalibration in Appendix B. As in the previous
section, we cannot necessarily verify whether the multicalibration condition is satisfied empirically. However,
the theory provides guidance for choosing subsets, within which we can directly test conditional performance.
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Figure 4: Human performance within the approximate level sets of a predictor h which is multical-
ibrated over FRT5. Level sets 0, 1, and 10 are the sets {x | h(x) = 0}, {x | h(x) ∈ (0, .1]}, and
{x | h(x) ∈ [.9, 1]}, and contain 259, 309 and 292 observations, respectively. All other level sets are
empty in our test set. A random permutation of the labels is included as a baseline.

nonempty level set of of h.7 This suggests that humans provide information which cannot be extracted
from the data by any f ∈ FRT5. While we focus on shallow regression trees for concreteness, this
approach extends to any function class for which it is feasible to learn a multicalibrated partition.

6 Robustness to noncompliance

We have thus far focused on how an algorithm might incorporate human feedback to improve
prediction accuracy, or how an algorithmic decision pipeline might selectively defer to a human
expert. However, many decision support tools are deployed in the opposite setting where the user
instead decides when to defer to the algorithm. For example, physicians with access to a prognostic
risk score may choose to simply ignore the risk score at their discretion. Furthermore, it is common
for hospitals to employ different norms and policies governing the use of algorithmic predictors [46].
Thus, although it is tempting to simply provide all downstream users with the single “best” risk score,
such an approach can be suboptimal if users vary in their compliance behavior [5]. We illustrate the
challenges of this kind of heterogeneous user behavior via the following stylized example.

Example: the challenge of noncompliance. Consider a generic prognostic risk score which makes
recommendations regarding patient care. Although physicians generally comply with the algorithm’s
recommendations, they are free to override it as they see fit. For example, suppose that one particular
physician believes (correctly or not) that the algorithm underweights high blood pressure as a risk
factor, and thus ignores its recommendations for these patients. A second physician similarly ignores
algorithmic recommendations and instead exercises their own judgment for patients 65 and older.

What does an optimal risk score look like in this setting? For the first physician, we would like to
select the algorithm which minimizes error on patients who do not have high blood pressure, as
these are the patients for whom the physician uses the algorithm’s recommendations. Similarly, for
the second physician, we would like to minimize error on patients who are under 65. Of course,
there is no guarantee that these are the same algorithm: empirical risk minimization over the first
population will, in general, produce a different predictor than empirical risk minimization over the
second population. This is not just a finite sample problem; given any restricted model class (e.g.,
linear predictors), the optimal predictor for one subpopulation may not be optimal for a different
subpopulation. For both practical and ethical reasons however, we cannot design individualized
predictors for every physician; we would like to instead provide a risk score which is simultaneously
“optimal" (in a sense we make precise below) for every user.

Noncompliance-robust prediction. In Appendix A.3, we show that, without further assumptions,
the setting described above poses a statistically intractable problem: if physicians choose whether

7Though this result may initially seem counterintuitive, recall the classical Simpson’s paradox: in a setting
where Ŷ is uncorrelated (or even negatively correlated) with Y , there may still exist a partition of the data such
that the two are positively correlated within every subgroup.
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to comply in arbitrary ways, then we need a predictor which is simultaneously optimal for every
possible patient subpopulation. The only predictor which satisfies this criterion is the Bayes optimal
predictor, which is infeasible to learn in a finite data regime.

However, suppose instead that physicians decide whether to defer to the algorithm using relatively
simple heuristics. If we believe we can model these heuristics as a “simple” function of observable
patient characteristics — e.g., that all compliance patterns can be expressed as a shallow decision
tree, even if particular compliance behavior varies across physicians — then we can leverage this
structure to design a single optimal predictor. In particular, we show next that, given a partition which
is multicalibrated over the class of possible user compliance patterns, we can learn predictors which
remain optimal even when users only selectively adopt the algorithm’s recommendations.
Theorem 6.1. Let Π be a class of binary compliance policies, where, for π ∈ Π, π(x) = 1
indicates that the user complies with the algorithm at X = x. Let F be a class of predictors and
let {Sk}k∈[K] be a partition which is α-multicalibrated with respect to Π and the product class
{f(X)π(X) | f ∈ F , π ∈ Π}. Then, ∀ f ∈ F , π ∈ Π, k ∈ [K],

Ek[(Y − Ek[Y ])2 | π(X) = 1] ≤ Ek[(Y − f(X))2 | π(X) = 1] +
6α

Pk(π(X) = 1)
. (7)

That is, given an appropriately multicalibrated partition, we can derive a predictor which is simultane-
ously near-optimal for every downstream user. In particular, observe that the left hand side of (7) is
the squared error incurred by the constant prediction Ek[Y ] within Sk when the user defers to the
algorithm. Although this prediction does not depend on the policy π, it remains competitive with the
squared error incurred by any f ∈ F for any policy. Unsurprisingly, the bound becomes vacuous
as Pk(π(X) = 1) goes to 0 (we cannot hope to learn anything on arbitrarily rare subsets). This is
consistent with our interpretation of π however, as the performance of the algorithm matters little if
the decision maker ignores nearly all recommendations.

This result is complementary to those in Section 4—rather than learning to incorporate feedback from
a single expert, we can instead learn a single predictor which is (nearly) optimal for a rich class of
downstream users whose behavior is modeled by some π ∈ Π.

7 Discussion and limitations

In this work we propose an indistinguishability-based framework for human-AI collaboration. Under
this framework, we develop a set of methods for testing whether experts provide a predictive signal
which cannot be replicated by an algorithmic predictor, and extend our results to settings in which
users selectively adopt algorithmic recommendations. Beyond these methodological contributions, we
argue that our framing clarifies when and why human judgment can improve algorithmic performance.
In particular, a primary theme in our work is that even if humans do not consistently outperform
algorithms on average, selectively incorporating human judgment can often improve predictions.

A key limitation of our work is a somewhat narrow focus on minimizing a well-defined loss function
over a well-defined (and stationary) distribution. This fails to capture decision makers with richer,
multidimensional preferences (e.g., fairness, robustness or simplicity), and does not extend to settings
in which predictions influence future outcomes (see the discussion of performative prediction in
Section 2) or the distribution otherwise changes over time. However, we view indistinguishability
as a powerful primitive for modeling these more complex scenarios; for example, a decision maker
might impose additional preferences — like a desire for some notion of fairness — to distinguish
inputs which are otherwise indistinguishable with respect to the “primary” outcome of interest. At a
technical level, our results rely on the ability to efficiently learn multicalibrated partitions. While we
give conditions under which this is feasible in Appendix B and a finite sample analysis in Appendix A,
finding such partitions can be challenging for rich function classes.

Finally, we caution that even in contexts which fit neatly into our framework, human decision makers
can be critical for ensuring interpretability and accountability. Thus, although our approach can
provide guidance for choosing the appropriate level of automation, it does not address the practical or
ethical concerns which arise. Despite these limitations, we argue that indistinguishability helps to
clarify the role of human expertise in algorithmic decision making, and this framing in turn provides
fundamental conceptual and methodological insights for enabling effective human-AI collaboration.
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A Additional technical results

In this section we present additional technical results which complement those in the main text. All
proofs are deferred to Appendix C.

A.1 A nonlinear analog of Theorem 4.1

Below we provide a simple extension of Theorem 4.1 from univariate linear regression to arbitrary
univariate predictors of Y given Ŷ .

Corollary A.1. Let S be an α-indistinguishable subset with respect to a model class F and target
Y . Let g : [0, 1]→ [0, 1] be a function which satisfies the following approximate Bayes-optimality
condition for η ≥ 0:

ES [(Y − g(Ŷ ))2] ≤ ES [(Y − ES [Y | Ŷ ])2] + η. (8)

Then, for any f ∈ F ,

ES

[
(Y − g(Ŷ ))2

]
+ 4CovS(Y, Ŷ )2 ≤ ES

[
(Y − f(X))

2
]
+ 2α+ η. (9)

That is, any function g which is nearly as accurate (in terms of squared error) as the univariate
conditional expectation function ES [Y | Ŷ ] provides the same guarantee as in Theorem 4.1. This
conditional expectation function is exactly what e.g., a logistic regression of Y on Ŷ seeks to model.
We provide a proof in Appendix C.

A.2 A finite sample analog of Corollary 4.2

For simplicity, the technical results in Section 4 are presented in terms of population quantities. In this
section we consider the empirical analogue of Corollary 4.2, and provide a generalization argument
which relates these empirical quantities to the corresponding population results in Section 4. We focus
our attention on Corollary 4.2, as the proof follows similarly for Theorem 4.1 and Corollary A.1.

