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Abstract

Machine learning models are often designed to maximize a primary goal, such as
accuracy. However, as these models are increasingly used to inform decisions that
affect people’s lives or well-being, it is often unclear what the real-world repercus-
sions of their deployment might be—making it crucial to understand and manage
such repercussions effectively. Models maximizing user engagement on social
media platforms, e.g., may inadvertently contribute to the spread of misinformation
and content that deepens political polarization. This issue is not limited to social me-
dia—it extends to other applications where machine learning-informed decisions
can have real-world repercussions, such as education, employment, and lending.
Existing methods addressing this issue require prior knowledge or estimates of
analytical models describing the relationship between a classifier’s predictions and
their corresponding repercussions. We introduce THEIA, a novel classification algo-
rithm capable of optimizing a primary objective, such as accuracy, while providing
high-confidence guarantees about its potential repercussions. Importantly, THEIA
solves the open problem of providing such guarantees based solely on existing data
with observations of previous repercussions. We prove that it satisfies constraints
on a model’s repercussions with high confidence and that it is guaranteed to identify
a solution, if one exists, given sufficient data. We empirically demonstrate, using
real-life data, that THEIA can identify models that achieve high accuracy while
ensuring, with high confidence, that constraints on their repercussions are satisfied.

1 Introduction

Machine learning (ML) models are widely applied to real-life tasks, ranging from high-stakes
applications such as lending, hiring, and criminal sentencing, to everyday applications, such as
product recommendations and personalized advertisements. These models are often designed with
the primary goal of maximizing the accuracy of their predictions. However, in applications where
such models inform decisions that have an impact on people’s lives or well-being, it is crucial to
effectively manage the potential real-life repercussions of their deployment.

Models designed to maximize user engagement on social media, for example, have been shown to con-
tribute to political polarization and the spread of misinformation [32| [15]. This issue extends beyond
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social media, affecting various applications where ML-informed decisions have real-world repercus-
sions, such as in education, employment, and lending. Previous work addressing this problem requires
access to analytical models describing the relationship between a classifier’s predictions and its reper-
cussions [48,27]). Zhu et al. [48]], for example, assumes access to a model of how posts influence user
opinions in order to optimize post-recommendation strategies that minimize polarization. However,
this relationship is often difficult to characterize analytically. Designing classification algorithms that
can mitigate repercussions without knowledge of such models remains an open problem.

We introduce THEIA, a novel classification algorithm that addresses this open problem. THEIA does
not require analytical models of the repercussions of a model’s predictions. Instead, it operates under
the weaker assumption of having access only to data containing observations of the repercussions
of a previously deployed classifier.

Social media example. As a running example, consider a social media platform using a classification
algorithm to aid in predicting which posts to present to a user to maximize engagement. These
predictions may have unintended repercussions, such as increasing political polarization. Taking
repercussions into account is important—the platform may need (or be required) to maximize user
engagement while managing the possible repercussions of the posts it presents. This could mean
imposing constraints on metrics related to political polarization (e.g., changes in engagement or
sentiment shift) after posts are presented to usersE] Unfortunately, existing methods for this problem
require analytical models of how social media posts affect political polarization. Constructing such
models—e.g., through causal modeling techniques—is challenging: many complex factors (e.g.,
social, economic) influence the impact of the presented posts on political polarization. THEIA,
by contrast, works without a model describing the relationship between predictions and their
repercussions: it can ensure that constraints on the possible repercussions are satisfied with high
confidence, provided the social media platform can collect data regarding the political polarization
resulting from the posts presented (or recommended) by a previously deployed classifier.

Contributions. We present THEIA, a novel method capable of managing the repercussions caused by
a model when the analytical relationship between model predictions and their repercussions is not
known. We prove that 1) the probability that THEIA returns a solution that satisfies constraints on
possible repercussions is at least (1 — J), where 0 is a user-specified confidence level; and 2) THEIA
is consistent; intuitively, it identifies and returns a model that satisfies the constraints (if one exists),
with high confidence as more data is observed. We empirically analyze THEIA’s performance in two
real-life settings, while varying both the amount of training data and the amount of repercussions that
a classifier’s predictions have. We show that THEIA can identify accurate solutions while ensuring,
with high confidence, that constraints on its potential repercussions are satisfied.

