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ABSTRACT

Federated diffusion has emerged as a promising framework for collaboratively
training generative models without sharing private training data. However, we re-
veal a realistic and critical privacy threat of this framework: a single malicious
client can steal a large portion of other clients’ private training images without
access to any privileged information or interfering the training process. We pro-
pose a memorization-guided data stealing attack to expose this vulnerability. This
attack exploits the fact that the global diffusion model tends to memorize private
training images from all clients and replicate them during generation. Based on
this, a malicious client has the potential to steal private images from other clients
by generating images from the global diffusion model. However, directly using
the global diffusion model’s default generation process rarely produces memo-
rized samples. Therefore, we design two guidance mechanisms that significantly
raise the chance of generating memorized training images of benign clients. Ex-
periments show that by employing our attack method, an attacker can steal tens of
percents of private images from other clients, while all previous data stealing at-
tacks failed to steal any. More seriously, since our method works entirely after the
federated training process, it is naturally stealthy and impossible to be detected.

1 INTRODUCTION

Federated learning (FL) has long been adopted to enable privacy-preserving training of discrimi-
native models (Kairouz et al., 2021; McMahan et al., 2017). With the rapid progress of diffusion
models (Ho et al., 2020; Song et al., 2021), the scope of FL has gradually expanded to generative set-
tings, giving rise to federated diffusion frameworks that enable collaborative training of high-quality
generative models without sharing raw data (Stanley Jothiraj & Mashhadi, 2024; Tun et al., 2023;
Huang et al., 2024b). However, does such explicit data isolation truly eliminate privacy leakage?
Our answer is NO. More seriously, we reveal that a single malicious client can steal a large portion
of other clients’ training data without having access to private information from others or in-
terfering with the normal federated training process—it only relies on the information a client
legitimately receives. To the best of our knowledge, we are the first to investigate this critical but
overlooked client-to-client data stealing vulnerability in federated diffusion models, which provides
a new perspective on the security of federated diffusion models.

The client-to-client data-stealing threat we identify is highly significant in practice because it pos-
sesses two properties that make it both realistic and severe. First, it originates from the client-side
rather than the server. While servers in federated learning are centralized and typically well pro-
tected, clients are decentralized and often lack strict oversight; client-side attacks are therefore more
frequently observed and harder to detect in real deployments compared with prior works that as-
sumes server-side adversaries (Zhu et al., 2019; Zhao et al., 2019; Jeon et al., 2021; Fang et al.,
2023). Second, the attacker has no extra privileges and does not interfere with the federated training
process. Unlike inversion-based attacks (Du et al., 2025; Fang et al., 2024) that assume a scenario
where the attacker has access to sensitive information from victims such as gradients (Zhu et al.,
2019; Zhao et al., 2019; Fang et al., 2023) or classification labels (Zhang et al., 2020; Qiu et al.,
2024; Wu et al., 2024), in our threat model the attacker has only what any legitimate federated
client naturally receives during training (e.g., its own local data and the periodically updated global
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Figure 1: Overview of the proposed threat. During federated diffusion training, private images are
memorized by local models. After aggregation, the global model implicitly retains the memorization
of images from all clients, enabling a malicious client to generate private training images of others.

model). This makes the threat much easier to realize in practice and essentially undetectable under
standard auditing, which greatly amplifies both its stealthiness and potential impact.

Under this realistic scenario, performing the successful client-to-client data stealing attack is tech-
nically challenging. In fact, we find that existing data-stealing methods are all infeasible in this set-
ting. Specifically, these methods rely on external information, such as other clients’ gradients (Zhao
et al., 2019; Fang et al., 2023) or classification labels of private training images (Fang et al., 2023;
Wu et al., 2024), which is inaccessible to the client-side attacker. This inaccessibility makes those
methods inherently ineffective. Different from existing methods, we achieve the data-stealing at-
tack by leveraging the memorization behavior of diffusion models. This behavior indicates that
diffusion models can naturally memorize and replicate their training images during generation (Gu
et al., 2025; Yoon et al., 2023; Carlini et al., 2023; Somepalli et al., 2023). Exploiting this intrinsic
property of diffusion model makes it possible for the attacker to steal training images from other
benign clients without any extra information.

However, we observe that using the global diffusion model’s default generation process rarely yields
memorized training images from other clients, making it very ineffective for data stealing. To over-
come this ineffectiveness, we propose two guidance mechanisms that prioritize the generation of
memorized images from benign clients and thereby significantly improving attack successful rate.
The first guidance is Threat-Focused Guidance (TFG). It uses a private diffusion model trained on
the attacker’s own data to provide negative guidance during sampling. This guidance steers gener-
ation trajectory away from the attacker’s distribution and toward that of benign clients. The second
guidance is Memorization-Focused Guidance (MFG). It exploits the contrast between later-stage
and earlier-stage global models. The earlier-stage global model mainly captures general semantics
without memorizing specific samples, while later-stage models has greater potential to reproduce
memorized images compared to the earlier-stage one. By contrasting their predictions, MFG sup-
presses non-memorized generations and amplifies memorized ones, thereby improving recovery of
private data. Together, these two mechanisms enable the attacker to recover a substantial fraction of
other clients’ training data.

Experimental results show that the proposed TFG and MFG significantly improve the success rate
of data stealing. For example, on AFHQ-Dog (Choi et al., 2020) the recovery rate increases from
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4.12% to 25.02%, and on CelebA Liu et al. (2015) from 13.20% to 38.25%. In contrast, existing
inversion-based methods (Fang et al., 2023; Wu et al., 2024) fail to recover any meaningful data
under the same conditions.

