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ABSTRACT

We address the challenge of generating high-fidelity, long-form soundtracks that
remain coherent across scene transitions. Existing AI music systems are mainly
designed for short, isolated clips and lack mechanisms to ensure narrative con-
tinuity. We present JenBridge, a modular and interpretable framework for
adaptive long-form video soundtracking that ensures both high-fidelity audio gen-
eration and transition naturalness. The core architecture is a Transformer-based
generative model trained with a flow-matching objective, following a two-stage
paradigm: pretraining on large-scale text–audio corpora to establish robust mu-
sical priors, then adapting to the video domain with dual text–visual condition-
ing for precise cross-modal alignment. Crucially, to achieve long-form coherence
across diverse scene changes, JenBridge incorporates a novel adaptive transi-
tion mechanism. This system features a versatile toolkit of transition styles, in-
cluding a generative transition method, and uniquely employs a Large Language
Model (LLM) Agent that acts as a director to select the most appropriate transi-
tion for each narrative shift intelligently. To rigorously assess this task, we propose
the LVS Benchmark, a new benchmark that includes a curated dataset and novel
evaluation metrics focusing on holistic and transition-aware assessment. Exten-
sive experiments on the proposed benchmark demonstrate that JenBridge sig-
nificantly outperforms existing methods in both objective and subjective metrics,
particularly in terms of transition naturalness and overall narrative coherence. Jen-
Bridge represents a significant step towards fully automated, professional-quality
video soundtracking. The codes and benchmark will be made publicly available.

1 INTRODUCTION

The ability to automatically generate high-fidelity music stands as a significant milestone in the de-
velopment of creative AI systems. This progress is largely driven by breakthroughs in text-to-music
(T2M) synthesis, where frontier models Copet et al. (2023); Suno AI (2025); Bai et al. (2024) have
set a new standard for audio fidelity and coherence. These powerful generative capabilities have
inspired growing interest in the more complex, cross-modal task of video-to-music (V2M) gener-
ation. The predominant paradigm involves analyzing visual semantics Di et al. (2021); Tian et al.
(2025b); Zuo et al. (2025) or motion tracks Yu et al. (2023); Zhu et al. (2022b); Su et al. (2024)
from a short video clip to generate a single, corresponding piece of music. However, this paradigm
suffers from critical limitations for practical use. First, the generation pipeline is typically unmodi-
fiable, offering users little creative control over intermediate steps or the final output. Second, these
models lack the mechanisms to handle scene transitions, confining them to generating monolithic
audio for single clips. This deficiency renders them impractical for real-world, long-form content
that is characterized by dynamic scene changes.

To address these limitations, we introduce JenBridge, a modular and interpretable framework
for adaptive long-form video soundtracking. Our framework decomposes this complex task by first
segmenting the input video into a sequence of semantically coherent clips. The subsequent pro-
cess consists of two core components: per-segment music generation and inter-segment adaptive
transition. The first component is a powerful video-aware generative model responsible for per-
segment music synthesis, built and trained from scratch. It incorporates a pre-trained neural audio
codec Défossez et al. (2022) to encode raw waveforms into a compact and expressive latent rep-
resentation. The generative backbone that operates in this latent space is a Multimodal Diffusion
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Figure 1: An overview of the JenBridge framework. Our framework consists of three main
parts: (1) A video segmentation module that partitions a long video into clips (Vk). (2) A per-
segment music generation module that synthesizes a corresponding audio clip (Ak) using a video-
aware generative model. The model is guided by a sequence-level condition (y) from text encoders
and a global condition (c) that fuses pooled text embeddings with visual features. (3) An adaptive
transition module where an LLM Agent selects the optimal transition style from a versatile toolkit
to coherently connect the audio clips into a final soundtrack (Afinal).

Transformer (MMDiT)Esser et al. (2024). Trained with a flow-matching objectiveLipman et al.
(2022), this architecture achieves both high-fidelity synthesis and efficient inference. To enable pre-
cise cross-modal alignment, we extend the generative architecture to the video domain with a dual
conditioning scheme that combines a fine-tuned multi-encoder text architecture for semantic control
and a dedicated visual encoder. The second component is a novel adaptive transition mechanism
designed to seamlessly connect individual clips. As illustrated in Figure 1, this mechanism provides
a versatile toolkit of transition styles, including a ControlNet-based Zhang et al. (2023) generative
transition model, and uniquely employs an LLM agent acting as a creative director to select the most
appropriate transition for each narrative shift.
Furthermore, to address the critical gap in evaluation methodologies, we introduce the Long-form
Video Soundtrack (LVS) Benchmark. As the first benchmark specifically designed for long-form
video soundtracking, LVS provides a curated set of multi-scene movie trailers with rich, fine-grained
multimodal annotations, including music and video captions as well as scene transition points. Be-
sides, the LVS Benchmark proposes a new evaluation paradigm that emphasizes holistic, long-form
assessment and introduces procedures for evaluating the quality and appropriateness of complete
soundtracks with transitions, moving beyond simple segment-based metrics.

In conclusion, our main contributions are three-fold:

• We present JenBridge, an end-to-end framework for long-form video soundtracking
that produces coherent, high-fidelity music across diverse scene transitions. Its modular
architecture is inherently interpretable and controllable, positioning it as a practical tool for
creative workflows.

• We propose a novel adaptive transition mechanism, which combines a versatile toolkit
of transition styles, including a generative transition method, with an LLM Agent that acts
as a director to make context-aware creative choices.

