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ABSTRACT

Recent large language models with chain-of-thought reasoning capabilities exhibit
poor token efficiency due to self-doubt — spending excessive tokens verifying
already-correct answers. Using our Probe-In-The-Middle technique to analyze
model states during reasoning, we propose Dynasor-CoT, a certainty-based ap-
proach for dynamic reasoning termination. Our training-free method efficiently
achieves up to 29% token reduction while maintaining accuracy across mathemat-
ical reasoning tasks like AMC23, AIME24, and MATH500.

1 INTRODUCTION
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Figure 1: The token efficiency
curve for the traditional model is
much steeper than reasoning
model.

Figure 2: DeepSeek R1 performance on AMC23 (upper) and AIME24
(lower) at varying token budgets (scoring lowest to highest over 10
attempts). (Left) Standard reasoning with late answer outputs. (Right) Early
answer extraction using Probe-In-The-Middle technique.

Recent advances in large language models (LLMs) with long Chain-of-Thought (CoT) reasoning
capabilities, such as DeepSeek r1 (Guo et al., 2025) and OpenAI o1/o3 (Jaech et al., 2024; OpenAI,
2025), have demonstrated remarkable performance on complex tasks (e.g., math and code). How-
ever, compared to previous LLMs, these models exhibit markedly lower token efficiency—requiring
more tokens to achieve comparable accuracy—as shown in Figure 1.

One major source of this inefficiency stems from what we identify as self-doubt: models often reach
the correct answer early but engage in extended verification behaviors such as double-checking, re-
assessment, reverification, and so on. Such self-doubt patterns can lead to significantly increased
token consumption. For instance, Figure 3 compares traditional Qwen-7B (Yang et al., 2024)
model with a reasoning Deepseek-distilled Qwen-7B model on a simple question. While the tra-
ditional model reaches its answer in 180 tokens, the reasoning model expends 1K tokens on iterative
verification steps but already got the correct answer at token 340.

∗Equal contribution.
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To systematically investigate this phenomenon, we developed a “Probe-In-The-Middle” technique
(or “Probe” for short) that extracts the model’s intermediate thinking by appending specific prompts
such as “Oh, I suddenly got the answer to the whole problem, Final Answer: boxed{”. Figure 2
shows the analysis of the accuracy comparing directly asking vs probing the model. Taking AMC23
as an example, reasoning models frequently arrive at correct answers early (median: 830 tokens), but
continue generating unnecessary tokens due to self-doubt (median: 2.7K tokens). This self-doubt
phenomenon significantly impacts token efficiency, as models continue reasoning despite having in-
ternal confidence in their answers. Our key insight is that LLMs exhibit detectable levels of certainty
during their reasoning process, which can be leveraged to determine effective stopping points.
To address self-doubt, we propose Dynasor-CoT, a novel approach for long CoT reasoning. Our
method combines certainty-based heuristics with the probe-in-the-middle technique to dynamically
determine termination points. This approach efficiently truncates reasoning chains while maintain-
ing accuracy, demonstrating significant improvements over fixed-token-budget baselines. Notably, it
achieves up to 29% token reduction without compromising accuracy or requiring additional training,
and introduces no extra latency to the critical reasoning path.

parentheses separately. Let's do that step by step. Multiplying 6 by 1 gives me 6. Then, multiplying 6 by 2i gives me 12i. So, putting those 
together, (1 + 2i) * 6 equals 6 + 12i. Now, I have to subtract 3i from this result. So, the next step is to take 6 + 12i and subtract 3i from it. 
Let me write that down: 6 + 12i - 3i. Subtracting 3i from 12i should be straightforward. 12i minus 3i is 9i. So, now the expression simplifies 
to 6 + 9i.  Wait a second, let me double-check that to make sure I didn't make a mistake. So, (1 + 2i) * 6 is indeed 6 + 12i because you 
distribute the 6. Then, subtracting 3i would mean subtracting 3 from the coefficient of i, so 12 - 3 is 9. So, 6 + 9i seems correct.\n\n  Hmm, 
is there anything else I need to do here? The problem just asks to evaluate the expression, which I think I have done. Let me just make 
sure that I didn't misinterpret the original expression. It was (1 + 2i)6 - 3i, right? So, yes, that should be (1 + 2i) multiplied by 6, then 
subtract 3i. Alternatively, sometimes people might interpret 6(1 + 2i) - 3i, which is the same thing. So, either way, the result is 6 + 12i - 
3i, which is 6 + 9i. \n\nI don't think I need to do anything else because the expression is fully simplified now. So, 6 + 9i is the result. Wait, 
let me make sure about the arithmetic. 12i minus 3i is definitely 9i. Yeah, because 12 - 3 is 9. So, that part is correct. And 6 remains as 
it is because there's no other real term to combine with. So, 6 + 9i is the final answer.\n\nI guess another way to check is to substitute the 
values into a calculator or use another method to verify. But since I'm just doing it manually, I can verify each step again. Multiplying 6 by 
1 gives 6, 6 by 2i gives 12i. Then subtracting 3i gives 6 + 9i. Yeah, that seems consistent. So, I think I'm confident that the evaluated 
expression is 6 + 9i. I don't see any mistakes in my reasoning, so I believe that's the correct answer.**Final Answer**The value of the 
expression is 6 + 9i.
</think>