Let G be some class of predictors mappingH to [0, 1]. We’ll begin with the setup of Corollary 4.2,
with S ⊆ X denoting a fixed, measurable subset of the input space (we’ll generalize to a full
partition S1 . . . SK below). Further let nS ≡

∑n
i=1 1(xi ∈ S) denote the number of training

examples which lie in the subset S ⊆ X , and {yi, hi}nS
i=1 denote i.i.d. samples from the unknown

joint distribution over the random variables (Y,H) conditional on the event that X ∈ S. Let
ĝS ≡ argming∈G

1
nS

∑nS

i=1(yi − g(hi))
2 denote the empirical risk minimizer within S. Our goal

will be to show that if there exists some g∗S ∈ G satisfying (4), then the empirical risk minimizer ĝS
also approximately satisfies (4) with high probability.

Lemma A.2. Let L = {ℓg : g ∈ G}, where ℓg(x, y) ≡ (y − g(x))2, denote the class of squared
loss functions indexed by g ∈ G, and let RnS

(L) denote the Rademacher complexity of L. Let
P (S) ≡ P(X ∈ S) denote the measure of S. Then, for any δ ≥ 0, with probability at least

(1− e−
nP (S)δ2

4 )(1− 2e−P (S)n), we have

ES [ℓĝ] ≤ ES [ℓg∗ ] + 4RnS
(L) + 2δ, and nS ≥ nP (S)/2. (10)

That is, if there exists some g∗ ∈ G satisfying (4), then the empirical risk minimizer ĝ ∈ G within the
subset S also satisfies (4) with high probability, up to an approximation error that depends on the
Rademacher complexity of L. For many natural classes of functions, including linear functions, the
Rademacher complexity (1) tends to 0 as n→∞ and (2) can be sharply bounded in finite samples
(see e.g., Chapter 4 in [68]). We provide a proof of Lemma A.2 in Appendix C.
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Extending Lemma A.2 to a partition of X . The result above is stated for a single subset S, and
depends critically on the measure of that subset P (S) ≡ P(X ∈ S). We now show this generalization
argument can be extended to a partition of the input space S1 . . . SK ⊆ X by arguing that Lemma A.2
applies to “most” instances sampled from the marginal distribution over X . Specifically, we show
that the probability that X lies in any subset S with measure P (S) approaching 0 is a low probability
event; for the remaining inputs, Lemma A.2 applies.
Corollary A.3. Let {Sk}k∈[K] be a (not necessarily multicalibrated) partition of the input space,
chosen independently of the training data, and let nk denote the number of training observations
which lie in a given subset Sk ⊆ X . Then, for any ϵ > 0 and δ ≥ 0, X lies in a subset Sk ⊆ X such
that,

Ek[ℓĝ] ≤ Ek[ℓg∗ ] + 4Rnk
(L) + 2δ (11)

with probability at least (1− ϵ)(1− e
−nkϵδ2

4K )(1− 2e−
nkϵ

K ) over the distribution of the training data
{xi, yi, ŷi}ni=1 and a test observation (xn+1, yn+1, ŷn+1).

The preceding corollary indicates that Lemma A.2 also holds for a “typical” subset of the input
space, replacing the dependence on the measure of any given subset P (S) with a lower bound on the
probability that a test observation xn+1 lies in some subset whose measure is at least ϵ

K . We provide
a formal proof in Appendix C.

A.3 The impossibility of arbitrary deferral policies

In this section we formalize the argument in Section 6 to show that it is infeasible to learn predictors
which are simultaneously “optimal” (in a sense we make precise below) for many downstream users
who independently choose when to comply with the algorithm’s recommendations. We provide a
proof in Appendix C.
Lemma A.4. Let F be some class of predictors which map a countable input space X to [0, 1]. We
interpret a compliance policy π : X → [0, 1] such that π(x) = 1 indicates that the user complies with
the algorithm’s recommendation at X = x. For all f ∈ F , unless f = E[Y | X] almost everywhere,
then there exists a deferral policy π : X → {0, 1} and constant c ∈ [0, 1] such that:

E[(Y − f(X))2 | π(X) = 1] > E[(Y − c)2 | π(X) = 1] (12)

Lemma A.4 indicates that for any predictor f which is not the Bayes optimal predictor, there exists a
compliance policy which causes it to underperform a constant prediction on the instances for which
it is ultimately responsible. Because learning the Bayes optimal predictor from a finite sample of
data is generally infeasible, this indicates that a predictor cannot reasonably be made robust to an
arbitrary deferral policy. The proof, which we provide below, is intuitive: the decision maker can
simply choose to comply on exactly those instances where f performs poorly.

B Learning multicalibrated partitions

In this section we discuss two sets of conditions on F which enable the efficient computation of
multicalibrated partitions. An immediate implication of our first result is that any class of Lipschitz
predictors induce a multicalibrated partition.

Level sets of F are multicalibrated. Observe that one way in which Definition 3.1 is trivially
satisfied (with α = 0) is whenever every f ∈ F is constant within a subset S ⊆ X . We relax this
insight as follows: if the variance of every f ∈ F is bounded within S, then S is approximately
indistinguishable with respect to F .
Lemma B.1. Let F be a class of predictors and S ⊆ X be a subset of the input space. If:

max
f∈F

Var(f(X) | X ∈ S) ≤ 4α2, (13)

then S is α-indistinguishable with respect to F and Y .
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This result yields a natural corollary: the approximate level sets of F (i.e., sets in which the range
of every f ∈ F is bounded) are approximately indistinguishable. We state this result formally as
Corollary B.2 below. We use exactly this approach to finding multicalibrated partitions in our study
of a chest X-ray classification task in Section 5.
Corollary B.2. Let F be a class of predictors whose range is bounded within some S ⊆ X . That is,
for all f ∈ F:

max
x∈S

f(x)− min
x′∈S

f(x′) ≤ 4α (14)

Then S is α-indistinguishable with respect to F .

Lemma B.1 also implies a simple algorithm for finding multicalibrated partitions when F is Lipschitz
with respect to some distance metric d : X × X → R: observations which are close under d(·, ·) are
guaranteed to be approximately indistinguishable with respect to F . We state this result formally as
Corollary B.3 below.
Corollary B.3. Let FLip(L,d) be the set of L-Lipschitz functions with respect to some distance metric
d(·, ·) on X . That is:

|f(x)− f(x′)| ≤ Ld(x, x′) ∀ f ∈ FLip(L,d) (15)

Let {Sk}k∈K for K ⊆ N be some (4α/L)-net on X with respect to d(·, ·). Then {Sk}k∈K is
α-multicalibrated with respect to FLip(L,d).

Proofs of the results above are provided in Appendix C.

Multicalibration via boosting. Recent work by [27] demonstrates that multicalibration is closely
related to boosting over a function class F . In this section we first provide conditions, adapted
from [27], which imply that the level sets of a certain predictor h : X → [0, 1] are multicalibrated
with respect to F ; that is, the set {x | h(x) = v} for every v in the range of h is approximately
indistinguishable. We then discuss how these conditions yield a natural boosting algorithm for
learning a predictor h which induces a multicalibrated partition. In the lemma below, we useR(f)
to denote the range of a function f .
Lemma B.4. Let F be a function class which is closed under affine transformations; i.e., f ∈ F ⇒
a + bf ∈ F for all a, b ∈ R, and let F̃ = {f ∈ F | R(f) ⊆ [0, 1]}. Let Y ∈ [0, 1] be the target
outcome, and h : X → [0, 1] be some predictor with countable range R(h) ⊆ [0, 1]. If, for all
f ∈ F , v ∈ R(h):

E
[
(h(X)− Y )2 − (f(X)− Y )2 | h(X) = v

]
< α2, (16)

then the level sets of h are (2α)-multicalibrated with respect to F̃ and Y .

To interpret this result, observe that (16) is the difference between the mean squared error of f and
the mean squared error of h within each level set Sv = {x ∈ X | h(x) = v}. Thus, if the best
f ∈ F fails to significantly improve on the squared error of h within a given level set Sv , then Sv is
indistinguishable with respect to F̃ (which is merely F restricted to functions that lie in [0, 1]). [27]
give a boosting algorithm which, given a squared error regression oracle8 for F , outputs a predictor h
which satisfies (16). We make use of this algorithm in Section 5 to learn a partition of the input space
in a visual prediction task. Although the class we consider there (the class of shallow regression trees
FRT5) is not closed under affine transformations, boosting over this class captures the spirit of our
main result: while no f ∈ FRT5 can improve accuracy within the level sets of h, humans provide
additional predictive signal within three of them.