2 Problem formulation

THEIA’s goal is to identify a high-accuracy predictive model while ensuring, with high confidence,
that the repercussions of its deployment satisfy user-specified constraints. THEIA is designed to
achieve this using only existing data collected during the deployment of a previous model, including
empirically observed repercussions of its decisions. Concretely, we assume access to a dataset where
each i data point contains a feature vector X;, a label Y;, and a prediction fff made by a previously
deployed stochastic classifier 5. We call 3 the behavior model, defined as 5(z, §):= Pr(f/f =j| X;i=x).
We assume 3 was trained by the same user who now seeks to improve it, so (3 is known, by
construction, in our setting.

Consider a model trained to predict the type of content that will maximize a user’s time spent on
a platform. These predictions can be used to decide which posts to show to a particular user. One
possible repercussion of deploying this model could be, e.g., how many times that user later interacted
with extremist content online—a downstream effect of the content they were shown based on the
model’s predictions. More generally, we define a repercussion as a real-valued, instance-specific
quantity that can be empirically observed after deploying a model and using its predictions to make
decisions. Let R” be the real-valued random variable representing the repercussion associated with

the ™ instance, observed after the model 8 makes a prediction }A/;B . In the example above, Rf is the
empirical observation of how many times the i user interacted with extremist content after being
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shown posts selected based on the model’s prediction )7;3 . We adopt the convention (w.l.0.g.) that
smaller values of R correspond to more favorable repercussions. We append R/ to each data point
and define the dataset as a sequence of n independent and identically distributed (i.i.d.) data points:
D:=(X,,Y;, fff ,R? )?:1. We denote an arbitrary data point in D by suppressing the subscripts.

Our goal is to construct a classification algorithm that takes as input D and outputs a new model 7y that
is as accurate as possible while enforcing high-confidence constraints on repercussionsE] If deploying
a model results in repercussions that satisfy all user-specified constraints, such repercussions are
referred to as acceptable, and the model is deemed repercussion-aware. The form of the new model
is 7o (z, §) = Pr(Y ™ =g|X=x), where 7y is parameterized by a vector § € © (e.g., the weights of a
neural network), for some feasible set ©, and where Y™ is the prediction made by 7y given X. Like
Rf , R7? is the empirically observed repercussion if the model outputs the prediction ¥;"°.

Quantifying repercussions. As stated previously, we assume the repercussions of interest are
measurable. Specifically, we assume there are k repercussion objectives, g; : © — R,j € 1,...,k,
that take as input the parameters 6 of a classifier and return a real-valued measurement of its
repercussions. We adopt the convention (w.l.o.g.) that a classifier is repercussion-aware iff g;() < 0
for all j. To simplify notation, we first investigate the setting with a single repercussion objective
(i.e., k = 1), and later show how to enforce multiple repercussion objectives (Algorithm 3).

In this work, we investigate repercussion objectives aimed at ensuring that the repercussions of a
new model 7y will not exceed a threshold 7. Specifically, we consider cases where each repercussion
objective is based on a conditional expected value of the form

9(0) = E[R™|c(X,Y)] -, €0

where 7 € R is a tolerance and ¢(X,Y") is a Boolean conditional; see below for more details.
Appendix [D] shows how THEIA can enforce repercussion objectives beyond this form. These
include, e.g., high-confidence guarantees that repercussions are approximately equal across different
demographic groups, as well as objectives that, instead of controlling the conditional expected value,
enforce high-confidence constraints on the repercussion variance, median, or conditional value at risk.

To help interpret (I)), consider a platform aiming to maximize user engagement while mitigating
polarization. Assume that sentiment scores are used as a proxy for polarization. Users are often
segmented into groups based on factors such as age or political affiliation; ¢(X,Y"), in this case, could
be a group membership variable. The platform wishes to ensure that the sentiment resulting from
predictions made by a new model 7y will be lower than 7. R™¢ is the sentiment score after showing
a post to a uselﬂ and 7 is the repercussion threshold the platform does not want to exceed. This
could be application-specific (e.g, 7=0.3 implies moderate sentiment/polarization); 7 could also be
the current average sentiment of a particular group: T:n% PO Rg [¢(X,Y)=1], where [-] is the
Iverson bracket and n; is the number of people in the group. Requiring that the sentiment induced by
7o is less than 7 can be modeled by a constraint E[R™ |¢(X,Y")=1] < 7. This can be expressed in the
form (T)) by rewriting it as g(6)=E[R™ |c(X,Y)=1] — 7. Then, g(#) < 0 iff the future sentiment (im-
pacted by 7g’s predictions) is at most 7. Additional constraints can be added to include other groups.