Overall, our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to investigate the client-to-client privacy
leakage risk of federated diffusion models, aiming to raise awareness of this critical threat.

• We propose a novel memorization-guided attack, which leverages the memorization behav-
ior of diffusion models to effectively perform client-to-client data stealing attack.

• Extensive experiments demonstrate that our method achieves effective data stealing in fed-
erated diffusion settings where existing inversion-based attacks entirely fail, while remain-
ing fundamentally undetectable during training.

2 RELATED WORKS

2.1 DIFFUSION MEMORIZATION

The memorization phenomenon refers to the tendency of diffusion models to generate images that
are nearly identical to those in the training set. Pioneering work (Gu et al., 2025) systematically in-
vestigates memorization of unconditional EDM (Karras et al., 2022) with different hyperparameters
and training strategies. As for text-to-image generation, some works (Carlini et al., 2023; Somepalli
et al., 2023; Wen et al., 2024) investigate the memorization in text-to-image diffusion models caused
by unique prompts. Meanwhile, some works (Wang et al., 2024; Yoon et al., 2023; Chavhan et al.,
2024) investigate memorization in diffusion models from the theoretical perspective. Based on these
findings, several works aim to mitigate memorization. Some of them achieve memorization miti-
gation by designing different training strategies. AmbientDiffusion (Daras et al., 2023) prevents
diffusion from memorizing training data by training it with noisy images, IET-AGC (Liu et al.,
2024; Guan et al., 2025) neglect easy-to-remember images during training. Some of them mitigate
memorization in text-to-image generation during sampling process (Wen et al., 2024; Chen et al.,
2025a; Jain et al., 2025; Chen et al., 2024) by modifying the text embeddings of the prompt or the
guidance scale during generation, while (Ren et al., 2024; Chen et al., 2025b) manipulate the atten-
tion maps of the text-to-image diffusion models. Other works (Hintersdorf et al., 2024; Dutt et al.,
2025) eliminate the model parameters that cause the memorization. As for privacy attacks, most
works leverage memorization for membership-inference attack (Ma et al., 2024; Matsumoto et al.,
2023; Li et al., 2024; Pang & Wang, 2025; Jiang et al., 2025). Different from them, we leverage the
memorization to directly steal private training images, uncovering a more severe privacy leakage.

2.2 INVERSION ATTACKS IN FEDERATED LEARNING

Inversion-based attacks aim to reconstruct the private training images of victim clients by exploiting
shared information. Existing methods can be broadly categorized into Gradient Inversion Attacks
(GIA) (Du et al., 2025) and Model Inversion Attacks (MIA) (Fang et al., 2024). GIA assumes that the
server-side attacker who has the access to victim’s gradients during training and optimizes dummy
inputs to match these gradients (Zhu et al., 2019; Zhao et al., 2019). In contrast, MIA performs
post-training attacks by optimizing inputs to match prediction logits of the target model (Zhang
et al., 2020; Chen et al., 2021). Recent works have enhanced inversion-based attacks by incor-
porating generative priors or designing specialized loss objectives to improve reconstruction qual-
ity. For example, methods such as GIAS (Jeon et al., 2021) and GradInversion (Yin et al., 2021)
leverage pre-trained generative models as priors to achieve efficient and high-quality reconstruction.
GIFD (Fang et al., 2023) performs feature-domain inversion to align intermediate representations
rather than raw pixel values. Mjölnir (Liu et al., 2025) introduces adaptive diffusion-based priors
to circumvent gradient obfuscation defenses. In the model inversion domain, GMI (Zhang et al.,
2020) and Deep-MIA (Khosravy et al., 2022) utilize GANs or VAEs to reconstruct training data
by matching output logits or internal features. Other techniques such as VMI (Wang et al., 2021),
KED-MI (Chen et al., 2021), and PLG-MI (Yuan et al., 2023) further improve inversion fidelity
through variational inference or pseudo-label guided supervision. While these methods enhance at-
tack success against discriminative models, they all fundamentally rely on semantically structured
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Figure 2: Overview of our proposed memorization-guided attack. The left panel illustrates the
federated training process. Unlike benign clients, the malicious client stores global models {θrg}Rr=1
across training rounds, where R indicates the final training round. The right panel shows the two-
stage attack: (1) the attacker pre-trains a private model θp with its local data; (2) the attacker selects
two global models θr1g , θr2g and combines them with θp to guide the generation process to perform
the attack. ϵ indicates the noise-prediction of each model.

outputs such as classification logits or features. As a result, they are inherently incompatible with
diffusion models.

3 METHOD

3.1 ATTACK SCENARIO

Our attack scenario assumes a standard federated learning (FL) setup involving K clients, each
holding a private dataset Di, where 1 ≤ i ≤ K, remains local throughout training. The training
process consists of R communication rounds (McMahan et al., 2017). In each round r, where
1 ≤ r ≤ R, the server derives the global model θrg first and then broadcasts it to all clients, then
client i performs local training on θrg with its private data to obtain updated parameters θri , which are
then sent back to the server for aggregation. The server combines these updates to produce the next
global model θr+1

g . After R rounds of training, the final global model θRg is obtained as the output
of the federated process.

Attacker’s goal. The attacker is a common client in the federated system who wants to steal training
data from other clients. Suppose that the attacker’s client ID is A, where 1 ≤ A ≤ K. The attacker
aims to generate a set of images I from the global diffusion model such that as many images as pos-
sible match those in the union of all other clients’ private datasets, denoted as DB =

⋃K
i=1, i̸=ADi.