Taken together, the results in this section demonstrate that multicalibrated partitions can be efficiently
computed for many natural classes of functions, which in turn enables the application of results in
Section 4.

8Informally, a squared error regression oracle for F is an algorithm which can efficiently output
argminf∈F E[(Y − f(X)]2] for any distribution over X,Y . When the distribution is over a finite set of
training data, this is equivalent to empirical risk minimization. We refer to [27] for additional details, including
generalization arguments.
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C Proofs of primary results

In this section we present proofs of our main results. Proofs of auxiliary lemmas are deferred to
Appendix E.

C.1 Omitted proofs from Section 4

Lemma C.1. The following simple lemma will be useful in our subsequent proofs. Let X ∈ {0, 1}
be a binary random variable. Then for any other random variable, Y :

Cov(X,Y ) (17)
= P(X = 1) (E[Y | X = 1]− E[Y ]) (18)
= P(X = 0) (E[Y ]− E[Y | X = 0]) (19)

This is exactly corollary 5.1 in [28]. We provide the proof in Appendix E.

Proof of Theorem 4.1

Proof. A well known fact about univariate linear regression is that the coefficient of determination
(or r2) is equal to the square of the Pearson correlation coefficient between the regressor and the
outcome (or r). In our context, this means that within any indistinguishable subset Sk we have:

1−
Ek

[(
Y − γ∗

k − β∗
k Ŷ

)2
]

Ek

[
(Y − Ek[Y ])

2
] =

Covk(Y, Ŷ )2

Vark(Y )Vark(Ŷ )
(20)

⇒ Ek

[
(Y − Ek[Y ])

2
]
− Ek

[(
Y − γ∗

j − β∗
j Ŷ

)2
]
=

Covk(Y, Ŷ )2

Var(Ŷ )
(21)

⇒ Ek

[(
Y − γ∗

j − β∗
j Ŷ

)2
]
= Ek

[
(Y − Ek[Y ])

2
]
− Covk(Y, Ŷ )2

Var(Ŷ )
(22)

≤ Ek

[
(Y − Ek[Y ])

2
]
− 4Covk(Y, Ŷ )2

(23)

Where (23) is an application of Popoviciu’s inequality for variances, and makes use of the fact that
Ŷ ∈ [0, 1] almost surely. We can then obtain the final result by applying the following lemma, which
extends the main result in [28]. We provide a proof in Appendix E, but for now simply state the result
as Lemma C.2 below.

Lemma C.2. Let {Sk}k∈[K] be an α-multicalibrated partition with respect to a real-valued function
class F = {f : X → [0, 1]} and target outcome Y ∈ [0, 1]. For all f ∈ F and k ∈ [K], it follows
that:

Ek

[
(Y − E[Y ])

2
]
≤ Ek

[
(Y − f(X))

2
]
+ 2α (24)

We provide further discussion of the relationship between Lemma C.2 and the main result of [28] in
Appendix D below.

Chaining inequalities (24) and (23) yields the final result:

Ek

[(
Y − γ∗

j − β∗
j Ŷ

)2
]
≤ Ek

[
(Y − f(X))

2
]
+ 2α− 4Covk(Y, Ŷ )2 ∀ f ∈ F (25)

⇒ Ek

[(
Y − γ∗

j − β∗
j Ŷ

)2
]
+ 4Covk(Y, Ŷ )2 ≤ Ek

[
(Y − f(X))

2
]
+ 2α ∀ f ∈ F (26)
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Proof of Corollary 4.2

Proof. The proof is almost immediate. Let γ∗, β∗ ∈ R be the population regression coefficients
obtained by regressing Y on g(H) within S (as in Theorem 4.1; the only difference is that we consider
a single indistinguishable subset rather than a multicalibrated partition). This further implies, by the
approximate calibration condition (4):

ES

[
(Y − g(H))2

]
≤ ES

[
(Y − γ∗

k − β∗
kg(H))2

]
+ η (27)

The proof then follows from that of Theorem 4.1, replacing Ŷ with g(H).

Proof of Theorem 4.3

Proof. Fix any k ∈ [K].

∣∣∣Covk(Y, Ŷ )
∣∣∣ (28)

=
∣∣∣Ek[Covk(Y, Ŷ | f̃k(X)] + Covk(Ek[Y | f̃k(X)],Ek[Ŷ | f̃k(X)])

∣∣∣ (29)

=
∣∣∣Covk(E[Y | f̃k(X)],Ek[Ŷ | f̃k(X)])

∣∣∣ (30)

≤
√
Var(Ek[Y | f̃k(X)])Vark(E[Ŷ | f̃k(X)]) (31)

≤ 1

2

√
Vark(Ek[Y | f̃k(X)]) (32)

Where (29) is the law of total covariance, (30) follows from the assumption that Y ⊥⊥ Ŷ |
f̃k(X), X ∈ Sk, (31) is the Cauchy-Schwarz inequality and (32) applies Popoviciu’s inequality
to bound the variance of E[Ŷ | f̃k(X)] (which is assumed to lie in [0, 1] almost surely).

We now focus on bounding Vark(Ek[Y | f̃k(X)]). Recall that by assumption, |Covk(Y, f̃k(X))| ≤
α, so we should expect that conditioning on f̃k(X) does not change the expectation of Y by too
much.

Vark(Ek[Y | f̃k(X)]) (33)

= Ek[(Ek[Y | f̃k(X)]− Ek[Ek[Y | f̃k(X)]])2] (34)

= Ek[(Ek[Y | f̃k(X)]− Ek[Y ])2] (35)

= Pk(f̃k(X) = 1)(Ek[Y | f̃k(X) = 1]− Ek[Y ])2

+ Pk(f̃k(X) = 0)(Ek[Y | f̃k(X) = 0]− Ek[Y ])2 (36)

≤ Pk(f̃k(X) = 1)
∣∣∣Ek[Y | f̃k(X) = 1]− Ek[Y ]

∣∣∣
+ Pk(f̃k(X) = 0)

∣∣∣Ek[Y | f̃k(X) = 0]− Ek[Y ]
∣∣∣ (37)

Where the last step follows because Y is assumed to be bounded in [0, 1] almost surely. Applying
Lemma C.1 to (37) yields:

Vark(Ek[Y | f̃k(X)]) ≤
∣∣∣2Covk(Y, f̃k(X))

∣∣∣ ≤ 2α (38)

Where the second inequality follows because our analysis is conditional on X ∈ Sk for some
α-indistinguishable subset Sk. Plugging (38) into (32) completes the proof.
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C.2 Omitted proofs from Section 6

Proof of Lemma A.4

Proof. Let f ∈ F be any model and let S ⊆ X be a subset such that (1) PX(S) > 0 (2) the Bayes
optimal predictor E[Y | X] is constant within S and (3) f(X) ̸= E[Y | X = x] for all x ∈ S. Such
a subset must exist by assumption. It follows immediately that choosing

π(x) =

{
1 if x ∈ S

0 otherwise

suffices to ensure that f(X) underperforms the constant prediction cS = E[Y | X ∈ S] on the
subset which π delegates to f . This implies that even if F includes the class of constant predictors
{f(X) = c | c ∈ R}—perhaps the simplest possible class of predictors—then we cannot hope to
find some f∗ ∈ F which is simultaneously optimal for any choice of deferral policy.

Proof of Theorem 6.1

Proof. We start with the assumption that {Sk}k∈[K] is α-multicalibrated with respect to Π and the
product class {f(X)π(X) | f ∈ F , π ∈ Π}. That is, both of the following hold:

|Covk(Y, π(X))| ≤ α ∀ π ∈ Π, k ∈ [K] (39)
|Covk(Y, f(X)π(X))| ≤ α ∀ f ∈ F , π ∈ Π, k ∈ [K] (40)

First, we’ll show that this implies that the covariance of Y and f(X) is bounded even conditional
on compliance. To streamline presentation we state this as a separate lemma; the proof is provided
further below.

