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ABSTRACT

Interpreting machine learning models with high-level, human-understandable con-
cepts has gained increasing interest. The concept bottleneck model (CBM) is a
popular approach to providing interpretable models, relying on first predicting
the presence of concepts in a given input, and then using these concept scores
to predict a label of interest. Yet, CBMs suffer from lower accuracy compared
with standard black-box models, as they use a surrogate (and thus, interpretable)
predictor in lieu of the original model. In this work, we propose an approach
that allows us to find a CBM in any standard black-box model via an invertible
mapping from its latent space to an interpretable concept space. This method pre-
serves the original black-box model’s prediction and thus has zero performance
drop while providing human-understandable explanations. We evaluate the accu-
racy and interpretability of our method across various benchmarks, demonstrating
state-of-the-art explainability metrics while enjoying superior accuracy.

1 INTRODUCTION

As artificial intelligence (AI) demonstrates remarkable success in diverse domains, concerns regard-
ing interpretability (Holzinger et al. (2022); Dwivedi et al. (2023)), fairness (Chen et al. (2023);
Bharti et al. (2024)), and privacy (Oseni et al. (2021); Xu et al. (2024)) are also gaining increasing
attention. Particularly, while the complexity of deep learning models enables them to model com-
plex patterns, it also makes the decision-making process opaque. This “black-box” nature raises
concerns about deploying these models in high-stakes scenarios, and there is a growing demand for
more transparent AI systems (Von Eschenbach (2021); Gryz & Rojszczak (2021)).

Numerous efforts have been made to enhance the interpretability of deep learning models. Many of
these works generate salience-map style explanations using gradient-based analysis (Simonyan et al.
(2013); Selvaraju et al. (2017)), game-theory approaches (Sundararajan & Najmi (2020); Teneggi
et al. (2022)), decomposition-based methods (Zhou et al. (2016); Shrikumar et al. (2017)), and
more. The salience map highlights important parts of the input (i.e., pixels in images; nodes in
graphs; words in sentences, etc.), which provides valuable insights into where, or to what features,
the model is looking at. However, salience maps might not always be sufficient, specifically when
the prediction is based on global attributes, such as color, texture, or overall morphology, rather than
specific input dimensions (Poeta et al. (2023)). This limitation is particularly evident in challenging
tasks like clinical diagnosis, where localizing a particular subregion in medical images may not fully
convey the reasoning of a model, and high-level, domain-relevant explanations are needed for more
meaningful explanations (Border & Sarder (2022); Venkatesh et al. (2024)).

Concept-based explanations provide a compelling alternative, which explains classification models
by high-level, human-understandable attributes such as color, shape, texture, and the presence of
objects (Poeta et al. (2023)). The concept bottleneck model (CBM) (Losch et al. (2019); Koh et al.
(2020)) is one such method that consists of two interconnected predictors: a first concept predictor
that predicts the presence of specific abstract concepts in some embedded representation of the in-
put, and a subsequent (linear) model that outputs the probability of the class given the presence of
such concepts. Since this model explicitly constructs predictions that rely on the presence of con-
cepts, this layer is referred to as a concept bottleneck. More recently, Contrastive Language-Image
Pre-Training (CLIP) models are employed(Radford et al. (2021)) to replace the concept predictor
and build the concept bottlenecks by calculating the alignment between certain images and textual

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Black Box

...

All layers prior to 
last FCN

Last FCN
Input Image

Hidden space 
embeddings

Logits

...

"grey wings"

"black eyes"

"yellow belly"

"perching trees"

Affine Mapping Inversion

...
Concept Bottleneck Model 

a

bc

Concept Bottleneck

Figure 1: The high-level idea of CBM-zero (a) A black-box model. (b) Construction of a concept
bottleneck through invertible affine mapping from black-box model’s hidden space to concept space.
(c) The black-box model can be reformulated as a CBM without altering predictions.

concepts (Yuksekgonul et al. (2022); Yang et al. (2023); Oikarinen et al. (2023)), alleviating the de-
mand for image-wise concept annotations. A crucial challenge of these CBM-based methods is the
loss of predictive power, as they use a surrogate model in lieu of a standard black-box model to gain
interpretability. Although numerous efforts have been made, such as constructing very complex and
large concept banks Yang et al. (2023); Shang et al. (2024); Schrodi et al. (2024); Hu et al. (2024);
Tan et al. (2024), the performance drop still exists, especially in complex tasks.

In this work, we propose CBM-zero, which explains an established, standard black-box model by
converting it to a concept bottleneck model that inherently has zero performance drop. As Figure 1
illustrates, CBM-zero extracts the latent space of a black-box model just before its final layer and
finds an affine mapping from this latent space to a concept space derived from human annotations
or CLIP models (which eliminates the need for dense concept annotations). Importantly, we impose
an invertibility constraint on the affine map to ensure the original black-box model’s prediction can
be recovered completely. In this way, the original black-box model is converted to a CBM without
perturbing its prediction function (see Figure 1.c). Thus, we can explain that black-box model in a
post-hoc manner without altering the original predictor, and retaining its performance. We evaluate
our method on several image classification benchmarks, including general and fine-grained tasks.
Unlike previous CBM-based works, which only show qualitative analysis or partial quantitative
results concerning the quality of interpretation, we quantitatively evaluate them by proposing precise
metrics with respect to human annotations (when possible), or to large-scale knowledge graphs.
Compared with other CBM-based works, our method consistently achieves the best accuracy and
offers comparable or better interpretations.