The attack objective is to maximize the number of successfully stolen images, formally defined as
maxI |I ∩ DB |.
Attacker’s abilities. The attacker is an honest-but-curious client who possesses the same capabili-
ties as any normal clients in federated system, including full access to its own private data DA, local
training process, and the global diffusion model θrg at each communication round r. Importantly, the
attacker does not need to know system-specific configurations such as the total number of clients,
nor interfere with the training procedure. This makes the attack stealthy and difficult to detect.
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Figure 3: Illustration of the (a) Threat-Focused Guidance (TFG) and (b) Memorization-Focused
Guidance (MFG), demonstrating their correction effect when the model’s prediction ϵ deviates
from the desired distribution during sampling. In (a), images with different edge colors represent
different clients, where ϵrθg is the global model’s prediction that induces the attacker’s private images
and ϵθp is the attacker’s private model prediction; in (b), ϵr2θg and ϵr1θg are predictions from later-
and earlier-round global models, corresponding to memorized and non-memorized samples, whose
difference corrects the trajectory toward memorized data.

3.2 MEMORIZATION GUIDED ATTACK

As discussed in Sec. 1, the global diffusion model θrg often memorizes private training images from
all participating clients due to memorization. This phenomenon ensures the possibility for a mali-
cious client to steal private data from others by using θrg to generate memorized images.

The overall workflow of our method is shown in Fig. 2. During federated training, an honest-but-
curious attacker legitimately collects the global model at each communication round, forming a
cache {θrg}Rr=1, and also trains a private diffusion model θp on its own local data with the same
architecture as the global model. The cached models {θrg}Rr=1 represent a sequence of increas-
ingly powerful generators as training progresses, while θp characterizes the distribution of the at-
tacker’s own training data. Our two guidance mechanisms Threat-Focused Guidance (TFG) and
Memorization-Focused Guidance (MFG) fully exploit the rich and complementary information
embedded in {θrg}Rr=1 and θp to steer generation toward images memorized from other clients, max-
imizing the recovery of other clients’ private data. Details of these mechanisms are described below.

3.2.1 THREAT-FOCUSED GUIDANCE

The global diffusion model θrg is trained collaboratively on data from all clients, including both the
attacker’s private dataset DA and the private datasets of other clients, denoted as DB . As a result,
as shown in Fig. 3 (a), θrg often yields prediction ϵrθg which induces the generation of memorized
images from DA, which are useless for the attacker. Therefore, if the generation trajectory is only
determined by ϵrθg , the resulting image set I will contain a large number of memorized images
originating from DA, thereby reducing the density of desired samples in I.

To increase the proportion of memorized images from DB in I, the attacker needs to redirect the
generation trajectory when ϵrθg tends to generate images from DA. To achieve this, the attacker can
firstly train a private diffusion model θp exclusively on its own private data, and subtract the original
prediction ϵrθg with θp’s prediction ϵθp . This subtracted vector (illustrated as the dark blue arrow
in Fig. 3 (a)) provides the model with a guidance to steer the generation trajectory away from the
distribution of DA. As a result, the attacker increases the chance of reproducing memorized images
from DB and improves the density of desired images in generated images. We term this kind of
guidance as the Threat-Focused Guidance (TFG).

Formally speaking, this process can be formulated as,

ϵTFG(xt, t) = ϵrθg (xt, t) + β ·
(
ϵrθg (xt, t)− ϵθp(xt, t)

)
, (1)
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Algorithm 1 Memorization Guided Attack
Input: Global models {θ1g , θ2g , . . . , θRg }, private dataset DA, guidance scales β, γ, number of gen-

erated images N , DDIM denoising function Φ(xt, t, ϵ) Song et al. (2021).
Output: Stolen image set I

1: Train private diffusion model θp on DA

2: Initialize stolen image set I ← ∅
3: for i = 1 to N do
4: Sample Gaussian noise xT ∼ N (0, I)
5: Initialize timestep t← T
6: while t > 0 do
7: Select two global models θr1g , θr2g with r2 > r1
8: ϵr1TFG ← ϵr1θg (xt, t) + β · (ϵr1θg (xt, t)− ϵθp(xt, t)) ▷ Eq.1.
9: ϵr2TFG ← ϵr2θg (xt, t) + β · (ϵr2θg (xt, t)− ϵθp(xt, t)) ▷ Eq.1.

10: ϵMFG(xt, t)← ϵr2TFG + γ · (ϵr2TFG − ϵr1TFG) ▷ Eq.2.
11: xt−1 ← Φ(xt, t, ϵMFG(xt, t)) ▷ Denoising step
12: t← t− 1
13: end while
14: Add final x0 to I
15: end for
16: return I

where xt denotes the noisy image at timestep t during the sampling process, ϵrθg (xt, t) and ϵθp(xt, t)

represent the noise predictions made by the global model θrg and the attacker’s private model θp,
respectively. The TFG scalar β ≥ 0 is the guidance scale that controls the strength of the influence
from the private model. The resulting noise prediction ϵTFG(xt, t), depicted as the dark green arrow
in Fig. 3 (a), is then used to guide the sampling step.

3.2.2 MEMORIZATION-FOCUSED GUIDANCE

We observe that although the global model memorizes many samples from DB during training, its
default sampling strategy still yields a substantial fraction of non-memorized outputs, which dilutes
attack effectiveness. In Fig. 3 (b), the noise prediction of the global model at round r2, frequently
points toward these non-memorized regions and produces outputs uninformative to the attacker.
To counteract this, we design a strategy that actively suppresses non-memorized generations and
amplifies memorized ones.

