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ABSTRACT

Optimal Transport is a useful metric to compare probability distributions and
to compute a pairing given a ground cost. Its entropic regularization variant
(eOT) is crucial to have fast algorithms and reflect fuzzy/noisy matchings. This
work focuses on Inverse Optimal Transport (iOT), the problem of inferring the
ground cost from samples drawn from a coupling that solves an eOT problem. It
is a relevant problem that can be used to infer unobserved/missing links, and to
obtain meaningful information about the structure of the ground cost yielding
the pairing. On one side, iOT benefits from convexity, but on the other side,
being ill-posed, it requires regularization to handle the sampling noise. This
work presents an in-depth theoretical study of the ℓ1 regularization to model for
instance Euclidean costs with sparse interactions between features. Specifically,
we derive a sufficient condition for the robust recovery of the sparsity of the
ground cost that can be seen as a far reaching generalization of the Lasso’s
celebrated “Irrepresentability Condition”. To provide additional insight into
this condition, we work out in detail the Gaussian case. We show that as the
entropic penalty varies, the iOT problem interpolates between a graphical Lasso
and a classical Lasso, thereby establishing a connection between iOT and graph
estimation, an important problem in ML.

1 INTRODUCTION

Optimal transport has emerged as a key theoretical and numerical ingredient in machine learning
for performing learning over probability distributions. It enables the comparison of probability
distributions in a “geometrically faithful” manner by lifting a ground cost (or “metric” in a loose
sense) between pairs of points to a distance between probability distributions, metrizing the
convergence in law. However, the success of this OT approach to ML is inherently tied to the
hypothesis that the ground cost is adapted to the problem under study. This necessitates the
exploration of ground metric learning. However, it is exceptionally challenging due to its a
priori highly non-convex nature when framed as an optimization problem, thereby inheriting
complications in its mathematical analysis. As we illustrate in this theoretical article, these
problems become tractable – numerically and theoretically – if one assumes access to samples
from the OT coupling (i.e., having access to some partial matching driven by the ground cost).
Admittedly, this is a restrictive setup, but it arises in practice (refer to subsequent sections for
illustrative applications) and can also be construed as a step in a more sophisticated learning
pipeline. The purpose of this paper is to propose some theoretical understanding of the possibility
of stably learning a ground cost from partial matching observations.

1.1 PREVIOUS WORKS

Entropic Optimal Transport. OT has been instrumental in defining and studying various
procedures at the core of many ML pipelines, such as bag-of-features matching Rubner et al.
(2000), distances in NLP Kusner et al. (2015), generative modeling Arjovsky et al. (2017), flow
evolution for sampling De Bortoli et al. (2021), and even single-cell trajectory inference Schiebinger
et al. (2019). We refer to the monographs Santambrogio (2015) for detailed accounts on the theory
of OT, and Peyré et al. (2019) for its computational aspects. Of primary importance to our work,
entropic regularization of OT is the workhorse of many ML applications. It enables a fast and
highly parallelizable estimation of the OT coupling using the Sinkhorn algorithm Sinkhorn (1964).
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More importantly, it defines a smooth distance that incorporates the understanding that matching
procedures should be modeled as a noisy process (i.e., should not be assumed to be 1:1). These
advantages were first introduced in ML by the seminal paper of Cuturi Cuturi (2013), and this
approach finds its roots in Schrödinger’s work in statistical physics Léonard (2012). The role of
noise in matching (with applications in economics) and its relation to entropic OT were advanced
in a series of papers by Galichon and collaborators Galichon & Salanié (2010); Dupuy & Galichon
(2014); Galichon & Salanié (2022); see the book Galichon (2018). These works are key inspirations
for the present paper, which aims at providing more theoretical understanding in the case of
inverse OT (as detailed next).

Metric Learning. The estimation of some metrics from pairwise interactions (either positive or
negative) falls into the classical field of metric learning in ML, and we refer to the monograph Bellet
et al. (2013) for more details. In contrast to the inverse OT (iOT) problem considered in this paper,
classical metric learning is more straightforward, as no global matching between sets of points
is involved. This allows the metric to be directly optimized, while the iOT problem necessitates
some form of bilevel optimization. Similarly to our approach, since the state space is typically
continuous, it is necessary to restrict the class of distances to render the problem tractable. The
common option, which we also adopt in our paper to exemplify our findings, is to consider
the class of Mahalanobis distances. These distances generalize the Euclidean distance and are
equivalent to computing a vectorial embedding of the data points. See, for instance, Xing et al.
(2002); Weinberger et al. (2006); Davis & Dhillon (2008).

OT Ground Metric Learning. The problem of estimating the ground cost driving OT in a super-
vised manner was first addressed by Cuturi & Avis (2014). Unlike methods that have access to
pairs of samples, the ground metric learning problem requires pairs of probability distributions
and then evolves into a classical metric learning problem, but within the OT space. The class of
ground metrics can be constrained, for example, by utilizing Mahalanobis Wang & Guibas (2012);
Xu et al. (2018); Kerdoncuff et al. (2021) or geodesic distances Heitz et al. (2021), to devise more
efficient learning schemes. The study Zen et al. (2014) conducts ground metric learning and matrix
factorization simultaneously, finding applications in NLP Huang et al. (2016). It is noteworthy
that ground metric learning can also be linked to generative models through adversarial train-
ing Genevay et al. (2018) and to robust learning Paty & Cuturi (2020) by maximizing the cost to
render the OT distance as discriminative as possible.

Inverse Optimal Transport. The inverse optimal transport problem (iOT) can be viewed as
a specific instance of ground metric learning, where one aims to infer the ground cost from
partial observations of the (typically entropically regularized) optimal transport coupling. This
problem was first formulated and examined by Dupuy and Galichon Dupuy & Galichon (2014)
over a discrete space (also see Galichon & Salanié (2022) for a more detailed analysis), making the
fundamental remark that the maximum likelihood estimator amounts to solving a convex problem.
The mathematical properties of the iOT problem for discrete space (i.e., direct computation of the
cost between all pairs of points) are explored in depth in Chiu et al. (2022), studying uniqueness
(up to trivial ambiguities) and stability to pointwise noise. Note that our theoretical study differs
fundamentally as we focus on continuous state spaces. This “continuous” setup assumes access
only to a set of couples, corresponding to matches (or links) presumed to be drawn from an OT
coupling. In this scenario, the iOT is typically an ill-posed problem, and Dupuy et al. (2019);
Carlier et al. (2023) propose regularizing the maximum likelihood estimator with either a low-
rank (using a nuclear norm penalty) or a sparse prior (using an ℓ1 Lasso-type penalty). In our
work, we concretely focus on the sparse case, but our theoretical treatment of the iOT could be
extended to general structured convex regularization, along the lines of Vaiter et al. (2015). While
not the focus of our paper, it is noteworthy that these works also propose efficient large-scale,
non-smooth proximal solvers to optimize the penalized maximum likelihood functional, and we
refer to Ma et al. (2020) for an efficient solver without inner loop calls to Sinkhorn’s algorithm. This
approach was further refined in Stuart & Wolfram (2020), deriving it from a Bayesian interpretation,
enabling the use of MCMC methods to sample the posterior instead of optimizing a pointwise
estimate (as we consider here). They also propose parameterizing cost functions as geodesic
distances on graphs (while we consider only linear models to maintain convexity). An important
application of iOT to ML, explored by Li et al. (2019), is to perform link prediction by solving new
OT problems once the cost has been estimated from the observed couplings. Another category
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of ML application of iOT is representation learning (learning embeddings of data into, e.g., an
Euclidean space) from pairwise interactions, as demonstrated by Shi et al. (2023), which recasts
contrastive learning as a specific instance of iOT.

Inverse problems and model selection. The iOT problem is formally a bilevel problem, as the ob-
servation model necessitates solving an OT problem as an inner-level program Colson et al. (2005)
– we refer to Eisenberger et al. (2022) for a recent numerical treatment of bilevel programming with
entropic OT. The iOT can thus be conceptualized as an “inverse optimization” problem Zhang
& Liu (1996); Ahuja & Orlin (2001), but with a particularly favorable structure, allowing it to be
recast as a convex optimization. This provides the foundation for a rigorous mathematical analysis
of performance, as we propose in this paper. The essence of our contributions is a theoretical
examination of the recoverability of the OT cost from noisy observations, and particularly, the
robustness to noise of the sparse support of the cost (for instance, viewed as a symmetric matrix
for Mahalanobis norms). There exists a rich tradition of similar studies in the fields of inverse
problem regularization and model selection in statistics. The most prominent examples are
the sparsistency theory of the Lasso Tibshirani (1996) (least square regularized by ℓ1), which
culminated in the theory of compressed sensing Candès et al. (2006). These theoretical results
are predicated on a so-called “irrepresentability condition” Zhao & Yu (2006), which ensures the
stability of the support. While our analysis is grounded in similar concepts (in particular, we
identify the corresponding irrepresentability condition for the iOT), the iOT inverse problem
is fundamentally distinct due to the differing observation model (it corresponds to a sampling
process rather than the observation of a vector) and the estimation process necessitates solving a
linear program of potentially infinite dimension (in the limit of a large number of samples). This
mandates a novel proof strategy, which forms the core of our mathematical analysis.

1.2 CONTRIBUTIONS

This paper proposes the first mathematical analysis of the performance of regularized iOT esti-
mation, focusing on the special case of sparse ℓ1 regularization (the ℓ1-iOT method). We begin
by deriving the customary “irrepresentability condition” of the iOT problem, rigorously proving
that it is well-defined. This condition interweaves the properties of the Hessian of the maximum
likelihood functional with the sparse support of the sought-after cost. The main contribution
of this paper is Theorem 5, which leverages this abstract irrepresentability condition to ensure
sparsistency of the ℓ1-iOT method. This relates to the robust estimation of the cost and its sup-
port in some linear model, assuming the number n of samples is large enough. Specifically, we
demonstrate a sample complexity of n−1/2. Our subsequent sets of contributions are centered on
the case of matching between samples of Gaussian distributions. Herein, we illustrate in Lemma 7
how to compute the irrepresentability condition in closed form. This facilitates the examination
of how the parameters of the problem, particularly regularization strength and the covariance
of the distributions, influence the success and stability of iOT. We further explore the limiting
cases of small and large entropic regularization, revealing in Proposition 8 and Proposition 9 that
iOT interpolates between the graphical lasso (to estimate the graph structure of the precision
matrix) and a classical lasso. This sheds light on the connection between iOT and graph estimation
procedures. Simple synthetic numerical explorations in Section 5.2 further provide intuition about
how ε and the geometry of the graph associated with a sparse cost impact sparsistency. As a minor
numerical contribution, we present in Appendix F a large-scale ℓ1-iOT solver, implemented in JAX
and distributed as open-source software.

2 INVERSE OPTIMAL TRANSPORT

The forward problem Given probability distributions α ∈P (X ), β ∈P (Y ) and cost function
c : X ×Y →R, the entropic optimal transport problem seeks to compute a coupling density

Sink(c,ε)≜ argmax
π∈U (α,β)

〈c, π〉− ε

2
KL(π|α⊗β) where 〈c, π〉≜

∫
c(x, y)dπ(x, y), (1)

where KL(π|ξ) ≜
∫

log(dπ/dξ)dπ− ∫
dπ and U (α,β) is the space of all probability measures

π ∈P (X ×Y ) with marginals α,β.
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The inverse problem The inverse optimal transport problem seeks to recover the cost function
c given an approximation π̂n of the probability coupling π̂≜ Sink(c,ε). A typical setting is an

empirical probability coupling π̂n = 1
n

∑n
i=1δ(xi ,yi ) where (xi , yi )n

i=1
i i d∼ π̂. See Section 2.2.

The loss function The iOT problem has been proposed and studied in a series of papers, see
Section 1.2. The approach is typically to consider some linear parameterization 1 of the cost
cA(x, y) by some parameter A ∈Rs . The key observation of Dupuy et al. (2019) is that the negative
log-likelihood of π̂ at parameter value A is given by

L (A, π̂)≜−〈cA , π̂〉+Wπ̂(A) where Wπ̂(A)≜ sup
π∈U (α̂,β̂)

〈cA , π〉− ε

2
KL(π|α̂⊗ β̂),

and α̂, β̂ are the marginals of π̂. For ease of notation, unless stated otherwise, we write W =Wπ̂.
So, computing the maximum likelihood estimator A for the cost corresponds to minimizing the
convex ‘loss function’ A 7→L (A, π̂), which, by regarding Wπ̂ as a convex conjugate, can be seen as
an instance of a Fenchel-Young loss, a family of losses proposed in Blondel et al. (2020) . We write
the parameterization as

Φ : A ∈Rs 7→ cA =
s∑

j=1
A j C j , where C j ∈C (X ×Y ).

A relevant example are quadratic loss functions, so that for X ⊂ Rd1 , Y ⊂ Rd2 , given A ∈ Rd1×d2 ,
cA(x, y) = x⊤Ay . In this case, s = d1d2 and for k = (i , j ) ∈ [d1]× [d2], Ck (x, y) = xi y j .

ℓ1-iOT To handle the presence of noisy data (typically coming from the sampling process),
various regularization approaches have been proposed. In this work, we focus on the use of
ℓ1-regularization Carlier et al. (2023) to recover sparse parametrizations:

argmin
A

F (A), where F (A)≜λ∥A∥1 +L (A, π̂). (iOT−ℓ1(π̂))

Kantorovich formulation Note that W (A) is defined via a concave optimization problem and
by Fenchel duality, one can show that (iOT−ℓ1(π̂)) has the following equivalent Kantorovich
formulation Carlier et al. (2023):

argmin
A, f ,g

K (A, f , g ), where K (A, f , g )≜J (A, f , g )+λ∥A∥1 , and (K∞)

J (A, f , g )≜−
∫ (

f (x)+ g (y)+ΦA(x, y)
)

d π̂(x, y)+ε
2

∫
exp

(
2( f (x)+ g (y)+ΦA(x, y))

ε

)
dα(x)dβ(y).