2 RELATED WORKS

As alluded to above, our work is most closely related to CBM-based methods. More broadly, it is
also related to post-hoc conceptual explanation techniques, given our method aims to explain without
altering the original model. We review these prior works in both categories to put our contribution
in context.
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Concept bottleneck model (CBM) The initial idea of CBM (Koh et al. (2020); Losch et al.
(2019)) relied on predicting concepts first and then using these predicted concept scores to make a fi-
nal classification, forming a concept bottleneck. Dense image-wise concept annotations are needed
to learn this concept bottleneck. Post-hoc CBM (PCBM) (Yuksekgonul et al. (2022)) proposed
learning concept activation vector (CAVs) in feature space as a concept bank (Kim et al. (2018)) and
project the image embeddings (extracted by a pre-trained image feature encoder) to CAVs to form
the concept bottleneck. Moreover, in cases where image-wise concept annotations are not available,
they show that the concept bottleneck can be obtained by aligning images with textual descriptions
of concepts through language-vision models such as CLIP (Radford et al. (2021)). Language in the
Bottle (LaBo) (Yang et al. (2023)) and label-free CBM (Oikarinen et al. (2023)) follow a similar idea
and further boost the accuracy by collecting concepts from a large language model and conducting
the concept selection carefully. More recently, increasingly sophisticated methods have been dedi-
cated to improving the concept bank quality from the aspect of completeness (Shang et al. (2024))
and flexibility Schrodi et al. (2024); Hu et al. (2024); Tan et al. (2024). All of these CBM methods
have the crucial limitation of performance drops compared to black-box models. While numerous
efforts have been made to minimize this performance gap, some prediction power is always lost in
all of these approaches. Our method, on the other hand, recovers the black-box model’s original
prediction exactly and therefore has zero performance drop by design.

Post-hoc concept explanations Post-hoc concept explanations typically need image-wise concept
annotations in the training set, or an auxiliary set equipped with such annotations. T-CAV (Kim et al.
(2018)) is a popular approach that learns a linear classifier in a black-box model’s feature space to
distinguish samples with and without certain concepts, parameterized by concept activation vec-
tors (CAVs). The importance of the concept is then given by directional derivatives of prediction
to CAVs. There are a bunch of extensions that generalize and enhance T-CAV. For instance, Auto-
matic Concept-based Explanations (ACE) (Ghorbani et al. (2019)) consider superpixels in images as
concepts and discover them automatically. ConceptSHAP (Yeh et al. (2020)) defines completeness
scores for CAVs, and uses Shapley values to quantify the individual importance. Concept activation
region (CAR) (Crabbé & van der Schaar (2022)) relaxes the linear separability assumption of CAV
and uses a region instead of a vector in latent space to represent a concept. Spatial CAV (Wang
& Lee (2022)) attributes CAVs to relevant spatial regions. Text2Concept (Moayeri et al. (2023))
derives CAV from texts. Casual Concept Effect (CaCE) (Goyal et al. (2019)), on the other hand, as-
sesses the causal effect of the presence of concepts by generating counterfactual samples on samples
annotated with concepts. More recently, Teneggi & Sulam (2024) uses conditional independence of
concepts and sequential kernelized testing (Shekhar & Ramdas (2023)) to assess concept impor-
tance in predictions. The vast majority of these methods need costly concept annotations to define
concepts in a black-box model’s hidden space.

3 METHODS

In this section, we outline the problem formulation, describe our methods, and briefly introduce the
related methods to be used in the experimental section.

3.1 PROBLEM FORMULATION

Consider a deep learning, black-box model that predicts a label1 y ∈ R from an input image x ∈ Rn.
Most deep neural networks consist of multiple stacked layers and end with a fully connected layer
(FCN). Let f : Rn → Rd represent all layers prior to the last FCN. Without loss of generality, we
consider a K-class image classification task. The weights and bias of the final FCN are denoted as
A ∈ RK×d and b ∈ RK , respectively. The black-box model, and it’s prediction ŷ, are formulated
as:

z = Af(x) + b, ŷ = argmax
i

zi, (1)

where z ∈ RK denotes the logits for K classes, and the predicted label ŷ is the index of largest
logit. The goal is to explain this black-box model with high-level, human-understandable concepts

1Even though we will study classification problems, we will consider labels in R as we model the un-
normalized logits of the model, which approximate the conditional probability of a label given the input.
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Figure 2: An overview of the method. CLIP model is used to encode images and textual concepts.
CLIP scores (i.e., cosine similarity between image embeddings and text embeddings) provide an
estimation of certain concepts’ correlation with certain images. Exponential transformation and
normalization are applied to emphasize highly correlated concepts, yielding concept space features
for images. An invertible linear mapping, (W,h) is learned to map image features from a black-box
model’s hidden space to the concept space.

