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Abstract
Recently, there has been a surge of interest in
extending the success of large language mod-
els (LLMs) from texts to molecules. Most ex-
isting approaches adopt a graph neural network
to represent a molecule as a series of node to-
kens for molecule-language alignment, which,
however, have overlooked the inherent hierar-
chical structures in molecules. Notably, higher-
order molecular structures contain rich semantics
of functional groups, which encode crucial bio-
chemical functionalities of the molecules. We
show that neglecting the hierarchical informa-
tion in tokenization will lead to subpar molecule-
language alignment and severe hallucination. To
address this limitation, we propose HIerarchical
GrapH Tokenization (HIGHT). HIGHT employs
a hierarchical graph tokenizer that encodes the
hierarchy of atom, motif, and molecular levels
of informative tokens to improve the molecu-
lar perception of LLMs. HIGHT also adopts an
augmented instruction tuning dataset, enriched
with the hierarchical graph information, to fur-
ther enhance the molecule-language alignment.
Extensive experiments on 14 real-world bench-
marks verify the effectiveness of HIGHT in re-
ducing hallucination by 40%, and significant im-
provements in various molecule-language down-
stream tasks. The project is available at https:
//higraphllm.github.io/.

1. Introduction
Large language models (LLMs) have demonstrated impres-
sive capabilities in understanding and processing natural
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languages (Radford et al., 2019; OpenAI, 2022; Touvron
et al., 2023a; Bubeck et al., 2023). Recently, there has been
a surge of interest in extending the capabilities of LLMs
to graph-structured data (Jin et al., 2023; Li et al., 2023d;
Wei et al., 2024; Mao et al., 2024; Fan et al., 2024), par-
ticularly molecular graphs (Zhao et al., 2023; Cao et al.,
2023). Inspired by the success of large vision-language
models (Zhang et al., 2024b; Liu et al., 2023a), recent ef-
forts in developing large graph-language models (LGLMs)
typically adopt a graph neural network (GNN) (Xu et al.,
2019) to tokenize molecules as a series of node embed-
dings (or node tokens), and then leverage an adapter such
as a Multi-layer perceptron (MLP) or a Q-former (Li et al.,
2023a) to transform the node tokens into those compatible
with LLMs (Fan et al., 2024). To bridge the gap between
the graph and language modalities, LGLMs will undergo
a molecule-language instruction tuning with the molecu-
lar graph and the corresponding captions describing the
molecules (Jin et al., 2023; Li et al., 2023d; Fan et al., 2024).

Despite recent progress, the tokenization in existing LGLMs
neglects the essential hierarchical structures inherent in
molecular graphs. In particular, in molecular graphs,
the high-order substructures, such as motifs or functional
groups, encode rich semantics of the biochemical function-
alities of the molecules (Milo et al., 2002; Bohacek et al.,
1996; Sterling & Irwin, 2015). For example, the presence
of a hydroxide functional group (“-OH”) often indicates
a higher water solubility. Therefore, such substructural
cues are essential for enabling LLMs to reason about the
molecules in a chemically meaningful way. However, exist-
ing LGLMs mostly tokenize molecules solely at the atom
(node) level, and feed LLMs with only node-level tokens.
Consequently, it requires LLMs to implicitly infer the un-
derlying substructures during the instruction tuning stage.
The absence of the critical substructures not only increases
the unnecessary burdern on the LLMs, but also leads to
misaligned representations and a higher likelihood of hal-
lucinations in downstream tasks. To quantify the issue, we
introduce a diagnostic benchmark, called MotifHallu,
which evaluates the perception ability of LGLMs about
the existence of common functional groups. Surprisingly,
we find that existing LGLMs often produce false-positive
predictions (i.e., keep answering “Yes” for any functional
groups), highlighting a critical limitation in current graph to-
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Large Language Model

HIGHT

Text TokenizerNode Motif
"Can you tell me more 
about this molecule?"

This molecule is a cyclohexadienecarboxylic acid having the 
C=C bonds at the 1- and 3-positions…                              
This molecule has 1 carboxylic acids group, and 
2 side-chain hydroxyls groups… 🤖

Node-level

Motif-level

(a) Overview of the HIGHT framework. (b) Summary of performance.

Figure 1. (a) Illustration of HIGHT: Given a molecule (i.e., PubChem ID 3, 5,6-Dihydroxycyclohexa-1,3-diene-1-carboxylic acid),
HIGHT detects the motifs and incorporates the “supernodes” for each motif (The whole graph is also considered as a “super motif”.).
Then, HIGHT tokenizes the molecule into both node-level (i.e., atoms) and motif-level (i.e., functional groups) tokens. The hierarchical
view enables LLMs to align the molecular structures and the language descriptions of the molecule better. (b) Performance Overview:
HIGHT significantly reduces the hallucination of LGLMs and improves the downstream performance across various molecule-centric
tasks. Due to the heterogeneity of the evaluation metrics in each task, we perform some transformations on the numerical values. In
MotifHallu, we report the macro F1 scores. For Property Classification and Molecular Caption, we report the averaged scores of all the
subtasks or submetrics. For Property Regression, we normalize the values to the range between 1 and 100, i.e., for a, the reported number
is 0.5/a. For Chemical Reaction Prediction, we report the averaged values of BLEU, RDK, MACCS, and MORGAN.

kenization strategies (Sec. 3.2). This observation motivates
the following research question:

Is there a feasible approach to integrate the intrinsic
hierarchical molecular information into LLMs?

To tackle the problem, we propose a new molecule-language
alignment strategy called HIerarchical GrapH Tokenization
(HIGHT). As illustrated in Fig. 1, HIGHT adopts a hierarchi-
cal graph tokenizer and a hierarchical molecular instruction
tuning dataset to facilitate a better alignment of molecule
and language modalities. Specifically, inspired by the suc-
cess of hierarchical GNNs in molecular representation learn-
ing (Zhang et al., 2021; Zang et al., 2023; Inae et al., 2023;
Luong & Singh, 2023), HIGHT transforms the original
molecular graph into a hierarchical graph with motif-level
and molecule-level nodes added in. Then, HIGHT employs
a Vector Quantized-Variational AutoEncoder (VQVAE) to
obtain atom-level, motif-level, and molecule-level tokens
separately with the self-supervised tasks (Zang et al., 2023).

In addition, to further encourage the encoding and alignment
of hierarchical information, HIGHT augments the original
molecular instruction tuning dataset with motif-level de-
scriptions. Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to incor-
porate the hierarchical graph information into LGLMs,
with the consideration of both the architecture-level and
the instruction tuning data.

• To facilitate the molecule-language alignment study,

we also propose the first hallucination benchmark
MotifHallu, synthesized through question-answering
based on common functional groups.

• We conduct extensive experiments with 14 real-world
benchmarks. The results show that HIGHT significantly
reduces the hallucination on MotifHallu by up to 40%
and consistently improves the performances on down-
stream molecule-language tasks.

Hence, HIGHT together with MotifHallu and
HiPubChem, lay the solid foundation for developing graph
foundation models via graph-language alignment.

2. Preliminaries
Large Graph-Language Models. As LLMs have demon-
strated great capabilities across a wide range of natural
language tasks, there has been an increasing interest in
extending LLMs to broader applications where the text
data are associated with the structure information (i.e.,
graphs) (Jin et al., 2023; Li et al., 2023d; Wei et al., 2024;
Mao et al., 2024; Fan et al., 2024). A graph can be de-
noted as G = (V, E) with a set of n nodes v ∈ V and
a set of m edges (u, v) ∈ E . Each node u has node at-
tributes as xu ∈ Rd and each edge (u, v) has edge attributes
eu,v ∈ Rde . A number of LGLMs have been developed
to process graph-text associated data D = {G, c}, where
c = [c1, ..., clc ] is to the caption of the graph G. For node-
centric tasks, ci will associate with the nodes (Tang et al.,
2023), while in this paper we focus on graph-centric tasks,
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i.e., molecules and molecular captions (Liu et al., 2023c).
Usually, an l-layer GNN is employed to encode a graph as:

h(l)
u = COM(h(l−1)

u ,AGG({(h(l−1)
u ,h(l−1)

v )|v ∈ N (u)})),
(1)

where h
(l)
u ∈ Rh refers to the node embedding of node u

after l layers of GNN, AGG(·) is the aggregation function
(e.g., mean) among the information from neighbors of node
u, and COM is the operator for combining information
of node u with its neighbors N (u) (e.g., concatenation).
Then, after l message passing iterations, the graph-level
embedding can be obtained as:

hG = READOUT
(
{h(l)

u |u ∈ V}
)
, (2)

where READOUT(·) is a pooling operator (e.g., mean
pooling) among all the node embeddings. With the rep-
resentations of the nodes and graphs, LGLMs can fuse
the graph and language information in various ways, such
as transforming into natural languages describing the
graphs (Fatemi et al., 2024), or neural prompts within the
LLMs (Tian et al., 2024). In addition, the embeddings can
also be leveraged to post-process the LLM outputs (Liu
et al., 2024b). Orthogonal to different fusion mechanisms,
in this work, we focus on transforming graph embeddings
into input tokens of LLMs, which can be formulated as (Tang
et al., 2023; Chen et al., 2024a; Liu et al., 2023c; Zhao et al.,
2023; Cao et al., 2023; Li et al., 2024):

pθ(a|q,h) =
∏la

i=1
pθ(ai|q, fn(h),a<i), (3)

where the LGLM is required to approximate pθ to out-
put the desired answer a given the question q, and the
graph tokens h adapted with adapter fn : Rh → Rhe

that projects the graph tokens to the embedding space of
LLMs. One could also incorporate the 1D information such
as SMILES (Weininger, 1988) into q and a for alignment.