• We introduce the LVS Benchmark, a comprehensive benchmark with rich annotations
and a holistic evaluation protocol for long-form video soundtracking. On this benchmark,
JenBridge achieves state-of-the-art performance, significantly advancing music quality,
video–music alignment, and transition naturalness.
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2 RELATED WORKS

2.1 TEXT-TO-MUSIC GENERATION

Text-to-music generation has recently seen an explosion of progress, largely driven by advancements
in generative architectures. Initial breakthroughs were made by autoregressive models like Musi-
cLM Agostinelli et al. (2023) and MusicGen Copet et al. (2023), which excel at generating musically
structured audio but are constrained by slow, sequential inference. Subsequently, diffusion models
became prominent, significantly improving audio fidelity in works such as Noise2Music Huang
et al. (2023), ERNIE-Music Zhu et al. (2023a), MusicLDM Chen et al. (2024), Mousai Schnei-
der et al. (2024), and Jen-1 Li et al. (2024a), with open-source contributions like Stable Audio
Open Evans et al. (2025) further democratizing access. To address the efficiency challenges of these
paradigms, recent work has explored alternative paths, such as non-autoregressive Transformers Ziv
et al. (2024). The emergence of rectified flow Lipman et al. (2022) represents the latest advancement,
offering a compelling balance of high-fidelity synthesis and rapid, few-step inference, as demon-
strated by models like MusicFlow Prajwal et al. (2024). Our work builds upon this state-of-the-
art approach, utilizing a Transformer-based architecture with the flow-matching training objective
as our foundation. Beyond core generation, the field is also pushing towards unified frameworks
for high-quality and controllable generation Bai et al. (2024); Melechovsky et al. (2023), greater
user interactivity Nistal et al. (2024); Yao et al. (2025), advanced reasoning with chain-of-thought
prompting Lam et al. (2025), and the challenging task of long-form generation Yuan et al. (2025).
This vibrant academic landscape is mirrored by the rapid development of widely-used commercial
systems Suno AI (2025); Udio (2025); ElevenLabs (2024); Producer AI (2025).

2.2 VIDEO-TO-MUSIC GENERATION

Building upon the advances in the high-fidelity text-to-music synthesis domain, video-to-music
generation introduces a significant additional challenge of ensuring robust audio-visual alignment.
Many approaches tackle this by employing hierarchical visual features, using high-level semantics
for mood and melody Gan et al. (2020); Kang et al. (2024); Di et al. (2021); Li et al. (2024c) while
leveraging low-level motion cues for rhythm Li et al. (2024d); Liu et al. (2025); Qi et al. (2025). Oth-
ers focus on advanced modeling for alignment, exploring attention mechanisms Zuo et al. (2025);
Lin et al. (2025); Li et al. (2024b). Recent trends also include scaling up with massive “in-the-wild”
datasets Su et al. (2024); Zhou et al. (2025); Chi et al. (2024); Tian et al. (2025b) and developing
unified any-to-audio models Liu et al. (2024); Tian et al. (2025a).

To achieve tighter temporal synchronization, some research narrows the focus to specific domains
with strong motion-music correlations, such as dance Liang et al. (2024); Zhu et al. (2022a); Sun
et al. (2025); Zhu et al. (2022b) or other rhythmic activities like sports Yu et al. (2023); You et al.
(2024). Concurrently, another line of work leverages the high-level reasoning capabilities of Large
Language Models (LLMs) to simulate complex creative workflows Xie et al. (2025) or to bridge
modalities without paired data via chain-of-thought reasoning Guan et al. (2025).

Despite this progress, a critical limitation remains: existing methods treat videos as monolithic seg-
ments, generating a single piece of music and largely overlooking the challenge of creating adaptive
and musically coherent transitions between semantically distinct scenes. Our work, JenBridge,
is specifically designed to address this crucial gap.

3 METHODOLOGY

Our framework, JenBridge, generates a long-form musical piece Afinal for an arbitrary-length
video. The process can be conceptually divided into three main stages: (1) video segmentation, (2)
per-segment music generation via a progressive, video-aware model, and (3) adaptive transitions to
connect the music segments. We describe each stage in detail below.
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3.1 SEMANTIC VIDEO SEGMENTATION

The process begins by partitioning the input video Vlong into a temporally ordered set of K semanti-
cally coherent clips, {V1, V2, . . . , VK} using PySceneDetect Castellano (2020). This preprocessing
step allows our framework to handle videos of any duration by operating on manageable segments.

3.2 PROGRESSIVE TRAINING FOR VIDEO-AWARE MUSIC GENERATION

Our video soundtracking model is developed through a progressive, two-stage training paradigm.
We first built a foundational text-to-music model with a pre-trained text conditioning architecture.
Subsequently, we adapt this model to be video-aware by introducing a direct visual conditioning
signal and a mechanism to generate text prompts from video content.

Audio Representation and Core Architecture The first stage constructs a foundational model
for high-fidelity music generation, beginning with a pre-trained neural audio codec Défossez et al.
(2022) that encodes 48 kHz stereo audio into a compact, expressive latent representation, L. This
latent space is modeled by a Multimodal Diffusion Transformer (MMDiT) Esser et al. (2024), which
is designed to accept two distinct types of conditioning signals: a detailed sequence embedding y
and a global pooled embedding c.

Text Conditioning Architecture The conditioning mechanism for the foundational model is
based on a fine-tuned multi-encoder text architecture that produces both the sequence and pooled
embeddings from text prompts. For a given clip Vk with text prompts, we generate:

1. A sequence embedding ytext,k, which provides rich, token-level semantic information.
It is constructed from the main descriptive prompt (Pk,d) and three attribute prompts
(Pk,attri,i=1,2,3): genre, instrument, and mood. A T5-large Raffel et al. (2020) encoder
computes the main embedding Ed = ET5-L(Pk,d), while three fine-tuned T5-base Raffel
et al. (2020) encoders compute attribute embeddings Eattri,i=1,2,3. These are concatenated
to form the final sequence condition:

ytext,k = concatseq(concatdim(Eattr), pad(Ed)) (1)

2. A global text embedding ctext,k, which captures the overall essence of the prompt. It is
derived by encoding the main prompt with a fine-tuned T5-base encoder, ET5-B, and taking
its pooled output:

ctext,k = pool(ET5-B(Pk,d)) (2)

Video Conditioning and Fusion In the second stage, we introduce a direct visual signal. For
each video clip Vk = {f1, . . . , fT }, where fi denotes the i-th frame, we use SigLIP Zhai et al.
(2023) as the visual encoder EV to extract frame-level features. These frame-level features are then
average-pooled across the temporal dimension to obtain a global visual feature vector Fk,v:

Fk,v =
1

T

T∑
t=1

EV(ft) (3)

This visual feature is then concatenated with the global text embedding ctext,k from the previous step
to form the final, comprehensive pooled condition cfused,k:

cfused,k = concat(ctext,k, Fk,v) (4)

From Video Captions to Music Prompts (VMPT) Training the video-aware model in the second
stage requires the same text prompt patterns Pk that are originally absent in the vanilla video-music
dataset. To this end, we introduce the Visual-to-Music Prompt Translator (VMPT), a fine-tuned
Qwen3-8B Yang et al. (2025) LLM FVMPT to transcribe a raw video caption Ck from a pre-trained
captioner into a structured music prompt Pk that includes several music metadata like genre, instru-
ment, mood, and BPM:

Pk = FVMPT(Ck) (5)

We train VMPT separately on a carefully curated collection of music–video caption pairs. Since
we use the same model to generate these captions during inference and text-to-music training, the
trained VMPT module can be directly plugged into the inference pipeline.