(e.g., “red”, “beak”, “stripes”). Like other CBM-based methods, we attempt to solve this problem
by defining a concept bank as a collection of M relevant concepts, denoted as S = {s1, s2, ..., sM}.
We seek to construct a CBM by mapping f(x) to a concept space where these M concepts reside
and then inverse the mapping to recover the original prediction exactly. We now move to present
details of the proposed approach.

3.2 CONSTRUCTING ZERO-PERFORMANCE DROP CBM

In this section, we will show that any black-box model with the form of Equation 1 can be converted
to an interpretable CBM without changing the predictions and thus preserving the accuracy of the
original model. Figure 2 shows an illustration of our method. The core challenge with black-box
models is the lack of interpretability in their latent space. For example, the feature embedding
f(x) in Equation 1 resides in an abstract space that encodes useful information for prediction but is
not necessarily semantically meaningful or understandable by humans. Thus, we aim to relate this
uninterpretable hidden space with another space that is interpretable to humans by construction.

In some cases, images are annotated with concept labels present in the image (in addition to their
class label), such as the CUB-200-2011 dataset (Wah et al. (2011)). However such dense concept
annotations are not always available. Therefore, we use the CLIP model (Radford et al. (2021)) to
estimate the presence of concepts in images in a way that no images-wise concept annotations are
needed for training. CLIP trains an image encoder EI : Rn → Rl and a text encoder ES : S → Rl

(where S is the space of text/token sequences) jointly via contrastive learning, allowing image and
text embeddings to live in a shared space. Their cosine similarity is defined as the CLIP score:

cos(x, si) =
EI(x)

TES(si)

∥EI(x)∥2∥ES(si)∥2
. (2)

For an image x, the CLIP scores for M concepts yields a vector,
[cos(x, s1), cos(x, s2), . . . , cos(x, sM )]T . To address the limited discriminative power of
CLIP (Chattopadhyay et al. (2024)), we apply an exponential transformation to emphasize concepts
with stronger correlations, followed by normalization. Specifically, the concept features c(x) is

defined as c(x) =
[
cost(x,s1)−µ1

σ1
, . . . , cost(x,sM )−µM

σM

]T
, where µi and σi are the mean and standard

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Make Matrix Full Rank

1: Input: A rank-deficient matrix W ∈ RM×d(M ≥ d), tolerance scale ϵ
2: Output: A full-rank matrix W ′

3: Perform singular value decomposition (SVD) of W : W = UΣV T

4: for each singular value σi in Σ do
5: if σi = 0 then
6: Sample r ∼ U(0, 1)
7: Set σ′

i = ϵr (small perturbation)
8: else
9: Set σ′

i = σ (keep original singular value)
10: end if
11: end for
12: Set Σ′ = diag(σ′

1, . . . , σ
′
d)

13: Reconstruct the matrix W ′ = UΣ′V T

14: Return W ′

deviation of cost(x, si) over the input space X , estimated from training samples. We set t > 1 to
emphasize concepts with higher CLIP scores (see details in Section 4).

We define an interpretable concept space C ⊂ RM where c(x) resides, and a hidden space H ⊂ Rd

where f(x) resides. We seek an affine projection, (W ∈ RM×d, h ∈ RM ) : H → C to map from
the hidden space to the concept space. Importantly, we impose the constraint that rank(W ) = d, and
therefore M ≥ d, to ensure that the left pseudo-inverse of W , defined by W+ = (WTW )−1WT ,
exists. This ensures that the mapping from hidden space to concept space is invertible, allowing us
to preserve the output of the original black-box model unaltered.

To learn W and h, we solve the following optimization problem under the rank constraint:

(W,h) = argmin
W,h

E
x∼D

∥Wf(x) + h− c(x)∥22 + λR(W ) s.t. rank(W ) = d (3)

where D is the training data distribution, R(W ) is a regularization term, and λ controls regulariza-
tion strength. We use elastic net regularization on W+ to encourage its sparsity, which facilitates
interpretability. To be more specific,

R(W ) = α∥W+∥1 + (1− α)∥W+∥2F , (4)

where ∥ · ∥F is the Frobenius norm, ∥W+∥1 =
∑

i

∑
j |(W+)i,j | is element-wise ℓ1 norm, and α

controls this trade-off.

Practically, for each black-box model, we train a single-layer linear model to learn W and h with
Adam optimizer (Kingma & Ba (2017)) on the training set (where the black-box model is trained),
via the objective in Equation 3. The concepts present in c(x) come from a concept bank, S, which
is a task-specific set containing concepts relevant to the prediction task of interest (we describe this
further in Section 4). The rank of W is tracked each time the linear model is updated. When the
full-rank constraint is not fulfilled, we add some small perturbation to its zero singular values, as
detailed in Algorithm 1.