Molecular Foundation Models. There is a separate line of
works aiming to develop language models for molecules and
proteins – the language of lives, from 1D sequences such as
SMILES (Irwin et al., 2022), 2D molecular graphs (Rong
et al., 2020; Wang et al., 2022; Zhang et al., 2024a), 3D ge-
ometric conformations (Liu et al., 2022; Zhou et al., 2023),
to scientific text (Beltagy et al., 2019) and multimodal
molecule-text data (Liu et al., 2023b; Luo et al., 2023a;
Christofidellis et al., 2023; Liu et al., 2024c; Su et al., 2022;
Zeng et al., 2022; Srinivas & Runkana, 2024). The adopted
backbones range from encoder-decoder architectures such
as MolT5 (Edwards et al., 2022) and Galactica (Taylor et al.,
2022), to auto-regressive language modeling (Luo et al.,
2023b; Liu et al., 2023e). Inspired by the success of large
vision-language models (Li et al., 2023a; Zhu et al., 2023;
Liu et al., 2023a), the community further seeks to develop
molecular foundation models built upon existing molecular

language models with more sophisticated graph information
fusion modules. For example, Liu et al. (2023c); Zhao et al.
(2023) develop advanced cross-modal adapters and gener-
alized position embeddings to promote better alignment
based on encoder-decoder-based molecular language mod-
els. Liang et al. (2023); Cao et al. (2023); Li et al. (2024)
develop cross-modal adapters for decoder only language
models such as Llama (Touvron et al., 2023a). Orthogo-
nal to the aforementioned works, we focus more on what
information one shall extract from the molecules for the
alignment. We choose to build our methods upon decoder-
only language models, with the hope of building a versatile
agent that can perceive molecules beyond the language, im-
age, and audio modalities (Xi et al., 2023).

In the meantime, existing works also try to enrich the
molecule-language alignment with additional modalities,
such as 2D (Liu et al., 2023c) and 3D (Li et al., 2024) infor-
mation. In contrast, we focus on the intrinsic hierarchical
information of the molecules, such as motifs.

Hierarchical Graph Representation Learning. The hi-
erarchical nature has been widely incorporated in learning
high-quality graph representations (Ying et al., 2018). Espe-
cially in molecular graphs, the high-order structural informa-
tion naturally captures the existence of motifs and functional
groups. Therefore, the hierarchy of atom-motif-molecule
has been widely applied in self-supervised molecular rep-
resentation learning (Zhang et al., 2021; Zang et al., 2023;
Inae et al., 2023; Luong & Singh, 2023). Nevertheless,
how to properly incorporate the hierarchical information in
molecular instruction tuning of LGLMs remains unclear.

In addition, concurrent works by Park et al. (2024) and Hu
& Li (2024) explored incorporating hierarchical graph in-
formation into LLMs. Nevertheless, they mostly focus on
the architecture-level incorporation, while we show that it
is crucial to integrate the hierarchical information in the
instruction tuning data. More importantly, we highlight
the consequences of inadequate alignment due to the lack
of hierarchical information, i.e., hallucination, and demon-
strate the usefulness of the hierarchical information in a
wide range of downstream tasks.

3. Graph Tokenization in LGLMs
In this section, we analyze the limitations of node-centric
tokenization, which is widely adopted in existing LGLMs.

3.1. Node-Centric Tokenization

Specifically, most existing LGLMs directly take the node
tokens from GNNs as inputs to LLMs (Cao et al., 2023):

pθ(a|q,h) =
∏la

i=1
pθ(ai|q, fn(h1), ..., fn(hn),a<i),

(4)
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where h1, ...,hn are node embeddings from a GNN typi-
cally pretrained through self-supervised learning on large-
scale molecular datasets such as ZINC250k (Sterling &
Irwin, 2015), fn is the adapter to project the node tokens
to the LLM tokens. There are various options to tokenize
a molecule (Liu et al., 2023d). In this work, we consider
a state-of-the-art tokenizer (Xia et al., 2023) that pretrains
a VQVAE (van den Oord et al., 2017) with masked atoms
modeling and constructs a codebook Z to discretize atoms:
zu = argmini||hu − ei||2, where zu ∈ Z is the quantized
index of atom u, and ev is the codebook embedding of the
i-th entry. The codebook is trained through a reconstruction
loss with respect to some attribute vi of atom i:

Lr =
1

n

n∑
i=1

(1− vT
i v̂i

||vi|| · ||v̂i||
)γ +

1

n

n∑
i=1

||sg[hi]− ezi ||22

+
β

2

n∑
i=1

||sg[ezi ]− hi||22,

(5)
where sg[·] is the stop-gradient operator in straight-through
estimator (Bengio et al., 2013), v̂i is the reconstructed at-
tribute of atom i with a decoder, and β is a hyperparamter.
In Mole-BERT, the attribute is simply the type of atom.
Mole-BERT also manually partitions the codebook into
groups of common atoms such as carbon, nitrogen, and
oxygen to avoid codebook conflicts (Xia et al., 2023).

Intuitively, the trained atom tokens encode some contextual
information, such as the neighbors of the atoms. However,
node-centric tokenization makes the molecule-language
alignment more challenging, as LLMs have to addition-
ally relate the multiple nodes to align the corresponding
texts during the instruction tuning process. Specifically, in
molecules, motifs or functional groups usually capture rich
semantics, and often share many common atoms such as
carbon, nitrogen, and oxygen (Bohacek et al., 1996). As
shown in Fig. 2, both the carboxylic acid (“R-COOH”) and
the hydroperoxide (“R-OOH”) functional groups all contain
two oxygen atoms and a hydrogen atom. For a molecule
with hydroperoxide attached to a scaffold with carbon atoms,
it would be hard for LLMs to distinguish which functional
group is present in the molecule. Furthermore, due to the
loss of positional information in the node-centric tokeniza-
tion (Liang et al., 2023; Cao et al., 2023), the limited expres-
sivity of GNNs (Xu et al., 2019) and the positional biases of
auto-regressive LLMs (Lu et al., 2022), it is more challeng-
ing for LLMs to relate the desired nodes in a motif, which
will lead to subpar molecule-language alignment.

3.2. Motif Hallucination

To understand the issue of node-centric tokenization
more clearly, we construct a simple benchmark called
MotifHallu, to concretize the hallucination of common

functional groups by LGLMs. Specifically, we consider
the 38 common functional groups in RDKit1 and leverage
RDKit (Landrum, 2016) to detect the existence. We adopt
3, 300 molecules from ChEBI-20 (Edwards et al., 2021)
and query the existence of a functional group:

Is there a <functional group name>
in the molecule?

Then, we examine the outputs from LGLM meaning “Yes”
or “No”. For each molecule, we construct questions with
positive answers for all kinds of functional groups detected
in the molecule, and questions with negative answers for
randomly sampled 6 functional groups from the remaining.
Hence MotifHallu consists of 23, 924 questions. While
it is easy to scale up MotifHallu with more molecules
and functional groups, we find that the current scale is al-
ready sufficient to demonstrate the issue (Table 2).

4. Hierarchical Graph Tokenization
To improve the molecule-language alignment, we propose
a new strategy called HIerarchical GrapH Tokenization
(HIGHT), which contains a hierarchical graph tokenizer
and a hierarchical molecular instruction tuning dataset to
augment the inputs with hierarchical information.

4.1. Hierarchical Graph Tokenizer

Inspired by the success of hierarchical GNNs (Zhang et al.,
2021; Zang et al., 2023), we transform the original molec-
ular graph G into a hierarchical graph G′ with motif-level
and molecule-level nodes added in. Specifically, we lever-
age the Breaking of Retrosynthetically Interesting Chemical
Substructures (BRICS) algorithm (Degen et al., 2008)2 to
detect and inject a set of k + 1 supernodes, denoted as
M = {M(1), ...,M(k),M(k+1)}, with k motifs and the
original molecule M(k+1) = G. Furthermore, denoting the
set of nodes and edges in M(i) as V(i)

m and E(i)
m , respec-

tively, we augment the original molecular graph G as G′

with augmented nodes V ′ and edges E ′:

V ′ = V ∪ {v(1)m , ..., v(k+1)
m }, E ′ = E ∪ (∪k+1

i=1 E
(i)
ma), (6)

where v
(i)
m is the motif super nodes added to the original

molecule, and E(i)
ma = ∪

u∈V(i)
m
{(u, v(i)m )} are the augmented

edges connecting to the motif super node from nodes within
the corresponding motif. We employ separate VQVAEs for
atoms and motifs to learn meaningful code embeddings with

1https://github.com/rdkit/rdkit/blob/
master/Data/FunctionalGroups.txt

2Note that HIGHT possesses a high degree of extensibility and
can be augmented by incorporating advanced motif extraction
techniques (such as (Zhang et al., 2021)).
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Large Language Model

No, the hydroxide group 
consists of -OH, but…🤖

O N H … C O "Is there a hydroxide 
in this molecule?"

…

Node Tokens

(a) Node-centric tokenization.

Large Language Model

Yes, the hydroxide group 
is present in the molecule🤖

O N H … =O -OH "Is there a hydroxide 
in this molecule?"

…

Node Tokens Motif Tokens

(b) HIGHT tokenization.

Figure 2. Illustration of hallucination caused by node-centric tokenization. With only node-level tokens, LLMs have to relate the nodes
within a specific functional group to align useful molecular structures with the corresponding language descriptions. Yet, due to the
arbitrary order of atoms and position biases in LLMs, it is hard to recognize each functional group, leading to severe hallucinations.

several self-supervised learning tasks. The reconstructed
attributes in Eq. 4 include atom types at the atom-level and
the number of atoms at the motif-level (Zang et al., 2023).

Merely feeding the motif tokens with node tokens to LLMs
still can not help distinguish the motifs from atoms properly,
hence we propose to further attach positional encodings p
to all of the tokens. We choose to use Laplacian positional
embeddings (Dwivedi et al., 2020) while one could also
adopt other variants (Ying et al., 2021). Since different
types of tokens contain distinct semantics, we adopt separate
adapters for different types of tokens. Denoting the motif
tokens as h(i)

m for motif M(i), generation with HIGHT is:

pθ(a|q,h,hm) =
∏la

i=1
pθ(ai|q, fn(h1), ..., fn(hn),

fm(h(1)
m ), ..., fg(h

(k+1)
m ),a<i),

(7)
where fm(·) and fg(·) are the adapters for BRICS motifs
and the original molecules, respectively.