4
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Training Objective and Generation Both stages of our progressive training paradigm are opti-
mized using the same conditional flow-matching objective Lipman et al. (2022). The model’s net-
work, vθ, learns to predict a ground-truth vector field ut(x1, z) based on the text sequence condition
ytext,k and a global condition c. The training loss is defined as:

LFM(θ) = Et,x1,z,yk,c

[
∥vθ(xt, t, ytext,k, c)− ut(x1, z)∥2

]
(6)

Here, xt is a point on the probability path between a data sample x1 and a noise sample z, and
t ∈ [0, 1]. The global condition c is stage-dependent: for stage 1 (text-to-music), we use the text-
only global embedding c = ctext,k, while for stage 2 (video-aware adaptation), it is updated to the
fused signal c = cfused,k, which incorporates visual information.

3.3 ADAPTIVE MUSIC TRANSITION

Generating the set of audio clips {A1, . . . , AK} is only part of the challenge; connecting them
seamlessly is crucial for a coherent long-form soundtrack. Our framework employs an adaptive
mechanism that intelligently selects the most suitable transition style between any two adjacent
clips, Ak and Ak+1. This involves a versatile Transition Toolkit and a directing LLM Agent that acts
as a director, choosing the appropriate protocol for each scene change.

The Transition Toolkit To handle diverse narrative requirements, our framework categorizes the
connection between two music clips into four distinct styles, managed by the toolkit. These include
an abrupt cut for sharp scene changes, a silent gap for creating dramatic pauses, and a
fade-out/fade-in for gentle, gradual shifts. The most sophisticated style is a generative
transition, which synthesizes a novel musical bridge to contextually and seamlessly link two
distinct audio segments.

Each style is realized through a specific technique. The abrupt cut and silent gap are
implemented via direct concatenation, while fade-out/fade-in is achieved with linear vol-
ume modulation. The generative transition is powered by a specialized inpainting model,
a ControlNet-based Zhang et al. (2023) adaptation of our text-to-music model. We opt for this
inpainting-based strategy due to the scarcity of dedicated musical transition data. An inpainting
model can be effectively trained on our abundant text-audio corpora by simply masking segments of
the audio, thereby learning to fill gaps conditioned on context. This approach allows us to create a
robust inpainting model that can then be adapted to the transition purpose in a training-free manner.
During inference, this model is guided by a condition produced via a two-step interpolation process.
Both steps employ spherical linear interpolation (slerp), which is preferred for high-dimensional
embeddings as it maintains vector magnitude and follows a geodesic path on the hypersphere, often
leading to more perceptually uniform transitions. Given two vectors v1, v2 and a parameter τ ∈ [0, 1]
to control the interpolation threshold, slerp is defined as:

slerp(v1, v2, τ) =
sin((1− τ)θ)

sin θ
v1 +

sin(τθ)

sin θ
v2 (7)

where θ = arccos
(

v1·v2

∥v1∥∥v2∥

)
is the angle between the vectors. The two interpolation steps are as

follows:

1. Text Embedding Interpolation: The text embeddings Ek and Ek+1 of the adjacent clips
are spherically interpolated to create a smooth semantic transition:

Einterp = slerp(Ek, Ek+1, λ) (8)
where we set the interpolation factor λ = 0.5.

2. Block-wise Latent Interpolation: The latent representations Lk, Lk+1 ∈ RD×TL are
partitioned into N blocks. A fused boundary condition is created by applying block-wise
slerp:

L′
k,i = slerp(Lk,i, Lk+1,N−i+1, αi), for i = 1, . . . , N (9)

where Lk,i is the i-th block of Lk, Lk+1,N−i+1 is the corresponding block from the end of
Lk+1, and αi is a small, progressively increasing weight from 0.1 to 0.5.

This combined interpolated condition then guides the inpainting model to synthesize a coherent
musical bridge.

5
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LLM Agent as Transition Director To intelligently select the appropriate technique from the
transition toolkit, we employ an LLM Agent (Qwen3-8B Yang et al. (2025)) that functions as a
creative director. For each transition point between two video clips, the agent is provided with com-
prehensive contextual information: the descriptive visual caption and the generated musical prompt
for both the preceding and succeeding segments. This decision-making is managed via few-shot
in-context learning, where the agent’s prompt includes this context alongside a set of curated exam-
ples of ideal transition choices for different narrative scenarios. Based on this information, the LLM
selects and outputs the name of the most suitable technique from the toolkit (e.g., generative
transition, abrupt cut) to apply.

4 EXPERIMENTS

4.1 TRAINING SETUP

4.1.1 TRAINING THE VISUAL-TO-MUSIC PROMPT TRANSLATOR (VMPT)

We train the VMPT on the V2M-finetuning dataset (V2M-20k) introduced by Tian et al. (2025b).
For each video clip, a descriptive video caption is generated using the LLaVA-NeXT-Video-DPO-
7B model Zhang et al. (2024), while music tags are extracted with a proprietary pre-trained tagging
model. The tags are transformed into diverse, high-quality music captions through a rule-based
system, yielding 18k caption pairs. A Qwen3-8B LLM Yang et al. (2025) is then fine-tuned on
this corpus with LoRA Hu et al. (2022) using the LLaMAFactory framework Zheng et al. (2024).
Training is conducted for 3 epochs on two NVIDIA A800 80G GPUs.