3.3 GLOBAL AND LOCAL EXPLANATIONS

After W and h are learned, the original black-box model’s logits can be reformulated as a linear
combination of M interpretable concepts without modifying the original predictor:

z = Ã(Wf(x) + h) + b− Ãh = Af(x) + b, (5)

where Wf(x) + h ∈ RM represents the features in the concept space, Ã := AW+ provides the
adapted linear classifier, and b − Ãh is the sample-independent (corrected) bias. Notice that, since
W+W = I , these logits have not changed from those in the original prediction. Yet, this expres-
sion allows us to compute the difference in importance of a given concept to a specific class. To
understand the prediction of class i, we can compute the deviation of zi from the mean logit across
classes:

5
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zi −
1

K

K∑
j=1

zj =

M∑
m=1

(Ãi,m − 1

K

K∑
j=1

Ãj,m)︸ ︷︷ ︸
Γi,m

(Wf(x) + h)m +B, (6)

where B = bi − 1
K

∑
j bj +

1
K

∑
j(Ãh)j − (Ãh)i is a constant term. From this, we can identify

the global importance of concept sm in predicting class i, Γi,m := Ãi,m − 1
K

∑
j Ãj,m. Moreover,

γi,m(x) := Γi,m(Wf(x) + h)m is the local contribution of concept sm to the specific sample x.
For those particularly interested in how the model discriminates class i from class j, the difference
between these two classes’ logits can be calculated by:

zi − zj =

M∑
m=1

(Ãi,m − Ãj,m)(Wf(x) + h)m + bi − bj + (Ãh)j − (Ãh)i. (7)

These definitions will become useful later in Section 4.

3.4 COMPARATIVE METHODS

We compare our method with several CBM-based approaches, all of which employ CMBs coupled
with vision-language models like CLIP, but differ in their strategy for concept collection and in how
they predict labels.

Post-hoc CBM (PCBM) (Yuksekgonul et al. (2022)) This method has two versions depending
on whether dense concept annotations are available. In cases with annotations, PCBM trains a linear
classifier to learn concept activation vectors (CAV) (Kim et al. (2018)), and projects the image
embedding onto these CAVs to obtain concept scores. In cases without annotations, CLIP is used to
encode the image and textual concepts, and the CLIP-derived image embedding vectors are projected
onto text embeddings to get concept scores. In both versions a sparse linear classifier is trained on
these concept scores to make final predictions. This method can also be extended by a hybrid PCBM
(PCBM-h), which introduces an uninterpretable residual predictor to boost prediction accuracy, but
compromises interpretability.

Language in a Bottle (LaBo) (Yang et al. (2023)) This method assumes ground-truth concept
annotations are not available. The scheme is similar to the CLIP version of PCBM, but the concept
score is defined as the inner product of image embedding and concept embedding, instead of the
projection length. A linear predictor with softmax-normalized coefficients is then trained to predict
labels, with no sparsity regularization.

Label free CBM (LF-CBM) (Oikarinen et al. (2023)) LF-CBM first learns a linear mapping
from a black-box model’s hidden space to a concept space, and then trains a sparse linear predictor
on the mapped image features to predict labels. While the mapping from hidden space to concept
space shares a similar motivation to our method, it learns a new predictor to predict labels – thus, it
cannot explain the original prediction, and typically results in a loss of predictive power. In contrast,
our method learns an invertible mapping, ensuring the original model is preserved.

These methods also differ in the ways that their respective concept banks are constructed: PCBM
queries ConceptNet (Speer et al. (2017)), while LaBo and LF-CBM query large language models.
Our method is flexible, and we consider various concept sources for different types of datasets, as
expanded in Section 4.

4 EXPERIMENTS

Herein we first present the experiment setup and evaluation metrics, and then numerical results with
comparisons with prior works.

Datasets and Concept banks We evaluate our method on six datasets in total: three for stan-
dard image classification sets (CIFAR-10, CIFAR-100 (Krizhevsky et al. (2009)) and ImageNet-1K
(Russakovsky et al. (2015))), and three fine-grained image classification datasets (CUB-200-2011

6
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Table 1: Accuracy and X-Factuality of Global Explanation on General Image Classification sets

Method CIFAR-10 CIFAR-100 ImageNet-1K
ACC X-Fact@10 ACC X-Fact@10 ACC X-Fact@10

Black- box 0.979 – 0.873 – 0.844 –
PCBM 0.937 0.650 ± 0.136 0.826 0.501 ± 0.173 0.814 0.307 ± 0.158
LaBo 0.976 0.540 ± 0.080 0.855 0.422 ± 0.159 0.830 0.225 ± 0.119
LF-CBM 0.978 0.670 ± 0.142 0.848 0.375 ± 0.131 0.708 0.248 ± 0.126
CBM-zero(Ours) 0.979 0.720 ± 0.125 0.873 0.456 ± 0.163 0.844 0.316 ± 0.163

Table 2: Accuracy and X-Factuality of Global Explanation on Fine-grained Image Classification
sets

Method CUB-200-2011 AwA2 Food-101
ACC X-Fact@10 ACC X-Fact@10 ACC X-Fact@10

Black- box 0.861 – 0.981 – –
PCBM 0.824 0.119 ± 0.123 0.632 0.486 ± 0.201 0.947 0.413 ± 0.185
LaBo – – 0.897 0.674 ± 0.161 0.943 0.335 ± 0.161
LF-CBM 0.831 0.268 ± 0.171 0.976 0.673 ± 0.136 0.944 0.545 ± 0.171
CBM-zero(Ours) 0.861 0.598 ± 0.120 0.981 0.616 ± 0.146 0.953 0.556 ± 0.187