Lemma C.3. Given the setup of Theorem 6.1, the following holds for all k ∈ [K], f ∈ F and π ∈ Π:

|Covk(Y, f(X) | π(X) = 1)| ≤ 2α

Pk(π(X) = 1)
(41)

We provide a proof in Appendix E. By Lemma C.2, Lemma C.3 implies, for all k ∈ [K], f ∈ F and
π ∈ Π:

Ek

[
(Y − Ek[Y | π(X) = 1])

2 | π(X) = 1
]

≤ Ek

[
(Y − f(X))

2 | π(X) = 1
]
+

4α

P(π(X) = 1)
(42)

This is close to what we want to prove, except that the prediction Ek[Y | π(X) = 1] depends on the
choice of the policy π(·). We’ll argue that by (39), Ek[Y | π(X) = 1] ≈ Ek[Y ]. Indeed, because
π(·) is binary, we can apply Lemma C.1 to recover:

|Cov(π(X), Y )| = Pk(π(X) = 1) |Ek[Y | π(X) = 1]− Ek[Y ]| (43)

⇒ |Ek[Y | π(X) = 1]− Ek[Y ]| ≤ α

Pk(π(X) = 1)
(44)

We rewrite the LHS of (42) to make use of this identity as follows:

Ek

[
(Y − Ek[Y | π(X) = 1])

2 | π(X) = 1
]

(45)

= Ek

[
((Y − Ek[Y ]) + (Ek[Y ]− Ek[Y | π(X) = 1]))

2 | π(X) = 1
]

(46)
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= Ek

[(
(Y − Ek[Y ])2 + (Ek[Y ]− Ek[Y | π(X) = 1])2

+ 2(Y − Ek[Y ])(Ek[Y ]− Ek[Y | π(X) = 1])
)
| π(X) = 1

]
(47)

≥ Ek

[(
(Y − Ek[Y ])2 + 2(Y − Ek[Y ])(Ek[Y ]− Ek[Y | π(X) = 1])

)
| π(X) = 1

]
(48)

= Ek

[
(Y − Ek[Y ])2 | π(X) = 1

]
+ 2 (Ek[Y ]− Ek[Y | π(X) = 1]) (Ek[Y | π(X) = 1]− Ek[Y ]) (49)

≥ Ek

[
(Y − Ek[Y ])2 | π(X) = 1

]
− 2α

Pk(π(X) = 1)
(50)

Where the last step follows by observing that either (1) Ek[Y ] = Ek[Y | π(X) = 1] or (2) exactly
one of (Ek[Y ] − Ek[Y | π(X) = 1]) or (Ek[Y | π(X) = 1] − Ek[Y ]) is strictly positive. Assume
that Ek[Y ] ̸= Ek[Y | π(X) = 1]; otherwise the bound follows trivially. We bound the positive term
by recalling that Y lies in [0, 1], and we bound the negative term by applying (44). Thus, the product
of these two terms is at least −α

Pk(π(X)=1) . Finally, combining (50) with (42) completes the proof.

C.3 Omitted proofs from Appendix A

Proof of Corollary A.1

Proof. Observe that, because the conditional expectation function Ek[Y | Ŷ ] minimizes squared
error with respect to all univariate functions of Ŷ , we must have:

ES

[
(Y − ES [Y | Ŷ ])2

]
≤ ES

[
(Y − γ∗ − β∗Ŷ )2

]
(51)

Where γ∗ ∈ R, β∗ ∈ R are the population regression coefficients obtained by regression Y on g(H)
as in Theorem 4.1. This further implies, by the approximate Bayes-optimality condition (8):

ES

[
(Y − g(Ŷ ))2

]
≤ ES

[
(Y − γ∗

k − β∗
k Ŷ )2

]
+ η (52)

The proof then follows immediately from that of Theorem 4.1.

Proof of Lemma A.2

Proof. We will adopt the notation from the setup of Corollary 4.2. Further let G be some class of
predictors mapping H to [0, 1], over which we seek to learn the mean-squared-error minimizing
g∗S ∈ G within some subset S ⊆ X .

Let nS ≡
∑n

i=1 1(xi ∈ S) denote the number of training examples which lie in the subset S, and
let ÊS [ℓg] ≡ 1

nS

∑nS

i=1(Yi − g(Xi))
2 denote the empirical loss incurred by some g ∈ G within S.

Finally, let ES [ℓg] ≡ E[(Y − g(X))2 | X ∈ S] denote the population analogue of ÊS [ℓg].

By Hoeffding’s inequality we have:

P
(
nS ≥

nP (S)

2

)
≥

(
1− 2e−P (S)n

)
(53)

that is, nS is at least half its expectation with high probability. Let L = {ℓg : g ∈ G}, where
ℓg(x, y) = (y − g(x))2, be the class of squared loss functions indexed by g ∈ G. Let RnS

(L) denote
the Rademacher complexity of L, which is defined as follows:
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Definition C.4. Rademacher Complexity

For a fixed n ∈ N, let ϵ1 . . . ϵn denote n i.i.d. Rademacher random variables (recall that Rademacher
random variables take values 1 and −1 with equal probability 1

2 ). Let Z1 . . . Zn denote i.i.d. random
variables taking values in some abstract domain Z , and let T be a class of real-valued functions over
the domain Z . The Rademacher complexity of T is denoted by Rn(T ), and is defined as follows:

Rn(T ) = E

[
sup
t∈T

∣∣∣∣∣ 1n
n∑

i=1

ϵit(Zi)

∣∣∣∣∣
]

(54)

Where the expectation is taken over both ϵ1 . . . ϵn and Z1 . . . Zn. Intuitively, the Rademacher
complexity is the expected maximum correlation between some t ∈ T and the noise vector ϵ1 . . . ϵn.

We now make use of a standard uniform convergence result, which is stated in terms of the
Rademacher complexity of a function class. We reproduce this theorem (lightly adapted to our
notation) from the textbook treatment provided in [68] below:

Theorem C.5. (adapted from [68]) For any b-uniformly-bounded class of functions T , any positive
integer n ≥ 1 and any scalar δ ≥ 0, we have:

sup
t∈T

∣∣∣∣∣ 1n
n∑

i=1

t(Zi)− E[t(Z1)]

∣∣∣∣∣ ≤ 2Rn(T ) + δ (55)

with probability at least 1− exp
(
−nδ2

2b2

)
.

Applying Theorem C.5 (noting that L is uniformly bounded in [0, 1]) implies:

sup
g∈G

∣∣∣ÊS [ℓg]− ES [ℓg]
∣∣∣ ≤ 2RnS

(L) + δ (56)

with probability at least 1− e
−nSδ2

2 . Finally, combining (53) with (56) further implies, for any δ ≥ 0,

ES [ℓĝ] ≤ ES [ℓg∗ ] + 4RnS
(L) + 2δ (57)

with probability at least (1− e−
nP (S)δ2

4 )(1− 2e−P (S)n), as desired.

Proof of Corollary A.3

Proof. We’ll adopt the notation from the setup of Lemma A.2 and Corollary A.3. Observe that, if
we were to take the union of every element of the partition {Sk}k∈K with measure P (S) ≡ P(X ∈
Sk) ≤ ϵ

K , the result would be a subset of the input space with measure at most K × ϵ
K = ϵ. Note

that this is merely an analytical device; we need not identify which subsets these are.

Thus, with probability at least (1− ϵ), a newly sampled test observation will lie in some element of
the partition {Sk}k∈[K] with measure at least ϵ

K . Conditional on this event, we can directly apply
the result of Lemma A.2, plugging in a lower bound of ϵ

K for P (S). This yields, for any ϵ > 0 and
δ ≥ 0, X lies in a subset Sk ⊆ X such that,

Ek[ℓĝ] ≤ Ek[ℓg∗ ] + 4Rnk
(L) + 2δ (58)

with probability at least (1− ϵ)(1− e
−nϵδ2

4K )(1− 2e−
nϵ
K ) over the distribution of the training data

{xi, yi, ŷi}ni=1 and a test observation (xn+1, yn+1, ŷn+1), as desired.
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C.4 Omitted proofs from Appendix B

Proof of Lemma B.1

Proof. We want to show |Cov(Y, f(X) | X ∈ S)| ≤ α for all f ∈ F and some S such that
maxf∈F Var(f(X) | X ∈ S) ≤ 4α2.

Fix any f ∈ F . We then have:

|Cov(Y, f(X) | X ∈ S)| (59)

≤
√

Var(Y | X ∈ S)Var(f(X) | X ∈ S) (60)

≤
√

1

4
×Var(f(X) | X ∈ S) (61)

≤
√

1

4
× 4α2 (62)

= α (63)

Where (60) is the Cauchy-Schwarz inequality, (61) is Popoviciu’s inequality and makes use of the fact
that Y is bounded in [0, 1] by assumption, and (62) uses the assumption that maxf∈F Var(f(X) |
X ∈ S) ≤ 4α2.