4.2. Hierarchical Graph Instruction Tuning Dataset

Although HIGHT tokenizer properly extracts the hierarchi-
cal information from the input graph modality, it remains
challenging to properly align the language to the correspond-
ing molecular information, without the appearance of the
respective captions in the texts. For example, if the caption
does not contain any information about the water solubility
of the hydroxide functional group (“-OH”), LGLMs will
never know that “-OH” motif corresponds to the water solu-
bility of the molecule, despite that HIGHT tokenizer extracts
the “-OH” token. In fact, the commonly used molecular in-
struction tuning curated from PubChem (Kim et al., 2022)
in existing LGLMs (Liu et al., 2023c; Cao et al., 2023; Li
et al., 2024), contains surprisingly little information about
motifs. Some samples are given in Appendix C.2.

To this end, we propose HiPubChem, which augments
the molecular instruction tuning dataset with captions of
the functional groups. We consider both the positive and
negative appearances of motifs: For the positive case, we
directly append the caption of all functional groups detected
with RDKit. We also include a brief introduction of the
functional groups to provide fine-grained information for
molecule-language alignment. For the negative case, we
randomly sample kneg motifs not appeared in the molecule
to explicitly instruct LGLMs on the absence of the mo-
tifs. Despite the simple augmentation strategy, we find that
HiPubChem significantly reduces the hallucination issue
and improves the alignment performance.

4.3. Hierarchical Graph Instruction Tuning

We use a two-stage instruction tuning (Cao et al., 2023).

Stage 1 Alignment Pretraining. We curate a new molecule-
text paired dataset from PubChem following the pipeline
of Liu et al. (2023b). We set the cutoff date by Jan. 2024,
and filter out unmatched pairs and low-quality data, which
results in 295k molecule-text pairs. Furthermore, we con-
struct the HiPubChem-295k dataset. The first stage mainly
warms up the adapter to properly project the graph tokens
with the LLM embedding space. To avoid feature distortion,
both the LLM and the GNN encoder are frozen.

Stage 2 Task-specific Instruction Tunning. With a prop-
erly trained adapter, we further leverage the task-specific
instruction tuning datasets from MoleculeNet (Wu
et al., 2017), ChEBI-20 (Mendez et al., 2019), and
Mol-Instructions (Fang et al., 2024). More details
are given in Appendix C. In Stage 2, we still keep the GNN
encoder frozen, while tuning both the adapter and the LLM
(with low-rank adaptation, i.e., LoRA (Hu et al., 2022)).
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Table 1. Detailed results in motif hallucinations on MotifHallu. Due to the imbalance of samples from positive and negative classes,
we incorporate diverse evaluation metrics to provide a detailed comparison between different methods in terms of hallucination.

METHOD Macro F1 ↑ F1 (pos) ↑ F1 (neg) ↑ Micro F1 ↑ AUROC ↑ Acc ↑ Yes Ratio
4, 124 19, 800

GIMLET (Zhao et al., 2023) 50.0 0.1 99.9 0.05 49.9 82.6 0.2
Galactica-6.7B (Taylor et al., 2022) 56.6 17.5 95.7 12.9 50.7 77.6 8.5
InstructMol (Cao et al., 2023) 52.6 95.7 9.5 28.3 48.4 20.0 94.5
HIGHT 66.8 85.5 48.2 29.7 53.2 39.1 69.4

Table 2. Results of motif hallucinations on MotifHallu.
METHOD F1 (pos) ↑ F1 (neg) ↑ Acc ↑ Yes Ratio

Node-centric Tokenization
InstructMol-G 95.7 9.5 19.9 94.5
InstructMol-G (LLama-2-7b-chat) 99.6 2.8 18.3 98.7
InstructMol-GS 97.1 10.6 20.9 94.4

Hierarchical Tokenization
HIGHT-G 85.5 48.2 39.1 74.7
HIGHT-G (LLama-2-7b-chat) 55.1 65.2 46.6 49.3
HIGHT-GS 84.5 42.7 35.1 73.1

Ablation variants of HIGHT
HIGHT-G w/o HiPubChem 96.6 12.5 21.6 96.6
HIGHT-GS w/o HiPubChem 98.2 6.5 19.4 93.3

5. Experimental Evaluation
We conduct extensive experiments to compare HIGHT with
previous node-centric tokenization across 14 real-world
tasks, including property prediction, molecular description,
and chemical reaction prediction. The details and examples
regarding the datasets and tasks involved in the experiments
are given in Appendix C. We briefly introduce the setups
below and leave the details in Appendix D.

5.1. Experimental settings

Architecture. The GNN backbone is a 5-layer GIN (Xu
et al., 2019) with a hidden dimension of 300. The adapter
is a single-layer MLP. We consider base LLMs of vicuna-
v-1.3-7B (Chiang et al., 2023) for all the tasks and llama-2-
7B-chat (Touvron et al., 2023b) for ablation studies.

Baselines. Since the focus of this work lies in the tok-
enization, our main comparison focuses on between HIGHT
and node-centric tokenization. Nevertheless, we also in-
clude a series of existing LGLMs based on non-regression
LLMs and regression LLMs, to provide an overview of the
performance achieved by HIGHT. We would like to note
that there are existing differences in pretraining data and
information used between HIGHT and those baselines. For
details, please refer to Table 7 in the Appendix.

For the node-centric based tokenization, we implement the
baseline mainly based on InstructMol (Cao et al., 2023) with
a VQVAE tokenizer from Mole-BERT (Xia et al., 2023).
HIGHT is implemented based on the same architecture with
only the tokenizer replaced. We use the suffix “-G” to refer
to LGLMs with only 2D graph input and “-GS” to refer to
LGLMs with both 2D graph and 1D selfies input (Krenn
et al., 2019; Fang et al., 2024; Cao et al., 2023). We do

not include the baselines with “-GS” for tasks other than
MotifHallu as we find that incorporating the 1D input
does not always bring improvements in the experiments.

For non-regression-based models, including the pretrained
models such as KV-PLM (Zeng et al., 2022), GraphCL (You
et al., 2020) and GraphMVP (Liu et al., 2022), and
molecular foundation models that are trained with tremen-
dous molecule-centric datasets such as MolT5-based meth-
ods (Edwards et al., 2022), Galactica (Taylor et al., 2022),
MoMu (Su et al., 2022), MolFM (Luo et al., 2023a), Uni-
Mol (Zhou et al., 2023), MolXPT (Liu et al., 2023e), GIT-
Mol (Liu et al., 2024c), and BioMedGPT (Luo et al., 2023b).
We adopt the results from the previous works Fang et al.
(2024); Cao et al. (2023) if applicable.

For regression-based LGLMs, we consider LLMs such as
ChatGPT (OpenAI, 2022), Llama (Touvron et al., 2023a) as
well as instruction tuned LLMs such as Alpaca (Dubois
et al., 2023), Baize (Xu et al., 2023), ChatGLM (Zeng
et al., 2023) and Vicuna (Chiang et al., 2023). We also
consider parameter-efficient finetuned LLMs using the
backbone of llama2 (Touvron et al., 2023b) as done by
Mol-Instructions (Fang et al., 2024).

5.2. Motif Hallucination

We begin with a proof-of-concept study with motif hallu-
cination. We mainly compare LGLMs with node-centric
to that with HIGHT tokenization with MotifHallu after
stage 1 instruction tuning. For non-regression-based mod-
els, we include two state-of-the-art LGLMs GIMLET (Zhao
et al., 2023) and Galactica (Taylor et al., 2022). We do
not include the other regression-based models as we found
they consistently answered “Yes”, making a nuanced F1
comparison less informative for them. To avoid the issue
of format following, we compare the loss values by feeding
the answers of “Yes” and “No” to the corresponding LLM,
calculating the language modeling losses, and taking the
one from “Yes” and “No” with a lower loss as the answer.

Reduction of hallucination. Due to the class imbalance
issue in MotifHallu, we first report comprehensive met-
rics in Table 1. It can be found that HIGHT maintains great
balance for both positive and negative classes compared to
baselines. Especially, in terms of macro F1 scores that are
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Table 3. Results of molecular property prediction tasks (regression)
on QM9. We report the result in MAE. †: few-shot in-context
learning (ICL) results from (Fang et al., 2024). ∆ϵ refers to the
HOMO-LUMO energy gap.

METHOD HOMO ↓ LUMO ↓ ∆ϵ ↓ AVG ↓

Alpaca† (Dubois et al., 2023) - - - 322.109
Baize† (Xu et al., 2023) - - - 261.343
LLama2-7B (Touvron et al., 2023b) (5-shot ICL) 0.7367 0.8641 0.5152 0.7510
Vicuna-13B (Chiang et al., 2023) (5-shot ICL) 0.7135 3.6807 1.5407 1.9783
Mol-Instruction (Fang et al., 2024) 0.0210 0.0210 0.0203 0.0210
InstructMol-G 0.0111 0.0133 0.0147 0.0130

HIGHT-G 0.0078 0.0086 0.0095 0.0086

averaged across classes, respectively, HIGHT demonstrates
significant improvements up to 14%.

The results of the tokenization-focused comparison are
given in Table 2. Following the practice in LVLMs, we
present the F1 scores, accuracies, and the ratio that the
model answers “Yes” (Li et al., 2023c). Given the imbal-
ance of positive and negative samples, we separately report
the F1 scores for different classes. It can be found that the
LGLMs with node-centric tokenization consistently answer
with “Yes” despite the absence of the corresponding func-
tional groups. In contrast, HIGHT significantly reduces the
worst class hallucination up to 40% in terms of F1 scores,
and improves the accuracies up to 30%. The improvements
are consistent and significant with both vicunna and llama2
LLM backbones.

Ablations with different inputs and LLM backbones.
We also conduct simple ablation studies by additionally
incorporating the 1D sequence inputs with SELFIES (Fang
et al., 2024; Cao et al., 2023). Contrary to previous results
that additionally feeding the 1D sequence always improves
the performance of LGLMs, we find that the additional
1D sequence may increase the degree of the hallucination.
We suspect that it could be caused by the extremely long
sequences of the SELFIES (Krenn et al., 2019) that may
distract the attention signals of LLMs. Nevertheless, HIGHT
still suffers less from the distraction and performs better.

In addition, when without HiPubChem (or with the HIGHT
architecture), LGLMs will still suffer the hallucination, due
to the low quality of the instruction tuning data, demonstrat-
ing the necessity of both components of HIGHT.