To evaluate the expression (1+2i)6-3i, we will follow these steps:
1. Distribute the 6 to both terms inside the parentheses.
2. Simplify the resulting expression.
3. Subtract 3i from the simplified expression.
Let's start with the distribution: (1+2i) 6 = 1 * 6 + 2i * 6 = 6 + 12i
Now, we substitute this back into the original expression: 6 + 12i - 3i
Next, we combine the like terms (the imaginary parts):6 + (12i - 3i) = 6 + 9i
So, the final answer is: 6+9i

<think> Okay, so I need to evaluate the expression (1 + 2i)6 - 3i. Hmm, let me 
think about how to approach this. I remember that when dealing with complex 
numbers, multiplication comes before addition and subtraction, so I should 
handle the multiplication first and then subtract 3i. First, let me rewrite the 
expression to make sure I understand it correctly: (1 + 2i) multiplied by 6, and 
then subtract 3i from the result. So, it's (1 + 2i) * 6 - 3i. Alright, let's tackle the 
multiplication part first. I know that when multiplying a complex number by a 
real number, I can distribute the multiplication across both the real and 
imaginary parts. So, for (1 + 2i) * 6, I can multiply 6 by each term inside the 

Evaluate (1+2i)6-3i 👤

To evaluate the expression (1 + 2i)6 - 3i, we start by distributing the multiplication across the complex number. First, we multiply 6 by each 
term in the complex number 1 + 2i: (1 + 2i) * 6 = 6 * 1 + 6 * 2i = 6 + 12i. Next, we subtract 3i from the result: 6 + 12i - 3i Combining the 
imaginary parts, we get: 6 + (12i - 3i) = 6 + 9i. Thus, the value of the expression is 6 + 9i
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Figure 3: An Example of Self-Doubt Comparing a Reasoning Model (Deepseek-distilled
Qwen-2.5 7B) vs. a Traditional Model (Qwen-2.5 7B) on a Problem from the MATH500 Dataset

2 DYNASOR-COT: EFFICIENTLY SCALING LONG CHAIN-OF-THOUGHT
REASONING

We present an efficient reasoning framework Dynasor-CoT for early termination that enhances
token-to-accuracy efficiency in long CoT LLM reasoning through three key mechanisms: answer
extraction by probe, certainty assessment, and post-generation validation. Figure 4 shows an exam-
ple of our methods.

2.1 PROBE IN THE MIDDLE

Instead of waiting for complete reasoning chains, we introduce strategic interventions called Probe-
In-The-Middle (or probe in short) during the generation process. Our approach appends carefully
designed guidance at intermediate stages of reasoning to explicitly elicit the model’s current answer
(e.g., “Oh, I suddenly got the answer to the whole problem, Final Answer: boxed{”). This method
capitalizes on our observation that reasoning LLMs often reach the correct solution before complet-
ing their full reasoning chain. When the LLM has already reached its conclusion internally, this
early extraction technique significantly reduces computational costs.
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Figure 4: Illustration of Dynasor-CoT: (1) Probe-In-The-Middle for answer extraction, (2) early
exit based on certainty (case 1), (2) post-generation validation for hesitation words (e.g., “wait”)

(case 3), and (4) continue if not certain enough (case 2)

2.2 CERTAINTY ASSESSMENT THROUGH ANSWER CONSISTENCY

We implement a dynamic certainty assessment mechanism that monitors the model’s outputs at reg-
ular intervals (e.g., every 32, 64, or 128 tokens). At each interval, we probe the model to extract and
store the current answer, then allow the LLM to continue its generation. Importantly, the subsequent
generation remains unaffected by the probing tokens, enabling parallel execution of answer extrac-
tion and original generation. When the model produces consistent answers across multiple intervals,
we interpret this pattern as an indicator of certainty, following the certaindex approach (Fu et al.,
2024). This methodology provides a quantitative measure of the model’s certainty.

2.3 POST-GENERATION VALIDATION

We empirically observed DeepSeek-R1 and DeepSeek-Distill models’ generations, and identified
that they generate specific words like ”wait” or ”hmm” when lacking certainty in their previous
generations. Based on this finding, we specifically monitor for these uncertainty indicators following
probed answers. Responses containing these indicators are automatically discarded. This validation
mechanism works in conjunction with the certainty assessment to create a comprehensive certainty
metric. Figure 4 shows an example.

These three components operate synergistically to optimize the token-to-accuracy trade-off. At reg-
ular intervals, the framework injects probe words after the current generation to extract the model’s
answer at that reasoning stage. It then discards answers that exhibit low certainty indicators. Finally,
it terminates the process early if answers remain consistent across several consecutive intervals.
This approach leverages the model’s ability to reach conclusions during intermediate stages while
maintaining robust safeguards against premature or uncertain responses. Our method requires no
additional training or model changing, making it readily applicable to existing LLM deployments.