Proof of Corollary B.2

Proof. We want to show that ∀ f ∈ F :

|Cov(Y, f(X) | X ∈ S)| ≤ α (64)

By assumption, f(X) is bounded in a range of 4α within S. From this it follows by Popoviciu’s
inequality for variances that ∀ f ∈ F :

Var(f(X) | X ∈ Sj) ≤
(4α)2

4
= 4α2 (65)

The proof then follows from Lemma B.1.

Proof of Corollary B.3

Proof. We want to show that ∀ f ∈ FLip(L,d), k ∈ K:

|Covk(Y, f(X))| ≤ α (66)

Because Sk is part of a 4α/L-net, there exists some m ∈ [0, 1] such that P(f(X) ∈ [m,m+ 4α] |
X ∈ Sk) = 1; that is, f(X) is bounded almost surely in some interval of length 4α. From this it
follows by Popoviciu’s inequality for variances that ∀ f ∈ FLip(L,d), k ∈ K:

Vark(f(X)) ≤ (4α)2

4
= 4α2 (67)

The remainder of the proof follows from Lemma B.1.
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Proof of Lemma B.4

Proof. The result follows Lemma 3.3 and Lemma 6.8 in [27]. We provide a simplified proof below,
adapted to our notation. We’ll use Ev[·] to denote the expectation conditional on the event that
{h(X) = v} for each v ∈ R(h). We use Covv(·, ·) analogously.

Our proof will proceed in two steps. First we’ll show that:

∀v ∈ R(h), f ∈ F ,Ev[(h(X)− Y )2 − (f(X)− Y )2] < α2 (68)

⇒ Ev[f(X)(Y − v)] < α ∀ v ∈ R(h), f ∈ F̃ (69)

This condition states that if there does not exist some v in the range of h where the best f ∈
F improves on the squared error incurred by h by more than α2, then the predictor h(·) is α-
multicalibrated in the sense of [27] with respect to the constrained class F̃ . We then show that the
level sets of a predictor h(·) which satisfies (69) form a multicalibrated partition (Definition 3.2).
That is:

Ev[f(X)(Y − v)] ≤ α ∀v ∈ R(h), f ∈ F̃ ⇒ Covv(f(X), Y ) ≤ 2α ∀v ∈ R(h), f ∈ F̃ (70)

That is, the level sets Sv = {x | h(x) = v} form a (2α)-multicalibrated partition with respect to F̃ .

First, we’ll prove the contrapositive of (69). This proof is adapted from that of Lemma 3.3 in [27].
Suppose there exists some v ∈ R(h) and f ∈ F̃ such that

Ev[f(X)(Y − v)] ≥ α (71)

Then there exists f ′ ∈ F such that:

Ev[(f
′(X)− Y )2 − (h(X)− Y )2] ≥ α2 (72)

Proof: let η = α
Ev [f(X)2] and f ′ = v + α

Ev[f(X)2]f(X) = v + ηf(X). Then:

Ev

[
(h(X)− Y )2 − (f ′(X)− Y )2

]
(73)

= Ev

[
(v − Y )2 − (v + ηf(X)− Y )2

]
(74)

= Ev

[
v2 + Y 2 − 2Y v − v2 − η2f(X)2 − Y 2 − 2vηf(X) + 2vY + 2ηf(X)Y

]
(75)

= Ev

[
2ηf(X) (Y − v)− η2f(X)2

]
(76)

= Ev [2ηf(X) (Y − v)]− α2

Ev[f(X)2]
(77)

≥ 2ηα− α2

Ev[f(X)2]
(78)

=
α2

Ev[f(X)2]
(79)

≥ α2 (80)

Where the last step follows because we took f ∈ F̃ , the subset of the function class F which only
takes values in [0, 1]. This implies that if instead Ev[(f

′(X) − Y )2 − (h(X) − Y )2] < α2 for all
v ∈ R(h), f ′ ∈ F , then Ev[f(X)(Y − v)] < α for all v ∈ R(h) and f ∈ F̃ . Next we prove (70);
that is, Ev[f(X)(Y − v)] < α for all v ∈ R(h) and f ∈ F̃ implies |Covv(f(X), Y )| ≤ 2α for all
v ∈ R(h), f ∈ F̃ .
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The proof is adapted from that of Lemma 6.8 in [27]; our proof differs beginning at (88). Fix some
f ∈ F̃ and v ∈ R(h). By assumption we have, for all v ∈ R(h) and f ∈ F̃ ,

Ev[f(X)(Y − v)] < α (81)

Then we can show:

|Covv(f(X), Y )| (82)
= |Ev[f(X)Y ]− Ev[f(X)]Ev[Y ]| (83)
= |Ev[f(X)Y ]− Ev[f(X)]Ev[Y ] + vEv[f(X)]− vEv[f(X)]| (84)
= |Ev[f(X)(Y − v)] + Ev[f(X)](v − Ev[Y ])| (85)
≤ |Ev[f(X)(Y − v)]|+ |Ev[f(X)](v − Ev[Y ])| (86)
= |Ev[f(X)(Y − v)]|+ |Ev[f(X)](Ev[Y ]− v)| (87)
≤ α+ |Ev[f(X)](Ev[Y ]− v)| (88)

Where the last step follows from the assumption (81). Now, let f ′(X) ≡ Ev[f(X)] be the constant
function which takes the value Ev[f(X)]. We can write (88) as follows:

α+ |Ev[f(X)](Ev[Y ]− v)| = α+ |f ′(X)(Ev[Y ]− v)| (89)

= α+ |Ev[f
′(X)(Y − v)]| (90)

Because F is closed under affine transformations, it contains all constant functions, and thus,
f ′(X) ∈ F . F̃ , by definition, is the subset of F whose range lies in [0, 1]. Because f ∈ F̃ , it must
be that Ev[f(X)] ∈ [0, 1] and thus, f ′ ∈ F̃ . So, we can again invoke (81) to show:

α+ |Ev[f
′(X)(Y − v)]| ≤ 2α (91)

Which completes the proof.

D Relating Lemma C.2 to Omnipredictors [28]

In this section we compare Lemma C.2 to the main result of [28]. While the main result of [28] applies
broadly to convex, Lipschitz loss functions, we focus on the special case of minimizing squared error.
In this case, we show that Lemma C.2 extends the main result of [28] to cover real-valued outcomes
under somewhat weaker and more natural conditions. We proceed in three steps: first, to provide
a self-contained exposition, we state the result of [28] for real-valued outcomes in the special case
of squared error (Lemma D.1 and Lemma D.2 below). Second, we derive a matching bound using
Lemma C.2 (our result), which we do by demonstrating that the conditions of Lemma D.2 imply
the conditions of Lemma C.2. Finally, we show that Lemma C.2 applies in more generality than
Lemma D.2, under conditions which match those of Definition 3.2.

We first state the main result of [28] (adapted to our notation) below, which holds for binary outcomes
Y ∈ {0, 1}.9

Lemma D.1 (Omnipredictors for binary outcomes, specialized to squared error ([28], Theorem 6.3)).
Let S be a subset which is α-indistinguishable with respect to a real-valued function class F and a
binary target outcome Y ∈ {0, 1}. Then, for all f ∈ F ,

ES

[
(Y − E[Y ])

2
]
≤ ES

[
(Y − f(X))

2
]
+ 4α (92)

9As discussed in Section 1, we also continue to elide the distinction between the ‘approximate’ multicali-
bration of [28] and our focus on individual indistinguishable subsets. The results in this section can again be
interpreted as holding for the ‘typical’ element of an approximately multicalibrated partition.
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This result makes use of the fact that for any fixed y ∈ [0, 1], the squared error function is 2-Lipschitz
with respect to f(x) over the interval [0, 1]. This is similar to Lemma C.2, but requires that Y is
binary-valued. In contrast, Lemma C.2 allows for real-valued Y ∈ [0, 1], and gains a factor of 2 on
the RHS.10 [28] provide an alternate extension of Lemma D.1 to bounded, real-valued Y , which we
present below for comparison to Lemma C.2.

Extending Lemma D.1 to real-valued Y . Fix some ϵ > 0, and let B(ϵ) = {0, 1, 2 . . . ⌊ 2ϵ ⌋}.
Let Ỹ be a random variable which represents a discretization of Y into bins of size ϵ

2 . That is,
Ỹ = minb∈B(ϵ)

∣∣Y − bϵ
2

∣∣. LetR(Ỹ ) denote the range of Ỹ . Observe that the following holds for any
function g : X → [0, 1]: ∣∣∣E[(Ỹ − g(X))2]− E[(Y − g(X))2]

∣∣∣ ≤ ϵ (93)

Where (93) follows because the function (y − g(x))2 is 2-Lipschitz with respect to g(x) over [0, 1]
for all y ∈ [0, 1]. We now work with the discretization of Ỹ , and provide an analogue to Lemma D.1
under a modified indistinguishability condition for discrete-valued Ỹ , which we’ll show is stronger
than Definition 3.1.