Algorithmic properties of interest. We wish to ensure that g(#) < 0 since this implies that 0 (the
model returned by a classification algorithm) has acceptable repercussions. However, this is often not
possible, as it requires extensive prior knowledge of how predictions influence repercussions. Instead,
we aim to design an algorithm that is capable of reasoning about its confidence that g(#) < 0 using
only available data. That is, we wish to construct a classification algorithm, a, where a(D) € O is
the model returned by a when given dataset D as input, that satisfies constraints of the form

Pr(g(a(D)) <0) > 14, 2

where ¢ € (0, 1) is the admissible probability of returning a model with unacceptable repercussions.
Algorithms satisfying (2 are called Seldonian [42]]. Notice it may be impossible to enforce all
constraints simultaneously or there may be insufficient data to satisfy the constraints with the
required confidence. THEIA reasons about its own uncertainty and determines when this is the case.

2Qur algorithm works with other performance objectives, not just accuracy. See Appendix @] for a detailed
discussion of how THEIA can address other settings and objectives.
*Many indicators of polarization have been proposed [[7, 43 [31]]. We use sentiment scores as one example.



In such situations, it proactively notifies the user that no repercussion-aware solution can be provided,
returning “No Solution Found” (NSF), rather than producing a model it does not trustE] This can
be achieved by letting NSF € © and g(NSF) = 0.

Our goal, then, is to design a classification algorithm with two properties: 1) the algorithm satisfies )
and 2) the algorithm is consistent, i.e., if a nontrivial repercussion-aware model exists, the probability
that the algorithm returns a solution other than NSF converges to one as the amount of training data
increases. In Section[d] we prove that our algorithm, THEIA, satisfies both properties.

3 Enforcing repercussion constraints

Recall that a repercussion-aware algorithm must ensure with high confidence that the repercussion
objective satisfies g(f) < 0, where 6 is the returned model and g(¢) = E[R™|c(X,Y)] — 7. Since
THEIA only has access to data collected from a previously deployed model, 3, the only available
samples are of R® —the repercussions of 3’s predictions. Below, we show (1) how one can construct
i.i.d. estimates of R™ using samples collected using 3; (2) how confidence intervals can be used to
derive high-confidence upper bounds on ¢(#); and (3) the pseudocode for our algorithm.

Deriving estimates of repercussions. Recall that the distribution of empirically observed reper-
cussions in D results from (’s predictions. However, our goal is to evaluate the repercussions of a
different model, my. This is challenging: given empirically observed repercussions from predictions
of a previously deployed model 3, how to estimate the repercussions if g were used instead? One
solution is to run 7 on held-out data. However, this would only produce predictions Y™, not their
corresponding repercussions; i.e., each sample’s repercussion would still be in terms of 3, not 7y.

We solve this problem using off-policy evaluation methods from the RL literature, which use data
collected under one decision-making model to estimate what would have happened under a different

one. Specifically, we use importance sampling [34] to obtain a new random variable, R™ constructed
using data from /3, such that R™ is an unbiased estimator of R™ under the standard assumptions
of importance sampling (see Appendlx' For each instance in D, the estimator R™ weights the
observed repercussions R° based on how likely the prediction Y2 is under my. If mp would make the

label Y# more likely, RP s given a larger weight; otherwise, R™ is given a smaller welght Formally,
the estimator is 2™ =my(X,Y"?)/3(X,Y?) RB Theoremlestabhshes that this estimator is unbiased.