Similar to TFG, the core idea is to use a reference model that captures the dataset’s global semantics
while avoiding instance-level memorization; such a model provides an in-domain negative reference
that steers sampling away from the non-memorized distribution without pushing generations off the
training data manifold. Prior work shows that models from early training rounds naturally satisfy
these properties (Gu et al., 2025), so we choose an earlier-stage global model θr1g (typically from
the first 10%–20% of rounds) as this reference. As illustrated by the non-memorized images in
Fig. 3 (b), its outputs appear generic and blurred, reflecting broad semantics rather than specific
samples. By contrasting the later-round prediction ϵr2θg with the early-round prediction ϵr1θg (dark blue
arrow), we obtain a guidance direction that suppresses non-memorized generations; the resulting
adjusted prediction (dark green arrow) steers sampling toward memorized images from DB and
thus improves attack success.

Formally, MFG can be expressed as,

ϵMFG(xt, t) = ϵr2θg (xt, t) + γ ·
(
ϵr2θg (xt, t)− ϵr1θg (xt, t)

)
, (2)

where xt denotes the noisy image at timestep t, ϵr2θg (xt, t) and ϵr1θg (xt, t) are predictions from the
later-stage and earlier-stage global models, respectively. The scalar γ ≥ 0 controls the strength
of memorization-focused correction. The resulting noise prediction ϵMFG(xt, t), shown as the dark
green arrow in Fig. 3 (b), effectively biases the sampling trajectory toward reproducing memorized
private images from DB .
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Table 1: Memα (%) results of different data stealing methods on AFHQ-Dog (Choi et al., 2020) and
CelebA (Liu et al., 2015), evaluated at α = 0.1 and α = 0.2. Baseline indicates generating images
without TFG and MFG.

Method AFHQ-Dog (Choi et al., 2020) CelebA (Liu et al., 2015)

Mem0.1 Mem0.2 Mem0.1 Mem0.2

Inversion-Based Attacks
GIFD (Fang et al., 2023) 0.00 0.00 0.00 0.00
FedInverse (Wu et al., 2024) 0.00 0.00 0.00 0.00

Memorization-Based Attacks (Ours)
Baseline 4.14 14.82 13.20 29.85
Ours w/o TFG 13.69 (+9.55) 21.72 (+6.90) 28.55 (+15.35) 42.95 (+13.10)
Ours w/o MFG 20.31 (+16.17) 39.00 (+24.18) 35.50 (+22.30) 50.80 (+20.95)
Ours 25.02 (+20.88) 41.85 (+27.03) 38.25 (+25.05) 52.18 (+22.33)

Built on TFG and MFG, we derive the complete data stealing procedure as shown in Algorithm 1.
At each denoising timestep, we first apply TFG to the global-model predictions at both rounds r1
and r2—yielding ϵr1TFG and ϵr2TFG that suppress generations aligned with the attacker’s own data—and
then fuse these two TFG-adjusted predictions via MFG to produce the final noise prediction ϵMFG
used for the denoising step (xt and t are eliminated for clarity). Under this procedure, an attacker
can maximize recovery of other participants’ private images entirely after training completes.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments on widely adopted CelebA (Liu et al., 2015) and AFHQ (Choi
et al., 2020) datasets to evaluate the effectiveness of our proposed memorization-guided attack.

Evaluation Metric. To quantify how many unique private training images have been successfully
recovered, we introduce Memα, a memorization metric based on Carlini’s detection rule (Carlini
et al., 2023). An image x generated by the attacker is considered to memorize a training image
x̂ ∈ DB if it satisfies a relative distance threshold,

ℓ(x, x̂;Sn
x ) =

ℓ2(x, x̂)

Ey∈Sn
x
[ℓ2(x, y)]

≤ α, (3)

where Sn
x is the set of n nearest neighbors of x in the DB under ℓ2 distance. However, we observe

that multiple generated samples may correspond to the same memorized training image, overesti-
mating the effective number of stolen instances. To address this, we define Memα as the ratio of
unique images in Dbenign that are identified as memorized by at least one generated sample,

Memα =
|{x̂ ∈ DB | ∃x ∈ I, ℓ(x, x̂;Sn

x ) ≤ α}|
|DB |

. (4)

This metric provides a clear measure of how many unique private images have been stolen, a smaller
α indicates a stricter criterion for determining memorized samples.

Baselines. We adopt inversion-based methods GIFD (Fang et al., 2023) and FedInverse (Wu et al.,
2024) as baselines. These methods require extra information (e.g., gradients or noise) to perform
client-to-client attacks, which is unavailable in our setting. We provide such inputs to ensure feasi-
bility, whereas our method requires no additional information, demonstrating its practicality and
effectiveness.

Implementation Details. We adopt the training protocol from (Gan et al., 2024) to implement
federated diffusion models. To prevent overfitting-induced memorization, all training is terminated
once the model converges to a desirable FID on the test set. We assume a simplified attack scenario
where only one client is malicious. By default, we report the results when client number is 5. All
experiments are conducted on a workstation equipped with 8 NVIDIA GeForce RTX 4090 GPUs.
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Table 2: Ablation on r2 and r1 selection in MFG. We report Mem0.1/Mem0.2 (%) on AFHQ-Dog
and CelebA. r1 and r2 are expressed as percentages of the final global round R. Guidance scales
β, γ are fixed as 0.5.