4.1.2 STAGE 1: FOUNDATIONAL TEXT-TO-MUSIC MODEL TRAINING

We train the main text-to-music generative model for 400k steps on 64 NVIDIA A800 GPUs using
a private database of 100k licensed high-fidelity songs, totaling 3,700 hours of audio. Building on
this stage, the specialized inpainting model for generative transitions is fine-tuned from the corre-
sponding checkpoint. This model is further trained for 100k steps on the same dataset with masking
applied, using 16 NVIDIA A800 GPUs.

4.1.3 STAGE 2: VIDEO-AWARE ADAPTATION

The video–music alignment is trained on the V2M dataset Tian et al. (2025b). We filter a subset of
110k samples and truncate video clips to a maximum length of 30 seconds, yielding 600 hours of
video–music pairs in total. The model is trained for 200k steps on 8 NVIDIA A800 GPUs.

4.2 A COMPREHENSIVE BENCHMARK FOR LONG-FORM VIDEO SOUNDTRACKING

Due to the focus of existing work on short video clips, there is currently a lack of an available
benchmark for comprehensively evaluating long-form video soundtracking, especially regarding
scene changes and transition quality. To this end, we propose the Long-form Video Soundtrack
(LVS) Benchmark. The LVS benchmark comprises 120 long-form trailer videos manually filtered
from the large-scale MMTrailer Chi et al. (2024) dataset. Our selection process prioritizes videos
with rich narrative variation and a high density of distinct scene transitions. The benchmark totals
3 hours of footage and contains 567 different scenes, with an average of 4.72 semantic segments
requiring musical transitions per video. All videos were processed with our segmentation module
to generate scene boundary annotations, and each segment has a corresponding visual description
generated by a pre-trained captioner Zhang et al. (2024).

It should be noted that we do not provide the original corresponding music, and some of them do not
even have original musical soundtracks. We believe video soundtracking is an inherently subjective
creative endeavor, and different artists will invariably produce distinct musical interpretations for
the same visual content. We therefore argue that there is no “ground-truth” soundtrack, and the
similarity to the original music should not be a metric for quality. The metrics we introduce below
also do not include any direct comparison to their original audio tracks. Our benchmark is designed
not to calculate the musical similarity, but to serve as an open-ended benchmark for evaluating the
quality of generated soundtracks based on their alignment with the visual narrative.

6
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4.2.1 BASELINES

We select four state-of-the-art, open-source models as our main baselines: CMT Di et al. (2021),
LORIS Yu et al. (2023), AudioX Tian et al. (2025a), and VidMuse Tian et al. (2025b). For a fair
comparison on the long-form task, the default approach is to generate music for each video segment
independently and then concatenate the results. Since both CMT and VidMuse are also capable of
generating long-form tracks, we evaluate them in two settings: the concatenated short-clip version
(denoted as CMTS and VidMuseS) and a version where the entire long video is processed directly
(denoted as CMTL and VidMuseL), resulting in a total of six baseline approaches for comparison.

4.2.2 OBJECTIVE METRICS

To quantitatively evaluate our model, we employ a series of objective metrics assessing music quality
and video-music alignment. Since our LVS Benchmark does not contain ground-truth soundtracks,
we utilize reference-free and cross-modal metrics. To measure local video-music alignment, we use
the ImageBind Score Girdhar et al. (2023), calculated as the average cosine similarity between the
embeddings of each video segment and its corresponding generated audio clip. For a more nuanced
evaluation of musicality, we adopt three axes from the Meta Audiobox Aesthetics framework Tjan-
dra et al. (2025), all computed on the full-length audio: Production Quality (PQ), which assesses
technical aspects such as clarity and dynamics; Production Complexity (PC), which measures the
richness of the audio scene and transition; and Content Enjoyment (CE), which captures subjective
artistic quality. It is important to note that the Audiobox Aesthetics scores are computed holistically
on the entire long-form soundtrack, ensuring that the quality of musical transitions significantly
impacts the final results.

4.2.3 SUBJECTIVE METRICS (USER STUDY)

As soundtrack quality evaluation can be very subjective, we conduct a comprehensive user study
with 10 participants from diverse backgrounds. In a randomized and blind setting, they evalu-
ated soundtracks generated by our model and baselines for a variety of videos. Participants rated
each soundtrack on a 5-point Likert scale (1=Poor, 5=Excellent) across three key dimensions: Mu-
sic Quality (clarity, richness), Video-Music Alignment (correspondence of the music’s mood and
rhythm to the visuals), and Transition Naturalness (the smoothness and appropriateness of musical
changes between scenes), as well as their average score as the overall performance.

4.3 MAIN RESULTS

We present our main experimental results in Table 1, where we compare JenBridge against six
baseline approaches on our proposed LVS Benchmark. The evaluation encompasses a comprehen-
sive set of both objective and subjective metrics, designed to assess everything from audio quality
and cross-modal alignment to transition coherence and user preference.

Table 1: Comprehensive comparison with baseline models on the LVS Benchmark. For all metrics,
higher is better. The best results are highlighted in bold.

Model Objective Evaluation Subjective Evaluation (User Study)
ImageBindavg ↑ PQ ↑ PC ↑ CE ↑ Music ↑ Alignment ↑ Transition ↑ Overall ↑

CMTS 0.143 5.52 4.21 5.38 3.3 3.2 1.6 2.7
CMTL 0.115 5.61 4.88 5.45 3.4 3.0 2.0 2.8
LORIS 0.121 4.81 4.15 4.52 2.9 2.7 1.6 2.4
AudioX 0.132 6.55 4.35 6.41 3.8 3.7 1.7 3.1
VidMuseS 0.162 6.81 4.42 6.75 3.8 3.8 1.8 3.1
VidMuseL 0.148 6.89 5.56 6.82 3.9 3.8 2.5 3.4

JenBridge (Ours) 0.224 8.12 7.83 8.21 4.4 4.3 4.2 4.3

Objective Results. The objective results, presented in Table 1, highlight the comprehensive ad-
vantages of our approach. In terms of video-music alignment, JenBridge achieves an ImageBind
Score that is over 38% higher than the strongest baseline, VidMuseS . This underscores the difficulty
that existing long-form generation models face in maintaining semantic alignment over extended

7
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Table 2: Ablation studies on the components of our framework. We report key objective and subjec-
tive metrics to assess the impact of each component.