5.3. Molecular-Centric Benchmarks

Molecular property prediction requires LGLMs to an-
swer about particular properties given the molecule. We
use 8 datasets BACE, BBBP, HIV, SIDER, ClinTox, MUV,
and Tox21 from MoleculeNet, and CYP450 from GIM-
LET (Zhao et al., 2023) to evaluate the classification perfor-
mance with ROC-AUC. We also adopt the regression-based
property prediction datasets from (Fang et al., 2024), where
we evaluate several quantum chemistry measures such as
HUMO, LUMO, and HUMO-LUMO gap (Ramakrishnan

et al., 2014) via Mean Absolute Error (MAE).

The results of molecular property prediction are given in
Table 3 and Table 4 for regression and classification, re-
spectively. We can find that HIGHT always significantly
boosts the performance in both types of tasks. Remark-
ably, in CYP450 (Zhao et al., 2023), HIGHT significantly
outperforms the state-of-the-art model, demonstrating the
advances of LGLM with hierarchical graph tokenization.
Interestingly, Llama-2 (Touvron et al., 2023b) can match the
state-of-the-art performance in HIV in a few-shot setting,
while performing significantly worse in other datasets, for
which we suspect some data contamination might exist.

Molecular description requires the LGLMs to generate a
caption of the molecule. We adopt the widely used bench-
mark ChEBI-20 (Edwards et al., 2021) which evaluates
the linguistic distances of the generated molecule captions
of molecular characteristics such as structure, properties, bi-
ological activities etc.. We report the metrics of BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004) and Meteor (Baner-
jee & Lavie, 2005). The LGLMs are trained using the
ChEBI-20 train split, selected according to the best train-
ing loss, and evaluated using the test split.

As shown in Table 5, HIGHT consistently brings significant
improvements over LGLMs with node-centric tokenization.
Nevertheless, compared to the molecular foundation models
such as MoT5 (Edwards et al., 2022) pretrained on a signifi-
cant amount of molecule-text related corpus, there remains
a gap for regression-based LGLMs even with HIGHT. The
gap calls for future investigations on how to incorporate
HIGHT into the pretraining of the LGLMs properly.

Chemical reaction prediction requires the LGLMs to pre-
dict the results of the chemical reaction analysis, which
are crucial for AI-aided drug discovery (Fang et al., 2024).
Reagent prediction aims to predict the suitable reagents for
a particular chemical reaction. Forward reaction prediction
aims to predict the products of a chemical reaction, given the
reactants and the reagents. Retrosynthesis prediction aims
to predict the suitable reactants given a target product. The
inputs and outputs for chemical reaction related tasks adopt
the SELFIES (Krenn et al., 2019) as recommended by (Fang
et al., 2024). We report both linguistic distance metrics such
as BLEU (Papineni et al., 2002) and Levenshtein (Yujian
& Bo, 2007), and molecular similarity measures such as
similarity of the molecular fingerprints (Landrum, 2016).

As shown in Table 6, across all tasks in chemical reaction
prediction, LGLMs with HIGHT consistently and signif-
icantly improve the performances compared to the node-
centric tokenization. Meanwhile, LGLMs with HIGHT
achieve state-of-the-art results in several tasks and metrics,
compared to other regression-based LGLMs that even incor-
porate a stronger LLM backbone such as Mol-Instruction,
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Table 4. ROC-AUC Results of molecular property prediction tasks (classification) on MoleculeNet (Wu et al., 2017). Evaluation on
InstructMol and HIGHT adopt the likelihood of the tokens of “Yes” and “No”. Most of the instruction tuning datasets are from
GIMLET (Zhao et al., 2023). SIDER and ClinTox are converted following the MoleculeNet task description.

METHOD BACE ↑ BBBP ↑ HIV ↑ SIDER ↑ ClinTox MUV ↑ Tox21 ↑ CYP450 ↑
# MOLECULES 1,513 2,039 41,127 1,427 1,478 93,087 7,831 16,896
# TASKS 1 1 1 27 2 17 12 5

KV-PLM (Zeng et al., 2022) 78.5 70.5 71.8 59.8 84.3 61.7 49.2 59.2
GraphCL (You et al., 2020) 75.3 69.7 78.5 60.5 76.0 69.8 73.9 -
GraphMVP-C (Liu et al., 2022) 81.2 72.4 77.0 60.6 84.5 74.4 77.1 -
MoleculeSTM-G (Liu et al., 2023b) 80.8 70.0 76.9 61.0 92.5 73.4 76.9 -
MoMu (Su et al., 2022) 76.7 70.5 75.9 60.5 79.9 60.5 57.8 58.0
MolFM (Luo et al., 2023a) 83.9 72.9 78.8 64.2 79.7 76.0 77.2 -
Uni-Mol (Zhou et al., 2023) 85.7 72.9 80.8 65.9 91.9 82.1 78.1 -
Galactica-1.3B (Taylor et al., 2022) 57.6 60.4 72.4 54.0 58.9 57.2 60.6 46.9
Galactica-6.7B (Taylor et al., 2022) 58.4 53.5 72.2 55.9 78.4 - 63.9 -
Galactica-30B (Taylor et al., 2022) 72.7 59.6 75.9 61.3 82.2 - 68.5 -
Galactica-120B (Taylor et al., 2022) 61.7 66.1 74.5 63.2 82.6 - 68.9 -
GIMLET (Zhao et al., 2023) 69.6 59.4 66.2 - - 64.4 61.2 71.3

LLama-2-7b-chat (4-shot) (Touvron et al., 2023b) 76.9 54.2 67.8 - - 46.9 62.0 57.6
LLama-2-13b-chat (4-shot) (Touvron et al., 2023b) 74.7 52.8 72.4 - - 47.9 57.5 55.6
InstructMol-G 64.3 48.7 50.2 51.0 50.0 50.0 59.0 59.1
HIGHT-G 77.1 61.8 63.3 58.8 55.3 51.1 67.4 80.5

Table 5. Results of molecular description generation task on the test split of ChEBI-20.
MODEL BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑

MoT5-base (Edwards et al., 2022) 0.540 0.457 0.634 0.485 0.568 0.569
MoMu (MolT5-base) (Su et al., 2022) 0.549 0.462 - - - 0.576
MolFM (MolT5-base) (Luo et al., 2023a) 0.585 0.498 0.653 0.508 0.594 0.607
MolXPT (Liu et al., 2023e) 0.594 0.505 0.660 0.511 0.597 0.626
GIT-Mol-graph (Liu et al., 2024c) 0.290 0.210 0.540 0.445 0.512 0.491
GIT-Mol-SMILES (Liu et al., 2024c) 0.264 0.176 0.477 0.374 0.451 0.430
GIT-Mol-(graph+SMILES) (Liu et al., 2024c) 0.352 0.263 0.575 0.485 0.560 0.430
Text+Chem T5-augm-base (Christofidellis et al., 2023) 0.625 0.542 0.682 0.543 0.622 0.648
GPT-3.5-turbo (10-shot MolReGPT) (Li et al., 2023b) 0.565 0.482 0.623 0.450 0.543 0.585
GPT-4-0314 (10-shot MolReGPT) (Li et al., 2023b) 0.607 0.525 0.634 0.476 0.562 0.610

GPT-3.5-turbo (zero-shot) (Li et al., 2023b) 0.103 0.050 0.261 0.088 0.204 0.161
BioMedGPT-10B (Luo et al., 2023b) 0.234 0.141 0.386 0.206 0.332 0.308
Mol-Instruction (Fang et al., 2024) 0.249 0.171 0.331 0.203 0.289 0.271
InstructMol-G 0.481 0.381 0.554 0.379 0.488 0.503

HIGHT-G 0.504 0.405 0.570 0.397 0.502 0.524

and additional information of SELFIES.

5.4. Empirical Analysis

Generalist capabilities. We follow the previous practice in
training and evaluating generalist models (Liu et al., 2023a)
and consider the two settings: a) As shown in Fig. 3(a), we
first train the model with all chemical reaction prediction
data by 3 epochs to elicit the format following and the
knowledge adaption capabilities of the LGLMs after stage
1. The models are named with “-All”; b) As shown in
Fig. 3(b), we train the model with retrosynthesis task data
and evaluate the zero-shot transfer performance on forward
reaction prediction. Under both settings, we can find that
HIGHT boosts the generalist capabilities significantly.

Computation overhead. In Appendix E.1, we report the
computation overhead of pretraining and inference as well
as tunable parameters of HIGHT and InstructMol. It can be

found that, although HIGHT requires longer training time
and relatively higher tunable parameters, the absolute values
are not high. Moreover, during inference, as LLM latency
consumes most of the computation, HIGHT can even reduce
the inference latency by generating more concise answers.

Ablation studies. To better understand the effectiveness of
distinct components in HIGHT, we conduct ablation stud-
ies that train InstructMol (Cao et al., 2023) with the lapla-
cian positional encodings or with HiPubChem, as given in
Fig. 3(c). We can find that, merely incorporating positional
encoding or hierarchical instruction tuning is not sufficient
to achieve the same performance as HIGHT. On the contrary,
without a proper architecture design as HIGHT, LGLMs
with previous node-centric tokenization with HiPubChem
will confuse LLMs and even lead to degenerated down-
stream task performances. In addition, we also compare
LGLMs with llama2 backbone. As shown in Fig. 3(a),
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Table 6. Results of chemical reaction tasks. These tasks encompass reagent prediction, forward reaction prediction, and retrosynthesis. †:
few-shot ICL results from (Fang et al., 2024). ∗: use task-specific instruction data to finetune.