Lemma D.2 (Extending Lemma D.1 to real-valued Y ([28], adapted from Theorem 8.1)). LetR(f)
denote the range of a function f , and let 1(·) denote the indicator function. Let S be a subset of
the input space X which satisfies the following condition with respect to a function class F and
discretized target Ỹ :

For all f ∈ F and ỹ ∈ R(Ỹ ), if: ∣∣∣CovS(1(Ỹ = ỹ), f(X))
∣∣∣ ≤ α (94)

Then:

ES

[(
Ỹ − ES [Ỹ ]

)2
]
≤ ES

[(
Ỹ − f(X)

)2
]
+ 2

⌈
2

ϵ

⌉
α (95)

To interpret this result, observe that (95) yields a bound which is similar to Lemma D.1 under a
modified ‘pointwise’ indistinguishability condition (94) for any discretization Ỹ of Y . Combining
(95) with (93) further implies:

ES

[(
Y − ES [Ỹ ]

)2
]
≤ ES

[
(Y − f(X))

2
]
+ 2

⌈
2

ϵ

⌉
α+ 2ϵ (96)

Deriving Lemma D.2 using Lemma C.2

We show next that the ‘pointwise’ condition (94) for α ≥ 0 implies our standard indistinguishability
condition (Definition 3.1) for α′ =

⌈
2
ϵ

⌉
α. This will allow us to apply Lemma C.2 to obtain a bound

which is identical to (96). Thus, we show that Lemma C.2 is at least as general as Lemma D.2.

Lemma D.3. Let S be a subset satisfying (94). Then, for all f ∈ F ,

∣∣∣CovS(Ỹ , f(X))
∣∣∣ ≤ ⌈

2

ϵ

⌉
α (97)

We provide a proof in Appendix E. Thus, combining assumption (94) with Lemma C.2 and (93)
recovers a result which is identical to Lemma D.2. That is, for all f ∈ F :

10Note that Lemma C.2 also requires that each f ∈ F takes values in [0, 1], but this is without loss of
generality when the outcome is bounded in [0, 1]; projecting each f ∈ F onto [0, 1] can only reduce squared
error.
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∣∣∣CovS(1(Ỹ = ỹ), f(X))
∣∣∣ ≤ α (98)

⇒
∣∣∣CovS(Ỹ , f(X))

∣∣∣ ≤ ⌈
2

ϵ

⌉
α (99)

⇒ ES

[(
Ỹ − ES [Ỹ ]

)2
]
≤ ES

[(
Ỹ − f(X)

)2
]
+ 2

⌈
2

ϵ

⌉
α (100)

⇒ ES

[(
Y − E[Ỹ ]

)2
]
≤ ES

[
(Y − f(X))

2
]
+ 2

⌈
2

ϵ

⌉
α+ 2ϵ (101)

Where (99) follows from Lemma D.3, (100) follows from Lemma C.2 and (101) follows from (93).

Extending Lemma C.2 beyond Lemma D.2

Finally, to show that Lemma C.2 extends Lemma D.2, it suffices to provide a distribution over f(X)

for some f ∈ F and a discrete-valued Ỹ taking l ≥ 1 values such that Definition 3.1 is satisfied at
level α ≥ 0, but (94) is not satisfied at α′ = (α/l) (though in fact that taking α′ = α also suffices for
the following counterexample).

Consider the joint distribution in which the events {Ỹ = 0, f(X) = 0}, {Ỹ = 1
2 , f(X) = 1

2} and
{Ỹ = 1

2 , f(X) = 1} occur with equal probability 1
3 conditional on {X ∈ S} for some S ⊆ X . We

suppress the conditioning event {X ∈ S} for clarity. Then:

Cov(1(Ỹ = 0), f(X)) = P(Ỹ = 1)
(
E[f(X) | Ỹ = 0]− E[f(X)]

)
= −1

6
(102)

On the other hand we have:

Cov(Ỹ , f(X)) = E[Ỹ f(X)]− E[Ỹ ]E[f(X)] (103)

= E[Ỹ E[f(X) | Ỹ ]]− E[Ỹ ]E[f(X)] (104)

=

(
1

3
× 0 +

2

3
× 1

2
× 3

4

)
− 1

3
× 1

2
=

1

12
(105)

That is, we have
∣∣∣Cov(Ỹ , f(X))

∣∣∣ = 1
12 < 3

∣∣∣Cov(1(Ỹ = 0), f(X))
∣∣∣ = 1

2 . Thus, Lemma C.2
establishes a result which is similar to (D.2) for real-valued Y under the weaker and more natural
condition that |Cov(Y, f(X))| is bounded, which remains well-defined for real-valued Y , rather than
requiring the stronger pointwise bound (94) for some discretization Ỹ .

Finally, we briefly compare Lemma C.2 to Theorem 8.3 in [28], which generalizes Lemma D.2 to
hold for linear combinations of the functions f ∈ F and to further quantify the gap between the
‘canonical predictor’ Ek[Y ] and any f ∈ F (or linear combinations thereof). These extensions are
beyond the scope of our work, but we briefly remark that the apparently sharper bound of Theorem
8.3 is due to an incorrect assumption that the squared loss (y − g(x))2 is 1-Lipschitz with respect to
g(x) over the interval [0, 1], for any y ∈ [0, 1]. Correcting this to a Lipschitz constant of 2 recovers
the same bound as (101).

E Proofs of auxiliary lemmas

Proof of Lemma C.1

Proof. We’ll first prove (18).

Cov(X,Y ) = E[XY ]− E[X]E[Y ] (106)
= E[E[XY | X]]− E[X]E[Y ] (107)
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= P(X = 1)E[XY | X = 1] + P(X = 0)E[XY | X = 0]− E[X]E[Y ] (108)
= P(X = 1)E[Y | X = 1]− E[X]E[Y ] (109)
= P(X = 1)E[Y | X = 1]− P(X = 1)E[Y ] (110)
= P(X = 1) (E[Y | X = 1]− E[Y ]) (111)

As desired. To prove (19), let X ′ = 1−X . Applying the prior result yields:

Cov(X ′, Y ) = P(X ′ = 1) (E[Y | X ′ = 1]− E[Y ]) (112)

Because X ′ = 1⇔ X = 0, it follows that:

Cov(X ′, Y ) = P(X = 0) (E[Y | X = 0]− E[Y ]) (113)

Finally, because covariance is a bilinear function, Cov(X ′, Y ) = Cov(1−X,Y ) = −Cov(X,Y ).
Chaining this identity with (113) yields the result.

Proof of Lemma C.2

The result we want to prove specializes Theorem 6.3 in [28] to the case of squared error, but our
result allows Y ∈ [0, 1] rather than Y ∈ {0, 1}. The first few steps of our proof thus follow that of
Theorem 6.3 in [28]; our proof diverges starting at (118). We provide a detailed comparison of these
two results in Appendix D above.

Proof. Fix any k ∈ [K]. We want to prove the following bound:

Ek[(Y − Ek[Y ])2] ≤ Ek[(Y − f(X))2] + 4α (114)

It suffices to show instead that:

Ek[(Y − Ek[f(X)])2] ≤ Ek[(Y − f(X))2] + 4α (115)

From this the result follows, as Ek[(Y − Ek[Y ])2] ≤ Ek[(Y − c)2] for any constant c. To simplify
notation, we drop the subscript k and instead let the conditioning event {X ∈ Sk} be implicit
throughout. We first show:

E[(Y − f(X))2] = E
[
E
[
(Y − f(X))2 | Y

]]
≥ E

[
(Y − E[f(X) | Y ])2

]
(116)

Where the second inequality is an application of Jensen’s inequality (the squared loss is convex in
f(X)). From this it follows that:

E
[
(Y − E[f(X)])2

]
− E

[
(Y − f(X))2

]
(117)

≤ E
[
(Y − E[f(X)])2 − (Y − E[f(X) | Y ])2

]
(118)

= E
[
E[f(X)]2 − 2Y E[f(X)]− E[f(X) | Y ]2 + 2Y E[f(X) | Y ]

]
(119)

= 2 (E [Y E[f(X) | Y ]− Y E[f(X)]])− E
[
E[f(X) | Y ]2 + E[f(X)]2

]
(120)

= 2 (E [Y f(X)]− E[Y ]E[f(X)])− E
[
E[f(X) | Y ]2 + E[f(X)]2

]
(121)

= 2Cov(Y, f(X))− E
[
E[f(X) | Y ]2

]
+ E[f(X)]2 (122)

= 2Cov(Y, f(X))−Var(E[f(X) | Y ]) (123)
≤ 2α (124)
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Where each step until (124) follows by simply grouping terms and applying linearity of expectation.
(124) follows by the multicalibration condition and the fact that the variance of any random variable
is nonnegative.