Theorem 1. R™ is an unbiased estimator of R™ : E[R™ |¢(X,Y)]|=E[R™|c(X,Y)]. Proof. See
Appendix[B| O

Bounds on repercussions. We now discuss how to derive high-confidence upper bounds on g(6)
using unbiased estimates of g(6) and confidence intervals. While different confidence intervals for the
mean can be used, we consider Student’s ¢-test [40]] and Hoeffding’s mequahty [20]. Consider a vector
of mi.i.d. samples (z;)™, of arandom var1able Z; let the sample meanbe Z = L 3" | Z;, the sample

standard deviation be o (Z1, . ,and § € (0,1) be a confidence level.

m— 1 )

Property 1. Ifzzr;l Z; is normally distributed, then Pr (E[Z,] >7 - L\/ﬁ’z’”)tl_&m_l) >

1—0, where t1_s ,—1 is the 1—0 quantile of the Student’s t distribution with m—1 degrees of freedom.
Proof. See the work of Student [40]]. O]

*This is particularly important if one of the groups lacks sufficient data to satisfy its corresponding constraint
with high confidence. In such cases, THEIA abstains from returning a model and instead outputs NSF, rather than
producing a model it cannot trust. This built-in safeguard prevents the algorithm from favoring well-represented
groups at the expense of those with less data, helping to avoid unintended disparities in performance or treatment.

STmportance sampling estimators, in general, may suffer from high variance. In our setting, two properties
prevent this in practice. First, although importance sampling can require data exponential in the horizon, our
classification setting involves a single decision per instance (predicting a label), making variance independent of
horizon length. Second, THEIA actively rejects candidates that diverge too far from the current model: such
candidates produce large importance ratios, which yield wide confidence intervals for the estimated repercussions
and cause them to fail THEIA’s repercussion-awareness test (Alg.[I} lines 4-9). Thus, models that could lead to
high variance are naturally filtered out during the search since they induce unreliable repercussion estimates.



Property [I] can be used to obtain a high-confidence upper bound for the mean of Z:
Uswest(Z1, -, Zm) = Z + PEeZmly, 5, . Let g be a vector of i.i.d. and unbiased estimates
of g(#). Once computed (using importance sampling), these are provided to Uses: to derive a high-
confidence upper bound on g(6): Pr(E[R™ |c(X,Y)] =7 < Ussess(§)) > 1—46. Our strategy for deriving
high-confidence upper bounds for repercussion objectives is general and other confidence intervals
can be used. Student’s ¢-test may be used and holds exactly if the distribution of . Z; is normal. In
Appendix [C| we describe a bound based on Hoeffding’s inequality [20], which replaces the normality
assumption with the weaker assumption that ¢ is bounded, resulting in a different upper bound, Usoes:.

Complete algorithm. Algorithm|l|provides pseudocode for THEIA. It has three main steps. First,
the dataset D is split between D and Dy (line 1). In the second step, candidate selection (line 3), D,
is used to find and train a model, called the candidate solution, 8.. The cost of a candidate solution
(line 3) is computed by Algorithm 2] (detailed in Appendix [G), which leverages the high-confidence
upper bounds introduced aboveﬁ] In the repercussion-awareness test (lines 4-9), Dy is used to
compute unbiased estimates of g(0.) using the importance sampling method described above. These
estimates are used to calculate a (1—¢)-confidence upper bound, U, on g(6.), using Hoeffding’s
inequality or Student’s ¢-test (line 8). Then, U is used to decide whether 6. or NSF is returned (line 9).

Algorithm 1 THEIA

Input: 1) D = {(X,, Y5, SA/,L-B , Rf )}i=1; 2) confidence level §; 3) tolerance value 7; 4) behavior model 3; and 5)
Bound € {Hoeff, ttest}.
Output: Model 6. or NSF.

: D¢, Dy < partition(D);
: np, = length(Ds); g
1 0. + argmingeg cost(6,
s forje{l,..,np,} do
Let (X;,Y;, ?f, Rf) be the j™ data point in D

(

<)
D¢, 4,7, 8,Bound, np,)

o, (X TP
if ¢(X,,Y;)is True then g.append( 0 (X3, ) B _r> end if

B(x;,Yf) T
: end for
: if Bound is Hoeff then U = Usces (§) else if Bound is ttest then U = Uktest(§) end if
. if U > 0 then return NSF else return 6.