MODEL EXACT↑ BLEU↑ LEVENSHTEIN↓ RDK FTS↑ MACCS FTS↑ MORGAN FTS↑ VALIDITY↑

Reagent Prediction
Alpaca† (Dubois et al., 2023) 0.000 0.026 29.037 0.029 0.016 0.001 0.186
Baize† (Xu et al., 2023) 0.000 0.051 30.628 0.022 0.018 0.004 0.099
ChatGLM† (Zeng et al., 2023) 0.000 0.019 29.169 0.017 0.006 0.002 0.074
Llama† (Touvron et al., 2023a) 0.000 0.003 28.040 0.037 0.001 0.001 0.001
Vicuna† (Chiang et al., 2023) 0.000 0.010 27.948 0.038 0.002 0.001 0.007
Mol-Instruction (Fang et al., 2024) 0.044 0.224 23.167 0.237 0.364 0.213 1.000
Llama-7b∗ (Touvron et al., 2023a)(LoRA) 0.000 0.283 53.510 0.136 0.294 0.106 1.000
InstructMol-G 0.031 0.429 31.447 0.389 0.249 0.220 1.000

HIGHT-G 0.050 0.462 28.970 0.441 0.314 0.275 1.000

Forward Reaction Prediction
Alpaca† (Dubois et al., 2023) 0.000 0.065 41.989 0.004 0.024 0.008 0.138
Baize† (Xu et al., 2023) 0.000 0.044 41.500 0.004 0.025 0.009 0.097
ChatGLM† (Zeng et al., 2023) 0.000 0.183 40.008 0.050 0.100 0.044 0.108
Llama† (Touvron et al., 2023a) 0.000 0.020 42.002 0.001 0.002 0.001 0.039
Vicuna† (Chiang et al., 2023) 0.000 0.057 41.690 0.007 0.016 0.006 0.059
Mol-Instruction (Fang et al., 2024) 0.045 0.654 27.262 0.313 0.509 0.262 1.000
Llama-7b∗ (Touvron et al., 2023a)(LoRA) 0.012 0.804 29.947 0.499 0.649 0.407 1.000
InstructMol-G 0.031 0.853 24.790 0.512 0.362 0.303 0.993

HIGHT-G 0.037 0.869 23.759 0.590 0.394 0.340 0.993

Retrosynthesis
Alpaca† (Dubois et al., 2023) 0.000 0.063 46.915 0.005 0.023 0.007 0.160
Baize† (Xu et al., 2023) 0.000 0.095 44.714 0.025 0.050 0.023 0.112
ChatGLM† (Zeng et al., 2023) 0.000 0.117 48.365 0.056 0.075 0.043 0.046
Llama† (Touvron et al., 2023a) 0.000 0.036 46.844 0.018 0.029 0.017 0.010
Vicuna† (Chiang et al., 2023) 0.000 0.057 46.877 0.025 0.030 0.021 0.017
Mol-Instruction (Fang et al., 2024) 0.009 0.705 31.227 0.283 0.487 0.230 1.000
Llama-7b∗ (Touvron et al., 2023a)(LoRA) 0.000 0.283 53.510 0.136 0.294 0.106 1.000
InstructMol-G 0.001 0.835 31.359 0.447 0.277 0.241 0.996

HIGHT-G 0.008 0.863 28.912 0.564 0.340 0.309 1.000
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Figure 3. Ablation studies.

HIGHT still significantly boosts the performance. More
ablation studies are provided in Appendix E.

6. Conclusions
This paper presents HIGHT, a novel hierarchical graph tok-
enization technique. By incorporating the hierarchical graph
information, HIGHT improves the molecule-language align-
ment performance, reducing hallucinations and boosting
accuracy in molecular tasks. Nevertheless, the current focus
on molecular graphs requires further verification for wider
applicability to other forms of graph data, such as those
originating from social networks. Despite the limitation,

HIGHT represents a significant step forward in advancing
graph comprehension capability of LLMs, and highlighting
paths for future research in this direction.

Meanwhile, incorporating 3D information into the graph-
language alignment is also a promising future direction, es-
pecially for broader scientific tasks such as single-cell mod-
eling and understanding. For example, built upon HIGHT,
one could design a new 3D tokenizer to accommodate 3D
properties of motifs, scale up 3D data to include amino
acids in proteins and certain recurrent structures in RNA
sequences, incorporate 3D positional encoding, and curate
instruction tuning data with 3D descriptive captions.
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A. More Future Works
Built upon HIGHT, there are several promising future directions. For example, one could extend this study to more types of
graphs, such as social networks and knowledge graphs, by exploring the crucial substructures therein:

• Indeed, motifs generically exist in other types of graphs and are crucial for a variety of tasks (Ribeiro et al., 2021). For
example, cliques can define boundaries between groups of people in social networks (Doreian & Woodard, 1994). The
idea of HIGHT could be seamlessly applied to other graphs where we have some prior knowledge about critical motifs.

• Meanwhile, when we do not have prior knowledge about the motifs, the GNNs intrinsically model the hierarchical
nature of graphs in different orders (Ying et al., 2018) and thus can be integrated into LGLMs to learn the hierarchical
graph information. A similar idea has been verified successful in graph transformers (Zhang et al., 2022).

• Furthermore, one could also adopt interpretable GNNs to identify the critical subgraphs for the task (Yu et al., 2021;
Miao et al., 2022; Chen et al., 2024b) that capture the underlying causal information about the underlying tasks (Chen
et al., 2022; 2023; Yao et al., 2024; Liu et al., 2024a; Yao et al., 2025; Xu et al., 2025). It is also interesting to further
investigate the hallucinations caused by the spurious correlations during the alignment (Wang et al., 2024).

B. Comparison between other LGLMs

Table 7. Comparison between other LGLMs in terms of the backbone, instruction tuning, downstream usage for Molecular Property
prediction, and capable tasks. It can be found that HIGHT is capable of various tasks, given limited pre-training data and information.
Note that compared to the instruction tuning data for other LGLMs, such as KV-PLM (Zeng et al., 2022), which consists of papers with
detailed information about molecules, the text descriptions in HIGHT contain relatively simple sentences.

Model Backbone Information Instruction Tuning Data Downstream # Tasks

HIGHT/InstructMol (Cao et al., 2023) GNN+Llama 2D Graph+Text HiPubChem-295k LoRA 7
GraphCL (You et al., 2020) GNN 2D Graph Downstream training data Finetuning 1
GraphMVP (Liu et al., 2022) GNN 2D+3D graph Geom-50K Finetuning 1
MoleculeSTM (Xia et al., 2023) GNN+SciBERT 2D Graph+3D Graph+Text PubChemSTM-280K Finetuning 6
KV-PLM (Zeng et al., 2022) BERT 1D SMILES+Text S2orc-300K academic papers Finetuning 5
MolT5 (Edwards et al., 2022) T5 1D SMILES+Text C4+ZINC(100M) Finetuning 2
Text+Chem T5 (Christofidellis et al., 2023) T5 1D SMILES+Text Multi task-33.5M Finetuning 5
MoMu (Su et al., 2022) GNN+BERT 2D Graph+Text Graph-Docuemnt Pair-15.6K Finetuning 4
MolFM (Luo et al., 2023a) GNN+BERT Knowledge Graph+2D+3D Graph+Text KG-15K+S2ORC-37M Finetuning 4
Uni-Mol (Zhou et al., 2023) Transformer 3D Graph molecule-209M+protein-3.2M Finetuning 4
Galactica (Taylor et al., 2022) GPT 1D SMILES/Text Documents-59M+chemicla prompts-2.5M zero-shot 12
MolXPT (Liu et al., 2023e) GPT2 1D SMILES+Text Mixed text-68M Finetuning 2
GIMLET (Zhao et al., 2023) GNN+T5 2D Graph+Text ChemBL-730K zero-shot 2

C. Details of Instruction Tuning Datasets
We provide a summary of the datasets for instruction tuning and evaluation in this paper as in Table 8. Meanwhile, we also
list the data sources and the corresponding licenses of the sources for each task and dataset. Then, we will elaborate more on
the details of the datasets in the following subsections.

C.1. Details of the PubChem Dataset

PubChem3 is one of the largest public molecule database (Kim et al., 2022), and has been widely adopted by the alignment
training of LGLMs (Liu et al., 2023c;b; Cao et al., 2023). Our construction of PubChem predominantly follows Liu et al.
(2023b). We will briefly describe the main steps and interested readers may refer the details to (Liu et al., 2023b):

• We curate the data from PubChem using the official API and set the data cutoff date as 12 Jan. 2024. It downloads both
the molecular structure (e.g., SMILES, 2D molecular graphs) in SDF format, and the text descriptions.

• Then, we will filter out molecules that do not have descriptions or can not match via the PubChem ID. In the descriptions,
the molecule names are replaced with “This molecule”, in order to facilitate LLMs to understand the instructions.

3https://pubchem.ncbi.nlm.nih.gov
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Table 8. Summary of datasets involved in our paper.

Datasets Train Test Content

PubChem 295,228 N/A Molecules and the associated descriptions from PubChem.
HiPubChem 295,228 N/A Molecules and the associated descriptions from PubChem

and about functional groups in the molecule.
MoleculeNet-HIV 32,901 4,113 Question answering about the ability of the molecule to

inhibit HIV replication.
MoleculeNet-BACE 1,210 152 Question answering about the ability of the molecule to

bind to the BACE1 protein
MoleculeNet-BBBP 1,631 204 Question answering about the ability of the molecule to

diffuse across the brain blood barrier.
MoleculeNet-SIDER 1,141 143 Question answering about the ability of the side effects.
MoleculeNet-ClinTox 1,188 148 Question answering about the toxicology.
MoleculeNet-MUV 74,469 9,309 Question answering about PubChem bioAssay
MoleculeNet-Tox21 6,877 860 Question answering about Toxicology in the 21st century
CYP45- 13,516 1,690 Question answering about CYP PubChem BioAssay CYP

1A2, 2C9, 2C19, 2D6, 3A4 inhibition.
Property Prediction (Regres-
sion)

360,113 1,987 Question answering about the quantum mechanics proper-
ties of the molecule.

Forward Reaction Prediction 124,384 1,000 Question answering about the products of a chemical re-
action, given specific reactants and reagents.

Reagent Prediction 124,384 1,000 Question answering about suitable catalysts, solvents, or
ancillary substances required for a specific chemical reac-
tion.

Retrosynthesis Prediction 128,684 1,000 Question answering about the reactants and reagents of a
chemical reaction, given specific products.

ChEBI-20 26,407 3,300 Molecules and the associated Chemical Entities of Biolog-
ical Interest (ChEBI) (Hastings et al., 2015) annotations.

MotifHallu N/A 23,924 Question answering about existing functional groups in
the molecule.

Finally, the curation generates 295k molecule-text pairs that we term as PubChem-295k. PubChem-295k will be mainly
used for the stage 1 alignment training.