Based on this formulation, various algorithms have been proposed, including alternating mini-
mization with proximal updates Carlier et al. (2023). Section F details a new large scale solver that
we use for the numerical simulations.

2.1 INVARIANCES AND ASSUMPTIONS

Assumption 1. We first assume that X and Y are compact.

Note that J has the translation invariance property that for any constant function u, J ( f +u, g −
u, A) =J ( f , g , A), so to remove this invariance, throughout, we restrict the optimization of (K∞)
to the set

S ≜
{

(A, f , g ) ∈Rs ×L2(α)×L2(β) ;
∫

g (y)dβ(y) = 0

}
. (2)

Next, we make some assumptions on the cost to remove invariances in the iOT problem.
Assumption 2 (Assumption on the cost). (i) E(x,y)∼α⊗β[C(x, y)C(x, y)⊤] ⪰ Id is invertible.

(ii)
∥∥C(x, y)

∥∥É 1 for α almost every x and β-almost every y .

1In this work, we restrict to linear parameterizations, although the same loss function can also be applied
to learn costs with nonlinear parameterization, e.g. via neural networks Ma et al. (2020).
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(iii) for all k,
∫

Ck (x, y)dα(x) = 0 for β-a.e. y and
∫

Ck (x, y)dβ(y) = 0 for α-a.e. x.

Under these assumptions, it can be shown that iOT has a unique solution (see remark after Propo-
sition 2). Assumption 2 (i) is to ensure that cA =ΦA is uniquely determined by A. Assumption 2
(ii) is without loss of generality, since we assume that α,β are compactly supported, so this holds
up to a rescaling of the space. Assumption 2 (iii) is to handle the invariances pointed out in Carlier
et al. (2023) and Ma et al. (2020):

J (A, f , g ) =J (A′, f ′, g ′) ⇐⇒ cA + ( f ⊕ g ) = cA′ + ( f ′⊕ g ′). (3)

As observed in Carlier et al. (2023), any cost can be adjusted to fit this assumption: one can define

C̃k (x, y) = Ck (x, y)−uk (x)− vk (y)

where uk (x) = ∫
Ck (x, y)dβ(y) and vk (y) = ∫

Ck (x, y)dα(x) − ∫
Ck (x, y)dα(x)dβ(y). Letting

Φ̃A = ∑
k Ak C̃k , we have

((
f −∑

k Ak uk
)⊕ (

g −∑
k Ak vk

))+ Φ̃A = ( f ⊕ g )+ΦA. So optimization
with the parametrizationΦ is equivalent to optimization with Φ̃.

NB: For the quadratic cost ck (x, y) = xi y j for k = (i , j ), condition (iii) corresponds to recentering the
data points, and taking x 7→ x−∫

xdα(x) and y 7→ y−∫
ydβ(y). Condition (ii) holds if ∥x∥∨∥∥y

∥∥É 1
for α-a.e. x and β-a.e. y . Condition (i) corresponds to invertibility of Eα[xx⊤]⊗Eβ[y y⊤].

2.2 THE FINITE SAMPLE PROBLEM

In practice, we do not observe π̂ but n data-points (xi , yi ) i i d∼ π̂ for i = 1, . . . ,n, where π̂= Sink(c Â ,ε).
To recover Â, we plug into iOT−ℓ1 the empirical measure π̂n = 1

n

∑n
i=1δxi ,yi and consider the

estimator
An ∈ argmin

A
λ∥A∥1 +L (A, π̂n), (iOT−ℓ1(π̂n))

As in section 2.1, to account for the invariance (3), when solving (iOT−ℓ1(π̂n)), we again centre the
cost parameterization such that for all i ,

∑n
i=1 Ck (xi , y j ) = 0 and for all j ,

∑n
j=1 Ck (xi , y j ) = 0. Note

also that iOT−ℓ1(π̂n) can be formulated entirely in finite dimensions. See Appendix B for details.

3 THE CERTIFICATE FOR SPARSISTENCY

In this section, we consider the problem (iOT−ℓ1(π̂)) with full data π̂ and present a sufficient
condition for support recovery, that we term non-degeneracy of the certificate. For simplicity
of notation, throughout this section denote W ≜Wπ̂. Under non-degeneracy of the certificate
we obtain support recovery as stated in Theorem 3, a known result whose proof can be found
e.g. in Lee et al. (2015). This condition can be seen as a generalization of the celebrated Lasso’s
Irrepresentability condition (see e.g. Hastie et al. (2015)) – Lasso corresponds to having a quadratic
loss instead of L (A, π̂), thus ∇2

AW (A) in the definition below reduces to a matrix. In what follows,

we denote uI ≜ (ui )i∈I and UI ,J ≜ (Ui , j )i∈I , j∈J the restriction operators.

Definition 1. The certificate with respect to A and support I = {i : Ai ̸= 0} is

z∗
A ≜∇2W (A)(:,I )(∇2W (A)(I ,I ))

−1 sign(A)I . (C)

We say that it is non-degenerate if ∥(z∗
A)I c ∥∞ < 1.

The next proposition, whose proof can be found in Appendix C.1, shows that the function W (A) is
twice differentiable, thus ensuring that C is well defined.

Proposition 2. A 7→W (A) is twice differentiable, strictly convex, with gradient and Hessian

∇AW (A) =Φ∗πA , ∇2
AW (A) =Φ∗ ∂πA

∂A
(x, y)

where πA is the unique solution to (1) with cost cA =ΦA.

We remark that strict convexity of W implies that any solution of (iOT−ℓ1(π̂)) must be unique,
and by Γ-convergence, solutions Aλ to (iOT−ℓ1(π̂)) converge to Â as λ→ 0. The next theorem, a
well-known result (see (Lee et al., 2015, Theorem 3.4) for a proof), shows that support recovery
can be characterized via z∗

Â
.
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Theorem 3. Let π̂= Sink(c Â ,ε). If z∗
Â

is non-degenerate, then for all λ sufficiently small, the solution

Aλ to (iOT−ℓ1(π̂)) is sparsistent with
∥∥Aλ− Â

∥∥=O (λ) and Supp
(

Aλ
)= Supp(Â).

3.1 INTUITION BEHIND THE CERTIFICATE (C)

Implication of the non-degeneracy condition The non-degeneracy condition is widely studied

for the Lasso problem Hastie et al. (2015). Just as for the Lasso, the closer
∣∣∣(z∗

Â
)i

∣∣∣ is to 1, the more

unstable is this coefficient, and if
∣∣∣(z∗

Â
)i

∣∣∣> 1 then one cannot expect to recover this coefficients

when there is noise. Note also that in the Lasso, the pre-certificate formula in (C) roughly the
correlation between coefficient inside and outside the support I . In our case, the loss is more
complex and this correlation is measured according to the hessian of W , which integrates the
curvature of the loss. This curvature formula is however involved, so to gain intuition, we perform
a detailed analysis in the ε→ 0 and ε− > ∞ for the Gaussian setting where it becomes much
simpler (see Section 5.1).

Link to optimality conditions The certificate z∗
Â

can be seen as the limit optimality condition
for the optimization problem (iOT−ℓ1(π̂)) as λ→ 0: by the first order optimality condition to
(iOT−ℓ1(π̂)), Aλ is a solution if and only if zλ≜− 1

λ∇L(Aλ) ∈ ∂∥Aλ∥1 , where the subdifferential for
the ℓ1 norm has the explicit form ∂∥A∥1 = {

z ; ∥z∥∞ É 1, ∀i ∈ Supp(A), zi = sign(Ai )
}
. It follows

zλ can be seen as a certificate for the support of Aλ since Supp(Aλ) ⊆ {
i ;

∣∣zλi ∣∣= 1
}
. To study the

support behavior of Aλ for small λ, it is therefore interesting to consider the limit of zλ as λ→ 0.
Its limit is precisely the subdifferential element with the minimal norm and coincides with (C)
under the nondegeneracy condition:

Proposition 4. Let zλ≜− 1
λ∇L(Aλ) where Aλ solves (iOT−ℓ1(π̂)). Then,

lim
λ→0

zλ = zmin
Â

≜ argmin
z

{
〈z,

(∇2W (Â
)−1

z〉F ; z ∈ ∂∥Â∥1

}
(MNC)

Moreover, if z∗
Â

is non-degenerate, then zmin
Â

= z∗
Â

.

4 SAMPLE COMPLEXITY BOUNDS

Our main contribution shows that (C) is a certificate for sparsistency under sampling noise:

Theorem 5. Let π̂= Sink(c Â ,ε). Suppose that the certificate z∗
Â

is non-degenerate. Let δ> 0. Then,
for all sufficiently small regularization parameters λ and sufficiently many number of samples n,

λ≲ 1 and max
(
exp(C

∥∥Â
∥∥

1 /ε)
√

log(1/δ)λ−1,
√

log(2s)
)
≲

p
n,

for some constant C > 0, with probability at least 1−δ, the minimizer An to (Pn) is sparsistent with

Â with Supp(An) = Supp(Â) and
∥∥An − Â

∥∥
2 ≲λ+

√
exp(C

∥∥Â
∥∥

1 /ε) log(1/δ)n−1.

Main idea behind Theorem 5 We know from Theorem 3 that there is some λ0 > 0 such that
for all λ É λ0, the solution to (K∞) has the same support as Â. To show that the finite sample
problem also recovers the support of Â when n is sufficiently large, we fix λ ∈ (0,λ0] and consider
the setting where the observations are iid samples from the coupling measure π̂. We will derive
convergence bounds for the primal and dual solutions as the number of samples n increases. Let
(A∞, f∞, g∞) minimise (K∞). Denote F∞ = ( f∞(xi ))i∈[n], G∞ = (g∞(y j )) j∈[n] and

P∞ = 1

n2 (p∞(xi , y j ))i , j∈[n], where p∞(x, y) = exp

(
2

ε

(
ΦA∞(x, y)+ f∞(x)+ g∞(y)

))
.

Let An minimize iOT−ℓ1(π̂n). Then, there exists a probability matrix Pn ∈ Rn×n+ and vectors
Fn ,Gn ∈ Rn such that Pn = 1

n2 exp
( 2
ε (Φn An +Fn ⊕Gn)

)
. In fact, (An ,Fn ,Gn) minimize the finite

dimensional dual problem (Kn) given in the appendix. Now consider the certificates

z∞ = 1

λ
Φ∗ (

p∞α⊗β− π̂)
and zn = 1

λ
Φ∗

n

(
Pn − P̂n

)
.
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Note that z∞ and zn both depend on λ; the superscript was dropped since λ is fixed. Moreover,
z∞ is precisely zλ from Propostion 4. By exploiting strong convexity properties of Jn , one can
show the following sample complexity bound on the convergence of zn to z∞ (the proof can be
found in the appendix):

Proposition 6. Let n ≳ max
(
log(1/δ)λ−2, log(2s)

)
for some δ> 0. For some constant C > 0, with

probability at least 1−δ, ∥z∞− zn∥∞ ≲ exp(C
∥∥Â

∥∥
1 /ε) log(1/δ)λ−1n− 1

2 and

∥An − A∞∥2
2 +

1

n

∑
i

(Fn −F∞)2
i +

1

n

∑
j

(Gn −G∞)2
j ≲ ε2 exp(C

∥∥Â
∥∥

1 /ε) log(1/δ)n−1.

From Proposition 4, for all λÉλ0 for some λ0 sufficiently small, the magnitude of z∞ outside the
support of Â is less than one. Moreover, the convergence result in Proposition 6 above implies
that, for n sufficiently large, the magnitude of zn outside the support of Â is also less than one.
Hence, since the set {i ; (zn)i =±1} determines the support of An , we have sparsistency.

5 GAUSSIAN DISTRIBUTIONS

To get further insight about the sparsistency property ot iOT, we consider the special case where
the source and target distributions are Gaussians, and the cost parametrization cA(x, y) = x⊤Ay .
To this end, we first derive closed form expressions for the Hessian ∂2

AL (A) = ∇2
AW (A). Given

α=N (mα,Σα) and β=N (mβ,Σβ), it is known (see Bojilov & Galichon (2016)) that the coupling

density is also a Gaussian of the form π=N

((mα
mβ

)
,

(
Σα Σ

Σ⊤ Σβ

))
for some Σ ∈Rd1×d2 . In this case, W

can be written as an optimization problem over the cross-covariance Σ Bojilov & Galichon (2016).

W (A) = sup
Σ∈Rd1×d2

〈A, Σ〉+ ε

2
logdet

(
Σβ−Σ⊤Σ−1

α Σ
)

, (4)

with the optimal solution being precisely the cross-covariance of the optimal coupling π. In
Bojilov & Galichon (2016), the authors provide an explicit formula for the minimizer Σ to (4), and,
consequently, for ∇W (A):

Σ=ΣαA∆
(
∆A⊤ΣαA∆

)− 1
2 ∆− 1

2εA†,⊤ where ∆≜
(
Σβ+

ε2

4
A†Σ−1

α A†,⊤
) 1

2

. (5)

By differentiating the first order condition for W , that is A† = ε−1(Σβ−Σ⊤Σ−1
α Σ)Σ†Σα, Galichon

derives the expression for the Hessian in terms of Σ in (5):

∇2W (A) = ∂AΣ= ε(
ΣαΣ

−1,⊤⊗ΣβΣ−1 +T)−1 (
A−1,⊤⊗ A−1) , (6)

where T is such that Tvec(A) = vec(A⊤). This formula does not hold in when A is rectangular or
rank deficient, since A† is not differentiable. In the following, we derive, via the implicit function
theorem, a general formula for ∂AΣ that agrees with that of Galichon in the square invertible case.