Varying r2 (r1 = 0.20×R) Varying r1 (r2 = R)

r2
AFHQ-Dog CelebA

r1
AFHQ-Dog CelebA

Mem0.1 Mem0.2 Mem0.1 Mem0.2 Mem0.1 Mem0.2 Mem0.1 Mem0.2

0.60×R 6.66 23.30 25.33 35.10 0.05×R 29.06 39.40 32.25 45.20
0.70×R 13.01 29.16 30.04 44.78 0.10×R 31.83 43.59 40.13 54.03
0.80×R 16.64 32.91 35.25 52.38 0.15×R 28.74 51.79 40.01 48.70
0.90×R 23.04 39.35 31.53 46.85 0.20×R 28.30 39.35 38.25 52.18
1.00×R 25.02 41.85 38.25 52.18 0.40×R 23.92 34.68 33.18 46.95

Table 3: Ablation on β and γ selection in TFG/MFG. We report Mem0.1/Mem0.2 (%) on AFHQ-Dog
and CelebA. Global round r2 is fixed as the final round R, while r1 = 0.2×R.

Varying γ (β = 0.5) Varying β (γ = 0.5)

γ
AFHQ-Dog CelebA

β
AFHQ-Dog CelebA

Mem0.1 Mem0.2 Mem0.1 Mem0.2 Mem0.1 Mem0.2 Mem0.1 Mem0.2

0.1 23.44 41.85 37.93 52.78 0.1 20.94 34.23 35.25 47.78
0.3 27.51 45.17 38.28 53.40 0.3 28.64 43.88 40.08 52.85
0.5 25.02 41.85 38.25 52.18 0.5 25.02 41.85 38.25 52.18
0.7 26.71 44.09 31.80 47.83 0.7 17.77 42.62 25.43 44.98
0.9 20.31 38.92 26.43 41.83 0.9 2.48 29.17 12.80 36.18

4.2 MAIN RESULTS

Training Federated Diffusion Model. We simulate a realistic FL setting with 5 clients jointly
training a diffusion model, in order to faithfully evaluate the privacy risks posed by our method. To
avoid overfitting that could artificially amplify memorization and bias our conclusions, we monitor
the FID of the global diffusion model on an unseen validation set throughout training. As shown
in Fig. 4 in Appendix, FID consistently decreases as training progresses, and training is terminated
when the validation FID converges, ensuring that our analysis reflects genuine memorization rather
than overfitting artifacts.

Effectiveness of our method. As shown in Tab. 1, the baseline without any guidance exposes only
a very small fraction of training samples (e.g., 4.14% on AFHQ-Dog and 13.20% on CelebA at
α = 0.1), highlighting the difficulty of the attack. With our guidance strategies, recovery improves
substantially, with TFG and MFG each boosting performance by around 10–20% on average, and
their combination further raising recovery by over 25%. Unless otherwise specified, we set β = γ =
0.5, r2 = R, and r1 = 0.2×R, with rationale explained in Sec. 4.3. These results confirm that our
method, especially with both guidance mechanisms, can recover a large fraction of benign clients’
training data, posing a severe and realistic privacy threat.

Comparisons with Inversion-based Attacks. Inversion-based methods rely on information un-
available in our client-to-client setting (e.g., GIFD (Fang et al., 2023) requires victim gradients,
FedInverse (Wu et al., 2024) needs added noise and timesteps during DDPM Ho et al. (2020) train-
ing). However, we still provided them with these private information, yet they failed to recover any
private images (Tab. 1). In sharp contrast, our memorization-based attack, without any extra infor-
mation, successfully reconstructs tens of percents of training data, clearly exposing the privacy risks
in federated diffusion.

4.3 ABLATION STUDY

We conduct an ablation study to examine how hyperparameters influence the attack success of our
method. Specifically, we vary the choice of global models (θr1g , θr2g ) and the guidance scales (β, γ)
of TFG and MFG, and evaluate performance using Memα.
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Table 4: Performance of our method under var-
ious federated defense mechanisms. We report
Mem0.1 and Mem0.2 scores on AFHQ-Dog and
CelebA.

Defense AFHQ-Dog CelebA

Mem0.1 / Mem0.2 Mem0.1 / Mem0.2

Multi-Metrics 16.15 / 29.40 26.15 / 35.27
Multi-Krum 14.08 / 31.41 25.91 / 36.96

Table 5: Attack performance under non-iid data
distribution on AFHQ. We adopt α = 1.2
to for Dirichlet distribution (Hsu et al., 2019)
to split the dataset for all clients. We report
Mem0.1/Mem0.2 (%).

Setting Mem0.1 Mem0.2

IID 31.83 43.59
Non-IID 18.64 41.50

Effect of later-stage global model selection. Tab. 2 (left) shows that using later-stage r2 consis-
tently improves attack success when r1 is fixed. This aligns with the finding of (Gu et al., 2025) that
diffusion models memorize more training samples as training progresses. Consequently, selecting a
larger r2 allows the attacker to exploit these stronger memorization potential, leading to the recovery
of more private images.

Effect of earlier-stage global model selection. As shown in Tab. 2 (right), varying r1 with r2
fixed produces a rise-then-fall trend. In the very early training stages, models generate outputs that
resemble meaningless noise; incorporating such r1 does not provide the non-memorized distribu-
tion needed for MFG and instead disrupts the predictions of r2. As training progresses, earlier-stage
models begin to capture general semantic features of the training data while still avoiding memoriza-
tion of specific samples. This provides the most effective contrast for MFG, leading to the highest
attack success. However, once r1 itself starts memorizing specific samples, it no longer represents
the non-memorized distribution, and its guidance becomes less effective, causing performance to
decline. This observation aligns well with the principle of MFG, which relies on contrasting mem-
orized and non-memorized generations.