(Wah et al. (2011)), AwA2 (Xian et al. (2018)), and Food-101 (Bossard et al. (2014))). Each dataset
has an associated concept bank relevant to its task. We use existing concept annotations for CUB-
200-2011 and AwA2 (bird and animal classification, resp.). CUB-200-2011 contains image-wise
annotations for 312 concepts describing detailed visual features of a bird, such as “has wing color:
blue”. AwA2 has class-wise annotations for 85 concepts describing color and characteristic parts
in animals, such as “black”, “hairless”, “hooves”. For CIFAR-10, CIFAR-100, and ImageNet-1K,
we curate 85, 691, and 2,901 concepts, respectively, by querying ConceptNet (Speer et al. (2017))
with class names (see details in Appendix A.4). For Food-100, we use 1,295 concepts curated by
LaBo (Yang et al. (2023)) using GPT-3 (see details in Appendix A.4), as class names are specific
food names and less present in ConceptNet. All methods use the same concept bank per dataset.

Black-box models and CLIP models We train a black-box (i.e. general) model for each dataset.
Our method works for any black-box model provided that the number of concepts (M ) is larger
than the dimension (d) of its last FCN. We used the image encoder of CLIP-ViT-L/14 from OpenAI
(Radford et al. (2021)) as the backbone and attach a two-layer multi-layer perceptron (MLP) to it.
The hidden dimension of MLP is set to be 64 for CIFAR-10 and AwA2, and 256 for CIFAR-100,
CUB-200, and Food-101. For ImageNet-1K, a linear layer replaces the MLP since the number of
concepts is very large. During the training of black-box models, the image encoder is fixed across
all datasets. Additionally, we use CLIP-ViT-L/14 as the CLIP model for interpretation, employing
its image encoder as EI and text encoder as ES . Results of other versions of CLIP models are also
included in Appendix A.5, specifically in Figure A.4.

Hyperparameters We empirically set t = 5, λ = 2
d (d is the dimension of f(x)), and α =

0.99 across all the datasets. We discuss other choices for these parameters and their sensitivity in
Appendix A.5, specifically in Figure A.2 and A.3.

Evaluation metrics The prediction power of models is easily evaluated by their classification
accuracy. The objective evaluation of interpretability, on the other hand, is more challenging. Prior
works have often omitted quantitative evaluation (Yuksekgonul et al. (2022)), or relied on subjective
human inputs (Yang et al. (2023); Oikarinen et al. (2023)). In this work, we provide quantitative and
objective evaluations for both global and local concept attributions, as we detail next.

GLOBAL CONCEPT IMPORTANCE We define a precise metric, termed X-factuality@k, to evaluate
the validity of k-top concepts receiving the highest global importance scores to explain a given class.
As detailed in Section 3.3 and Equation 6, the global importance score of concept sm for class i is
defined as Γi,m. We rank the M concepts by their importance score, select the top k concepts, and

7
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Figure 3: Accuracy v.s. X-Factuality@10 in different datasets. X-Factuality is calculated per class
and then aggregated as mean and standard deviation across classes.

count how many are valid. The definition of validity of concepts differs per dataset, depending on
whether human annotations are present or not:

1. For concepts curated from ConceptNet (CIFAR-10, CIFAR-100, and ImageNet-1K), a con-
cept is valid if there exists a valid edge connecting it and the corresponding class name2.

2. For concepts collected from GPT (Food-101), we decide valid concepts by prompting GPT-
4 with “Please assign a score between 0 and 1 based on the importance of {concept} in
visually recognizing {class name}”. A threshold of 0.5 is applied to define valid concepts.

3. For AWA2, human annotations provide class-wise binary concept labels, indicating the
presence of concepts in certain classes of animals. We consider concepts with positive
labels valid.

4. For CUB-200-2011, human annotations assign a binary presence label and an annotator-
confidence label (“definitely”, “probably”, “guessing”, or “invisible”) for each image-
concept pair. Image-wise presence labels are aggregated to class-wise continuous labels,
with values between 0 and 100, indicating the percentage of times a concept is marked as
“present” for a given class. We use 50% as a threshold and consider concepts with values
above that as valid.

We denote the set of top k concepts for class i as Sk
i and the “valid” concepts as Sv

i . Given Sk
i and

Sv
i , we define X-factuality as:

X-factualityi@k =
|Sk

i ∩ Sv
i |

k
, (8)

Note that while the definition of X-factuality seems related to the commonly used metric, precision,
they are not equivalent since “valid” concepts are not necessarily important in a prediction task. For
instance, “fur” might be “valid” in many animals, but might not be important in classifying different
types of animals. A high X-factuality only indicates the selected concepts do not contradict human
consensus, but do not guarantee the correctness of an explanation, since the actual importance of
these concepts for making predictions is not always clear or well-defined.