Lemma 7. Denoting Σ as in (5), one has

∇2W (A) = ε
(
ε2(Σβ−Σ⊤ΣαΣ)−1 ⊗ (Σα−ΣΣ−1

β Σ⊤)−1 + (A⊤⊗ A)T
)−1

(7)

This formula given in Lemma 7 provides an explicit expression for the certificate (C).

5.1 LIMIT CASES FOR LARGE AND SMALL ε

This section explores the behaviour of the certificate in the large/small ε limits: Proposition 8
reveals that the large ε limit coincides with the classical Lasso while Proposition 9 reveals that the
small epsilon limit (for symmetric A ≻ 0 and Σα =Σβ = Id) coincides with the Graphical Lasso. In
the following results, we denote the functional in (iOT−ℓ1(π̂)) with parameters λ and ε by Fε,λ(A).

Proposition 8 (ε→∞). Let Â be invertible and let π̂= Sink(c Â ,ε) be the observed coupling between
α=N (mα,Σα) and β=N (mβ,Σβ). Then,

lim
ε→∞zε = (Σβ⊗Σα)(:,I )

(
(Σβ⊗Σα)(I ,I )

)−1 sign(Â)I . (8)

7
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Moreover, for λ0 > 0, given any sequence (ε j ) j and A j ∈ argminA Fε,λ0/ε j (A) with lim j→∞ ε j =∞,
any cluster point of (A j ) j is in

argmin
A∈Rd×d

λ0 ∥A∥1 +
1

2
∥(Σ1/2

β ⊗Σ1/2
α )(A− Â)∥2

F (9)

Interpretation As ε→∞, the KL term forces π̂ to be close to the independent coupling α⊗β and
in the limit, iOT is simply a Lasso problem and the limit in (8) is precisely the Lasso certificate
Hastie et al. (2015). Here, the cross covariance of π̂ satisfies εΣ= A+O (ε) ((53) in the appendix),
so for large ε, sparsity in A indicates the independence in the coupling between α and β.

Proposition 9 (ε→ 0). Let Â be symmetric positive-definite and let π̂= Sink(c Â ,ε) be the observed
coupling between α=N (mα, Id) and β=N (mβ, Id). Then,

lim
ε→0

zε = (Â−1 ⊗ Â−1)(:,I )
(
(Â−1 ⊗ Â−1)(I ,I )

)−1 sign(Â)I . (10)

Let λ0 > 0. Then, optimizing over symmetric positive semi-definite matrices, given any sequence
(ε j ) j and A j ∈ argminA⪰0 Fε,λ0ε j (A) with lim j→∞ ε j = 0, any cluster point of (A j ) j is in

argmin
A⪰0

λ0 ∥A∥1 −
1

2
logdet(A)+ 1

2
〈A, Â−1〉. (11)

Interpretation In contrast, ε → 0, the KL term disappears and the coupling π̂ becomes de-
pendent. Naturally, the limit problem is the graphical lasso, typically used to infer conditional
independence in graphs (but where covariates can be highly dependent). Note also that the
limit (10) is precisely the graphical Lasso certificate Hastie et al. (2015). Here, (Remark 25 in the
appendix) one show that for (x, y) ∼π, the conditional covariance of x conditional on y (and also
vice versa) is εA−1 +O (ε2). Sparsity in A can therefore be viewed as information on conditional
independence.

5.2 NUMERICAL ILLUSTRATIONS

In order to gain some insight into the impact of ε and the covariance structure on the efficiency
of iOT, we present numerical computations of certificates here. We fix the covariances of the
input measures as Σα = Σβ = Idn , similar results are obtained with different covariance as long
as they are not rank-deficient. We consider that the support of the sought-after cost matrix
A = δIdn +diag(G1n)−G ∈Rn×n is defined as a shifted Laplacian matrix of some graph adjacency
matrix G , for a graph of size n = 80 (similar conclusions hold for larger graphs). We set the shift δ to
be 10% of the largest eigenvalue of the Laplacian, ensuring that C is symmetric and definite. This
setup corresponds to graphs defining positive interactions at vertices and negative interactions
along edges. For small ε, adopting the graphical lasso interpretation (as exposed in Section 5.1)
and interpreting C as a precision matrix, this setup corresponds (for instance, for a planar graph)
to imposing a spatially smoothly varying covariance C−1. Figure 1 illustrates how the value of
the certificates zi , j evolves depending on the indexes (i , j ) for three types of graphs (circular,
planar, and Erdős–Rényi with a probability of edges equal to 0.1), for several values of ε. By
construction, zi ,i = 1 and zi , j =−1 for (i , j ) connected by the graph. For z to be non-degenerate,
it is required that |zi , j | < 1, as i moves away from j on the graph. For the circular and planar
graphs, the horizontal axis represents the geodesic distance dgeod(i , j ), demonstrating how the
certificates become well-behaved as the distance increases. The planar graph displays envelope
curves showing the range of values of z for a fixed value of dgeod(i , j ), while this is a single-valued
curve for the circular graph due to periodicity. For the Erdős–Rényi graph, to better account for the
randomness of the certificates along the graph edges, we display the histogram of the distribution
of |zi , j | for dgeod(i , j ) = 2 (which represents the most critical set of edges, as they are the most
likely to be large). All these examples show the same behavior, namely, that increasing ε improves
the behavior of the certificates (which is in line with the stability analysis of Section 5.1, since (8)
implies that for large ε, the certificate is trivially non-degenerate whenever Σα,Σβ are diagonal),
and that pairs of vertices (i , j ) connected by a small distance dgeod(i , j ) are the most likely to be
degenerate. This suggests that they will be inaccurately estimated by iOT for small ε.

8
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Circular Planar Erdős–Rényi

Figure 1: Display of the certificate values zi , j for three types of graphs, for varying ε. Left, middle:
plotted as a function of the geodesic distance dgeod(i , j ) on the x-axis. Right: histogram of zi , j for
(i , j ) at distance dgeod(i , j ) = 2.

Figure 2 displays the recovery performances of ℓ1–iOT for the circular graph shown on the left of
Figure 1 (similar results are obtained for the other types of graph topologies). These numerical
simulations are obtained using the large-scale iOT solver, which we detail in Appendix F. The
performance is represented using the number of inaccurately estimated coordinates in the esti-
mated cost matrix C , so a score of 0 means a perfect estimation of the support (sparsistency is
achieved). For ε= 0.1, sparsistency cannot be achieved, aligning with the fact that the certificate z
is degenerate as depicted in the previous figure. In sharp contrast, for larger ε, sparsistency can
be attained as soon as the number of samples N is sufficiently large, which also aligns with our
theory of sparsistency of ℓ1–iOT since the certificate is guaranteed to be non-degenerate in the
large ε setting.

ε= 0.1 ε= 1 ε= 10

♯
w

ro
n

gl
y

es
ti

m
.p

o
s.

Figure 2: Recovery performance (number of wrongly estimated position) of ℓ1–iOT as a function
of λ for three different values of ε.

Figure 3 in the appendix displays the certificate values in the case of a non-symmetric planar
graph. The graph is obtained by deleting all edges on a planar graph with i < j . We plot the
certificate values as a function of geodesic distances dgeod(i , j ) of the symmetrized graph. The
middle plot shows the certificate values on i Ê j (where the actual edges are constrained to be
and nondegeneracy requires values smaller than 1 in absolute value for dgeod(i , j ) Ê 2). The right
plot shows the certificate values on i É j where there are no edges and for nondegeneracy, one
expects values smaller than 1 in absolute value for dgeod(i , j ) Ê 1. Observe that here, the certificate
is degenerate for small values of dgeod(i , j ) when ε= 0, meaning that the problem is unstable at
the “ghost” symmetric edges. As ε→∞, the certificate becomes non-degenerate.
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CONCLUSION

In this paper, we have proposed the first theoretical analysis of the recovery performance of ℓ1-iOT.
Much of this analysis can be extended to more general convex regularizers, such as the nuclear
norm to promote low-rank Euclidean costs, for instance. Our analysis and numerical exploration
support the conclusion that iOT becomes ill-posed and fails to maintain sparsity for overly small ε.
When approached from the perspective of graph estimations, unstable indices occur at smaller
geodesic distances, highlighting the geometric regularity of iOT along the graph geometry.
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Figure 3: Display of certificate values for a non-symmetric planar graph, for varying ε with edges
only for i > j . Middle/Right: plots of the certificate values as a function of the geodesic distance
dgeod(i , j ) of the symmetrized graph. The middle plot show the values when restricted to i Ê j . The
right plot shows the values restricted to i É j (where there are no edges).

A INTERPRETATIONS OF THE LOSS FUNCTION

As mentioned in Section 2, the loss L (A, π̂) can be recovered via maximum likelihood (ML)
estimation (Dupuy et al., 2019, Proposition 1) and be regarded as an instance of a family of losses
called Fenchel-Young losses. For the sake of completeness, this section explains this in more
detail.

A.1 MAXIMUM LIKELIHOOD INTERPRETATION

The map A → Sink(cA ,ε), where Sink(·, ·) is defined in Section 2, can be seen as parameterizing a
set of measures which are absolutely continuous with respect to α⊗β. By the standard duality
result (see Nutz (2021)):

1) The density of Sink(cA ,ε) is given by dSink(cA ,ε)/d(α⊗β) = exp(cA + f A + g A), where f A
and g A solve the dual problem, i.e., sup f ,g

∫
f dα+∫

g dβ−∫
exp(cA + f +g )d(α⊗β)+1;

2) The values of the primal and dual problems agree and are equal to −∫
f A dα−∫

g A dβ.

Combining these two facts we obtain that

− log
(dSink(cA ,ε)

d(α⊗β)

)
=−cA − f A − g A =−cA + sup

π∈U (α,β)
〈cA ,π〉− ε

2
KL(π|α⊗β) =−cA +Wπ̂(A),

where Wπ̂ is defined in as in Section 2. Finally, taking expectation with respect to π̂ yields

E(x,y)∼π̂
[
− log

(dSink(cA ,ε)

d(α⊗β)

)]
= E(x,y)∼π̂

[− cA
]+E(x,y)∼π̂

[
Wπ̂(A)

]=−〈cA , π̂〉+Wπ̂(A) =L (A, π̂),

thus establishing the connection with ML estimation.

Bilevel interpretation Note also that

argmin
A

L (A, π̂) = argmin
A

−〈cA , π̂−πA〉− ε

2
KL(πA |α̂⊗ β̂)

= argmin
A

−〈cA , π̂−πA〉− ε

2
KL(πA |α̂⊗ β̂)+ ε

2
KL(π̂|α̂⊗ β̂)
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where πA = argminπ∈U (α̂,β̂)〈cA , π〉−KL(π|α̂⊗ β̂). Since π̂,πA have the same marginals,

〈cA , π̂−πA〉 = 〈cA + f A + g A , π̂−πA〉 = ε

2
〈log(πA/(α̂⊗ β̂)), π̂− π̂A〉.

We therefore have

argmin
A

L (A, π̂) = argmin
A

KL(π̂|πA), where πA = argmin
π∈U (α̂,β̂)

〈cA , π〉−KL(π|α̂⊗ β̂).

A.2 FENCHEL-YOUNG LOSS INTERPRETATION

It is argued in Blondel et al. (2020) that, associated to a prediction rule of the form

ŷ(θ) = argmax
µ∈dom(Ω)

〈θ,µ〉−Ω(µ),

there is a natural loss function that the authors term Fenchel-Young loss and that is given by

LΩ(θ; y)≜Ω∗(θ)+Ω(y)−〈θ, y〉.
With this in mind, letΩ(π) = KL(π|α⊗β)+ ιU (α,β)(π) where ιU (α,β)(·) is the indicator function of
U (α,β), and note that

L (A, π̂) = LΩ(cA ; π̂)−Ω(π̂).

Since, for the purposes of minimization with respect to A, the term Ω(π̂) is irrelevant, we see
that finding a minimizer of (iOT−ℓ1(π̂)) amounts to finding a minimizer of the l1 regularized
Fenchel-Young loss associated with KL(·|α⊗β)+ ιU (α,β)(·).

B THE FINITE SAMPLE PROBLEM

As mention in Section 2.2, we do not observe the full coupling π̂ = Sink(c Â ,ε), but only the the

empirical measure π̂n = 1
n

∑n
i=1δxi ,yi with (xi , yi ) i i d∼ π̂. We show here that the problem iOT−ℓ1(π̂n)

can be formulated entirely in finite dimensions as follows. Let

H(P |Q)≜
∑
i , j

Pi , j (log(Pi , j /Qi , j )−1).