Model Configuration PQ ↑ ImageBindavg ↑ Transition ↑
JenBridge (Full Model) 8.12 0.224 4.2
Core Contributions:

w/o Adaptive Transition (Abrupt Cut) 7.89 0.195 2.8
w/o Visual Conditioning (Text-Only) 7.65 0.171 3.1

Key Components:
w/o VMPT (Raw Video Caption) 7.48 0.185 3.4
w/o LLM Agent (Always Generative) 7.91 0.221 3.5
w/o Slerp in Transition (Use Lerp) 8.04 0.219 3.9

durations, as evidenced by the performance drop in their respective long-form variants (CMTL and
VidMuseL). Furthermore, our model leads in all audio aesthetics axes. The most significant ad-
vantage is observed in Production Complexity (PC), where JenBridge outperforms the next best
long-form baseline by 2.27. This objectively validates that our adaptive transition mechanism creates
a richer and more complex musical structure compared to the simple concatenation or monolithic
generation of baselines, whose PC scores remain low.

Subjective Results. The user study results strongly corroborate our objective findings and fur-
ther emphasize the perceptual superiority of our method. While participants rated JenBridge
significantly higher than all baselines on both music quality and alignment, the most pronounced
difference is in the transition score. Our model’s score is 0.9 higher than the best-performing base-
line, VidMuseL, and more than doubles the scores of all concatenation-based methods. This clear
superiority in handling scene changes directly validates the effectiveness of our adaptive transition
mechanism and translates to the highest Overall score, confirming that users perceive the sound-
tracks generated by JenBridge as the most coherent and compelling.

4.4 ABLATION STUDIES

To validate the effectiveness of each key component and design choice within our JenBridge
framework, we conduct a comprehensive series of ablation studies. We systematically remove or
replace individual modules from our full model and evaluate the impact on performance. The results,
summarized in Table 2, demonstrate the contribution of each component.

Analysis of Ablation Results. The ablation study results in Table 2 clearly demonstrate the im-
portance of each component in our framework. Removing the entire Adaptive Transition mechanism
and reverting to simple concatenation causes a catastrophic drop in the subjective Transition score
from 4.2 to 2.8. This highlights that the adaptive transition strategy is critical for long-form sound-
tracking. Disabling visual conditioning leads to a sharp decline in the ImageBind score from 0.224
to 0.171, confirming that direct visual features provide essential cues for alignment. Using raw
video captions without the VMPT also results in a general degradation across all metrics, validating
its effectiveness in translating visual concepts into musically potent prompts.

Within the transition mechanism, each design choice proves to be crucial. Replacing the intelligent
LLM Agent with a fixed strategy severely impacts the Transition score, reducing it to 3.5, as it
fails to apply the appropriate transition style for different narrative contexts. Finally, substituting
slerp with a simpler linear interpolation during the generative transition process also leads to a slight
decrease in performance, demonstrating the effectiveness of our advanced interpolation method for
achieving smoother transitions.

4.5 QUALITATIVE ANALYSIS

To provide an intuitive understanding of our framework’s capabilities, we present three represen-
tative case studies in Figure 2, illustrating how the LLM Agent intelligently directs the soundtrack
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Silent Gap Silent Gap Abrupt Cut

Generative 
Transition Abrupt Cut Generative 

Transition

Fade In/Out Abrupt Cut
Generative 
Transition

Music Meta:

Music Meta:

Music Meta:

Piano, happy, 
pop, 100bpm

Guitar, energetic, 
pop, 120bpm

Synthesizer, positive, 
electronic, 140bpm

Chord, 160bpm, 
upbeat, rapid

Piano, sad, 
ambient, 65bpm

Ukelele, cheerful, 
comedy, 110bpm

Low string, double bass, 
tense, cinematic, 70bpm

Guitar, peaceful, 
ambient, 70bpm

Percussion, cinematic, 
powerful, 100bpm

Cello, ambient, 
somber, 60bpm

Fade In/Out

Drums, action, 
intense, 130bpm

Epic choir, epic, 
ominous, 140bpm

Full orchestra, epic, 
climactic, 150bpm

Director:

Director:

Director:

a)

b)

c)

Figure 2: Qualitative examples demonstrating the LLM Agent’s adaptive transition choices based
on the visual content and music metadata. The top row (a) shows an animated video where the
agent matches the emotional arc with varied transitions. The middle row (b) presents a cinematic
montage where abrupt cuts and silent gaps enhance the drama. The bottom row (c) features an anime
sequence where the transition style shifts from abrupt cut to smooth generative transition to match
the changing pace.

by selecting diverse transition strategies based on the video’s narrative context. For the animated
video in the first row, the agent mirrors the emotional arc of the story, using a generative
transition for a positive shift from loneliness to joy, an abrupt cut for a moment of sudden
peril, and another generative transition to resolve the tension. In a cinematic trailer with
disconnected scenes, the agent opts for abrupt cuts and silent gaps to enhance the dra-
matic impact rather than forcing a musical connection. Finally, for an anime sequence with a distinct
change in pacing, the agent’s strategy evolves from using abrupt cuts during a fast-paced action
sequence to employing smoother fade-out/fade-in and generative transitions as
the narrative becomes more reflective. The full generated videos for these case studies, including
side-by-side comparisons with baseline methods, are provided in the supplementary materials.

5 CONCLUSION

In this paper, we introduced JenBridge, a modular and interpretable framework that success-
fully tackles the challenge of generating coherent, long-form soundtracks for videos with dynamic
scene changes. Our approach integrates a powerful, video-aware generative model for per-segment
synthesis with a novel LLM-directed adaptive transition mechanism. We also established the LVS
Benchmark to facilitate rigorous evaluation, on which JenBridge demonstrates state-of-the-art
performance, particularly in transition naturalness and overall coherence. JenBridge represents
a significant step towards creating practical, collaborative AI tools that empower human creators,
bridging the gap between automated generation and professional-quality video production. Future
work includes extending the framework to incorporate sound effects and enhancing the LLM Agent
with long-range narrative planning.
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dre Défossez. Simple and controllable music generation. Advances in Neural Information Pro-
cessing Systems, 36:47704–47720, 2023.
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music diffusion models. In Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 8050–8068, 2024.