C.2. Details of HiPubChem Dataset

HiPubChem augments the molecular instruction tuning dataset with captions of the functional groups. We consider both
the positive and negative appearances of motifs when augmenting the instructions. For the positive case, we directly append
the caption of all functional groups detected with RDKit:

This molecule has <#> of <functional group name> groups.

For the negative case, we randomly sample kneg that do not appear in the molecule:

This molecule has no <functional group name> groups.
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Table 9. Summary of data resources and licenses of datasets involved in our paper.
Tasks/Datasets Data Sources License URL License Note

PubChem, HiPubChem PubChem https://www.nlm.nih.
gov/web_policies.html

Works produced by the U.S. gov-
ernment are not subject to copyright
protection in the United States. Any
such works found on National Li-
brary of Medicine (NLM) Web sites
may be freely used or reproduced
without permission in the U.S.

Reaction Prediction USPTO https://www.uspto.gov/
learning-and-resources/
open-data-and-mobility

It can be freely used, reused, and
redistributed by anyone.

Property Prediction MoleculeNet https://opensource.org/
license/mit/

Permission is hereby granted, free
of charge, to any person obtaining
a copy of this software and associ-
ated documentation files (the “Soft-
ware”), to deal in the Software with-
out restriction, including without
limitation the rights to use, copy,
modify, merge, publish, distribute,
sublicense, and/or sell copies of the
Software, and to permit persons to
whom the Software is furnished to
do so.

Property Prediction CYP450 https://www.nlm.nih.
gov/web_policies.html

The data is from Zhao et al. (2023)
that curates PubChem BioAssay
CYP 1A2, 2C9, 2C19, 2D6, 3A4
inhibition. Thus it shares the same
license as PubChem.

Molecular Description,
MotifHallu

ChEBI https://creativecommons.
org/licenses/by/4.0/

You are free to: Share — copy
and redistribute the material in any
medium or format. Adapt — remix,
transform, and build upon the mate-
rial for any purpose, even commer-
cially.

Table 10. Summary of inputs and outputs of the tasks in experiments.

input output

motif hallucination molecule and question about the existence of a motif yes or no
molecular property prediction (classification) molecule and question about the existence of the property yes or no
molecular property prediction (regression) molecule and question about the value of the property property value
molecular caption molecule and question asking for the molecular caption molecular caption
chemical reaction prediction molecules and question about the reaction molecular results

Table 11. Examples of PubChem and HiPubChem datasets.
PubChem HiPubChem

SMILES: CC(=O)OC(CC(=O)[O-])C[N+](C)(C)C
This molecule is an O-acylcarnitine having acetyl as the acyl substituent.
It has a role as a human metabolite. It is functionally related to an acetic
acid. It is a conjugate base of an O-acetylcarnitinium.

This molecule has 1 carboxylic acids functional group. This molecule
has no methyl amide, or amide, or nitro or thiols groups. This molecule
is an O-acylcarnitine having acetyl as the acyl substituent. It has a role
as a human metabolite. It is functionally related to an acetic acid. It is a
conjugate base of an O-acetylcarnitinium.

SMILES: CCN(CC)CCOC(=O)C(Cc1cccc2ccccc12)CC1CCCO1
This molecule is a member of naphthalenes. This molecule has 0 functional groups. This molecule is a member of

naphthalenes.
SMILES: Cc1c2[nH]c(c1CCC(=O)O)Cc1[nH]c(c(CCC(=O)O)c1C)Cc1[nH]c(c(CCC(=O)O)c1C)Cc1[nH]c(c(C)c1CCC(=O)O)C2
This molecule is a coproporphyrinogen. It has a role as an Escherichia
coli metabolite and a mouse metabolite. It is a conjugate acid of a
coproporphyrinogen III(4-).

This molecule has 1 carboxylic acids functional groups. This molecule
has no methyl amide, or diazo, or cyano or thiols groups. This molecule
is a coproporphyrinogen. It has a role as an Escherichia coli metabolite
and a mouse metabolite. It is a conjugate acid of a coproporphyrinogen
III(4-).

Despite the simple augmentation strategy, we find that HiPubChem significantly reduces the hallucination issue, and
improves the molecule-language alignment performance.

For comparison, we provide examples of PubChem and HiPubChem in Table 11.
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C.3. Details of Property Prediction Dataset

The task of molecular property prediction mainly aims to predict certain biochemical or physical properties of molecules.
Usually, these properties have a close relation with the molecular substructures (i.e., functional groups) (Bohacek et al.,
1996). In this work, we consider the scenarios of both binary classification based and the regression based molecular
property prediction, and the datasets are mainly derived from MoleculeNet (Wu et al., 2017).

For the classification, we consider three subtasks, HIV, BACE, and BBBP. The HIV subtask mainly evaluates whether the
molecule is able to impede the replication of the HIV virus. The BACE subtask mainly evaluates the binding capability of
a molecule to the BACE1 protein. The BBBP subtask mainly evaluates the capability of a molecule to passively diffuse
across the human brain blood barrier. For task-specific instruction tuning, we convert those classification based datasets into
instructions. Examples are given in Table 12.

Table 12. Examples of the property prediction (classification) datasets.
Dataset Question Answer

HIV SMILES: N=C1OC2(c3ccccc3)C3=C(OC(=NC)N2C)C(=O)OC3(c2ccccc2)N1C
Please help me evaluate whether the given molecule can impede the replication of the HIV virus. No

BACE SMILES: CN(C(=O)CCc1cc2ccccc2nc1N)C1CCCCC1
Can the given molecule bind to the BACE1 protein? Yes

BBBP SMILES: Cc1c[nH+][o+]c(C([NH])CC(C)C(C)(C)N(C(C)(C)C)C(C)(N)N)c1[O-]
Can the given molecule passively diffuse across the brain blood barrier? Yes

Table 13. Examples of the property prediction (regression) datasets.

Question Answer

SELFIES: [O][=C][O][C][C][C][C][Ring1][=Branch1][C][Ring1][Ring2]
Can you give me the energy difference between the HOMO and LUMO orbitals of this molecule? 0.2756
SELFIES: [C][C][C][=Branch1][C][=O][N][Branch1][C][C][C][=Branch1][C][=O][N]
What is the lowest unoccupied molecular orbital (LUMO) energy of this molecule? -0.0064
SELFIES: [C][C][=C][O][C][=C][Ring1][Branch1][C][Branch1][C][C][C]
Please provide the highest occupied molecular orbital (HOMO) energy of this molecule. -0.2132

For regression, we adopt the instruction tuning data from Mol-Instructions (Fang et al., 2024). The regression
based property prediction focuses on predicting the quantum mechanics properties of the molecules. The 1D sequence
information in this task is given by SELFIES (Krenn et al., 2019). The original data is sourced from the QM9 subset of the
MolculeNet (Wu et al., 2017). There are three subtasks: (i) Highest occupied molecular orbital (HOMO) energy prediction;
(ii) Lowest occupied molecular orbital (LUMO) energy prediction; (iii) and HUMO-LUMO gap energy prediction. Some
examples of the regression based property prediction dataset are given in Table 13.

C.4. Details of Reaction Prediction Dataset

We adopt three chemical reaction related tasks from Mol-Instructions (Fang et al., 2024): Forward reaction predic-
tion, reagent prediction, and retrosynthesis prediction. The input and output contain 1D sequence information given by
SELFIES (Krenn et al., 2019). Some examples of the Mol-Instructions datasets are given in Table 14, where the
SELFIES represented molecules are denoted as “¡SELFIES¿” for clarity.

The task of forward reaction prediction aims to predict the possible products of a chemical reaction. The input includes the
SELFIES sequences of the reactant and reagent of the chemical reaction. And the model needs to predict the SELFIES
of the products. The original data is sourced from USPTO 4, which consists of chemical reactions of organic molecules
extracted from American patents and patent applications.

The task of reagent reaction prediction aims to predict the suitable catalysts, solvents, and ancillary substances with respect
to a chemical reaction. The input includes the SELFIES sequences of the chemical reaction. The original data is sourced

4https://developer.uspto.gov/data
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Table 14. Examples of the chemical reaction datasets.
Task Examples

Forward Reaction Prediction Question: With the provided reactants and reagents, propose a potential product.¡SELFIES¿
Answer: ¡SELFIES¿

Reagent Prediction Question: Please suggest some possible reagents that could have been used in the following chemical
reaction. The reaction is ¡SELFIES¿
Answer: ¡SELFIES¿

Retrosynthesis Prediction Question: Please suggest potential reactants for the given product. The product is: ¡SELFIES¿
Answer: ¡SELFIES¿

from USPTO 5, as the other tasks.

The task of retrosynthesis prediction aims to reverse engineer a particular compound by predicting the potential reactants or
reagents that are required to synthesis the compound. The input includes the SELFIES sequences of the target product. The
original data is sourced from USPTO 6, similar to the other tasks.

C.5. Details of Molecular Description Dataset

For the molecular description task, we adopt a widely used dataset ChEBI-20 (Edwards et al., 2021). Based on the
molecules from PubChem, Edwards et al. (2021) collected the Chemical Entities of Biological Interest (ChEBI) (Hastings
et al., 2015) annotations of the molecules, which are the descriptions of molecules. We transform the task into the instructions,
and present some samples in Table 15. The authors collect 33, 010 molecule-text pairs and split them into training (80%),
validation (10%), and testing (10%) subsets. We mainly adopt the original training split to tune the model and evaluate the
tuned model on the original test split.

Table 15. Examples of the molecular descrioption datasets.

Question Answer

SMILES: C1=CC=C(C=C1)[As](=O)(O)[O-]
Could you give me a brief overview of this molecule? The molecule is the organoarsonic acid anion formed by

loss of a single proton from the arsonic acid grouping in
phenylarsonic acid. It is a conjugate base of a phenylar-
sonic acid.

SMILES: CCCCCCCCCCCC(=O)OC(=O)CCCCCCCCCCC
Could you provide a description of this molecule? The molecule is an acyclic carboxylic anhydride resulting

from the formal condensation of the carboxy groups of
two molecules of dodecanoic acid. It derives from a dode-
canoic acid.