Note that π̂n has marginals ân = 1
n

∑n
i=1δxi and b̂n = 1

n

∑n
i=1δyi . We can interpret π̂n as the matrix

P̂n = 1
n Idn×n and the “noisy” primal problem can be equivalently written as

min
A∈Rs

sup
P∈Rn×n+

λ∥A∥1 +〈Φn A, P − P̂n〉− ε

2
H(P ) s.t . P1= 1

n
1 and P⊤1= 1

n
1, (Pn)

where we write H(P ) ≜ H(P | 1
n21⊗1) and Φn A = ∑

k AkCk , where Ck = (Ck (xi , y j ))i , j∈[n] ∈
Rn×n . Note that the finite-dimensional problem has the same invariances as (iOT−ℓ1(π̂)), so, we
will take Ck to be centred so that for all i ,

∑
i (Ck )i , j = 0 and for all j ,

∑
j (Ck )i , j = 0. The finite

sample Kantorovich formulation is

inf
A,F,G∈Sn

Kn(A,F,G) where Kn(A,F,G)≜Jn(A,F,G)+λ∥A∥1 and (Kn)

Jn(A,F,G)≜−∑
i , j

(
Fi ⊕G j + (Φn A)i , j

)(
P̂n

)
i , j +

ε

2n2

∑
i , j

exp

(
2

ε
(Fi +G j + (Φn A)i , j

)
,

and we restrict the optimization of (Kn) over Sn ≜
{
(A,F,G) ∈Rs ×Rn ×Rn ;

∑
j G j = 0

}
.

C PROOFS FOR SECTION 3

C.1 PROOF OF PROPOSITION 2 (DIFFERENTIABILITY OF W )

For the strict convexity of W (A) see Lemma 3 in Dupuy & Galichon (2014). The gradient formula
can also be found in Dupuy & Galichon (2014) and trivially follows from the envelope theorem
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because the optimization problem W (A) has a unique solution. We will only give a proof of the
Hessian formula.

The formula for the Hessian follows from the formula for the gradient provided we show that
the density πA is continuously differentiable with respect to A. The fact that we can swap the
order of the operatorΦ∗ and partial differentiation follows from the conditions for differentiability
under the integral sign which holds since the measures are compactly supported. Without loss of
generality, let ε= 1. Then, the optimizer in W (A) is of the form Santambrogio (2015):

πA(x, y) = exp
(
uA(x)+ v A(y)+ cA(x, y)

)
,

where uA(·) and v A(·) satisfy

uA(x) =− log
∫
Y

exp
(
v A(y)+ cA(x, y)

)
dβ(y), α-a.s.

v A(y) =− log
∫
X

exp
(
uA(x)+ cA(x, y)

)
dα(x), β-a.s.

It is known (see e.g. Nutz (2021)) that the functions uA(·) and v A(·) inherit the modulus of con-
tinuity of the cost (in this case the map (x, y) → cA(x, y))) and, hence, since we are assuming
the measures to be compactly supported, it follows that uA ∈ L2(α) and v A ∈ L2(β). Moreover,
if (uA , v A) solve these two equations then, for any constant c, the pair (uA + c, v A − c) is also a
solution and, hence, to eliminate this ambiguity we consider solutions in H = L2(α)×L2

0(β), where
L2

0(β) = {
g ∈ L2(β) ;

∫
g dβ(y) = 0

}
.

To show that W is twice differentiable, since ∇W (A) =Φ∗πA , it is sufficient to show that A 7→ uA
and A 7→ v A are differentiable. To this end, we will apply the Implicit Function Theorem (in Banach
spaces) to the map

F : H ×Rs → L2(α)×L2(β)u
v
A

→
u + log

∫
Y exp

(
v(y)+ cA(x, y)

)
dβ(y)

v + log
∫
X exp

(
u(x)+ cA(x, y)

)
dα(x)

 ,

since we have F (uA , v A , A) = 0. The partial derivative of F at (uA , v A , A) , denoted by
∂u,v F (uA , v A , A), is the linear map defined by(

∂u,v F (uA , v A , A)
)
( f , g ) =

(
f +

∫
Y

p A(·, y)g (y)dβ(y), g +
∫
X

qA(x, ·) f (x)dα(x)
)
, (12)

where

p A(x, y) =
exp

(
v A(y)+ cA(x, y)

)
∫
Y exp

(
v A(y)+ cA(x, y)

)
dβ(y)

and qA(x, y) =
exp

(
uA(x)+ cA(x, y)

)
∫
X exp

(
uA(y)+ cA(x, y)

)
dβ(x)

.

Note that, since F (uA , v A , A) = 0, p A(x, y) = qA(x, y) =πA(x, y). Moreover, since πA has marginals
α and β, it follows that〈

( f , g ),
(
∂u,v F (uA , v A , A)

)
( f , g )

〉
=

∫
X

f (x)2 dα(x)+
∫
X×Y

2 f (x)g (y)πA(x, y)d(α⊗β)(x, y)+
∫
Y

g (y)2 dβ(y)

=
∫
X×Y

(
f (x)+ g (y)

)2
πA(x, y)d(α⊗β)(x, y)

. (13)

This shows that ∂u,v F (uA , v A , A) is invertible – the last line of 13 is zero if and only if f ⊕ g ≡ 0 and
since g ∈ L2

0(β) it follows that g = 0 and f = 0.

To conclude the proof we need to show that
(
∂u,v F (uA , v A , A)

)−1 is a bounded operator (see e.g.
Deimling (2010) for the statement of IFT in Banach spaces) and to show this it is enough to show
that, for some constant C , ∥∥∥(

∂u,v F (uA , v A , A)
)
( f , g )

∥∥∥ÊC∥( f , g )∥.
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This follows from 13 and the fact that there exists a constant C such that πA(x, y) Ê C for all x
and y (see e.g. Nutz (2021) for the existence of C ). In fact, from g ∈ L2

0(β), we obtain
∫

( f (x)+
g (y)))2 d(α⊗β)(x, y) = ∥( f , g )∥2 and, hence, 13 implies that〈

( f , g ),
(
∂u,v F (uA , v A , A)

)
( f , g )

〉
ÊC∥( f , g )∥2

and from Cauchy-Schwarz applied to the left-hand-side we obtain∥∥∥(
∂u,v F (uA , v A , A)

)
( f , g )

∥∥∥ÊC∥( f , g )∥,

thus concluding the proof.

C.2 CONNECTION OF THE CERTIFICATE (C) WITH OPTIMIZATION PROBLEM (iOT−ℓ1(π̂))

As mentioned in Section 3.1, the vector zλ provides insight into support recovery since Supp(Aλ) ⊆{
i ; zλi =±1

}
. In this section, we provide the proof to Proposition 4, which shows that as λ con-

verges to 0, zλ converges to the solution of a quadratic optimization problem (MNC) that we term
the minimal norm certificate.

Note that the connection with (C) can now be established by noting that if the minimal norm
certificate is non-degenerate then the inequality constraints (which correspond to the complement
of the support of Â) in (MNC) can be dropped since they are inactive; in this case (MNC) reduces
to a quadratic optimization problem with only equality constraints and whose solution can be
seen to be (C) which will thus be non-degenerate as well. The converse is clear. So, under non-
degeneracy, (C) can be seen as the limit optimality vector and determines the support of Aλ when
λ is small.

To prove Proposition 4, we first show that the vector zλ coincides with the solution to a dual
problem of (iOT−ℓ1(π̂)).

Proposition 10. Let W ∗ be the convex conjugate of W . Problem (iOT−ℓ1(π̂)) admits a dual given
by

argmin
z

W ∗(Σ̂x y −λz) subject to ∥z∥∞ É 1, (14)

where Σ̂x y =Φ∗π̂ . Moreover, a pair of primal-dual solutions (Aλ, zλ) is related by

zλ =− 1
λ∇AL (Aλ, π̂) and zλ ∈ ∂∥Aλ∥1. (15)

Proof. Observe that we can write L (A, π̂) as

L (A, π̂) =W (A)−
∫
X×Y

(ΦA)(x, y)d π̂=W (A)−〈Φ∗π̂, A〉F =W (A)−〈A, Σ̂x y 〉.

The Fenchel Duality Theorem (see e.g. Borwein & Lewis (2006)) yields a dual of (iOT−ℓ1(π̂)) given
by

argmin
w

W ∗(Σ̂x y −w)+ (λ∥ ·∥1)∗(w).

To conclude the proof just note that the Fenchel conjugate of λ∥ · ∥1 is the indicator of the set
{v : ∥v∥∞ É λ} and make a change of variable z ≜ 1/λw to obtain 14. The relationship between
any primal-dual pair in Fenchel Duality can also be found in Borwein & Lewis (2006).

Proof of Proposition 4. We begin by noting that W ∗ is of class C 2 in a neighborhood of Σx y and
that

∇2W ∗(Σ̂x y ) =
(
∇2W (Â)

)−1
. (16)

To see this, note that Proposition 2 together with the assumption on π̂ implies that

Σ̂x y =∇W (Â).
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Moreover, since W (A) is twice continuously differentiable and strictly convex (see Proposition
2), it follows (see e.g. Corollary 4.2.9 in Hiriart-Urruty & Lemaréchal (1993)) that W ∗(·) is C 2 and
strictly convex in a neighborhood of Σ̂x y and that (16) holds.

Now observe that, since ∇W ∗(Σ̂x y ) =∇W ∗(∇W (Â)
)= Â, we can rewrite ∂

∥∥Â
∥∥

1 as

∂
∥∥Â

∥∥
1 = argmin

z

〈− z,∇W ∗(Σ̂x y )
〉

subject to ∥z∥∞ É 1 (17)

Observe that since zambd a are uniformly bounded vectors due to the constraint set in 14, there is
a convergent subsequence converging to some z∗. We later deduce that all limit points are the
same and hence, the full sequence zλ converges to z∗. Let λn be such that limλn→0 zλn = z∗, and
let z0 be any element in ∂

∥∥Â
∥∥

1. We have that〈− z0,∇W ∗(Σ̂x y )
〉É 〈− zλn ,∇W ∗(Σ̂x y )

〉É 1

λn

(
W ∗(

Σ̂x y −λn zλn
)−W (Σ̂x y )

)
É 1

λn

(
W ∗(

Σ̂x y −λn z0)−W (Σ̂x y )
)
,

where the first inequality is the optimality of z0, the second inequality is the gradient inequality
of convex functions and the last inequality follows from the optimality of zλ. Taking the limit as
λn → 0 we obtain that 〈− z0,∇W ∗(Σ̂x y )

〉= 〈− z∗,∇W ∗(Σ̂x y )
〉

,

showing that z∗ ∈ ∂∥∥Â
∥∥

1. We now finish the proof by showing that〈
z∗,∇2W ∗(Σ̂x y )z∗

〉
É

〈
z0,∇2W ∗(Σ̂x y )z0

〉
. (18)

Since W ∗(·) is C 2 in a neighborhood of Σ̂x y , Taylor’s theorem ensures that there exists a remainder
function R(x) with limx→Σ̂x y

R(x) = 0 such that

〈−zλn ,∇W ∗(Σ̂x y )〉+ λn

2

〈
zλn ,∇2W ∗(Σ̂x y )zλn

〉+R(Σ̂x y +λn zλn )λ2
n

= 1

λn

(
W ∗(

Σ̂x y −λn zλn
)−W ∗(

Σ̂x y
))É 1

λn

(
W ∗(

Σ̂x y −λn z0)−W ∗(
Σ̂x y

))
=〈−z0,∇W ∗(Σ̂x y )〉+ λn

2

〈
z0,∇2W ∗(Σ̂x y )z0〉+R(Σ̂x y +λn z0)λ2

n

É〈−zλn ,∇W ∗(Σ̂x y )〉+ λn

2

〈
z0,∇2W ∗(Σ̂x y )z0〉+R(Σ̂x y +λn z0)λ2

n ,

where we used the optimality of z0 and of zλn . We conclude that

1

2

〈
zλn ,∇2W ∗(Σ̂x y )zλn

〉+R(Σ̂x y +λn zλn )λn É 1

2

〈
z0,∇2W ∗(Σ̂x y )z0)

〉+R(Σ̂x y +λn z0)λn .

Taking the limit establishes 18. Since z0 was an arbitrary element in ∂
∥∥Â

∥∥
1, we obtain that the

limit of zλn is

z∗ = argmin
z

〈
z,

(
∇2W (Â)

)−1
z
〉

subject to z ∈ ∂∥∥Â
∥∥

1

where we used 16. Finally, observe that z∗ was an arbitrary limit point of zλ and we showed that
all limit points are the same; this is enough to conclude the result.

D PROOF OF PROPOSITION 6

The proof of this statement relies on strong convexity of Jn . Similar results have been proven in
the context of entropic optimal transport (e.g. Genevay et al. (2019); Mena & Niles-Weed (2019)).
Our proof is similar to the approach taken in Rigollet & Stromme (2022).
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Let (A∞, f∞, g∞) minimize (K∞). Note that p∞α⊗β with

p∞(x, y) = exp

(
2

ε

(
ΦA∞(x, y)+ f∞(x)+ g∞(y)

))
minimizes (iOT−ℓ1(π̂)). Let

P∞ = 1

n2 (p∞(xi , y j ))i , j , F∞ = ( f∞(xi ))i and G∞ = (g∞(y j )) j .

Note that by optimality of A∞, ∥A∞∥1 É ∥∥Â
∥∥

1 – this can be seen by comparing the objective
(iOT−ℓ1(π̂)) at A∞ and Â. Moreover, due to the uniform bounds on f∞, g∞ from Lemma 12, p∞ is
uniformly bounded away from 0 by exp(−C /λ) for some constant C that depends on π̂.

Let Pn minimise (Pn), we know it is of the form

Pn = 1

n2 exp

(
2

ε
(Φn An +Fn ⊕Gn)

)
.

for vectors An ,Fn ,Gn .