2The ConceptNet assigns a semantic meaning (e.g., “Has A”, “Part of”) to each edge describing the rela-
tionship, and we consider an edge valid if its semantic meaning is not “Obstructed By”, “Antonym”, “Distinct
From”, or “External URL”.
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Table 3: Local Explanation Quality of CUB-200-2011

Annotations Composition of Top-10 Important Concepts (%)
Presence Certainty PCBM LF-CBM CBM-zeros (Ours)

Yes (↑)
Definitely 5.95 ± 8.39 15.7 ± 15.7 34.3 ± 24.5
Probably 2.71 ± 6.01 6.99 ± 11.2 13.3 ± 18.4
Guessing 0.59 ± 2.92 1.30 ± 4.54 2.40 ± 10.6

No (↓)
Definitely 52.6 ± 33.2 40.4 ± 28.4 27.2 ± 22.4
Probably 23.7 ± 28.2 20.9 ± 24.2 14.1 ± 18.2
Guessing 5.02 ± 13.9 5.05 ± 13.1 3.52 ± 10.6

Not visible 9.45 ± 16.8 9.68 ± 13.1 5.22 ± 12.2
We select the top 10 important concepts per image, calculate their proportions of 7 possible presence-
certainty combinations and report the mean and standard deviation across images.

''Hamburger'' v.s. ''Hot dog'' (Example from Food-101)

''Orange'' v.s. ''Lemon'' (Example from ImageNet-1K)

''Zebra'' v.s. ''Horse'' (Example from AwA2)

a b c

d e f

h i j

Figure 4: Examples of global explanation importance. (a-c) Important concepts for predicting
hamburger (a), hot dog (b), and differentiating these two (c). (d-f) Important concepts for predicting
orange (c), lemon (d), and differentiating these two (f). (h-j) Important concepts for predicting zebra
(h), horse (i), and differentiating these two (j).

LOCAL CONCEPT CONTRIBUTIONS The local contributions of concept sm for predicting the sam-
ple x as class i is defined as γi,m. Quantitative evaluation of these local explanations needs costly
sample-wise concept annotations, which are only available for CUB-200-2011. Here, we select the
top 10 concepts with the highest contributions per image and compare to their annotations. For other
datasets, we provide qualitative local evaluations.

Results We used CLIP models to generate concept set features c(x) for all the datasets except
CUB-200-2011, since CLIP models struggle to capture the fine-grained annotated concepts and
severely hurt the faithfulness of explanation for all methods (see more details in Appendix A.6 and
Table A.1). Thus, we use human-annotated presence labels as c(x) for this latter dataset. For fair
comparisons, we also use ground truth annotations in PCBM (the CAV version) and LF-CBM. Yet,
this does not apply to LaBo, as the CLIP score is essential to its input. Table 1 and Table 2 summa-
rize the classification accuracy (ACC) and X-Factuality@10 (X-Fact@10) of global explanation for
general and fine-grained tasks, respectively. X-factuality is calculated per class and aggregated as

9
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mean and standard deviation across classes. We also visualize results in 2D panels, with X-factuality
on the x-axis and accuracy on the y-axis (see Figure 3). Therefore, points closer to the top-right cor-
ner indicate better performance in both predictive power and interpretability. In all but one case,
our method is the closest one to the top-right corner. We obtain the highest accuracy across all the
datasets (since out method inherently preserves the black-box models’ prediction), and the best X-
factuality in almost all cases. Figure A.1 further shows X-factuality@k as a function of k across
datasets. Moreover, we include some qualitative analysis with representative examples. In Figure
4 we plot the top 10 global concept importance (Γi,m) for several pairs of related classes, such as
“hamburger” (Figure 4.a) v.s. “hot dog” (Figure 4.b); “orange” (Figure 4.d) v.s. “lemon” (Figure
4.e); and “zebra” (Figure 4.h); “horse” (Figure 4.i). We also analyze how model differentiates class
i from class j by plotting Ãi,m − Ãj,m (see Figure 4.c, f, j). There are some interesting observa-
tions. For instance, shape is a key factor “hamburger” from “hot dog” (round v.s. tube); The key
difference between “orange” and “lemon” lies in their colors (orangish or yellow); and “strips” are
the key factor separating “zebra” from “horse”. These observations align well with our intuitions.

Regarding local explanations for CUB-200-2011, we select the top 10 important concepts (ranked
by γi,m) per image and check their annotations. There are 7 possible presence and certainty com-
binations in annotations. We calculate their proportions for each image and report the mean and
standard deviation across images in Table3. Our method obtains the best alignment with ground
truth concept annotations in the test set: among the top 10 important concepts, 34.3% ± 24.5% are
annotated as “definitely present”, and another 13.3% ± 18.4% are annotated as “probably present”,
significantly better higher than those in comparative methods. We show examples of local concept
contributions for CIFAR-10 (Figure A.5), CIFAR-100 (Figure A.6), Imagenet-1K (Figure A.10,
A.11, A.12, A.13), CUB-200-2011 (Figure A.7), AwA2 (Figure A.8), and Food-101 (Figure A.9) in
Appendix.

5 DISCUSSION, LIMITATIONS, AND CONCLUSION

In this work, we introduce CBM-zero, which explains black-box models by constructing a CBM
via an invertible mapping between its latent space and an interpretable concept space. This con-
cept space can be derived from CLIP models, eliminating the need for dense concept annotations.
Unlike other CBMs, CBM-zero does not alter the original black-box model, preserving its perfor-
mance exactly. Experiments across various benchmarks demonstrate its superiority in maintaining
the model’s accuracy and providing high-quality interpretations compared with states-of-arts.