Effect of guidance scales. Tab. 3 presents the results of two guidance scales. We observe that both
AFHQ-Dog and CelebA exhibit similar optimal ranges, with β and γ performing best between 0.3
and 0.7. This indicates that the choice of guidance strength is relatively stable across datasets, and
practical attacks can adopt these values as default settings.

4.4 ROBUSTNESS OF ANALYSIS

Influence of defense mechanisms. As shown in Tab. 4, we evaluate the robustness of our method
under two mainstream federated defense mechanisms, including, Multi-Metrics (Huang et al., 2023),
and Multi-Krum (Blanchard et al., 2017). The result shows that our method remains effective under
federated defense mechanisms.

Effectiveness of our method under non-iid settings. We sample 5,000 images uniformly from
the three categories of AFHQ and partition them across 5 clients using a Dirichlet distribution (Hsu
et al., 2019) with α = 1.2 to simulate a non-iid training setup. As shown in Tab. 5, our method still
successfully recovers 18.64% of training data, demonstrating its robustness under non-iid settings.

5 CONCLUSIONS

This work reveals a realistic client-to-client privacy leakage risk in federated diffusion models,
where memorized training images can be regenerated by malicious clients. To expose and study
this threat, we propose memorization-guided attack, which involves two generation guidance, TFG
and MFG, to maximize the data stealing performance. Extensive experiments demonstrate that tens
of percents of private images can be stolen by our method under this realistic scenario, highlighting
the urgent need for stronger privacy protections in federated generative learning.
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6 ETHICS STATEMENT

This work investigates the privacy risks of federated diffusion models by introducing a client-to-
client data stealing attack. Our study does not involve human subjects, and all experiments are
conducted on publicly available datasets (AFHQ (Choi et al., 2020) and CelebA (Liu et al., 2015))
under standard research licenses. We explicitly avoid releasing any potentially sensitive or private
data and restrict our implementation to controlled experimental settings. The purpose of this work is
not to enable malicious attacks, but rather to highlight critical vulnerabilities in federated diffusion
frameworks and motivate the development of stronger defenses. We believe that raising awareness of
such threats is essential for the community to design secure, privacy-preserving generative modeling
systems in compliance with ethical and legal standards.

7 REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our work. All implementation
details of the proposed attack, including training configurations, hyperparameter choices, and guid-
ance scales, are thoroughly described in Sec. 4 and Sec. A.1. We also specify dataset usage , pre-
processing steps, and evaluation metrics to allow precise replication of our experimental results. In
the supplementary material, we provide additional implementation notes for guidance. Together,
these resources are intended to make it straightforward for researchers to reproduce and verify our
findings.
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A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS

A.1.1 INVERSION-BASED BASELINES

GIFD Fang et al. (2023). We use the official implementation of GIFD1 and adapt it to the diffusion
inversion setting. Unlike classification models where gradients are computed with respect to the
input directly, the gradient of a diffusion model depends jointly on the clean image x0, the added
noise ϵ, and the sampled timestep t. Since all three variables are typically unknown to the attacker,
performing triplet optimization over (x0, ϵ, t) is highly ill-posed and computationally infeasible. To
make the optimization tractable, we follow the assumption proposed by GIDM Huang et al. (2024a)
that the attacker has access to the values of ϵ and t, and performs gradient-based optimization only
with respect to x0 while keeping ϵ and t fixed. For pre-trained GANs, we adopt BigGAN Brock
et al. (2019) trained on ImageNet Deng et al. (2009) for inversion on the AFHQ-Dog dataset, and
StyleGAN2 Karras et al. (2020) trained on FFHQ Karras et al. (2019) for inversion on the CelebA
dataset. For BigGAN, we optimize all 13 layers for 500 steps per layer with a learning rate of 0.1.
For StyleGAN2, we similarly optimize all 8 layers for 500 steps each with the same learning rate.
All other hyperparameters follow the official implementations.

FedInverse Wu et al. (2024). We follow the official implementation of FedInverse 2 and adopt
its GMI variant for inversion. Unlike classification models that provide semantically meaningful
class logits to guide the inversion process, diffusion models do not offer such direct supervision. To
address this gap, we record the random noise ϵ and the corresponding timestep t used during training,
and treat each (ϵ, t) pair as a pseudo-class label to guide the inversion. All other inversion-related
hyperparameters are kept consistent with the original implementation.

A.1.2 FEDERATED DIFFUSION

Denoising Unet. We follow the widely adopted DDPM Ho et al. (2020) implementation from the
repository3 to construct our denoising model, which adopts a symmetric U-Net architecture com-
posed of a series of residual blocks with skip connections between encoder and decoder stages. The
network begins with a 3× 3 convolutional layer projecting the input to the base channel dimension
of 128. It then traverses five resolution levels, with channel multipliers set to [1, 2, 2, 2, 4], result-
ing in progressively wider feature representations. At each resolution level, we stack two residual
blocks, each consisting of a GroupNorm Wu & He (2018) layer with 32 groups, a Swish activa-
tion Ramachandran et al. (2017), a 3 × 3 convolution, and additive modulation from the time-step
embedding. Between the encoder and decoder, the architecture includes two additional residual
blocks operating at the lowest resolution, which serve as the middle blocks of the network. These
blocks have the same structure as standard residual blocks but do not include attention in our con-
figuration. The time-step embedding is constructed by applying sinusoidal positional encoding to
discrete timestep indices, followed by two linear layers with Swish activation. Downsampling across
resolution levels is implemented via strided 3×3 convolutions, while upsampling is performed using
nearest-neighbor interpolation followed by 3 × 3 convolutions. In the decoder, feature maps from
each stage are concatenated with the corresponding encoder features via skip connections before
passing through the residual blocks. The final output is produced through a GroupNorm, Swish
activation, and a 3× 3 convolutional layer