The ‘certificates’ areΦ∗ϕ∞ and zn ≜Φ∗
nϕn where

ϕ∞ = 1

λ

(
p∞α⊗β− π̂)

and ϕn = 1

λ

(
Pn − P̂n

)
.

Note that zn =Φ∗ϕ∞ =− 1
λ∇AL (A∞, π̂). The goal is to bound

∥∥Φ∗ϕ∞−Φ∗
nϕn

∥∥∞ so that nonde-
generacy of z∞ would imply nondegeneracy ofΦ∗

nϕn . Note thatΦ∗
nPn =Φ∗π̂n . So, by the triangle

inequality,∥∥Φ∗ϕ∞−Φ∗
nϕn

∥∥∞ É 1

λ

∥∥Φ∗ (
p∞α⊗β)−Φ∗

nPn
∥∥∞+ 1

λ

∥∥Φ∗ (π̂n − π̂)
∥∥∞

É 1

λ

∥∥Φ∗
nP∞−Φ∗

nPn
∥∥∞+ 1

λ

∥∥Φ∗ (
p∞α⊗β)−Φ∗

nP∞
∥∥∞+ 1

λ

∥∥Φ∗ (π̂n − π̂)
∥∥∞

The last two terms on the RHS can be controlled using Proposition 20, and are bounded by
O (tn−1/2) with probability at least 1−O (exp(−t 2)) for t > 0. For the first term on the RHS, letting
Z = P∞−Pn ,

∥∥Φ∗
n Z

∥∥∞ =
∥∥∥∥∥ n∑

i , j=1
C(xi , y j )Zi , j

∥∥∥∥∥
∞

É ∥C∥∞
√√√√ 1

n2

∑
i , j

(
exp

(
2

ε
(Φn An +Fn ⊕Gn)

)
−exp

(
2

ε
(Φn A∞+F∞⊕G∞)

))2

i , j

Let L ≜ 2(∥Φn An +Fn ⊕Gn)∥∞∨∥Φn A∞+F∞⊕G∞)∥∞). According to the Lipschitz continuity of
the exponential

1

n2

∑
i , j

(
exp

(
2

ε
(Φn An +Fn ⊕Gn)

)
−exp

(
2

ε
(Φn A∞+F∞⊕G∞)

))2

i , j
(19)

É 4exp(L/ε)

ε2n2

∑
i , j

((Φn An +Fn ⊕Gn)− (Φn A∞+F∞⊕G∞))2
i , j (20)

É 12exp(L/ε)

ε2

(
1

n2

∑
i , j

(Φn An −Φn A∞)2
i , j +

1

n

∑
i

(Fn −F∞)2
i +

1

n

∑
j

(Gn −G∞)2
j

)
(21)

By strong convexity properties of Jn and hence Kn , it can be shown (see Prop 14) that (21) is
upper bounded up to a constant by

ε−1 exp(L/ε) (Kn(F∞,G∞, A∞)−Kn(Fn ,Gn , An))

Éexp(L/ε)

4

(∥∥n−2(Φ∗
nΦn)−1∥∥∥∥(∂AJn(A∞,F∞,G∞)+λξ∞)

∥∥2

18
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+n
∥∥∂F Jn(A∞,F∞,G∞)

∥∥2 +n
∥∥∂GJn(A∞,F∞,G∞)

∥∥2
)

where ξ∞ = 1
λ (Φ∗π̂−Φ∗(p∞α⊗β)) ∈ ∂∥A∞∥1. By Lemma 11 and Lemma 12, L = O (

∥∥Â
∥∥

1) with

probability at least 1−O (exp(−t 2)) if λ≳ tn− 1
2 . Finally,∥∥(∂AJn(A∞,F∞,G∞)+λξ∞)

∥∥2 = ∥∥Φ∗
n P̂ +Φ∗

nP∞+λξ∞
∥∥2

É 2
(∥∥Φ∗

n P̂ −Φ∗π̂
∥∥2 +∥∥Φ∗

nP∞−Φ∗(p∞α⊗β)
∥∥2

)
n

∥∥∂F Jn(A∞,F∞,G∞)
∥∥2

2 =
1

n

n∑
i=1

(
1− 1

n

n∑
j=1

p∞(xi , y j )

)2

n
∥∥∂GJn(A∞,F∞,G∞)

∥∥2
2

)
= 1

n

n∑
j=1

(
1− 1

n

n∑
i=1

p∞(xi , y j )

)2 )
.

We show in Propositions 16, 19 and 20 that these are bounded by O (t 2n−1) with probability at
least 1−O (exp(−t 2)) and from Proposition 23, assuming n ≳ log(2s),

∥∥(n−2Φ∗
nΦn)−1

∥∥ ≲ 1 with
probability at least 1−O (exp(−n)).

So, for some constant C > 0, λ
∥∥Φ∗ϕ∞−Φ∗

nϕn
∥∥∞ ≲ exp(C

∥∥Â
∥∥

1 /ε) tp
n

with probability at least

1−exp(−t 2). The second statement follows by combining our bound for (21) with the fact that∥∥(n−2Φ∗
nΦn)−1

∥∥≲ 1.

In the following subsections, we complete the proof by establishing the required strong convexity
properties of Jn and bound ∇Jn at (A∞,F∞,G∞) using concentration inequalities. The proofs to
some of these results are verbatim to the results of Rigollet & Stromme (2022) for deriving sampling
complexity bounds in eOT, although they are included due to the difference in our setup.

D.1 STRONG CONVEXITY PROPERTIES OF Jn

In this section, we present some of the key properties of Jn . Recall that since we assume that α,β
are compactly supported, up to a rescaling of the space, we assume without loss of generality that
for all k,

∣∣Ck (x, y)
∣∣É 1.

Lemma 11. Let An minimize (iOT−ℓ1(π̂n)). Assume that for some constant C1 > 0,

t exp(C1/ε)n− 1
2 ≲λmin

(
1,

∥∥Â
∥∥

1

)
,

then with probability at least 1−O (exp(−t 2)),

∥An∥1 É 2
∥∥Â

∥∥
Proof. Let A be a minimizer to (iOT−ℓ1(π̂n)). By optimality of A, λ∥A∥+L (A, π̂n) É λ

∥∥Â
∥∥

1 +
L (Â, π̂n). Writing P̂n = 1

n Id andΦn A = (∑s
k=1 Ak Ck (xi , y j )

)n
i , j=1

,

λ∥A∥1 −〈P̂n ,Φn A〉+〈P,Φn A〉− ε

2
H(P ) Éλ∥∥Â

∥∥
1 +L (Â, π̂n) (22)

for all P satisfying the marginal constraints P1= 1
n1 and P⊤1= 1

n1.

Note that since L (Â, π̂)+KL(π̂|α⊗β) = 0,

L (Â, π̂n) =L (Â, π̂n)−L (Â, π̂)−KL(π̂|α⊗β) (23)

=−〈ΦÂ, π̂− π̂n〉+Wπ̂n (Â)−Wπ̂(Â)−KL(π̂|α⊗β). (24)

The first two terms can be shown to be O (n− 1
2 ): Indeed,

〈ΦÂ, π̂− π̂n〉 = 1

n

n∑
i=1

Zi , where Zi ≜
(〈Â, C(xi , yi )〉−E[〈Â, C(xi , yi )]〉)

is the sum of n terms with mean zero. Moreover, |Zi | É 2
∥∥Â

∥∥. By Lemma 18, 〈ΦÂ, π̂− π̂n〉 É 8∥Â∥2
tp

n

with probability at least 1−2exp(−t 2).
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The bound
Wπ̂n (Â)−Wπ̂(Â) =O (exp(−C /ε)tn− 1

2 )

with probability 1−O (exp(t 2)) is a due to the sample complexity of eOT Rigollet & Stromme (2022).

Plugging this back into (22), we obtain

λ∥A∥1 Éλ
∥∥Â

∥∥
1 +O (n− 1

2 )+ ε

2

(
H(P )−KL(π̂|α⊗β)

)︸ ︷︷ ︸
T1

+(〈P̂n ,Φn A〉+〈P,Φn A〉)︸ ︷︷ ︸
T2

(25)

It remains to bound the terms T1 and T2. Intuitively, if π̂= p̂α⊗β has density p̂, then we can show

that T1,T2 =O (n− 1
2 ) by choosing P =Qn ≜ 1

n2 (p̂(xi , y j ))n
i , j=1. However, Qn will only approximately

satisfy the marginal constraints Qn1≈ 1
n1 and Q⊤

n 1≈ 1
n1 (this approximation can be made precise

using Proposition 16). So, we insert into the above inequality P = Q̃n with Q̃n being the projection
of Qn onto the constraint set U ( 1

n1n , 1
n1n).

By (Altschuler et al., 2017, Lemma 7), the projection Q̃n satisfies∥∥Q̃n −Qn
∥∥

1 É 2

∥∥∥∥Qn1− 1

n
1

∥∥∥∥
1
+2

∥∥∥∥Q⊤
n 1− 1

n
1

∥∥∥∥
1

. (26)

By Proposition 16, with probability at least 1−O (exp(−t 2)),

∥∥∥∥Qn1− 1

n
1

∥∥∥∥
1
= 1

n

n∑
i=1

∣∣∣∣∣ 1

n

n∑
j=1

p̂(xi , y j )−1

∣∣∣∣∣É
√√√√ 1

n

n∑
i=1

∣∣∣∣∣ 1

n

n∑
j=1

p̂(xi , y j )−1

∣∣∣∣∣
2

=O

(
tp
n

)
.

Similarly,
∥∥Qn1− 1

n1
∥∥

1 =O (n− 1
2 ) with high probability.

Note that ∣∣〈Q̃n −Qn ,Φn A〉∣∣= ∣∣∣∣∣ s∑
k=1

n∑
i , j=1

Ak (Ck )i , j (Q̃n −Qn)i , j

∣∣∣∣∣ (27)

É max
k

∥Ck∥∞ ∥A∥1
∥∥Qn −Q̃n

∥∥
1 (28)

Moreover,

〈P̂n −Qn ,Φn A〉 É ∥A∥∥∥Φ∗
n(P̂n −Qn)

∥∥ (29)

By Proposition 19 and 20, with probability at least 1−O (exp(−t 2)),

E
∥∥Φ∗

n P̂n −Φ∗π̂
∥∥=O (tn− 1

2 ) and E
∥∥Φ∗

nQn −Φ∗π̂
∥∥=O (tn− 1

2 ).

So, we have T2 ÉC n− 1
2 ∥A∥1.

We now consider the term T1 in (25). Since p̂ is uniformly bounded from above by exp(C /ε) and
from below with constant exp(−C /ε) for some C > 0, one can check from the projection procedure
of Altschuler et al. (2017) that Q̃n is also uniformly bounded from above by 1

n2 exp(C /ε) and away

from zero by 1
n2 exp(−C /ε) for some C > 0. So,

|T1| É
∣∣H(Q̃n)−H(Qn)

∣∣+ ∣∣H(Qn)−KL(π̂|α⊗β)
∣∣ (30)

≲ eC /ε∥∥Q̃n −Qn
∥∥

1 +
∣∣H(Qn)−KL(π̂|α⊗β)

∣∣ (31)

We can use the bound (26) to see that
∥∥Q̃n −Qn

∥∥
1 ≲ t/

p
n with probability at least 1−exp(−t 2).

To bound T3 ≜ H(Qn)−KL(π̂|α⊗β), note that Moreover,

E[T3] = E
(

1

n2

n∑
i=1

n∑
j=1

log(p̂(xi , y j ))p̂(xi , y j )

)
−

∫
log(p̂(x, y))p̂(x, y)dα(x)dβ(y)

=
(

n(n −1)

n2 −1

)∫
log(p̂(x, y))p̂(x, y)dα(x)dβ(y)+ 1

n2

n∑
i=1

E
(
log(p̂(xi , yi ))p̂(xi , yi )

)
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É −1

n2

∫
log(p̂(x, y))p̂(x, y)dα(x)dβ(y)+ 1

n2

∫
log(p̂(x, y))p̂(x, y)2dα(x)dβ(y)

É 1

n2

(∥∥p̂
∥∥∞−1

)∫
log(p̂(x, y))d π̂(x, y)

Therefore, by the bounded differences lemma 15 with

f (z1, . . . , zn) = 1

n2

n∑
i=1

n∑
j=1

log(p̂(xi , y j ))p̂(xi , y j )−
∫

log(p̂(x, y))p̂(x, y)dα(x)dβ(y)

where zi = (xi , yi ). Then, letting z j = z ′
j for all j ̸= i , the bounded differences property is satisfied

with

f (z1, . . . , zn)− f (z ′
1, . . . , z ′

n)

= 1

n2

 n∑
j=1
j ̸=i

+
n∑

j=1

(
log(p̂(xi , y j ))p̂(xi , y j )− log(p̂(x ′

i , y j ))p̂(x ′
i , y j )

)

É 4(
∥∥p̂

∥∥∞+1)2)

n
≜ c.

So, with probability at least 1−2exp
(−t 2

)
, |T3| É 1

n2 + 2t (∥p̂∥∞+1)p
n

.

In summary, with probability 1−O (exp(−t 2)),(
λ−C2t exp(C1/ε)n− 1

2

)
∥A∥1 Éλ

∥∥Â
∥∥

1 +
C2(exp(C1/ε)tp

n

for some constants C1,C2 > 0. So, choosing

C2t exp(C1/ε)n− 1
2 É min

(
λ/4,λ

∥∥Â
∥∥

1 /2
)

,

we have
∥A∥1 É 2

∥∥Â
∥∥

with probability at least 1−exp(−t 2).