4 Theoretical results

This section shows that 1) THEIA is guaranteed to satisfy the probabilistic constraints defined in (2));
and 2) given reasonable assumptions about the repercussion objectives, THEIA is consistent. Recall
we wish to compute confidence intervals to bound g(@c)[]where 0. is the model returned by candidate
selection. We assume that the requirements related to Student’s ¢-test (Property |1) or Hoeffding’s
inequality (Appendix are satisfied. Let Avg(Z ):izzl:zl Z; be the average of a size nz vector Z.

Assumption 1. If Bound is Hoeff, then for all j € {1, ..., k}, each estimate in §; (in Algorithm
is bounded in some interval [a;,b;]. If Bound is ttest, then each Avg(g;) is normally distributed.

Theorem 2. Let (gj);?:l be a sequence of repercussion objectives, where g; : © — R, and let

(05) ;?:1 be a corresponding sequence of confidence levels, where each §; € (0,1). If Assumption
holds, then for all j € {1,...,k}, Pr(g;(a(D)) <0) > 1 — §;. Proof. See Appendix ]

THEIA satisfies Theorem if the solutions it produces satisfy (@), ie., if Vj €
{1,...,k}, Pr(g;(a(D)) <0) > 1 — §;, where a is Algorithm[3] Because Algorithm [3]is an extension
of Algorithm (1| to multiple constraints, it suffices to show that Theorem [2| holds for Algorithm
Next, we show that THEIA is consistent: when a repercussion-aware model exists, the probability that
THEIA returns a solution other than NSF converges to 1 as the amount of training data goes to infinity.

STHEIA mitigates potential high-variance issues by penalizing candidate models that diverge substantially
from 3, as these yield wide confidence intervals unlikely to pass the repercussion-awareness test (App.[G). Our
experimental results are consistent with this—we did not observe high-variance issues, even in low-data regimes.

"THEIA works with any confidence intervals for the mean.



Theorem 3 (Consistency guarantee). If Assumptions hold (see Appendix [F| for 2HA), then
lim, 00 Pr(a(D) # NSF, g(a(D)) < 0) = 1. Proof. We extend the proof strategy of Metevier et al.
[29] from the contextual bandit setting to the supervised learning setting with high-confidence
constraints. The detailed proof for this theorem is provided in Appendix|[F]

Theorem 3] relies on mild assumptions (Assumptions 2H4): 1) the function used to evaluate models is
smooth; 2) at least one repercussion-aware model exists that is not on the acceptable-repercussions
boundary; and 3) a model’s sample performance converges to it expected value given enough data.

S Empirical evaluation

We empirically investigate three research questions: RQ1: Does THEIA enforce repercussion con-
straints with high probability, while existing algorithms do not? RQ2: What is the cost (e.g., in terms
of accuracy) of enforcing such constraints? RQ3: How does THEIA perform when predictions have
little influence on the repercussions of interest relative to factors outside of the model’s control?

In our experiments, we examine two real-life use cases of THEIA focused on ensuring fair repercus-
sions, i.e., that deploying the model will benefit different demographic groups approximately equallyﬂ
Recent research has shown that ML models can impact different demographic groups differently [3]].
In our first experiment (EXP-1), a classifier makes predictions about whether youth in the U.S. foster
care system are likely to get a job. These predictions may affect a person’s life if, e.g., they influence
financial aid decisions. EXP-1 uses two data sources from the National Data Archive on Child Abuse
and Neglect [1]], which include financial, educational, and well-being data on youth over time and dur-
ing their transition from foster care to adulthood. The feature vector X contains five attributes related
to the job and educational status of a person in foster care, including their race. The goal is to predict a
binary label, Y, denoting whether a person has a full-time job after leaving the program. The behavior
model, 5, is a logistic regression classifier. We explore our research questions in a setting where clas-
sifier predictions may have different levels of repercussions. To do so, we consider a parameterized
definition of a measurable repercussion. Let R? be the observed repercussion on person 7’s life if a
classifier 1) outputs the prediction ;¥ given X;. Here, ¢(z, ) := Pr(Y,*=j| X,=z). We define R? as