Training details. During federated training, each participating client performs 100 epochs of local
training on its private dataset using the denoising U-Net described above, after which model param-
eters are uploaded to the server for global aggregation. During aggregation, we employ standard
FedAvg McMahan et al. (2017) to compute the average of the model weights across clients. The
updated global model is then broadcast back to all clients to initiate the next communication round.
For local training, we use the Adam optimizer with a learning rate of 1 × 10−4, combined with
a linear warmup schedule implemented via a LambdaLR scheduler. Gradient clipping is applied
with a maximum norm of 1.0. We resize the input images into 64 × 64 and apply normalization

1https://github.com/ffhibnese/GIFD_Gradient_Inversion_Attack
2https://github.com/Jun-B0518/FedInverse/tree/main/GMI
3https://github.com/w86763777/pytorch-ddpm
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Figure 4: Validation-set FID across FL training rounds on CelebA and AFHQ-Dog. We report
the FID on unseen validation data to track how the generative quality evolves during federated
training. To mitigate overfitting and unintended memorization, training is stopped once the FID
ceases to decrease significantly.

Table 6: Influence of aggregation frequency on attack performance under a fixed total training
budget of 6,000 epochs for each clients. Aggregation frequency refers to how often the central server
aggregates local models from clients and redistributes the global model in the federated learning
process. We report Mem0.1(%) and Mem0.2(%) on AFHQ-Dog under the 5-client setting.

Local Epochs Global Rounds w/o Ours w/ Ours

Mem0.1 Mem0.2 Mem0.1 Mem0.2

50 120 12.14 27.59 35.44 (+23.30) 49.53 (+21.94)
100 60 4.10 14.63 18.30 (+14.20) 19.53 (+4.90)
200 30 0.61 4.01 4.15 (+3.54) 12.21 (+8.20)

augmentation for all models. The denoising objective follows the original DDPM Ho et al. (2020)
formulation, where the model learns to predict additive Gaussian noise under a fixed variance sched-
ule. The noise schedule is defined by linearly interpolating βt values from 1 × 10−4 to 2 × 10−2

over 1000 timesteps. By default, we randomly sample 5,000 images from CelebA as the training set,
while for AFHQ-Dog, we use the full training set. All training process terminate when validation
set FID converge. FID is evaluated on val split of AFHQ-Dog and CelebA, which are unseen for all
the clients.

Sampling details. We adopt the deterministic DDIM Song et al. (2021) sampling strategy for image
generation, using a total of 50 denoising steps per image. We apply the guidance strategies proposed
in Sec.3 across all the sampling steps.

A.2 INFLUENCE OF CLIENT NUMBER

We investigate influence of the number of clients on attack performance. Results can be seen in
Tab. 7. We report Mem0.1 and Mem0.2 under both w/ Ours and w/o Ours settings. Across all
client configurations (5, 7, and 10), the introduction of our method consistently leads to substan-
tial improvements. Specifically, under the 5-client setting, our method achieves a gain of +13.93 in
Mem0.1 and +19.66 in Mem0.2. Similar trends are observed for 7 and 10 clients, demonstrating that
our method remains effective regardless of the degree of data decentralization. These results confirm
the robustness of our proposed method and highlight its ability to enhance attack performance under
various scenarios.

A.3 INFLUENCE OF AGGREGATION FREQUENCY

To assess the impact of aggregation frequency on the effectiveness of our proposed attack, we vary
the number of local training epochs per communication round while keeping the total number of
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Table 7: Influence of client number on attack performance. We report Mem0.1(%) and Mem0.2(%)
on AFHQ-Dog. We fix the total training epochs as 6,000 for each client.

Client Num. w/o Ours w/ Ours

Mem0.1 Mem0.2 Mem0.1 Mem0.2

5 4.10 14.63 18.03 (+13.93) 34.29 (+19.66)
7 5.39 16.17 19.29 (+13.90) 36.87 (+20.70)

10 3.21 13.15 9.47 (+6.26) 30.87 (+17.72)

Table 8: Effect of training set size on memorization recovery. We report Mem0.1/Mem0.2
(%) on CelebA under different numbers of training samples. Default attack hyperparameters:
(β, γ, r1, r2) = (0.5, 0.5, 0.2×R,R), where R is the final round of FL training.

Metric 1K 3K 5K 8K 10K

Mem0.1 87.22 66.93 38.25 14.25 5.28
Mem0.2 93.33 78.26 52.18 24.60 13.44

training epochs fixed at 6,000. As shown in Table 6, we observe that the frequency of aggregation
has a clear influence on the baseline model’s inherent memorization ability—lower aggregation fre-
quency (i.e., more local updates per round) generally leads to weaker memorization and hence lower
attack performance. Nevertheless, across all settings, our method consistently improves the amount
of data successfully extracted, even when the underlying model exhibits limited memorization. This
demonstrates that our method is robust and effective under varying communication schedules, and
can reliably exploit available memorized signals regardless of their strength.