Lemma 12. Let (A,F,G) minimize (Kn). Let C A =Φn A. Then,

Fi ∈ [−3∥C A∥∞ ,∥C A∥∞] and Gi ∈ [−2∥C A∥∞ ,2∥C A∥∞].

Moreover, exp(4∥C A∥∞ ε−1) Ê exp
( 2
ε

(
Fi +G j + (Φn A)i , j

)) Ê exp(−6∥C A∥∞ ε−1). Note that
∥C A∥∞ É ∥A∥1.

If (A, f , g ) minimize (K∞). Let cA =ΦA. Then, for all x, y

f (x) ∈ [−3∥cA∥∞ ,∥cA∥∞] and g (y) ∈ [−2∥cA∥∞ ,2∥cA∥∞].

Moreover, exp(4∥cA∥∞ ε−1) Ê exp
( 2
ε

(
f ⊕+g + (ΦA)i , j

))Ê exp(−6∥cA∥∞ ε−1).

Proof. This proof is nearly identical to (Rigollet & Stromme, 2022, Prop. 10): Let A,F,G minimize
(Kn).

By the marginal constraints for Pn ≜ 1
n2

(
exp

( 2
ε (F ⊕G +Φn A)

))
i , j given in (Pn),

1 = 1

n

∑
j

exp

(
2

ε
(ΦA(xi , y j )+Fi +G j )

)
Ê exp

(
2

ε
(−∥C A∥∞+Fi )

)∑
j

1

n
exp

(
2G j /ε

)Ê exp

(
2

ε
(−∥C A∥∞+Fi )

) (32)
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where we use Jensen’s inequality and the assumption that
∑

j G j = 0 for the second. So, Fi É ∥C A∥∞
for all i ∈ [n]. Using the other marginal constraint for Pn along with this bound on Fi implies that

1 = 1

n

∑
i

exp

(
2

ε
(ΦA(xi , y j )+Fi +G j )

)
É exp

(
2

ε

(
2∥C A∥∞+G j )

))
So, Gn, j Ê−2∥C A∥∞.

To prove the reverse bounds, we now show that
∑

i Fi is lower bounded: Note that since H (P ) Ê−1,
by duality between (Pn) and (Kn),

∥C A∥∞+ ε

2
Ê 〈Φn A, P〉− ε

2
H(P ) =− 1

n

∑
i

Fi − 1

n

∑
j

G j + ε

2n2

∑
i , j

exp

(
2

ε
(Fi +G j + (Φn A)i j

)
By assumption,

∑
j G j = 0 and

∑
i , j exp

( 2
ε (Fi +G j + (Φn A)i j

)= n2. So,

1

n

∑
i

Fi Ê−∥C A∥∞ .

By repeating the argument in (32), we see that

1 Ê exp(2/ε(−∥C A∥∞+G j ))exp

(
2

nε

∑
i

Fi

)
Ê exp(2/ε(−2∥C A∥∞+G j )).

So, G j É 2∥C A∥∞ and Fi Ê−3∥C A∥∞.

The proof for (K∞) is nearly identical and hence omitted.

Similarly to (Rigollet & Stromme, 2022, Lemma 11), we derive the following strong convexity bound
for Jn :

Lemma 13. The functional Jn is strongly convex with

Jn(A′,F ′,G ′) ÊJn(A,F,G)+〈∇Jn(A,F,G), (A′,F ′,G ′)− (A,F,G)〉

+ exp(−L/ε)

ε

(
1

n2

∥∥Φn(A− A′)
∥∥2

2 +
1

n

∥∥F −F ′∥∥2
2 +

1

n

∥∥G −G ′∥∥2
2

)
,

(33)

for some L =O (∥A∥1 ∨
∥∥A′∥∥

1).

Proof. To establish the strong convexity inequality, let

h(t )≜J ((1− t )A+ t A′, (1− t ) f + t f ′, (1− t )g + t g ′).

It suffices to find δ> 0 such that for all t ∈ [0,1],

h′′(t ) Ê δ
(

1

n2

∥∥Φn(A− A′)
∥∥2

2 +
1

n

∥∥F −F ′∥∥2
2 +

1

n

∥∥G −G ′∥∥2
2

)
. (34)

Let Zt ≜ ((1− t )F + tF ′)⊕ ((1− t )G + tG ′)+ ((1− t )ΦA+ tΦA′). Note that

h′′(t ) = 2

εn2

∑
i , j

exp

(
2

ε
(Zt )i , j

)
(F ′

i −Fi +G ′
i −Gi + (ΦA′)i , j − (ΦA)i , j )2 (35)

Since ∥cA∥∞∨∥cA′∥∞ É L, by Lemma 12, ∥Zt∥∞ ≲ ∥cA∥∞∨∥cA′∥∞. So,

h′′(t ) Ê 2

εn2 exp(−L/ε)
∑
i , j

(F ′
i −Fi +G ′

i −Gi + (ΦA′)i , j − (ΦA)i , j )2.

By expanding out the brackets and using
∑

i Gi = 0 and since Ck are centred (
∑

i (Ck )i , j = 0 and∑
j (Ck )i , j = 0), (34) holds with δ= 2

ε exp(−L/ε).

Based on this strong convexity result, we have the following bound.
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Proposition 14. Let (An ,Fn ,Gn) minimise Fn , then for all (A,F,G) ∈S such that n−2 exp(F ⊕G +
Φn A) satisfy the marginal constraints of (Pn),

Kn(A,F,G)−Kn(An ,Fn ,Gn) Ê exp(−L/ε)

ε

(
1

n2
∥Φn(A− An)∥2

2 +
1

n
∥F −Fn∥2

2 +
1

n

∥∥G −G ′
n

∥∥2
2

)
.

and

Kn(A,F,G)−Kn(An ,Fn ,Gn) Éεexp(L/ε)

4

(∥∥n−2(Φ∗
nΦn)−1∥∥∥∥(∂AJn(A,F,G)+λξ)

∥∥2

+n
∥∥∂F Jn(A,F,G)

∥∥2
2 +n

∥∥∂GJn(A,F,G)
∥∥2

2

)
.

where L =O (∥A∥1 ∨∥An∥1).

Proof. By strong convexity of Jn , we can show that for any (A, f , g ), (A′, f ′, g ′) ∈ S and any
ξ ∈ ∂∥A∥1,

Kn(A′,F ′,G ′) ÊKn(A,F,G)+〈∇Jn(A,F,G), (A′,F ′,G ′)− (A,F,G)〉+λ〈ξ, A′− A〉

+ δ

2

(
1

n2

∥∥Φn(A− A′)
∥∥2

2 +
1

n

∥∥F −F ′∥∥2
2 +

1

n

∥∥G −G ′∥∥2
2

)
,

(36)

where δ = 2exp(−L/ε)
ε with L = O (∥A∥1 ∨

∥∥A′∥∥
1). The first statement follows by letting (A,F,G) =

(An ,Fn ,Gn) in the above inequality.

To prove the second statement, let

M ≜〈∇Jn(A,F,G), (A′,F ′,G ′)− (A,F,G)〉+λ〈ξ, A′− A〉

+ δ

2

(
1

n2

∥∥Φn(A− A′)
∥∥2

2 +
1

n

∥∥F −F ′∥∥2
2 +

1

n

∥∥G −G ′∥∥2
2

)
.

By minimising over (A′,F ′,G ′), note that

M Ê− 1

2δ

(
n2 ∥∥(∂AJn(A,F,G)+λξ)

∥∥2
(Φ∗

nΦn )−1 +n
∥∥∂F Jn(A,F,G)

∥∥2
2 +n

∥∥∂GJn(A,F,G)
∥∥2

2

)
,

So,

−M É 1

2δ

(∥∥n−2(Φ∗
nΦn)−1∥∥∥∥(∂AJn(A,F,G)+λξ)

∥∥2 +n
∥∥∂F Jn(A,F,G)

∥∥2
2 +n

∥∥∂GJn(A,F,G)
∥∥2

2

)
Finally, note that Kn(A,F,G) −Kn(A′,F ′,G ′) Ê Kn(A,F,G) −Kn(An ,Fn ,Gn) by optimality of
An ,Fn ,Gn .

D.2 CONCENTRATION BOUNDS

Lemma 15 (McDiarmid’s inequality). Let f : X n →R satisfy the bounded differences property:

sup
x′

i∈X

∣∣ f (x1, . . . , xi−1, xi , xi+1, . . . , xn)− f (x1, . . . , xi−1, x ′
i , xi+1, . . . , xn)

∣∣É c.

Then, given X1, . . . , Xn random variables with Xi ∈X , for any t > 0,

P(
∣∣ f (X1, . . . , Xn)−E[ f (X1, . . . , Xn)]

∣∣Ê t ) É 2exp(−2t 2/(nc2)).

Given random vectors X and Y , denote Cov(X ,Y ) = E〈Y −E[Y ], X −E[X ]〉 and Var(X ) = Cov(X , X ).

Proposition 16. Let π have marginals α and β and let p = dπ
d(α⊗β) . Let (xi , yi ) ∼ π̂ where π̂ has

marginals α,β. Assume that
∥∥p

∥∥∞ É b. Then,

E

[
1

n

n∑
j=1

(
1− 1

n

n∑
i=1

p(xi , y j )

)2]
É (b +1)2

n

and
1

n

n∑
j=1

(
1− 1

n

n∑
i=1

p(xi , y j )

)2

É (t +b +1)2

n
.

with probability at least 1−exp(−t 2/(4b2)).
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Remark 17. The bounds also translate to an ℓ1 norm on the marginal errors, since by Cauchy-
Schwarz,

1

n

n∑
j=1

∣∣∣∣∣1− 1

n

n∑
i=1

p(xi , y j )

∣∣∣∣∣É
√√√√ n∑

j=1

1

n

(
1− 1

n

n∑
i=1

p(xi , y j )

)2

.

Moreover, by Jensen’s inequality E 1
n

∑n
j=1

∣∣1− 1
n

∑n
i=1 p(xi , y j )

∣∣É√
E
∑n

j=1
1
n

(
1− 1

n

∑n
i=1 p(xi , y j )

)2
.

Proof.

E

[
1

n

n∑
j=1

(
1− 1

n

n∑
i=1

p(xi , y j )

)2]
= 1

n3

n∑
i j ,k=1

E
(
(1−p(xi , y j ))(1−p(xk , y j ))

)
.

For each j ∈ [n], we have the following cases for u j ≜ E
(
(1−p(xi , y j ))(1−p(xk , y j ))

)
:

1. i = k = j , then u j = E(x,y)∼π̂(p∞(x, y)−1)2. There is 1 such term.

2. i = j and k ̸= j , then u j = E(x,y)∼π̂,z∼α
(
(1−p(x, y))(1−p(z, y))

)= 0. There are n −1 such
terms.

3. i ̸= j and k = j , then u j = E(z,y)∼π̂,x∼α
(
(1−p(x, y))(1−p(z, y))

)= 0. There are n −1 such
terms.

4. i = k and i ̸= j , then u j = Ex∼α,y∼β(1−p(x, y))2 and there are (n −1) such terms.

5. i , j ,k all distinct. Then, u j = 0 and there are (n −1)(n −2) such terms.

Therefore,

1

n3

n∑
i j ,k=1

E
(
(1−p(xi , y j ))(1−p(xk , y j ))

)= 1

n2 E(x,y)∼π̂(p(x, y)−1)2 + n −1

n2 Ex∼α,y∼β(1−p(x, y))2

Using
∣∣1−p(x, y)

∣∣É b +1 gives the first inequality.

Note also that letting V = 1
n

∑n
i=1

(
(1−p(xi , y j ))

)
j , ∥V ∥2 = ∑n

j=1

( 1
n

∑n
i=1(1−p(xi , y j ))

)2
. We will

apply Lemma 15 to f (z1, . . . , zn) = ∥V ∥. Let V ′ = 1
n

∑n
i=1

(
(1−p(x ′

i , y ′
j ))

)
j

where xi , y j = x ′
j , y ′

j for

i , j Ê 2. Then, for all vectors u of norm 1,

〈u, V ′−V 〉 =
n∑

j=1
u j

1

n

n∑
i=1

(p(x ′
i , y ′

j )−p(xi , y j ))

= u1
1

n

n∑
i=1

(p(x ′
i , y ′

1)−p(xi , y1))+
n∑

j=2
u j

1

n
(p(x ′

1, y ′
j )−p(x1, y j ))

É 2b

n

n∑
j=1

u j É 2bp
n

.

So, by the reverse triangle inequality,
∣∣∥V ∥−∥∥V ′∥∥∣∣É 2bp

n
. It follows that

n−1/2 ∥V ∥ É n−1/2t +n−1/2E∥V ∥ É n−1/2t +
√

n−1E∥V ∥2 É n−1/2(t +b +1).

with probability at least 1−exp(−t 2/(4b2)) as required.
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D.2.1 BOUNDS FOR THE COST PARAMETRIZATION

In the following two propositions (Prop 20 and 19), we assume that Φn is defined with Ck =
(Ck (xi , y j ))i , j and discuss in the remark afterward how to account for the fact that our cost Ck in
(Pn) are centered.

Note that the following classical result is a direct consequence of Lemma 15

Lemma 18. Suppose Z1, . . . , Zm are independent mean zero random variables taking values in
Hilbert space H . Suppose there is some C > 0 such that for all k, ∥Zk∥ ÉC . Then, for all t > 0, with
probability at least 1−2exp(−t ), ∥∥∥∥∥ 1

m

m∑
k=1

Zk

∥∥∥∥∥
2

É 8C 2t

m
.