SMILES: CCCCNC=O
Please give me some details about this molecule. The molecule is a member of the class of formamides that

is formamide substituted by a butyl group at the N atom.
It has a role as a human metabolite. It derives from a
formamide.

C.6. Details of MotifHallu Dataset

The MotifHallu is mainly used to measure the hallucination of common functional groups by LGLMs. For the
construction of MotifHallu, we consider the common functional groups in RDKit7 as shown in Table 16. There are 39
common functional groups, while we neglect the one with the name of “???”.

Then, we leverage RDKit (Landrum, 2016) to detect the existence of the left 38 valid functional groups within a molecule.
We consider 3, 300 molecules from ChEBI-20 test split (Edwards et al., 2021), and adopt the query style as for large
vision-language models (Li et al., 2023c) that queries the existence of specific functional group one by one:

5https://developer.uspto.gov/data
6https://developer.uspto.gov/data
7https://github.com/rdkit/rdkit/blob/master/Data/FunctionalGroups.txt
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Is there a <functional group name> in the molecule?

Examples of MotifHallu are given in Table 17.

During the evaluation, we detect whether the LGLM gives outputs meaning “Yes” or “No” following the practice in (Li et al.,
2023c). For each molecule, we construct questions with positive answers for all kinds of functional groups detected in the
molecule, and questions with negative answers for randomly sampled 6 functional groups from the 38 common functional
groups in RDKit. The construction finally yields 23, 924 query answer pairs about the existence of functional groups in the
molecule. While it is easy to scale up MotifHallu by automatically considering more molecules and a broader scope of
functional groups, we find that the current scale is already sufficient to demonstrate the hallucination phenomena in LGLMs.

D. Details of Experiments
Implementation of graph tokenizer. We implement the GNN tokenizer/encoder based on the same GNN backbone,
which is a 5-layer GIN (Xu et al., 2019). The hidden dimension is 300. For the node-centric tokenization, we employ the
VQVAE GNN tokenizer from Mole-BERT (Xia et al., 2023) and adopt self-supervised learning tasks from the official
Mole-BERT implementation.8 For HIGHT, we train the VQVAE with the self-supervised learning tasks from (Zang et al.,
2023) based on the official implementation.9 Meanwhile, we set the hyperparameters of GNN tokenizer training the same as
those recommended by (Xia et al., 2023; Zang et al., 2023).

After training the tokenizer, we adopt the GNN encoder within the tokenizer instead of the codebook embeddings as we
empirically find that the GNN embeddings perform better than that using the VQVAE codebook embeddings.

Implementation of LGLMs. For the cross-modal adapters, we implement it as a single-layer MLP with an input
dimension of 300 as our main focus is the tokenization. For HIGHT, we adopt three distinct adapters to handle the node-
level, motif-level and graph-level embeddings. Meanwhile, we also adopt a Laplacian position encodings with respect to the
supernode-augmented graphs. The dimension of the Laplacian position encoding is set to 8, therefore the input dimensions
of the adapters in HIGHT will be 308.

For the LoRA adapters, we use a LoRA rank of 128 and a scaling value α of 256 for molecular property prediction
(classification) in order to better fit with the task, and use a LoRA rank of 64 and a scaling value α of 16 for all the remaining
methods and tasks.

For the base LLM, we mainly adopt vicuna-v-1.3-7B (Chiang et al., 2023). The overall scale of parameters is around
6.9B.

Implementation of instruction tuning. In stage 1 instruction tuning, we train all methods based on PubChem-295k
dataset. The training goes 5 epochs, with a batch size of 64 (distributed to 4 GPUs) by default. If there is an OOM issue, we
will decrease the batch size a little bit to 40. The learning rate is set to 2× 10−3 for all methods.

For classification-based property prediction, the training goes 20 epochs, with a batch size of 128 (distributed to 4 GPUs) by
default. If there is an OOM issue, we will decrease the batch size a little bit to 64. The learning rate is set to 8× 10−5 for all
methods.

For regression-based property prediction, the training goes 5 epochs, with a batch size of 64 (distributed to 4 GPUs) by
default. The learning rate is set to 2× 10−5 for all methods.

For molecular description, the training goes 50 epochs, with a batch size of 64 (distributed to 4 GPUs) by default. If there is
an OOM issue, we will decrease the batch size a little bit to 32. The learning rate is set to 8× 10−5 for all methods.

For forward reaction prediction, the training goes 5 epochs, with a batch size of 64 (distributed to 4 GPUs) by default. The
learning rate is set to 2× 10−5 for all methods.

For reagent prediction, the training goes 5 epochs, with a batch size of 64 (distributed to 4 GPUs) by default. The learning
rate is set to 2× 10−5 for all methods.

8https://github.com/junxia97/Mole-BERT
9https://github.com/ZangXuan/HiMol
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Table 16. List of functional groups from RDKit used to construct MotifHallu. The functional group with the name “???” is neglected.

Chemical Representation SMARTS Name

-NC(=O)CH3 *-[N;D2]-[C;D3](=O)-[C;D1;H3] methyl amide
-C(=O)O *-C(=O)[O;D1] carboxylic acids

-C(=O)OMe *-C(=O)[O;D2]-[C;D1;H3] carbonyl methyl ester
-C(=O)H *-C(=O)-[C;D1] terminal aldehyde
-C(=O)N *-C(=O)-[N;D1] amide

-C(=O)CH3 *-C(=O)-[C;D1;H3] carbonyl methyl
-N=C=O *-[N;D2]=[C;D2]=[O;D1] isocyanate
-N=C=S *-[N;D2]=[C;D2]=[S;D1] isothiocyanate

Nitrogen containing groups

-NO2 *-[N;D3](=[O;D1])[O;D1] nitro
-N=O *-[N;R0]=[O;D1] nitroso
=N-O *=[N;R0]-[O;D1] oximes

=NCH3 *=[N;R0]-[C;D1;H3] Imines
-N=CH2 *-[N;R0]=[C;D1;H2] Imines

-N=NCH3 *-[N;D2]=[N;D2]-[C;D1;H3] terminal azo
-N=N *-[N;D2]=[N;D1] hydrazines
-N#N *-[N;D2]#[N;D1] diazo
-C#N *-[C;D2]#[N;D1] cyano

S containing groups

-SO2NH2 *-[S;D4](=[O;D1])(=[O;D1])-[N;D1] primary sulfonamide
-NHSO2CH3 *-[N;D2]-[S;D4](=[O;D1])(=[O;D1])-[C;D1;H3] methyl sulfonamide

-SO3H *-[S;D4](=O)(=O)-[O;D1] sulfonic acid
-SO3CH3 *-[S;D4](=O)(=O)-[O;D2]-[C;D1;H3] methyl ester sulfonyl
-SO2CH3 *-[S;D4](=O)(=O)-[C;D1;H3] methyl sulfonyl
-SO2Cl *-[S;D4](=O)(=O)-[Cl] sulfonyl chloride
-SOCH3 *-[S;D3](=O)-[C;D1] methyl sulfinyl
-SCH3 *-[S;D2]-[C;D1;H3] methylthio

-S *-[S;D1] thiols
=S *=[S;D1] thiocarbonyls

Miscellaneous fragments

-X *-[#9,#17,#35,#53] halogens
-tBu *-[C;D4]([C;D1])([C;D1])-[C;D1] t-butyl
-CF3 *-[C;D4](F)(F)F trifluoromethyl

-C#CH *-[C;D2]#[C;D1;H] acetylenes
-cPropyl *-[C;D3]1-[C;D2]-[C;D2]1 cyclopropyl

Teeny groups

-OEt *-[O;D2]-[C;D2]-[C;D1;H3] ethoxy
-OMe *-[O;D2]-[C;D1;H3] methoxy

-O *-[O;D1] side-chain hydroxyls
=O *=[O;D1] side-chain aldehydes or ketones
-N *-[N;D1] primary amines
=N *=[N;D1] ???
#N *#[N;D1] nitriles

For retrosynthesis prediction, the training goes 5 epochs, with a batch size of 64 (distributed to 4 GPUs) by default. The
learning rate is set to 2× 10−5 for all methods.

Training and evaluation. Throughout the paper, we use a max token length of 2048. Meanwhile, we adopt an AdamW
optimizer with a warmup ratio of 3% for optimizing all models. We select the final model according to the best training loss.
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Table 17. Examples of the MotifHallu dataset.
Question Answer

SMILES: COC1=CC=CC2=C1C(=CN2)C/C(=N/OS(=O)(=O)[O-])/S[C@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O)O)O
Is there a methyl ester sulfonyl group in the molecule? No
SMILES: CN(C)C(=O)C(CCN1CCC(CC1)(C2=CC=C(C=C2)Cl)O)(C3=CC=CC=C3)C4=CC=CC=C4
Is there a carbonyl methyl ester group in the molecule? Yes
SMILES: CN(C)C(=O)C(CCN1CCC(CC1)(C2=CC=C(C=C2)Cl)O)(C3=CC=CC=C3)C4=CC=CC=C4
Is there a terminal aldehyde group in the molecule? No

For the evaluation of classification-based property prediction, we adopt the ROC-AUC following the common practice (Wu
et al., 2017).

For the evaluation of regression-based property prediction, we adopt the Mean Absolute Error (MAE) following the common
practice (Fang et al., 2024).

For the evaluation of molecular description, we adopt BLEU-2, BLEU-4, ROUGE-1, ROUGE-2, ROUGE-L, and METEOR
following the common practice (Papineni et al., 2002; Lin, 2004; Edwards et al., 2021). To improve the reliability of the
evaluation, the metrics are computed based on the tokenizer scibert scivocab uncased of SciBERT (Beltagy et al.,
2019).

We follow the common practice to evaluate models for the tasks of chemical reaction predictions (Fang et al., 2024). We
adopt linguistic metrics such as BLEU (Papineni et al., 2002), ROUGE-L (Lin, 2004), METEOR (Banerjee & Lavie, 2005)
and Levenshtein scores (Yujian & Bo, 2007). Meanwhile, we also validate the validity of the generated molecular sequences
with RDKit (Landrum, 2016). In addition, several molecular similarity measures are also leveraged. Specifically, we present
the MAE of the RDKit, MACCS, and Morgan fingerprints to assess the semantic similarity of the generated compounds and
the ground truth ones (Durant et al., 2002; Schneider et al., 2015).