RY = —

(3

{a?f +(1—a) N(2,05) if XI =0 5

oVl 4+ (1—a) N(1,1)  if XI =1,

where X is the race of person 7, and « regulates whether a model’s repercussions are strongly affected
by its predictions (high prediction-repercussion dependency) or if they have little to no repercussions
(low prediction-repercussion dependency). As o goes to zero, predictions have no repercussions.
We vary « from O to 1 in increments of 0.1, and ¢ is defined as the behavior model, /3. Intuitively,
Equation [3| captures the idea that if a youth is predicted to get a job, they are more likely to receive

financial aid—leading to less severe observed repercussions. That is, Rf’ decreases when Yiw =1
Notice that both the mean and variance of the repercussion resulting from a given prediction vary by
race. This reflects the fact that youth from different racial backgrounds may experience systematically
different outcomes, e.g., due to structural or social biases. This form aligns with the empirical findings
of Chetty et al. [10], who show, using real-world data, that the distribution of financial outcomes (i.e.,
repercussions) differs across racial groups even when starting from similar conditions (e.g., having

the same prediction }A/iw). Notice that Equation [3|characterizes the setting we investigate and is used
solely to generate challenging, parameterized datasets with varying levels of prediction-repercussion
dependency. THEIA does not have access to it, nor does it depend on or assume its particular form.

In our second experiment (EXP-2), a bank’s lending decisions are informed by a classifier predicting
repayment success. Such decisions can have repercussions on clients’ lives, affecting their financial
well-being, savings rate, or debt-to-income ratio after a lending decision. EXP-2 uses real-life
financial information for 250,000 clients who requested loans [44]. The feature vector X contains
attributes such as a client’s age, monthly income, debt-to-income ratio, number of open loans, number
of dependents, and various delinquency measures. The goal is to predict a binary label Y, denoting

80ur notion of repercussion fairness differs qualitatively from standard static fairness definitions. Static
fairness metrics rely on performance metrics like false positive rate and can be determined by evaluating a model
on a validation set. Repercussion fairness, by contrast, is more general and requires deploying the model and
empirically observing/measuring its repercussions.



whether a client will miss any payments by more than 90 days. THEIA’s primary objective is
to approve loan requests for clients unlikely to miss payments while accounting for the possible
repercussions of lending decisions across age groups (attribute X"): younger individuals who are
often not yet financially stable, for example, may experience a greater impact on their financial well-
being from receiving a new loan than more senior individuals. In this experiment, RY is the observed
repercussion on client 4’s financial well-being if a classifier ¢ outputs the prediction Y, given X,. For
a thorough discussion, see Appendix [H] Importantly, in EXP-2 there exists a non-linear relationship
between predictions and their repercussions due to the Law of Diminishing Marginal Utility of Income:
as income increases (e.g., through an approved loan), the benefits of further increasing it decrease
non-linearly [28]]. Furthermore, this experiment models a challenging scenario where distribution
shift causes the repercussions of ML models to change between the deployment of the baseline
classifier (behavior model) THEIA aims to improve upon and the time when THEIA searches for a
repercussion-aware model. Specifically, it models a scenario where significant societal changes have
altered the relationship between predictions and their repercussions, reflecting, for example, how loan
decisions may impact clients differently over time. This allows us to empirically evaluate THEIA’S
robustness in cases where statistical properties of the data change after the training data was collected.

In both EXP-1 and EXP-2, we wish to guarantee that the repercussions of the new model, my, are
smaller (i.e., less severe) than those of the current model, 5. In particular, THEIA’s goal is to
identify an accurate predictive model that is repercussion-aware, ensuring its repercussions are not
detrimental to a particular race (EXP-1) or age group (EXP-2). To do so, we define two repercussion
objectives, go and g;. Let t € {0, 1} and ¢:(0):=E[R" | X"=t] — 7, where Tt:n% o RS [X=t]
is the average observed repercussion caused by (5 on people of race (or age group) X" =t and where
ne= Y _, [ X} =t]. The confidence level d; for all objectives is 0.1.
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Figure 1: Failure rates w.r.t. a repercussion constraint [Left: EXP-1; Right: EXP-2]. Black lines
show the maximum admissible probability of failing to enforce the constraints (6o=0;=10%).