Proposition 19. Let C = maxx,y
∥∥C(x, y)

∥∥. Let (xi , yi )n
i=1 be iid drawn from π̂. Then,

∥∥Φ∗
n P̂ −Φ∗π̂

∥∥É
p

8C t

n

with probability at least 1−2exp(−t 2).

Proof. Direct consequence of Lemma 18.

Proposition 20. Let t > 0. Let (xi , yi )n
i=1 be i.i.d. drawn from π̂, which has marginals α,β. Let

P = 1
n2 (p(xi , y j ))n

i , j=1 where π has marginals α,β and p = dπ
d(α⊗β) . Then, E

∥∥Φ∗
nP −Φ∗(pα⊗β)

∥∥2 =
O (n−1) and ∥∥Φ∗

nP −Φ∗pα⊗β∥∥≲ 1+ tp
n

with probability at least 1−2exp(−2t 2/(64
∥∥p

∥∥2
∞))

Proof. Let h(x, y)≜ p(x, y)C(x, y), then

Φ∗
nP = 1

n2

n∑
j=1

h(x j , y j )+
n∑

i=1
i ̸= j

h(xi , y j )


and

E[Φ∗
nP −Φ∗pα⊗β] = 1

n
A∗ (

pπ̂−pα⊗β)
It follows that

E
∥∥Φ∗

nP −Φ∗pα⊗β∥∥2 = 1

n2

∥∥Φ∗ (
pπ̂−pα⊗β)∥∥2 +Var(Φ∗

nP )

and

Var(Φ∗
nP ) = 1

n4

n∑
i , j ,k,ℓ=1

Cov(h(xi , yk ),h(xℓ, yk ))

Note that Cov(h(xi , yk ),h(xℓ, yk )) = 0 whenever i , j ,k,ℓ are distinct and there are n(n −1)(n −
2)(n −3) = n4 −6n3 +12n2 −6n such terms, i.e. there are 6n3 −12n2 +6n nonzero terms in the
sum. It follows that Var(Φ∗

nP ) =O (n−1) if ∥C∥ and p are uniformly bounded.

To conclude, we apply Lemma 15 with f (z1, . . . , zn) = ∥∥Φ∗
nP −Φ∗pα⊗β∥∥ and zi = (xi , yi ). Let

X (z1, . . . , zn) =Φ∗
nP −Φ∗pα⊗β. Then, Note that for an arbitrary vector u,

〈u, X (z1, z2, . . . , zn)−X (z ′
1, z2, . . . , zn)〉 =∑

i , j

(
s∑

k=1
uk (h(xi , y j )−h(x ′

i , y ′
j ))

)

=
n∑

i=2

(
s∑

k=1
uk (h(xi , y1)−h(x ′

i , y1))

)
+

n∑
j=1

(
s∑

k=1
uk (h(x1, y j )−h(x ′

1, y ′
j ))

)
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É 8n−1 ∥u∥sup
x,y

∥∥C(x, y)
∥∥∥∥p

∥∥∞
So, f (z1, z2, . . . , zn)− f (z ′

1, z2, . . . , zn) É 8n−1
∥∥p

∥∥∞ and∥∥Φ∗
nP −Φ∗pα⊗β∥∥≲ 1+ tp

n

with probability at least 1−2exp(−2t 2/(64
∥∥p

∥∥2
∞))

Remark 21 (Adjusting for the centred cost parametrization). In the above two propositions, we
compareΦ∗

nP =∑
i , j Ck (xi , y j )Pi , j withΦ∗π= ∫

Ck (x, y)dπ(x, y) for P being a discretized version

of π. The delicate issue is that in (Pn), Ck is a centralized version of Ĉk ≜ (Ck (xi , y j ))i , j . In
particular,

Ck = Ĉk −
1

n

n∑
i=1

(Ĉk )i , j − 1

n

n∑
i=1

(Ĉk )i , j + 1

n2

n∑
j=1

n∑
i=1

(Ĉk )i , j .

Note that if P1= 1
n1 and P⊤1= 1

n1, then∑
i , j

(Ck )i , j Pi , j =
∑
i , j

(Ĉk )i , j Pi , j − 1

n2

n∑
j=1

n∑
k=1

(Ĉk )k, j

This last term on the RHS is negligible becauseΦ∗(α⊗β) = 0 by assumption of Ck being centred:
Note that

1

n2

n∑
j=1

n∑
k=1

(Ĉk )k, j = Φ̂∗
n(

1

n21n×n).

Applying the above proposition,∥∥∥∥∥ 1

n2

n∑
j=1

n∑
k=1

(Ĉk )k, j −Φ∗(α⊗β)

∥∥∥∥∥≲ m + log(n)p
n

with probability at least 1− exp(−m). So, up to constants, the above two propositions can be
applied even for our centralized cost C .

D.2.2 INVERTIBILITY BOUND

Recall our assumption that M ≜ E(x,y)∼α⊗β[C(x, y)C(x, y)⊤] is invertible. In Proposition 23, we
bound the deviation ofΦ∗

nΦn from M in the spectral norm, and hence establish that it is invertible
with high probability.

We will make use of the following matrix Bernstein inequality.

Theorem 22 (Matrix Bernstein). Tropp et al. (2015) Let Z1, . . . , Zn ∈Rd×d be independent symmetric
mean-zero random matrices such that ∥Zi∥ É L for all i ∈ [n]. Then, for all t Ê 0,

E

∥∥∥∥∥∑
i

Zi

∥∥∥∥∥É
√

2σ log(2d)+ 1

3
L log(2d)

where σ2 = ∥∥∑n
i=1E[Z 2

i ]
∥∥.

Proposition 23. Assume that log(2s)+1 É n. Let t > 0. Then,∥∥∥∥ 1

n2Φ
∗
nΦn −M

∥∥∥∥≲
√

log(2s)

n −1
+ tp

n

with probability at least 1−O (exp(−t 2)).

Proof. Recall that Φn A = ∑
k AkCk , where Ck is the centred version of the matrix Ĉk =

(Ck (xi , y j ))i , j . That is,

(Ck )i , j = (Ĉk )i , j − 1

n

∑
ℓ

(Ĉk )ℓ, j −
1

n

∑
m

(Ĉk )i ,m + 1

n2

∑
ℓ

∑
m

(Ĉk )ℓ,m . (37)
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For simplicity, we first do the proof for (Φn A)i , j =∑
k Ak Ck (xi , y j ), and explain at the end how to

modify the proof to account forΦn using the centered Ck .

First,

1

n2Φ
∗
nΦn −M = 1

n

n∑
i=1

(
1

n

n∑
j=1

C(xi , y j )C(xi , y j )⊤−
∫

C(xi , y)C(xi , y)⊤dβ(y)

)
(38)

+ 1

n

n∑
i=1

∫
C(xi , y)C(xi , y)⊤dβ(y)−

∫
C(x, y)C(x, y)⊤dα(x)dβ(y) (39)

To bound the two terms in (39), let Zi ≜
∫

C(xi , y)C(xi , y)⊤dβ(y)− ∫
C(x, y)C(x, y)⊤dα(x)dβ(y)

and observe that these are i.i.d. matrices with zero mean. By matrix Bernstein with the bounds
∥Zi∥ É 2 and

∥∥Z 2
i

∥∥É 4,

E

∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥É
√

8log(2s)p
n

+ 2log(2s)

3n
É 4

√
log(2s)

n

assuming that log(2s) É n.

For the two terms in (38),

E

∥∥∥∥∥ 1

n

n∑
i=1

(
1

n

n∑
j=1

C(xi , y j )C(xi , y j )⊤−
∫

C(xi , y)C(xi , y)⊤dβ(y)

)∥∥∥∥∥ (40)

É E
∥∥∥∥∥ 1

n2

n∑
i=1

C(xi , yi )C(xi , yi )⊤
∥∥∥∥∥+E

∥∥∥∥∥∥∥∥
1

n

n∑
i=1

 1

n

n∑
j=1
j ̸=i

C(xi , y j )C(xi , y j )⊤−
∫

C(xi , y)C(xi , y)⊤dβ(y)


∥∥∥∥∥∥∥∥

(41)

É 2

n
+ n −1

n2

n∑
i=1

E

∥∥∥∥∥∥∥∥
1

n −1

n∑
j=1
j ̸=i

(
C(xi , y j )C(xi , y j )⊤−

∫
C(xi , y)C(xi , y)⊤dβ(y)

)∥∥∥∥∥∥∥∥ (42)

For each i = 1, . . .n, let Y j = C(xi , y j )C(xi , y j )− ∫
C(xi , y)C(xi , y)⊤dβ(y) and observe that condi-

tional on xi ,
{
Y j

}
j ̸=i are iid matrices with zero mean. The matrix Bernstein inequality applied to

1
n−1

∑
j∈[n]\{i } Y j implies that

E

∥∥∥∥∥ 1

n −1

∑
j∈[n]\{i }

Y j

∥∥∥∥∥É
√

8log(2s)p
n −1

+ 2log(2s)

3n −3
É 4

√
log(s)

n

assuming that log(2s) É n −1.

Finally, we apply Lemma 15 to f (z1, . . . , zn) =
∥∥∥ 1

n2Φ
∗
nΦn −M

∥∥∥. Let Φ′
nu = ∑

k uk C(x ′
i , y ′

i ) with

x ′
i = xi and y ′

i = yi for i Ê 2. For each vector u of unit norm,

1

n2 〈(Φ∗
nΦn − (Φ′

n)∗Φ′
n)u, u〉 = 1

n2

n∑
i=1

n∑
j=1

∣∣C(xi , y j )⊤u
∣∣2 −

∣∣∣C(x ′
i , y ′

j )⊤u
∣∣∣2

(43)

= 1

n2

n∑
i=1

∣∣C(xi , y1)⊤u
∣∣2 − ∣∣C(x ′

i , y ′
1)⊤u

∣∣2 + 1

n2

n∑
j=2

∣∣C(x1, y j )⊤u
∣∣2 −

∣∣∣C(x ′
1, y ′

j )⊤u
∣∣∣2 É 4n−1. (44)

So, ∥∥∥∥ 1

n2Φ
∗
nΦn −M

∥∥∥∥É 8

√
log(2s)

n −1
+ tp

n

with probability at least 1−exp(−2t 2/16).
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To conclude this proof, we now discuss how to modify the above proof in the case of the centered
cost Ck , that isΦn A =∑

k AkCk where Ck is as defined in (37). Note that in this case,

1

n2 (Φ∗
nΦn)k,ℓ =

1

n2

n∑
i , j=1

Ck (xi , y j )Cℓ(xi , y j )+ 1

n4

(
n∑

p,q=1
Cℓ(xp , yq )

)(
n∑

i , j=1
Ck (xi , y j )

)
(45)

− 1

n3

n∑
j=1

(
n∑

p=1
Cℓ(xp , y j )

)(
n∑

i=1
Ck (xi , y j )

)
− 1

n3

n∑
i=1

(
n∑

q=1
Cℓ(xi , yq )

)(
n∑

j=1
Ck (xi , y j )

)
(46)

We already know from the previous arguments that

E

∥∥∥∥∥ 1

n2

n∑
i , j=1

Ck (xi , y j )Cℓ(xi , y j )−M

∥∥∥∥∥=O (
√

log(s)/n).

For the last term in (45), let Λ = {
(i , j , p, q) ; i ∈ [n], j ∈ [n] \ {i } , p ∈ [n] \

{
i , j

}
, q ∈ [n] \

{
i , j , p

}}
.

Note thatΛ has n(n−1)(n−2)(n−3) terms, andΛc = [n]×[n]×[n]×[n] has O (n3) terms. Therefore,
we can write

E

∥∥∥∥∥ 1

n4

(
n∑

p,q=1
C(xp , yq )

)(
n∑

i , j=1
C(xi , y j )⊤

)∥∥∥∥∥
É 1

n4 E

∥∥∥∥∥ ∑
(i , j ,p,q)∈Λ

C(xp , yq )C(xi , y j )⊤
∥∥∥∥∥+E

∥∥∥∥∥ 1

n4

∑
(i , j ,p,q)∈Λc

C(xp , yq )C(xi , y j )⊤
∥∥∥∥∥

É 1

n4 E

∥∥∥∥∥ ∑
(i , j ,p,q)∈Λ

C(xp , yq )C(xi , y j )⊤
∥∥∥∥∥+O (n−1)

where the second inequality is because there are O (n3) terms inΛc and we used the bound that∥∥C(x, y)
∥∥= 1. Moreover,

1

n4 E

∥∥∥∥∥ ∑
(i , j ,p,q)∈Λ

C(xp , yq )C(xi , y j )⊤
∥∥∥∥∥É n −3

n4

∑
i

∑
j ̸∈{i }

∑
p ̸∈{i , j}

E

∥∥∥∥∥ 1

n −3

∑
q ̸∈{i , j ,p}

C(xp , yq )C(xi , y j )⊤
∥∥∥∥∥ .

Note that conditional on i , j , p,

E[
1

n −3

∑
q ̸∈{i , j ,p}

C(xp , yq )C(xi , y j )⊤] =
∫

C(xp , y)dβ(y)C(xi , y j )⊤ = 0

by assumption that C(x, y)dβ(y) = 0. So, we can apply Matrix Bernstein as before to show that

E[
1

n4 E

∥∥∥∥∥ ∑
(i , j ,p,q)∈Λ

C(xp , yq )C(xi , y j )⊤
∥∥∥∥∥]≲

√
log(s)n−1.

A similar argument can be applied to handle the two terms in (46), and so,

E

∥∥∥∥ 1

n2Φ
∗
nΦn −M

∥∥∥∥≲√
log(s)/n.