As for the MotifHallu, in order to avoid the drawbacks that LGLMs may output answers that do not follow the instructions,
we compare the loss values by feeding the answers of “Yes” and “No”, and take the one with a lower autoregressive language
modeling loss as the answer. Following the practice in LVLMs, we present the F1 scores, accuracies, and the ratio that the
model answers “Yes” (Li et al., 2023c). Given the severe imbalance of positive and negative samples, we separately report
the F1 scores for positive and negative classes.

Software and hardware. We implement our methods with PyTorch 11.3 (Paszke et al., 2019). We run experiments on
Linux Servers with NVIDIA V100 and NVIDIA A100 (40G) graphics cards with CUDA 11.7.

E. More Ablation Studies
E.1. Computation overhead

Table 18. Training Computational Overhead. We count the average graph size of PubChem and HiPubChem, where HiPubChem adds 9
additional tokens on average. The real preprocessing time and training time are shown below, which are estimated based on 4 A100 40G
GPUs. Although HIGHT requires more time to train, the absolute computational overhead of HIGHT is not high.

Graph Size Preprocessing Time Training Time

PubChem 34.39 16min 32sec 8hour 17min 59sec
HiPubChem 43.21 25min 35sec 15hour 36min 23sec

E.2. Ablation studies with different setups of the tokenizers

In Table 21, we present more results of the ablation studies with different setups of HIGHT and node-centric tokenizer.
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Table 19. Inference Computational Overhead. The inference computational overhead is estimated based on 4 A100 40G GPUs. During
the inference, the LLM latency takes up the majority of time. A well-trained LGLM with HIGHT is able to generate more concise and
valid answers and thus may take less time during inference.

Property Prediction MolCaption Reagent Prediction Forward Reaction Retrosynthesis

InstructMol 14min 54sec 6hour 22min 27sec 56min 56sec 1hour 34min 28sec 1hour 50min 47sec
HIGHT 15min 12sec 4hour 59min 50sec 50min 29sec 1hour 22min 08sec 1hour 49min 42sec

Table 20. Number of Tunable Parameters during Training. When pretraining the GNN tokenizer, the number of tunable parameters is the
number of parameters in GNN encoder; In stage 1, the number of tunable parameters is the number of parameters in the projector; In
stage 2, the number of tunable parameters is the number of parameters in the projector and in LoRA.

graph token dimension GNN encoder params in projector params in tokenizer LoRA

InstructMol 300d 1,860,905 1,232,896 3,093,801 159,907,840
HIGHT 300d 1,865,105 3,796,992 5,662,097 159,907,840
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Table 21. More results of chemical reaction tasks with ablation studies. These tasks encompass reagent prediction, forward reaction
prediction, and retrosynthesis. †: few-shot ICL results from (Fang et al., 2024). ∗: use task-specific instruction data to finetune.

MODEL EXACT↑ BLEU↑ LEVENSHTEIN↓ RDK FTS↑ MACCS FTS↑ MORGAN FTS↑ VALIDITY↑

Reagent Prediction
Alpaca† (Dubois et al., 2023) 0.000 0.026 29.037 0.029 0.016 0.001 0.186
Baize† (Xu et al., 2023) 0.000 0.051 30.628 0.022 0.018 0.004 0.099
ChatGLM† (Zeng et al., 2023) 0.000 0.019 29.169 0.017 0.006 0.002 0.074
LLama† (Touvron et al., 2023a) 0.000 0.003 28.040 0.037 0.001 0.001 0.001
Vicuna† (Chiang et al., 2023) 0.000 0.010 27.948 0.038 0.002 0.001 0.007
Mol-Instruction (Fang et al., 2024) 0.044 0.224 23.167 0.237 0.364 0.213 1.000
LLama-7b∗ (Touvron et al., 2023a)(LoRA) 0.000 0.283 53.510 0.136 0.294 0.106 1.000
InstructMol-G 0.031 0.429 31.447 0.389 0.249 0.220 1.000
+Positional Encoding 0.009 0.423 30.833 0.370 0.231 0.197 0.986
+HiPubChem 0.016 0.473 30.455 0.369 0.237 0.194 0.990
+Large Tokenizer 0.040 0.454 29.163 0.416 0.284 0.248 1.000

InstructMol-GS 0.057 0.439 29.757 0.437 0.314 0.271 0.999
InstructMol+LLama-2-7b-chat 0.016 0.459 29.238 0.359 0.225 0.189 0.988

HIGHT-G 0.050 0.462 28.970 0.441 0.314 0.275 1.000
HIGHT-GS 0.067 0.482 27.167 0.462 0.346 0.303 1.000
HIGHT +LLama-2-7b-chat 0.057 0.495 26.591 0.453 0.333 0.293 1.000

Forward Reaction Prediction
Alpaca† (Dubois et al., 2023) 0.000 0.065 41.989 0.004 0.024 0.008 0.138
Baize† (Xu et al., 2023) 0.000 0.044 41.500 0.004 0.025 0.009 0.097
ChatGLM† (Zeng et al., 2023) 0.000 0.183 40.008 0.050 0.100 0.044 0.108
LLama† (Touvron et al., 2023a) 0.000 0.020 42.002 0.001 0.002 0.001 0.039
Vicuna† (Chiang et al., 2023) 0.000 0.057 41.690 0.007 0.016 0.006 0.059
Mol-Instruction (Fang et al., 2024) 0.045 0.654 27.262 0.313 0.509 0.262 1.000
LLama-7b∗ (Touvron et al., 2023a)(LoRA) 0.012 0.804 29.947 0.499 0.649 0.407 1.000
InstructMol-G 0.031 0.853 24.790 0.512 0.362 0.303 0.993
+Positional Encoding 0.0102 0.829 26.622 0.419 0.328 0.268 0.981
+HiPubChem 0.011 0.819 26.010 0.396 0.315 0.264 0.975
+Large Tokenizer 0.040 0.861 24.051 0.544 0.380 0.328 0.996

InstructMol-GS 0.252 0.926 17.773 0.755 0.599 0.543 1.000
InstructMol+LLama-2-7b-chat 0.020 0.841 25.109 0.426 0.339 0.284 0.998

HIGHT-G 0.037 0.869 23.759 0.590 0.394 0.340 0.993
HIGHT-GS 0.293 0.935 16.687 0.774 0.618 0.566 1.000
HIGHT +LLama-2-7b-chat 0.042 0.873 23.854 0.590 0.402 0.344 0.996

Retrosynthesis
Alpaca† (Dubois et al., 2023) 0.000 0.063 46.915 0.005 0.023 0.007 0.160
Baize† (Xu et al., 2023) 0.000 0.095 44.714 0.025 0.050 0.023 0.112
ChatGLM† (Zeng et al., 2023) 0.000 0.117 48.365 0.056 0.075 0.043 0.046
LLama† (Touvron et al., 2023a) 0.000 0.036 46.844 0.018 0.029 0.017 0.010
Vicuna† (Chiang et al., 2023) 0.000 0.057 46.877 0.025 0.030 0.021 0.017
Mol-Instruction (Fang et al., 2024) 0.009 0.705 31.227 0.283 0.487 0.230 1.000
LLama-7b∗ (Touvron et al., 2023a)(LoRA) 0.000 0.283 53.510 0.136 0.294 0.106 1.000
InstructMol-G 0.001 0.835 31.359 0.447 0.277 0.241 0.996
+Positional Encoding 0.000 0.793 33.859 0.295 0.218 0.192 0.983
+HiPubChem 0.000 0.755 35.811 0.282 0.218 0.177 0.997
+Large Tokenizer 0.001 0.842 30.613 0.459 0.287 0.263 0.999

InstructMol-GS 0.172 0.911 20.300 0.765 0.615 0.568 1.000
InstructMol+LLama-2-7b-chat 0.000 0.806 32.128 0.292 0.234 0.202 0.985

HIGHT-G 0.008 0.863 28.912 0.564 0.340 0.309 1.000
HIGHT-GS 0.202 0.914 20.194 0.772 0.623 0.577 0.999
HIGHT +LLama-2-7b-chat 0.006 0.865 28.964 0.563 0.338 0.306 0.999
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Table 22. Full results of motif hallucinations on MotifHallu with ablation studies.
METHOD F1 (pos) ↑ F1 (neg) ↑ F1 (avg) ↑
Node-centric Tokenization
InstructMol-G 95.7 9.5 52.6
InstructMol-G+LLama-2-7b-chat 99.6 2.8 51.2
InstructMol-GS 97.1 10.6 53.8

Hierarchical Tokenization
HIGHT-G 85.5 48.2 66.9
HIGHT-G+LLama-2-7b-chat 55.1 65.2 60.2
HIGHT-GS 84.5 42.7 63.6

Ablation variants
InstructMol-G + Positional Encoding 96.4 19.8 58.1
InstructMol-G + HiPubChem 96.6 12.5 54.6
HIGHT-G w/o HiPubChem 96.6 12.5 54.6
HIGHT-GS w/o HiPubChem 98.2 6.5 52.4

Table 23. Results of molecular property prediction tasks (regression) on QM9 with ablation studies. We report the result in MAE. †:
few-shot in-context learning (ICL) results from (Fang et al., 2024). ∆ϵ refers to the HOMO-LUMO energy gap.

METHOD HOMO ↓ LUMO ↓ ∆ϵ ↓ AVG ↓
LLM Based Generalist Models
Alpaca† (Dubois et al., 2023) - - - 322.109
Baize† (Xu et al., 2023) - - - 261.343
LLama2-7B (Touvron et al., 2023b) (5-shot ICL) 0.7367 0.8641 0.5152 0.7510
Vicuna-13B (Chiang et al., 2023) (5-shot ICL) 0.7135 3.6807 1.5407 1.9783
Mol-Instruction (Fang et al., 2024) 0.0210 0.0210 0.0203 0.0210
InstructMol-G 0.0111 0.0133 0.0147 0.0130
+Positional Encodings 0.0300 0.0395 0.0357 0.0350
+HiPubChem 0.0305 4.4019 0.0494 1.1226

HIGHT-G 0.0078 0.0086 0.0095 0.0086
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