Kun Su, Judith Yue Li, Qingqing Huang, Dima Kuzmin, Joonseok Lee, Chris Donahue, Fei Sha,
Aren Jansen, Yu Wang, Mauro Verzetti, et al. V2meow: Meowing to the visual beat via video-to-
music generation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 4952–4960, 2024.

Changchang Sun, Gaowen Liu, Charles Fleming, and Yan Yan. Enhancing dance-to-music genera-
tion via negative conditioning latent diffusion model. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 8321–8330, 2025.

Suno AI. Suno. https://suno.com/, 2025. Accessed: 2025-09-18.

Zeyue Tian, Yizhu Jin, Zhaoyang Liu, Ruibin Yuan, Xu Tan, Qifeng Chen, Wei Xue, and
Yike Guo. Audiox: Diffusion transformer for anything-to-audio generation. arXiv preprint
arXiv:2503.10522, 2025a.

Zeyue Tian, Zhaoyang Liu, Ruibin Yuan, Jiahao Pan, Qifeng Liu, Xu Tan, Qifeng Chen, Wei Xue,
and Yike Guo. Vidmuse: A simple video-to-music generation framework with long-short-term
modeling. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp.
18782–18793, 2025b.

Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen
Shi, Sanyuan Chen, Matt Le, Nick Zacharov, et al. Meta audiobox aesthetics: Unified automatic
quality assessment for speech, music, and sound. arXiv preprint arXiv:2502.05139, 2025.

Udio. Udio. https://www.udio.com/, 2025. Accessed: 2025-09-18.

Zhifeng Xie, Qile He, Youjia Zhu, Qiwei He, and Mengtian Li. Filmcomposer: Llm-driven music
production for silent film clips. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 13519–13528, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Yao Yao, Peike Li, Boyu Chen, and Alex Wang. Jen-1 composer: A unified framework for high-
fidelity multi-track music generation. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 39, pp. 14459–14467, 2025.

Fuming You, Minghui Fang, Li Tang, Rongjie Huang, Yongqi Wang, and Zhou Zhao. Momu-
diffusion: On learning long-term motion-music synchronization and correspondence. Advances
in Neural Information Processing Systems, 37:127878–127906, 2024.

Jiashuo Yu, Yaohui Wang, Xinyuan Chen, Xiao Sun, and Yu Qiao. Long-term rhythmic video
soundtracker. In International Conference on Machine Learning, pp. 40339–40353. PMLR, 2023.

Ruibin Yuan, Hanfeng Lin, Shuyue Guo, Ge Zhang, Jiahao Pan, Yongyi Zang, Haohe Liu, Yiming
Liang, Wenye Ma, Xingjian Du, et al. Yue: Scaling open foundation models for long-form music
generation. arXiv preprint arXiv:2503.08638, 2025.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11975–11986, 2023.

12

https://suno.com/
https://www.udio.com/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 3836–3847, 2023.

Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu,
and Chunyuan Li. Llava-next: A strong zero-shot video understanding model, April 2024. URL
https://llava-vl.github.io/blog/2024-04-30-llava-next-video/.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. arXiv
preprint arXiv:2403.13372, 2024.

Zitang Zhou, Ke Mei, Yu Lu, Tianyi Wang, and Fengyun Rao. Harmonyset: A comprehensive
dataset for understanding video-music semantic alignment and temporal synchronization. In Pro-
ceedings of the Computer Vision and Pattern Recognition Conference, pp. 3152–3162, 2025.

Pengfei Zhu, Chao Pang, Yekun Chai, Lei Li, Shuohuan Wang, Yu Sun, Hao Tian, and Hua
Wu. Ernie-music: Text-to-waveform music generation with diffusion models. arXiv preprint
arXiv:2302.04456, 2023a.

Wentao Zhu, Yufang Huang, Xiufeng Xie, Wenxian Liu, Jincan Deng, Debing Zhang, Zhangyang
Wang, and Ji Liu. Autoshot: A short video dataset and state-of-the-art shot boundary detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2238–2247, 2023b.

Ye Zhu, Kyle Olszewski, Yu Wu, Panos Achlioptas, Menglei Chai, Yan Yan, and Sergey Tulyakov.
Quantized gan for complex music generation from dance videos. In European Conference on
Computer Vision, pp. 182–199. Springer, 2022a.

Ye Zhu, Yu Wu, Kyle Olszewski, Jian Ren, Sergey Tulyakov, and Yan Yan. Discrete contrastive
diffusion for cross-modal music and image generation. arXiv preprint arXiv:2206.07771, 2022b.

Alon Ziv, Itai Gat, Gael Le Lan, Tal Remez, Felix Kreuk, Alexandre Défossez, Jade Copet, Gabriel
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A STATEMENTS AND BROADER IMPACT

A.1 ETHICS STATEMENT

Data Usage. Our work adheres to strict ethical guidelines regarding data usage. The foundational
text-to-music model was trained on a private, curated dataset. This dataset consists exclusively
of high-fidelity, professionally produced songs for which we have secured the necessary licenses
from all copyright holders. All musical content is confirmed to be non-harmful and appropriate for
research. For all other training stages and for the construction of our LVS Benchmark, we utilized
publicly available academic datasets, including VidMuse Tian et al. (2025b) and MMTrailer Chi
et al. (2024), in accordance with their terms of use for research purposes. To respect the copyright
of the original sources, our LVS Benchmark will be released as a set of annotations and processing
scripts.

User Study and Intended Use. Our subjective evaluations involved a user study where informed
consent was obtained from all participants prior to their involvement. All collected responses were
fully anonymized to protect participant privacy. We intend for JenBridge to serve as a collabo-
rative tool to assist and empower, not replace, human creators. We encourage the responsible and
ethical use of our publicly released codebase and benchmark.