This work also has several limitations. First, the affine mapping we use might not always be pow-
erful enough to map image features from hidden space to concept space accurately, which could
affect the faithfulness of the explanation (Margeloiu et al. (2021); Havasi et al. (2022); Huang et al.
(2024)). Leveraging more expressive yet still invertible models (e.g., normalizing flows Kobyzev
et al. (2020)) in the future might address this. Moreover, the reliance on CLIP models introduces
limitations when concepts are fine-grained features (e.g., CUB-200-2011 annotations) without fine-
tuning. CLIP scores measure correlation rather than directly indicating the presence of concepts.
Therefore, an image of a baby might get a high score for “stroller” even if there is no stroller
shown in the image. Exploring alternatives, such as querying large language and vision models
(Chattopadhyay et al. (2024)) or human collaborators (Chauhan et al. (2023)) about the presence of
certain concepts, might address this issue. Finally, the concept banks used are not perfect. Concept-
Net, although large and evolving, is not sufficient to represent the numerous concepts and complex
relationships in the real world. GPT-generated concepts are more flexible and diverse but might be
overly complex and sometimes these concepts are not visual descriptions. Both ConceptNet and
GPT-generated concepts can be inaccurate in describing the relationship between concepts, with
unclear levels of noise. Human annotations, while more accurate, are costly and labor-intensive,
hindering its board applicability. Incorporating recent advances in concept discovery (Shang et al.
(2024); Huang et al. (2024); Schrodi et al. (2024); Hu et al. (2024)), as well as incorporating notions
of uncertainty quantification to our results (Angelopoulos et al. (2020); Teneggi et al. (2023)), may
help generate more reasonable explanations.

6 REPRODUCIBILITY STATEMENT

Codes for implementing this method and reproducing the results can be found in this anonymous
repository: https://anonymous.4open.science/r/CBM-zero-EBED
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A APPENDIX

A.1 APPENDIX OVERVIEW

The Appendix provides additional clarifications and details that are not included in the main text
due to the length limit. Section A.2 shows X-factuality@k as a function of k. Section A.3 provides
quantitative results supporting the claim that “CLIP models struggle to culture the fine-grained an-
notated concepts from CUB-200-2011”, as mentioned in Section 4. In Section A.4, we provide
implementation details concerning concept curation and selection procedure and computational effi-
ciency of this work. Section A.5 discusses the sensitivity of results to hyperparameters, exponential
power t, and regularization strength λ, as well as the impact of different versions of CLIP models.
Section A.6 includes examples of local explanations.

A.2 X-FACTUALITY@k AS A FUNCTION OF k

In the main text, we only report X-factuality @ 10 for global explanations in Table 1 and 2. Here,
we extend this by plotting X-factuality@k as a function of k, as shown in Figure A.1.

Figure A.1: X-Factuality @ k v.s. k in CIFAR-10 (a), CIFAR-100 (b), ImageNet-1K (c), CUB-200-
2011 (d), AwA2 (e), and Food-101 (f). Solid lines show the mean X-Factuality across classes, and
the shaded area shows the standard deviation among classes.

A.3 CLIP MODELS ON CUB-200-2011

As described in Section 4, the CUB-200-2011 dataset contains 312 human-annotated concepts.
These concepts are fine-grained descriptions of the color, shape, and size of specific bird parts.
We found that even state-of-the-art CLIP models struggle to align these concepts with the correct
images, reducing the faithfulness of any explanation methods relying on them. To demonstrate this,
we select the top 10 concepts with the highest CLIP scores per image and compare them with anno-
tations. Table A.1 summarizes the results of different versions of CLIP models, and none of them
align with the ground truth well.

A.4 IMPLEMENTATION DETAILS

Concept curation and selection For CIFAR-10, CIFAR-100, and ImageNet-1K, we collect con-
cepts by querying ConceptNet (Speer et al. (2017)) with the {class name} and obtain {concepts}).
Only concepts with valid connections (excluding connections with semantic meaning of “Obstructed
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Table A.1: Quality of different versions of CLIP models on capturing concepts of CUB-200-2011

Annotations Composition of Top-10 Correlated Concepts (%)
Presence Certainty RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14

Yes(↑)
Definitely 7.71 ± 11.5 6.69 ± 10.5 8.97 ± 13.0 8.45 ± 11.8 10.4 ± 12.3
Probably 4.93 ± 9.04 3.73 ± 7.92 5.04 ± 9.74 5.43 ± 9.76 5.86 ± 9.72
Guessing 1.43 ± 4.43 0.97 ± 3.73 1.17 ± 4.41 1.54 ± 4.93 1.44 ± 4.60

No(↓)
Definitely 39.3 ± 31.6 45.6 ± 33.7 41.0 ± 32.1 35.7 ± 32.8 38.1 ± 31.6
Probably 23.0 ± 27.1 25.4 ± 29.0 23.1 ± 27.3 21.7 ± 27.8 21.8 ± 27.5
Guessing 6.37 ± 15.3 6.10 ± 15.4 5.66 ± 14.6 6.25 ± 16.1 6.05 ± 15.9

Not visible 17.3 ± 24.0 11.6 ± 18.7 15.1 ± 22.5 20.9 ± 29.6 16.4 ± 25.8
We select the top 10 concepts with the highest CLIP scores per image, calculate their proportions of 7 possible presence-certainty
combinations, and report the mean and standard deviation across images.