The high probability bound can now be derived using Lemma 15 as before.

E PROOFS FOR THE GAUSSIAN SETTING

Simplified problem To ease the computations, we will compute the Hessian of the following
function (corresponding to the special case where Σα = Id and Σβ = Id):

W̃ (A)≜ sup
Σ

〈A, Σ〉+ ε

2
logdet(Id−Σ⊤Σ). (47)

To retrieve the Hessian of the original function note that, since logdet(Σβ−Σ⊤Σ−1
α Σ) = logdet(Σβ)+

logdet(Id−Σ− 1
2

β
Σ⊤Σ−1

α ΣΣ
− 1

2
β

), a change of variable Σ̃≜Σ
− 1

2
α ΣΣ

− 1
2

β
, shows that W (A) = W̃ (Σ

1
2
α AΣ

1
2
β

)

and, hence,

∇2W (A) = (Σ
1
2
β
⊗Σ

1
2
α)∇2W̃ (Σ

1
2
α AΣ

1
2
β

)(Σ
1
2
β
⊗Σ

1
2
α). (48)
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By the envelope theorem, ∇W̃ (A) =Σ, where Σ is the maximizer of (47), thus reducing the compu-
tation of ∇2W̃ (A) to differentiating the optimality condition of Σ, i.e.,

A = ε−1Σ(Id−Σ⊤Σ)−1. (49)

Recall also that such a Σ has an explicit formula given in (5).

Lemma 24.

∇2W̃ (A) = ε(
ε2(Id−Σ⊤Σ)−1 ⊗ (Id−ΣΣ⊤)−1 + (A⊤⊗ A)T

)−1
(50)

and Σ is as in (49) and T is the linear map defined by Tvec(X ) = vec(X ⊤).

Proof of Lemma 24. Define G(Σ, A) ≜ Σ(Id −Σ⊤Σ)−1 − ε−1 A. Note that a maximizer Σ of (47)
satisfies G(Σ, A) = 0. Moreover, ∂ΣG is invertible at such (Σ, A) because this is the Hessian of
logdet(Id−Σ⊤Σ), a strictly concave function. By the implicit function theorem, there exists a
function f : A 7→Σ such that G( f (A), A) = 0 and

∇ f = (∂ΣG)−1∂AG = ε−1(∂ΣG)−1.

It remains to compute ∂ΣG at ( f (A), A):

At an arbitrary point (Σ, A) we have

∂ΣG = (Id−Σ⊤Σ)−1 ⊗ Id+ (Id⊗Σ)∂Σ(Id−Σ⊤Σ)−1

= (Id−Σ⊤Σ)−1 ⊗ Id+ (Id⊗Σ)
(
(Id−Σ⊤Σ)−1 ⊗ (Id−Σ⊤Σ)−1)((Σ⊤⊗ Id)T+ (Id⊗Σ⊤)

)
and at ( f (A), A), i.e, with Σ(Id−Σ⊤Σ)−1 = ε−1 A, we can further simplify to

∂ΣG = (Id−Σ⊤Σ)−1 ⊗ (Id+Σ(Id−Σ⊤Σ)−1Σ⊤))+ε−2(A⊤⊗ A)T

By the Woodbury matrix formula,

(Id+Σ(Id−Σ⊤Σ)−1Σ⊤) = (Id−ΣΣ⊤)−1 = Id+ AΣ⊤.

So,

∂ΣG = (Id−Σ⊤Σ)−1 ⊗ (Id−ΣΣ⊤)−1 +ε−2(A⊤⊗ A)T,

thus concluding the proof.

We remark that from the connection between W (A) and W̃ (A), i.e., 48, we obtain Lemma 7 as a
corollary.

E.1 LIMIT CASES

SVD representation of the covariance To derive the limiting expressions, we make an ob-
servation on the singular value decomposition of Σ: Let the singular value decomposition
of A be A = U DV ⊤, where D is the diagonal matrix with positive entries di . Note that ∆ =
(Id+ ε2

4 (A⊤A)†)
1
2 =V (Id+ ε2

4 D−2)
1
2 V ⊤. Moreover, ∆ and A⊤A commute, so

Σ= A∆((∆2 A⊤A)†)
1
2∆− ε

2
AT,† =U

(
Id+ ε2

4
D†,2

) 1
2

− ε

2
D†

V ⊤ =U D̃V ⊤, (51)

where D̃ is the diagonal matrix with diagonal entries

d̃i =
√√√√(

1+ ε2

4d 2
i

)
− ε

2

1

di
. (52)

29



Published as a conference paper at ICLR 2024

E.1.1 LINK WITH LASSO: LIMIT AS ε→∞
Note that

d̃i = ε

2di

√
1+ 4d 2

i

ε2 − ε

2di
= di

ε
− d 3

i

ε3 +O (ε−5) → 0, ε→∞. (53)

It follows that limε→∞Σ= 0 and hence, ε∇2W̃ (A) → Id. So, the certificate converges to

(Σβ⊗Σα)(:,I )
(
(Σβ⊗Σα)(I ,I )

)−1 sign(Â)I . (54)

Proof of Proposition 8. The iOT problem approaches a Lasso problem as ε→∞. Recall that in the
Gaussian setting, the iOT problem is of the form

argmin
A

F (A) =λ∥A∥1 +〈A, Σε,A −Σε,Â〉+
ε

2
logdet

(
Σβ−Σ⊤

ε,AΣ
−1
α Σε,A

)
(55)

where Σε,A satisfies Σβ−Σ⊤
ε,AΣ

−1
α Σε,A = εΣ−1

α Σε,A A−1. So, we can write

argmin
A

F (A)≜λ∥A∥1 +〈A, Σε,A −Σε,Â〉+
ε

2
logdet

(
εΣ−1

α Σε,A A−1) (56)

Let

X ≜Σ
1
2
α AΣ

1
2
β

and Σ̃ε,A =Σ− 1
2

α Σε,AΣ
− 1

2
β

.

From (52), if X has SVD decomposition W =U diag(di )V ⊤, then

Σ̃ε,A =U D̃V ⊤, where D̃ = diag(d̃i )

and

d̃i = di

ε
− d 3

i

ε3 +O (ε−5).

So,

logdet(εΣ−1
α Σε,A A−1) = logdet

(
εΣ

− 1
2

α Σ̃ε,A X −1Σ
1
2
α

)
= logdet

(
U diag

(
1−d 2

i /ε2 +O (ε−4)
)
U⊤)

= logdet
(
diag

(
1−d 2

i /ε2 +O (ε−4)
))=− 1

ε2
∥X ∥2

F +O (ε−4).

Also,
ε〈Σε,A −Σε,Â , A〉 = ε〈Σ̃ε,A − Σ̃ε,Â , X 〉 = 〈X −X0, X 〉+O (ε−2).

So, assuming that λ=λ0/ε,

εF (A) =λ0 ∥A∥1 +〈X −X0, X 〉−∥X ∥2
F +O (ε−2) (57)

=λ0 ∥A∥1 +
∥∥∥∥(Σ

1
2
β
⊗Σ

1
2
α)(A− Â)

∥∥∥∥2

F
− 1

2

∥∥∥∥(Σ
1
2
β
⊗Σ

1
2
α)Â

∥∥∥∥2

+O (ε−2) (58)

The final statement on the convergence of minimizers follows by Gamma-convergence.

E.1.2 LINK WITH GRAPHICAL LASSO

In the special case where the covariances are the identity (Σα = Id and Σβ = Id) and A is symmetric
positive definite we have that Σ is also positive definite and Galichon’s formula (5) holds (since A
is invertible) and hence the Hessian reduces to(

1

ε
∇2W̃ (A)

)−1

= (A⊗ A)
(
Σ−1 ⊗Σ−1 +T)

. (59)

Moreover, if A admits an eigenvalue decomposition A = U DU⊤, then Σ admits an eigenvalue
decomposition Σ=U D̃U⊤ with entries of D̃ given by (52). Note that it follows that limε→0Σ= Id
and, hence, limε→0

(
Σ−1 ⊗Σ−1 +T) = Id+T, a singular matrix with the kernel being the set of
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asymmetric matrices. So, the limit does not necessarily exist as ε→ 0. However, in the special case
where A is symmetric positive definite, one can show that the certificates remain well defined as
ε→ 0: Let S+ be the set of matrices ψ such that ψ is symmetric and S− be the set of matrices ψ
such that ψ is anti-symmetric. Then, (∇2W̃ (A))−1(S+) ⊂ S+ and (∇2W̃ (A))−1(S−) ⊂ S−. Moreover,(

1

ε
∇2W̃ (A)

)−1

↾S+ = (A⊗ A)
(
Σ−1 ⊗Σ−1 + Id

)
,(

1

ε
∇2W̃ (A)

)−1

↾S− = (A⊗ A)
(
Σ−1 ⊗Σ−1 − Id

)
.

Since the symmetry of A implies the symmetry of sign(A), we can replace the Hessian given in (59)
by (A⊗ A)(Σ−1 ⊗Σ−1 + Id) and, hence, since limε→0Σ= Id, the limit as ε→ 0 is

lim
ε→0

zε = (A−1 ⊗ A−1)(:,I )
(
(A−1 ⊗ A−1)(I ,I )

)−1 sign(A)I . (60)

This coincides precisely with the certificate of the graphical lasso:

argmin
Θ⪰0

〈S,Θ〉− logdet(Θ)+λ∥Θ∥1 .

Proof of Proposition 9. The iOT problem with identity covariances restricted to the set of positive
semi-definite matrices has the form

argmin
A⪰0

Fε,λ(A), where Fε,λ(A)≜λ∥A∥1 +〈A, Σε,A − Σ̂〉+ ε

2
logdet(Id−Σ⊤

ε,AΣε,A), (61)

where I −Σ⊤
ε,AΣε,A = εΣε,A A−1. From the singular value decomposition of Σε,A ,i.e., (51), we see

that if A is symmetric positive definite, then so is Σε,A . Plugging the optimality condition, i.e.,
I −Σ⊤

ε,AΣε,A = εΣε,A A−1, into (61), we obtain

argmin
A⪰0

λ∥A∥1 +〈A, Σε,A − Σ̂〉+ ε

2
logdet(εA−1Σε,A)

=argmin
A⪰0

λ∥A∥1 −
ε

2
logdet(A/ε)+ε〈A, (Σε,A − Σ̂)/ε〉+ ε

2
logdet(Σε,A)

Let λ= ελ0 for some λ0 > 0. Then, removing the constant ε
2 logdet(εId) term and factoring out ε,

the problem is equivalent to

argmin
A⪰0

λ0 ∥A∥1 −
1

2
logdet(A)+〈A, ε−1(Σε,A − Σ̂)〉+ 1

2
logdet(Σε,A)

Assume that Σ̂=Σε,Â . From the expression for the singular values of Σε,A in (52), note that

Σε,A = Id− ε

2
A−1 +O (ε2).

So, limε→0(Σε,A −Σε,Â)/ε=− 1
2

(
A−1 − Â−1

)
. The objective converges pointwise to

λ0 ∥A∥1 −
1

2
logdet(A)+ 1

2
〈A, Â−1 − A−1〉,

and the statement is then a direct consequence of Gamma-convergence.

Remark 25. Note that from (52), we have Σ= Id− ε
2 A−1 +O (ε2). So, in this case, the covariance of

π̂ is (
Id Id− ε

2 A−1 +O (ε2)
Id− ε

2 A−1 +O (ε2) Id

)
.

For (X ,Y ) ∼ π, The Schur complement of this is the covariance of X conditional on Y , which
is εA−1 +O (ε2). So, up the ε, one can see A−1 as the “precision" matrix of the covariance of X
conditional on Y .
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F LARGE SCALE ℓ1-IOT SOLVER

Recall that the iOT optimization problem, recast over the dual potentials for empirical measures,
reads

inf
A,F,G

1

n

∑
i

Fi +Gi + (Φn A)i ,i + ε

2n2

∑
i , j

exp

(
2

ε
(Fi +G j + (Φn A)i , j

)
+λ∥A∥1 .

To obtain a better-conditioned optimization problem, in line with Cuturi & Peyré (2016), we instead
consider the semi-dual problem, which is derived by leveraging the closed-form expression for
the optimal G , given F .

inf
A,F

1

n

∑
i

Fi + (Φn A)i ,i + ε

n

∑
i

log
1

n

∑
j

exp

(
2

ε
(Fi + (Φn A)i , j

)
+λ∥A∥1 .

Following Poon & Peyré (2021), which proposes a state-of-the-art Lasso solver, the last step is to
use the following Hadamard product over-parameterization of the ℓ1 norm

∥A∥1 = min
U⊙V

∥U∥2
2

2
+ ∥V ∥2

2

2
.

where the Hadamard product is U ⊙V ≜ (Ui Vi )i , to obtain the final optimization problem

inf
A,U ,V

1

n

∑
i

Fi + (Φn(U ⊙V ))i ,i + ε

n

∑
i

log
1

n

∑
j

exp

(
2

ε
(Fi + (Φn(U ⊙V ))i , j

)
+ λ

2
∥U∥2

2 +
λ

2
∥V ∥2

2 .

This is a smooth optimization problem, for which we employ a quasi-Newton solver (L-BFGS).
Although it is non-convex, as demonstrated in Poon & Peyré (2021), the non-convexity is benign,
ensuring the solver always converges to a global minimizer, (F⋆,U⋆,V ⋆), of the functional. From
this, one can reconstruct the cost parameter, A⋆≜U⋆⊙V ⋆.
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