A.2 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we will make the inference codes, the LVS Benchmark,
and relevant model components publicly available. For the LVS Benchmark, we will release all our
annotations, including the original video identifiers (e.g., YouTube IDs), the start and end times-
tamps for each segmented clip, the VLM-generated video captions, and the VMPT-generated music
captions. The raw video files will not be redistributed due to copyright restrictions; however, our
provided annotations will allow researchers to reconstruct the benchmark by accessing the original
public sources. For the JenBridge model, we will release the weights for the video-aware adap-
tation stage (Stage 2), along with the complete training annotations used for this stage. The weights
for the foundational text-to-music model (Stage 1) and its private, licensed training data will not
be released. However, to facilitate further research and application, we will provide public API ac-
cess to our foundational text-to-music model. The inference codebase for the v2m stage, including
scripts for data processing, will also be made publicly available.

A.3 LLM USAGE STATEMENT

In the preparation of this manuscript, we utilized a large language model (LLM) as an assistive tool.
The LLM’s role included improving the clarity, grammar, and style of the text. All scientific claims,
experimental designs, and the core intellectual contributions presented in this paper were conceived
and articulated by the human authors. The authors have reviewed, edited, and take full responsibility
for all final text in this submission.

A.4 LIMITATIONS

Despite the strong performance of JenBridge, we acknowledge two primary limitations in our
current work. First, the musical quality of our final video-aware model is constrained by the public
datasets available for video-music training. While our foundational text-to-music model is trained
on a high-fidelity, licensed corpus, the public datasets used for video-aware adaptation often feature
lower audio fidelity. This results in a perceptible drop in musical quality when the model is fine-
tuned for the video-aware task. We believe that future performance gains can be achieved by curating
larger, high-fidelity, and properly licensed video-music corpora.

Second, while our framework is a significant step forward, it is not yet a fully production-ready
tool, primarily due to two factors related to its high-level contextual understanding. The first factor
is the scope of its LLM Agent, which operates on a local, pairwise basis without a global, long-
range plan for the entire video’s narrative arc. The second is that our current model operates solely
on the visual stream and does not comprehend the original audio from the video, such as human
speech and background audio. This can lead to suboptimal musical choices in dialogue-heavy scenes

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where the conversation dictates the emotional tone. Future work could address these limitations by
incorporating the sound source separation and automatic speech recognition module to inform the
LLM Agent, and by evolving the agent’s capabilities towards long-range narrative planning.

B METHODOLOGY DETAILS

B.1 T5-BASE ENCODER FINE-TUNING

The four specialized T5-base Raffel et al. (2020) encoders, responsible for handling attribute and
global prompts, were fine-tuned from their original checkpoints to better align with musical con-
cepts. For this process, we utilized our large-scale text-to-music training dataset. To train each
specialized encoder (e.g., for genre, instrument, or mood), we created attribute-specific subsets of
the data, pairing an audio clip with only its relevant attribute caption.

We fine-tuned the encoders using a self-supervised methodology following MERT Li et al. (2024e).
In this setup, an audio clip is first encoded into a sequence of latent representations using En-
codec Défossez et al. (2022). These latents are then processed by a 12-layer, encoder-only Trans-
former. The training objective is masked feature prediction: we randomly mask a portion of the
audio latent sequence, and the model is tasked with reconstructing the masked content and predict-
ing the Hubert Hsu et al. (2021) label. We train each encoder using 8 A800 GPUs for 1 epoch.

B.2 VIDEO SEGMENTATION DETAILS

For the video segmentation stage, we employ the PySceneDetect Castellano (2020) library to par-
tition long videos into semantically coherent clips. Specifically, to ensure that our segmentation
captures only significant narrative shifts while ignoring minor camera movements or subtle visual
changes, we set the detection ‘threshold‘ parameter of the ‘ContentDetector‘ class to 30. Further-
more, to avoid generating overly short and musically impractical segments, we enforce a minimum
scene length of 8 seconds. This configuration allows us to partition long videos into a sequence of
meaningful, temporally substantial clips suitable for individual soundtracking. It is noted that our
video segmentation module is replaceable with some neural-based method such as AutoShot Zhu
et al. (2023b). We choose PySceneDetect as a trade-off between speed and quality.

B.3 VMPT TRAINING DETAILS

Our Visual-to-Music Prompt Translator (VMPT) is a Qwen3-8B model Yang et al. (2025). For
parameter-efficient adaptation, we employed LoRA Hu et al. (2022) with a rank of 16, an alpha of
32, and a dropout of 0.1, targeting all linear layers. The model was trained for 3 epochs on our
curated dataset, which contains approximately 17.8k pairs of video captions (input) and structured
music captions (output).

The training was conducted using the LLaMA-Factory framework Zheng et al. (2024) on two
NVIDIA A800 GPUs. We used the AdamW optimizer with a cosine learning rate schedule, a peak
learning rate of 5e-5, a warmup ratio of 0.1, and a weight decay of 0.01. The training was performed
with an effective global batch size of 16 and a maximum sequence length of 1024. To ensure training
efficiency, we utilized bf16 mixed-precision and enabled gradient checkpointing. During inference,
the trained LoRA adapter is merged into the base model, and text is generated using a sampling
temperature of 0.7 and a maximum length of 512.

B.4 VMPT PROMPT EXAMPLES

The VMPT is fine-tuned using a structured prompt designed to teach the model how to translate
raw video captions into musical metadata. Figure 3 illustrates the complete prompt structure and an
example used in our training.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

### SYSTEM INSTRUCTION ###
You are a professional music analyst, you need to analysis the
given video caption and extract the main theme of the video, then
you need to find the music genre, instrument, and key that is most
suitable for the video. Finally, you need to output the best music
caption that is most suitable for the video, do not need to output
the video theme, just output the music caption with the music genre,
instrument, and key.

### EXAMPLE INPUT ###
{A slow-motion montage shows a runner warming up at dawn on a quiet
city riverside. Golden sunlight reflects on the water; close-ups
of tying shoelaces, deep breaths, and steady footfalls. The camera
alternates between wide skyline shots and handheld tracking of the
runner’s pace building from calm to determined. Traffic is minimal,
birds are audible, and the mood transitions from introspective to
motivated as the runner starts the first sprint.}

### EXAMPLE OUTPUT ###
{Genre: rock, pop, alternative rock, indie rock, Key: F# major, BPM:
120, Instruments: bass, drums, guitar, electric guitar, synthesizer,
Mood: relaxing, happy}

Figure 3: The prompt structure and an input-output example used for fine-tuning the VMPT. The
system instruction guides the LLM to act as a music analyst, and the example demonstrates how to
convert a narrative video description into a structured music prompt with specific metadata.