By”, “Antony”, “Distinct From”, or “External URL”) are retained. For a specific dataset, the con-
cepts connecting all the class names are gathered, and the following processing is applied: (1) long
concepts with more than 10 characters are excluded to include simple concepts instead of complex
statements; (3) only the top 10 concepts with the highest connection strength to each class name are
preserved, which excludes those less common, and weakly related concepts; (3) concepts that are
close to each other and close to class names are excluded, where the text-text similarity is measured
by cosine similarities of the embedding encoded by all-mpnet-base-v2 (Reimers (2019)) sentence
encoder and a threshold of 0.85 is applied. For Food-101, we use the concepts curated by LaBo
(Yang et al. (2023)), where the GPT-3 is prompted with describe what {class name} looks like and
relevant concepts are extracted from the answers. We exclude overly long and complex concepts
with more than 15 characters.

Computational efficiency All the models are trained on a single Nvidia GPU. The training of a
black-box model takes from a few minutes to two days depending on the dataset size. Once the
feature embedding of the black-box model and CLIP image encoders are saved, the training of the
affine mapping for interpretation purposes is typically within 10 minutes.

A.5 HYPERPARAMETER SENSITIVITY AND ABLATION

As described in Section 3.2, we apply an exponential transformation with power t on the CLIP scores
to emphasize concepts with higher correlation to images. In the optimization function (equation 3),
λ controls the regularization strength. In this section, we discuss the sensitivity of global explanation
quality to these two hyperparameters. Moreover, we explore the impact of using other versions of
CLIP models. Note that the classification accuracy remains unchanged given the same black-box
model, regardless of the choice of hyperparameters and CLIP models.

Exponential power t Figure A.2 shows X-factuality@k as a function of k with exponential trans-
formation power t of 1 (i.e., no exponential transformation), 3, and 5 across different datasets. In all
cases, t = 5, gains the best results, particularly for Food-101.

Regularization strength λ Figure A.3 shows X-factuality@k v.s. k of global explanation for
different regularization strengths λ. The default choice, λ = 2

d in general performs best across
different sets, and the results are not sensitive to the choice of λ. Data-specific hyperparameter
tuning is expected to boost the results further.

Other versions of CLIP models In the main text, we use CLIP-ViT-L/14 by OpenAI as the CLIP
model to construct the concept bottleneck models. Here, we explore the results of using other
versions of CLIP: RN50, RN101, ViT-B/32, and ViT-B/16. Figure A.4 shows the X-factuality for
different models, with CLIP-ViT-L/14 consistently obtaining the best results.

A.6 EXAMPLES OF LOCAL EXPLANATIONS

In this section, we provide some examples of contributions of concepts in the prediction of specific
images across different datasets. To be more specific, we focus on the deviation of logit of the
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Figure A.2: Global explanation quality of using different exponential power t. X-factuality@k v.s.
k are shown. Results of CUB-200-2011 are not included, as binary annotated labels are used as
c(x), and exponential transformation does not change it.

Figure A.3: Global explanation quality of using different regularization strength λ. X-factuality@k
v.s. k are shown.

predicted class from the mean logit across classes, zŷ − 1
K

∑K
i=1 zi, and calculate the contribution

of concept sm, denoted as ((AW+)ŷm − 1
K

∑
i(AW+)im)(f(x) + h)m in percentage. The top 10

contributed concepts for each image are shown. Figure A.5 and Figure A.6 show examples from
CIFAR-10 and CIFAR-100. Figure A.7 shows examples from CUB-200-2011, Figure A.8 shows
examples from AwA2, and Figure A.8. For ImageNet-1K with a lot of images from diverse classes,
we show examples by category, furniture in Fig A.10, animals in Fig A.11, clothes in Fig A.12, and
locations in Fig A.13.
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Figure A.4: Global explanation quality of using different versions of CLIP models. X-factuality@k
v.s. k are shown. Results of CUB-200-2011 are not included, as binary annotated labels are used as
c(x).
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Figure A.5: Examples of local explanations from CIFAR-10. The top 10 contributed concepts are
shown.
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Figure A.6: Examples of local explanations from CIFAR-100. The top 10 contributed concepts are
shown.
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Figure A.7: Examples of local explanations from CUB-200-2011. The top 10 contributed concepts
are shown.
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Figure A.8: Examples of local explanations from AwA2. The top 10 contributed concepts are shown.
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Figure A.9: Examples of local explanations from Food101. The top 10 contributed concepts are
shown.
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Figure A.10: Examples of local explanations from ImageNet-1K (Furniture). The top 10 contributed
concepts are shown.
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Figure A.11: Examples of local explanations from ImageNet-1K (Animals). The top 10 contributed
concepts are shown.
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Figure A.12: Examples of local explanations from ImageNet-1K (Clothes). The top 10 contributed
concepts are shown.
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Figure A.13: Examples of local explanations from ImageNet-1K (Locations). The top 10 con-
tributed concepts are shown.
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