Proof of Lemma C.3

Proof. For any π ∈ Π, f ∈ F , assumption (40) gives us |Cov(Y, f(X)π(X))| ≤ α. We’ll expand
the LHS to show the result.

|Covk(Y, f(X)π(X))| (125)
= |Ek[Covk(Y, f(X)π(X) | π(X))] + Covk(Ek[Y | π(X)],Ek[f(X)π(X) | π(X)])| (126)
= |Pk(π(X) = 1)Covk(Y, f(X)π(X) | π(X) = 1)

+ Pk(π(X) = 0)Covk(Y, f(X)π(X) | π(X) = 0)

+ Covk(Ek[Y | π(X)],Ek[f(X)π(X) | π(X)])| (127)

=
∣∣P(π(X) = 1)Covk(Y, f(X) | π(X) = 1)

+ Covk(Ek[Y | π(X)],Ek[f(X)π(X) | π(X)])
∣∣ (128)

Where (126) is the application of the law of total covariance. Observe now that Covk(Y, f(X) |
π(X) = 1) is exactly what we want to bound. To do so, we now focus on expanding Covk(Ek[Y |
π(X)],Ek[f(X)π(X) | π(X)]). This is:

Ek[Ek[Y | π(X)]Ek[f(X)π(X) | π(X)]]− Ek[Ek[Y | π(X)]]Ek[Ek[f(X)π(X) | π(X)]] (129)
= P(π(X) = 1)Ek[Y | π(X) = 1]Ek[f(X) | π(X) = 1]

− Ek[Y ]P(π(X) = 1)Ek[f(X) | π(X) = 1] (130)
= P(π(X) = 1)Ek[f(X) | π(X) = 1] (Ek[Y | π(X) = 1]− Ek[Y ]) (131)

Because π(·) is a binary valued function, we can apply Lemma C.1 to write

Ek[Y | π(X) = 1]− Ek[Y ] =
Covk(Y, π(X))

P(π(X) = 1)

Plugging in this identity yields:

P(π(X) = 1)Ek[f(X) | π(X) = 1] (Ek[Y | π(X) = 1]− Ek[Y ]) (132)
= Ek[f(X) | π(X) = 1]Covk(Y, π(X)) (133)

Plugging (133) into (128) yields:

|Covk(Y, f(X)π(X))| (134)
= |P(π(X) = 1)Covk(Y, f(X) | π(X) = 1) + Ek[f(X) | π(X) = 1]Covk(Y, π(X))| (135)
= |P(π(X) = 1)Covk(Y, f(X) | π(X) = 1)− (−Ek[f(X) | π(X) = 1]Covk(Y, π(X)))|

(136)
≥ ||P(π(X) = 1)Covk(Y, f(X) | π(X) = 1)| − |Ek[f(X) | π(X) = 1]Covk(Y, π(X))|| (137)
≥ |P(π(X) = 1)Covk(Y, f(X) | π(X) = 1)| − |Ek[f(X) | π(X) = 1]Covk(Y, π(X))| (138)

Where (137) is the application of the reverse triangle inequality. Combining the initial assumption
that Sk is indistinguishable with respect to {f(X)π(X) | f ∈ F , π ∈ Π} (40) and (138) yields:

|P(π(X) = 1)Covk(Y, f(X) | π(X) = 1)|

29



− |Ek[f(X) | π(X) = 1]Covk(Y, π(X))| ≤ α (139)

Which further implies:

|P(π(X) = 1)Covk(Y, f(X) | π(X) = 1)| ≤ α+ |Ek[f(X) | π(X) = 1]Covk(Y, π(X))| (140)
= α+ Ek[f(X) | π(X) = 1] |Covk(Y, π(X))| (141)
≤ α+ |Covk(Y, π(X))| (142)
≤ 2α (143)

Which finally implies |Covk(Y, f(X) | π(X) = 1)| ≤ 2α
P(π(X)=1) , as desired. (141) and (142) follow

from the assumption that f(X) ∈ [0, 1], and (143) follows from the initial assumption that Sk is
α-indistinguishable with respect to every Π (39).

Proof of Lemma D.3

Proof. Recall that Ỹ is a discrete random variable taking values 0, ϵ
2 , ϵ,

3ϵ
2 . . . ⌊ 2ϵ ⌋

ϵ
2 . We again use

R(Ỹ ) to denote the range of Ỹ . Our analysis below proceeds conditional on the event {X ∈ S},
which we suppress for clarity. We can show

∣∣∣Cov(Ỹ , f(X))
∣∣∣ = ∣∣∣E[Ỹ f(X)]− E[Ỹ ]E[f(X)]

∣∣∣ (144)

=

∣∣∣∣∣∣E[Ỹ f(X)]− E[f(X)]
∑

ỹ∈R(Ỹ )

ỹP(Ỹ = ỹ)

∣∣∣∣∣∣ (145)

=

∣∣∣∣∣∣E[Ỹ E[f(X) | Ỹ ]]− E[f(X)]
∑

ỹ∈R(Ỹ )

ỹP(Ỹ = ỹ)

∣∣∣∣∣∣ (146)

=

∣∣∣∣∣∣
∑

ỹ∈R(Ỹ )

ỹP(Ỹ = ỹ)E[f(X) | Ỹ = ỹ]− E[f(X)]
∑

ỹ∈R(Ỹ )

ỹP(Ỹ = ỹ)

∣∣∣∣∣∣ (147)

=

∣∣∣∣∣∣
∑

ỹ∈R(Ỹ )

ỹP(Ỹ = ỹ)
(
E[f(X) | Ỹ = ỹ]− E[f(X)]

)∣∣∣∣∣∣ (148)

=
∑

ỹ∈R(Ỹ )

ỹP(Ỹ = ỹ)
∣∣∣(E[f(X) | Ỹ = ỹ]− E[f(X)]

)∣∣∣ (149)

=
∑

ỹ∈R(Ỹ )

ỹ
∣∣∣Cov(1(Ỹ = ỹ), f(X))

∣∣∣ (150)

≤
∑

ỹ∈R(Ỹ )

ỹα (151)

≤
∑

ỹ∈R(Ỹ )

α (152)

≤
⌈
2

ϵ

⌉
α (153)

Where (149) makes use of the fact that ỹ ≥ 0, (150) makes use of the identity∣∣∣Cov(1(Ỹ = ỹ), f(X))
∣∣∣ = P(Ỹ = ỹ)

∣∣∣(E[f(X) | Ỹ = ỹ]− E[f(X)]
)∣∣∣ (this is a straightforward

analogue of Lemma C.1), (151) applies assumption (94), and (152) makes use of the fact that ỹ ≤ 1.
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F Finding multicalibrated partitions: chest X-ray diagnosis

In this section we provide additional details related to the chest X-ray diagnosis task studied in
Section 5. As discussed in Section 5, the relevant class F is the set of 8 predictive models studied in
[59] for diagnosing various pathologies using chest X-ray imaging data. A key insight for learning
a multicalibrated partition with respect to this class is that, because the class of models is finite,
we can apply Lemma B.1 to discover indistinguishable subsets without training new models or
even accessing the training data. Instead, we can think of the relevant input space as {0, 1}8: the
8-dimensional vector containing the classifications output by the 8 models in F for a given X-ray.
Then, per Lemma Lemma C.3 and Corollary A.3, any subset of X-rays for which the Chebyshev
distance (i.e., the maximum coordinatewise difference) in this 8-dimensional space is bounded must
be approximately indistinguishable. Thus, to find approximately indistinguishable subsets, we simply
apply an off-the-shelf clustering algorithm to minimize the intracluster Chebyshev distance. Code and
instructions to replicate this procedure are available at https://github.com/ralur/heap-repl.

G Additional experimental results: chest X-ray diagnosis

In this section we provide results which are analagous to those presented in Section 5 for the four
additional pathologies studied in [59]. For each pathology we first present a figure comparing the
accuracy of the benchmark radiologists to that of the eight leaderboard algorithms, as in Figure 2
for atelectasis. We then present a figure which plots the conditional performance of each radiologist
within a pair of indistinguishable subsets, as in Figure 3.