A.4 IMPACT OF TRAINING SET SIZE

Since diffusion-model memorization is strongly dependent on dataset size: as documented in Fig. 1
of (Gu et al., 2025), models trained on larger datasets exhibit substantially less tendency to reproduce
training samples. Consequently, our method, which explicitly exploits memorization, is inevitably
sensitive to the number of training examples as shown in Tab. 8. Despite this sensitivity, our method
is still the only feasible client-to-client attack under the realistic scenario, which highlights that
federated diffusion systems can still pose a non-trivial privacy risk in realistic settings.

A.5 DERIVING THREAT-FOCUSED GUIDANCE (TFG)

As discussed in Sec. 3.2.1, TFG aims to suppress the attacker’s private distribution while emphasiz-
ing the global model’s distribution so that sampling is biased toward images inDB . Following (Kar-
ras et al., 2024), the global model at round r with parameters θrg can be viewed as approximating the
score ∇x log pgr (x;σ) of the noisy density pgr (x;σ) at noise level σ, where x has been corrupted
by Gaussian noise N (0, σ2I). Consequently, sampling based solely on θrg can be formalized as the
score-based update

Dgr (x;σ) ≈ x + σ2∇x log pgr (x;σ), (5)

where Dgr (·;σ) denotes the denoising/drift update at noise standard deviation σ.

To suppress the private model during sampling, we construct an extrapolation between the two score
functions,

sTFG(xt, t) = (1 + β) sgr (xt, t) − β sp(xt, t), sϕ(xt, t) := ∇xt
log pϕ(xt), (6)

which amplifies the global score and suppresses the private score. Replacing the original score in
Eq. 5 with the extrapolated score in Eq. 6—while keeping the diffusion coefficient σ2 unchanged so
that the per-step noise variance is preserved—yields the TFG denoising/drift update

DTFG(x;σ) ≈ x + σ2 sTFG(x;σ) = x + σ2
(
(1 + β) sgr (x;σ) − β sp(x;σ)

)
. (7)
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By the score–denoiser equivalence (Vincent, 2011),

sϕ(xt, t) ≈ −
1

σt
ϵϕ(xt, t), (8)

with σt denoting the noise standard deviation at step t, we obtain the denoiser form

ϵTFG(xt, t) = (1 + β) ϵθr
g
(xt, t) − β ϵθp(xt, t)

= ϵθr
g
(xt, t) + β

(
ϵθr

g
(xt, t)− ϵθp(xt, t)

)
, (9)

which matches Eq. 1 in the main text. In practice, σt is discretized over timesteps, consistent with
DDIM (Song et al., 2021).

A.6 DERIVING MEMORIZATION-FOCUSED GUIDANCE (MFG)

As discussed in Sec. 3.2.2, MFG aims to down-weight the distribution of an early-round global
model while emphasizing the distribution of a later-round global model. Following Karras et al.
(2024), the global model at round rj with parameters θrjg approximates the score ∇x log prj (x;σ)

of the noisy density prj (x;σ) at noise level σ, where x∼N (0, σ2I) corruption. Hence, sampling
based solely on the later-round model θr2g can be written as

Dr2(x;σ) ≈ x + σ2∇x log pr2(x;σ), (10)

with Dr2(·;σ) the denoising/drift update at noise standard deviation σ. To suppress the earlier-round
distribution pr1 (r2 > r1) while promoting pr2 , we construct an extrapolation between the two score
functions

sMFG(xt, t) = (1 + γ) sr2(xt, t) − γ sr1(xt, t), sϕ(xt, t) := ∇xt log pϕ(xt), (11)

which amplifies the later-round score and suppresses the early-round score. Replacing the score in
Eq. 10 with sMFG—while keeping the diffusion coefficient σ2 unchanged so that the per-step noise
variance is preserved—yields the MFG denoising/drift update

DMFG(x;σ) ≈ x + σ2 sMFG(x;σ) = x + σ2
(
(1 + γ) sr2(x;σ) − γ sr1(x;σ)

)
. (12)

By the score–denoiser equivalence (Vincent, 2011),

sϕ(xt, t) ≈ −
1

σt
ϵϕ(xt, t), (13)

with σt the noise standard deviation at step t, we obtain the denoiser form

ϵMFG(xt, t) = (1 + γ) ϵθr2
g
(xt, t) − γ ϵθr1

g
(xt, t)

= ϵθr2
g
(xt, t) + γ

(
ϵθr2

g
(xt, t)− ϵθr1

g
(xt, t)

)
, (14)

which coincides with Eq. 2 in the main text. In practice, σt is discretized over timesteps, consistent
with DDIM (Song et al., 2021).

A.7 LLM USAGE

We used large language models (LLMs) solely as writing assistants to polish the presentation and
improve the clarity of our manuscript. LLMs were not involved in research ideation, experimental
design, implementation, analysis, or any other scientific contribution. All technical content, method-
ology, results, and conclusions were fully conceived, developed, and validated by the authors. The
authors take full responsibility for the correctness and integrity of the content.

A.8 MORE VISUALIZATION RESULTS

We provide more visualization of the training images and their corresponding stolen images from
AFHQ-Dog and CelebA. Visualization results can be seen below.
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Figure 5: The grid image of the training and stolen images of AFHQ-Dog. Odd-numbered columns
show training images, and even-numbered columns show the closest stolen samples in training set.

Figure 6: The grid image of the training and stolen images of CelebA. Odd-numbered columns show
training images, and even-numbered columns show the closest stolen samples in training set.
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