3 EVALUATION

3.1 MAIN RESULTS

We evaluate our certainty-based early termination method Dynasor-CoT against baseline uniform
token allocation across multiple scales of distilled DeepSeek models (7B, 14B, and 32B) (Guo
et al., 2025) on mathematical reasoning benchmarks AIME24 and AMC23 (Yang et al., 2024),
and MATH500 (Lightman et al., 2023). Unlike the baseline approach that uniformly increases token
budgets, our method enables early termination by monitoring model certainty at various intervals.
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As illustrated in Figure 5, we evaluate variable probing intervals (32, 64, and so on) represented by
distinct colored lines, with a maximum token budget of 16K. For each interval, we vary the early
termination parameter N (the required number of consecutive consistent answers), generating differ-
ent points along each line. All configurations achieve significant token savings, with our approach
reducing token usage by up to 29% while maintaining comparable accuracy to the baseline. For fair
comparison, appropriate accuracy thresholds were calibrated to model scale - with 32B models eval-
uated against stricter thresholds above QwQ (Team, 2024) levels and reduced thresholds for smaller
models - while setting higher targets for simpler tasks where greater accuracy is achievable. For the
10% of problems where our method achieves the highest token reduction, we observe savings of
34% on AIME and 53% on MATH500. This extends further for the top 1% of problems, where we
achieve even more substantial reductions of 53% on AIME and 81% on MATH500. These results,
particularly the substantial token savings on certain problems (up to 81% reduction), demonstrate
our method’s ability to adapt token allocation to different problem types. This variable performance
shows the advantage of our dynamic approach over fixed token budgets, as problems vary in their
token requirements for reaching solutions.
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Figure 5: Comparing Dynasor-CoT Performance Across Model Scales and Datasets
To validate scalability, we extended our
experiments to the larger DeepSeek-
R1 model on AIME and AMC datasets
(Figure 6). The results align with
our findings from smaller distill mod-
els, demonstrating consistent efficiency
gains: DeepSeek-R1 achieves 12% to-
ken savings on AIME problems and
24% on AMC problems while maintain-
ing baseline accuracy levels.
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Figure 6: Apply Dynasor-CoT on DeepSeek-R1

3.2 ABLATION STUDY

We conduct ablation studies across MATH500, AIME24, and AMC23 using DeepSeek Distill 32B
to evaluate our framework’s components. Our analysis compares four configurations: (1) baseline
(uniform token budget), (2) baseline + probing, (3) our certainty-based early exit without post-
generation validation, and (4) our full Dynasor-CoT framework. Results (Figure 7) demonstrate
that both the basic probe implementation and the version without validation achieve lower token
efficiency compared to our complete framework across all settings.

4 CONCLUSION

In this paper, we present Dynasor-CoT, a technique that addresses self-doubt in long chain-of-
thought reasoning to enhance LLMs’ token efficiency. Our evaluation shows that Dynasor-CoT
improves token-to-accuracy efficiency by up to 29% compared to baselines across various model
configurations and mathematical reasoning tasks.
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Figure 7: Effectiveness of Components using DeepSeek Distill 32B on mathematic datasets
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A RELATED WORK

Chain-of-thought reasoning has emerged as a powerful paradigm for tackling complex tasks such
as math, programming, and creative writing, with models like Deepseek-R1 (Guo et al., 2025) and
OpenAI O3 (OpenAI, 2025) employing extended reasoning chains to simulate human deliberation.
However, this process can produce output sequences that are up to 20 times longer than direct re-
sponses (Chen et al., 2024) for simple questions, leading to substantial increases in inference costs
and latency.

To mitigate these inefficiencies, several works (Manvi et al., 2024; Chen et al., 2024; Muennighoff
et al., 2025) have explored methods to reduce token consumption during reasoning, including mid-
generation self-evaluation and adaptive termination strategies. These approaches typically require
fine-tuning, additional predictors, or estimations of question difficulty, which can complicate de-
ployment despite their potential to balance accuracy with reduced computational overhead.

While LLM serving systems like Dynasor (Fu et al., 2024) use statistical signals (i.e., Certaindex) to
dynamically allocate compute across parallel reasoning branches, they primarily focus on system-
level optimization for complex reasoning algorithms (e.g., self-consistency (Wang et al., 2022) and
MCTS (Hao et al., 2023; Feng et al., 2023)). In contrast, our work identifies and addresses the hes-
itation phenomenon in chain-of-thought reasoning for models like DeepSeek-R1, where reasoning
is inherently sequential. We leverage probe-in-the-middle techniques and certainty-based heuris-
tics (e.g., post-generation validation) to efficiently truncate reasoning chains when models exhibit
sufficient confidence in their answers.

A.1 LIMITATION

Our work did not focus how Dynasor-CoT reduce latency into actual serving system, particularly
with large batch size and long context. Future work can explore techniques such as disaggregation
(Zhong et al., 2024; Patel et al., 2024; Hu et al., 2024; Qin et al., 2024), chunked prefill (Agrawal
et al., 2023; 2024) on the latency-accuracy trade-off in serving systems and real workload.
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