Results for diagnosing a pleural effusion are presented in Figure 5 and Figure 6. Results for
diagnosing cardiomegaly are presented in Figure 7 and Figure 8. Results for diagnosing consolidation
are presented in Figure 9 and Figure 10. Finally, results for diagnosing edema are presented in
Figure 11 and Figure 12.
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Figure 5: The relative performance of radiologists and predictive algorithms for detecting a pleural
effusion. Each bar plots the Matthews Correlation Coefficient between the corresponding prediction
and the ground truth label. Point estimates are reported with 95% bootstrap confidence intervals.

H Additional experimental details: prediction from visual features

In this section we provide additional details related to the escape the room task studied in Sec-
tion 5. Our work focuses on study 2 in [62]; study 1 analyzes the same task with only two treat-
ment arms. As discussed in Section 5, the dimension of the feature space is 33, and encodes the
mean/median/standard deviation (for numerical features) or one-hot encoding (for categorical fea-
tures) of the following: the location in which the puzzle was attempted (Boston, Arizona, NYC etc.),
the type of escape the room puzzle (theater, office, home etc.), the number of people in the photo,
summary demographic information (age, gender, race, racial diversity), whether participants are
smiling, and whether (and what type) of glasses they are wearing. This is exactly the set of features
considered in [62]; for additional detail on the data collection process we refer to their work.
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Figure 6: The conditional performance of radiologists and predictive algorithms for detecting a
pleural effusion within two approximately indistinguishable subsets. A random permutation of the
true labels is included as a baseline. The confidence intervals for the algorithmic predictors are not
strictly valid (the subsets are chosen conditional on the predictions themselves), but are included for
reference against radiologist performance. All else is as in Figure 5.
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Figure 7: The relative performance of radiologists and predictive algorithms for detecting car-
diomegaly. Each bar plots the Matthews Correlation Coefficient between the corresponding prediction
and the ground truth label. Point estimates are reported with 95% bootstrap confidence intervals.
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Figure 8: The conditional performance of radiologists and predictive algorithms for detecting
cardiomegaly within two approximately indistinguishable subsets. A random permutation of the
true labels is included as a baseline. The confidence intervals for the algorithmic predictors are not
strictly valid (the subsets are chosen conditional on the predictions themselves), but are included for
reference against radiologist performance. All else is as in Figure 7.

32



0.2

0.3

0.4

0.5

0.6

algorithmic radiologist

Prediction Type

C
o

rr
e
la

ti
o

n
 C

o
e
ffi

c
ie

n
t

predictor

drnet
ihil
jfaboy
ngango2
ngango3
sensexdr
uestc
yww211
radiologist 1
radiologist 2
radiologist 3

Figure 9: The relative performance of radiologists and predictive algorithms for detecting consolida-
tion. Each bar plots the Matthews Correlation Coefficient between the corresponding prediction and
the ground truth label. Point estimates are reported with 95% bootstrap confidence intervals.
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Figure 10: The conditional performance of radiologists and predictive algorithms for detecting
consolidation within two approximately indistinguishable subsets. A random permutation of the
true labels is included as a baseline. The confidence intervals for the algorithmic predictors are not
strictly valid (the subsets are chosen conditional on the predictions themselves), but are included for
reference against radiologist performance. All else is as in Figure 9.
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Figure 11: The relative performance of radiologists and predictive algorithms for detecting edema.
Each bar plots the Matthews Correlation Coefficient between the corresponding prediction and the
ground truth label. Point estimates are reported with 95% bootstrap confidence intervals.
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Figure 12: The conditional performance of radiologists and predictive algorithms for detecting edema
within two approximately indistinguishable subsets. A random permutation of the true labels is
included as a baseline. The confidence intervals for the algorithmic predictors are not strictly valid
(the subsets are chosen conditional on the predictions themselves), but are included for reference
against radiologist performance. All else is as in Figure 11.

To learn a partition of the input space, we apply the boosting algorithm proposed in [27]. We discuss
this algorithm and its connection to multicalibration in Appendix B.

I Additional experimental results: prediction from visual features

In this section we present additional experimental results for the visual prediction task studied in [62].

Humans fail to outperform algorithms. As in the X-ray diagnosis task in Section 5, we first directly
compare the performance of human subjects to that of the five off-the-shelf learning algorithms
studied in [62]. We again use the Matthew’s Correlation Coefficient (MCC) as a measure of binary
classification accuracy [12]. Our results confirm one of the basic findings in [62], which is that
humans fail to outperform the best algorithmic predictors. We present these results in Figure 13.
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Figure 13: Comparing the accuracy of human subjects’ predictions to those made by off-the-shelf
learning algorithms across four treatment conditions. Subjects in the control condition are given no
training, while subjects in each of the three remaining conditions are presented with a small number
of labeled examples before beginning the task. Each bar plots the Matthews correlation coefficient
between the corresponding prediction and the true binary outcome; point estimates are reported with
95% bootstrap confidence intervals.

Although these results indicate that humans fail to outperform algorithms on average in this visual
prediction task, we now apply the results of Section 4 to investigate whether humans subjects can
refine algorithmic predictions on specific instances.
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Resolving indistinguishability via human judgment. As in Section 5, we first form a partition
of the set of input images which is multicalibrated with respect to the five predictors considered in
Figure 13. As indicated by Lemma B.1 and Corollary B.2, we do this by partitioning the space of
observations to minimize the variance of each of the five predictors within each subset.11 Because the
outcome is binary, it is natural to partition the space of images into two clusters. We now examine the
conditional correlation between each prediction and the true binary outcome within each of these
subsets, which we plot in Figure 14.
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Figure 14: The conditional performance of human and algorithmic predictions within two approxi-
mately indistinguishable subsets. Subset 1 (n = 189) is the set in which all five predictors predict a
positive label; Subset 0 (n = 671) contains the remaining observations. All else is as in Figure 13.
The confidence intervals for the algorithmic predictors are not strictly valid (the subsets are chosen
conditional on the predictions themselves), but are included for reference against human performance.

As we can see, the human subjects’ predictions perform comparably to the algorithms within subset
0, but add substantial additional signal when all five models predict a positive label (subset 1). Thus,
although the human subjects fail to outperform the algorithmic predictors on average (Figure 13),
there is substantial heterogeneity in their relative performance that can be identified ex-ante by
partitioning the observations into two approximately indistinguishable subsets. In particular, as in
the X-ray classification task studied in Section 5, we find that human subjects can identify negative
instances which are incorrectly classified as positive by all five algorithmic predictors.

11We describe this procedure in Appendix F.
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of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
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• While we encourage the release of code and data, we understand that this might not be
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versions (if applicable).
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Justification: Each experiment in Section 5 includes error bars along with the methodology
and level of statistical significance. We generally report bootstrap standard intervals at a
95% confidence level. Additional detail regarding the calculation of error bars (e.g., the
libraries used) is available at https://github.com/ralur/heap-repl.
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dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our experiments do not require any special hardware, and can be run on a
standard 8 core personal laptop in under 10 minutes. This fact is included in our README
(https://github.com/ralur/heap-repl).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
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Answer: [Yes]
Justification: To our knowledge, our paper conforms with every aspect of the NeurIPS Code
of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, these are discussed in Section 7. In particular, the primary potential social
impact of our work is for readers to interpret our results as advocating for a particular level
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methodology addresses only a few technical questions related to human-AI collaboration,
and are not sufficient for ensuring that other desiderata (including, but not restricted to,
fairness, accountability and interpretability) are satisfied.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our contributions are primarily methodological, and the assets we release
(short scripts to reproduce our results) do not pose the same risks as e.g., releasing generative
language or image models. The data we use are already widely publicly available; we did
not scrape or otherwise collect additional data for this work.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Licenses associated with the data we use are described in the README
(https://github.com/ralur/heap-repl). Other work is properly credited throughout.
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• The answer NA means that the paper does not use existing assets.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The assets we release are documented in the README (https://github.
com/ralur/heap-repl).
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• The answer NA means that the paper does not release new assets.
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not include new crowdsourced or human subjects. We do use
widely available datasets which were initially collected in [62] and [35]. The data sheet asso-
ciated with the latter is available at [26]. Both works contain detailed information regarding
the instructions given to participants, screenshots, and details regarding compensation.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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therein were approved by the relevant institutional review board.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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• We recognize that the procedures for this may vary significantly between institutions
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• For initial submissions, do not include any information that would break anonymity (if
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