RQ1: Managing repercussions. We first investigate if THEIA can effectively satisfy repercussion
constraints while existing algorithms fail to do so. A key novelty of THEIA is its ability to ensure reper-
cussion fairness using only data from a previously deployed classifier, without relying on analytical
models describing how predictions affect repercussions. While model-based approaches exist, ours is,
to the best of our knowledge, the first capable of satisfying repercussion constraints in the fully model-
free setting. As such, there are no direct baselines that operate solely on data collected from a previ-
ously deployed classifier. We therefore compare THEIA to well-established state-of-the-art model-free
fairness methods that make assumptions aligned with ours and that also rely only on observed data.
In particular, we compare with 1) Fairlearn [2], 2) Fairness Constraints [46]], and 3) quasi-Seldonian
algorithms (QSA) [42]. We consider five classic fairness constraints: demographic parity (DP),
equalized odds (EqOdds), disparate impact (DisImp), equal opportunity (EqOpp), and predictive
equality (PE) [[L1, 114} 18]E] We also compare THEIA to a simple baseline: logistic regression (LR).

We first examine how often each algorithm fails to satisfy repercussion constraints. Let the failure
rate be the probability an algorithm returns a solution violating a constraint. We measure this by
evaluating the solutions returned by each algorithm on a larger dataset not used during training. In
EXP-1, we also investigate how varying the prediction-repercussion dependency, v, influences failure
rates. We focus on one representative experiment with a=0.9 due to space constraints. Similar
behavior is observed for other o values. See Appendix [H|for full results and implementation details.

Figure [ shows each algorithm’s failure rate, as a function of training data size, in each experiment
(EXP-1 and EXP-2). We computed failure rates and standard errors over 500 trials. Figure[T]depicts

“We task each competing method with enforcing the constraints analyzed in those methods’ original papers.



failure rates with respect to a representative repercussion constraint; complete results are in Ap-
pendix Notice that the solutions returned by THEIA always satisfy both repercussion constraints[%]
This is consistent with THEIA’s theoretical guarantees, which ensure with high probability that
solutions it returns satisfy all constraints. Other methods, by contrast, either 1) always fail to satisfy
both constraints; or 2) fail to satisfy one constraint while only occasionally satisfying the other.

RQ1: Our experiments show that, with high probability, THEIA identifies repercussion-aware models
satisfying all user-specified constraints, while alternative methods fail to do so.

RQ2: The cost of managing repercussions. Depending on the problem, there may be a trade-off
between satisfying repercussion constraints and optimizing accuracy. In Appendix [D| we show
how THEIA can satisfy repercussion constraints while bounding accuracy loss. We now investigate
the impact that enforcing repercussion constraints has on accuracy. Figure 2] shows the accuracy
of classifiers returned by different algorithms as a function of n in EXP-1; the results of EXP-
2 (Appendix [H) follow the same pattern. We bounded accuracy loss via an additional constraint
requiring that returned models have an accuracy of at least 75%. Under low-data regimes, THEIA’s
accuracy is approximately 90%, whereas competing methods (with no repercussions guarantees)
exhibit a slightly better performance above 90%. As n increases, THEIA’s accuracy reaches that of the
other techniques. Importantly, although competing methods may occasionally achieve slightly higher
accuracy than ours, they consistently return models that violate the constraints on the repercussions.
THEIA, by contrast, ensures that all constraints are satisfied with high probability and always returns
models with accuracy above the specified threshold (see Figure[T).
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Figure 2: [Left: EXP-1] Accuracy of the models returned by algorithms (subject to different
constraints) as a function of n. [Right: EXP-1] Probability that these algorithms return a solution.

A trade-off might also exist between the amount of available training data and the confidence that
models satisfying all constraints can be identified. Recall that some methods (including THEIA) may
choose not to return a solution if they cannot confidently ensure that all constraints are satisfied. We
now study how often each method identifies a candidate solution as a function of n. Figure 2] shows
that THEIA starts returning models that satisfy all constraints, with high confidence, when given a num-
ber of samples corresponding to just 3.1% of the available data, and it is capable of consistently return-
ing models (with 90% probability) when given a number of samples corresponding to just 12.5% of the
available data. As n increases, the probability of THEIA returning models increases rapidly. Although
Fairlearn, Fairness Constraints, and LR return a model regardless of the amount of training data, these
models never satisfy both constraints (see Figure[I). QSA often returns candidate models with less
training data than THEIA; these models, however, also fail to satisfy both constraints simultaneously.