B.5 LLM AGENT PROMPT

The LLM Agent’s decision-making is guided by a carefully constructed few-shot prompt. The
prompt provides the model with a clear role, a description of the available tools, and several exam-
ples to demonstrate the desired reasoning process. Figure 4 shows the complete prompt structure.

C EXPERIMENT SUPPLEMENTS

C.1 LVS BENCHMARK DETAILS

A fundamental challenge in evaluating video soundtracking is the absence of a definitive ground-
truth. Unlike objective tasks with a single correct answer, video soundtracking is an inherently
subjective creative endeavor where a single video can be appropriately scored with a multitude of
valid musical interpretations. Therefore, we posit that no single “ground-truth” soundtrack exists,
and that fidelity to any original music is an inappropriate metric for quality. Guided by this principle,
the curation of the LVS Benchmark focused not on finding videos with “ground-truth” music, but on
selecting videos whose visual content provides a rich and challenging canvas for generative models.
From an initial pool of over 1,000 candidates from the MMTrailer Chi et al. (2024) dataset, we
manually selected 150 videos based on three primary criteria:

1. Narrative Richness and Emotional Variation: We selected videos that exhibit a clear
narrative structure or a distinct emotional progression.

2. Salient and Diverse Scene Transitions: The benchmark prioritizes videos with a high
density of clear and visually distinct scene changes.

3. Rich Musical Potential: We chose videos that offer clear, non-verbal cues for musical
interpretation but are not rigidly tied to pre-existing diegetic music.

The final set consists of 120 video clips, each with a highly consistent duration of approximately 90
seconds (mean=90.02s, std=0.05s). The benchmark contains 567 segments in total, with an average
of 4.72 segments per video. The core of the benchmark is its rich, structured annotations, generated
via an automated pipeline, with an example shown in Figure 5.
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### SYSTEM INSTRUCTION ###
You are a professional music director for video production. Your
task is to select the most appropriate musical transition between
two consecutive video clips, Clip A and Clip B. Analyze the visual
and musical descriptions provided for both clips to determine the
narrative relationship between them.

Your available transition options are:
- generative transition: For smooth, evolving changes in mood or
scenery. Synthesizes a new musical bridge.
- abrupt cut: For sudden, dramatic shifts in action or emotion.
- silent gap: To create a moment of tension, surprise, or
reflection.
- fade-out/fade-in: For simple, gentle changes between scenes with
similar moods.
You must only output the chosen transition style in lowercase.

### EXAMPLES ###

## Example 1
Clip A - Video Caption: A wide, static shot of a serene lake at
dawn, with mist rising from the water.
Clip A - Music Caption: Peaceful, ambient, slow strings, ethereal
pads.
Clip B - Video Caption: A fast-paced car chase through a bustling
city at night, with quick cuts and explosions.
Clip B - Music Caption: Action, intense, percussive, fast tempo,
heavy drums, cinematic hits.
Decision: abrupt cut

## Example 2
Clip A - Video Caption: A time-lapse of a single flower blooming in
the morning sun.
Clip A - Music Caption: Hopeful, delicate, gentle piano melody, soft
strings.
Clip B - Video Caption: A sweeping aerial drone shot revealing a
vast, lush green forest canopy.
Clip B - Music Caption: Majestic, grand, orchestral, cinematic, full
strings section.
Decision: generative transition

## Example 3
Clip A - Video Caption: A character cautiously approaches a
mysterious, ancient door.
Clip A - Music Caption: Suspenseful, low drone, tense, minimalist
synth.
Clip B - Video Caption: The character’s face, showing a look of pure
shock and disbelief after opening the door.
Clip B - Music Caption: A sudden, loud, dramatic orchestral stab,
followed by silence.
Decision: silent gap

### TASK ###
Clip A - Video Caption: {Video Caption of Clip A}
Clip A - Music Caption: {Music Caption of Clip A}
Clip B - Video Caption: {Video Caption of Clip B}
Clip B - Music Caption: {Music Caption of Clip B}
Decision:

Figure 4: The full few-shot prompt used to guide the LLM Agent.
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{
"video id": " KI9GREleIw 82 122",
"video path": ".../ KI9GREleIw 82 122.mp4",
"video caption": "A group of four people are seated on a couch...",
"video duration": 90.0,
"scenes": [

{
"scene index": 0,
"scene path": ".../ KI9GREleIw 82 122 scene 000.mp4",
"scene duration": 13.56,
"scene caption": "The video opens with a medium shot of four

people..."
},
{ ... }

]
}

Figure 5: An example of the annotation structure for a single video in the LVS Benchmark. Each
entry contains metadata and a caption for the full video, along with a structured list of its constituent
scenes, each with its own metadata and caption.

C.2 BASELINE IMPLEMENTATION DETAILS

To ensure a fair and rigorous comparison, we adapted all baseline models using their official open-
source implementations and model checkpoints.

CMT. As this model generates music in MIDI format, we converted the output to waveform audio
using the officially recommended synthesizer FluidSynth. To comprehensively evaluate its capa-
bilities, we tested it in two settings. For the short-clip version (CMTS), we generated music for
each segment independently and concatenated the results using an abrupt cut. For the long-form
version (CMTL), we provided the entire 90-second video sequence as a single input to generate one
continuous soundtrack.

LORIS. For LORIS, we used its ‘dance 25s‘ checkpoint. Due to the model’s limitations in gener-
ating long audio sequences, we only evaluated it in the segment-wise setting. Music was generated
for each video segment individually and then connected via an abrupt cut.

VidMuse. Since VidMuse supports both long and short video inputs, we evaluated it in two set-
tings analogous to CMT. For VidMuseS , we generated music for each segment and concatenated the
clips with an abrupt cut. For VidMuseL, we generated a single continuous soundtrack by processing
the entire long-form video at once.

AudioX. The default configuration of AudioX is to generate 10-second audio clips. Therefore,
we only evaluated it in the segment-wise setting. For video segments longer than 10 seconds, we
generated multiple consecutive 10-second audio clips to match the required duration and then con-
catenated them. All clips were connected using an abrupt cut.
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