RQ2: While there is a cost to managing a model’s repercussions depending on the setting, THEIA suc-
ceeds in its primary objective: ensuring, with high confidence, that repercussion constraints are
satisfied without requiring unreasonable amounts of data, and while limiting accuracy loss.

RQ3: Varying prediction-repercussion dependency. Finally, we investigate THEIA’s performance
(in terms of failure rate, probability of returning solutions, and accuracy) in settings with varied levels
of prediction-repercussion dependency. These include challenging cases where predictions have little
influence on the observed repercussions, relative to other factors outside of the model’s control.

We first study THEIAs failure rate for different values of «v. Figure[3a]shows that THEIA never returns
solutions that fail to satisfy the repercussion constraints, independent of «, confirming empirically that

OTHEIA returns a model only when it can ensure, with high confidence, that all constraints are satisfied. In
EXP-1, this requires just 1.5% of the available data; in EXP-2, it requires only =0.1%.



its high-probability guarantees hold in settings with a wide range of qualitatively different observed
repercussion characteristics. Next, we investigate how often THEIA identifies and returns a model
for various values of «. If predictions have little to no influence on observed repercussions (i.e., low
@), it becomes difficult to distinguish minor repercussions from noise—making it harder for THEIA
to confidently identify models that satisfy all repercussion constraints. As expected, this reduces the
likelihood of returning a solution (see Figure[3b). THEIA returns models for all o > 0 given sufficient
data, but this probability decreases as a approaches zero. This is by design: THEIA naturally handles
noisy repercussions by reasoning about its uncertainty—noise inflates confidence intervals, making
it less likely that it will have sufficient confidence in its predictions. It returns a model only if enough
data is available to offset this effect; otherwise, it proactively warns the user that no repercussion-aware
model can be identified. Lastly, we investigate how the amount of prediction-repercussion dependency
affects the accuracy of THEIA’s models. Figure 3c|shows model accuracy for various values of «, as a
function of n. The accuracy trade-off is more evident when THEIA must satisfy challenging repercus-
sion objectives, as a approaches zero. In these cases, accuracy decreases from 95% to 90%. Impor-
tantly, however, even though a trade-off exists, our method remains successful at bounding accuracy
while ensuring, with high confidence, that all constraints on the model’s repercussions are satisfied.

RQ3: Our experiments confirm that THEIA performs well in a wide range of settings, with various
levels of prediction-repercussion dependency. Although managing repercussions may impact accuracy
and the probability of finding solutions, these unavoidable trade-offs do not affect THEIA s high
confidence guarantees. In our experiments, all returned solutions satisfy both constraints.
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Figure 3: [EXP-1] THEIA’s performance under various levels of prediction-repercussion dependency.
6 Related work

Our paper addresses the side effects problem, i.e., how to ensure that predictive models are effective
without causing unintended consequences [4[26L 37]. Below, we discuss relevant work related to ours.

Counterfactual prediction. Counterfactual prediction has been studied in the off-policy policy
evaluation (OPE) [34,!41]] and causal inference literature [33|]. THEIA uses importance sampling to
construct unbiased estimators of a model’s repercussions without having to deploy it. This type of
counterfactual reasoning aligns with how importance sampling is used in OPE. Recent work has shown
that counterfactual modeling is required if ML-informed decisions act as risk-mitigating interven-
tions [27,[12]. Methods addressing this setting include, e.g., techniques to manage long-term fairness;
importantly, they assume a known analytical relationship between predictions and long-term impact.
Constructing these models is challenging: complex factors (social, economic, etc.) may influence, e.g.,
how financial decisions affect various demographic groups. We, by contrast, investigate a novel model-
free method that reasons about the repercussions of predictive models based only on existing data.

Dynamics modeling in content delivery settings. A substantial body of literature focuses on model-
ing the dynamics of systems that optimize personalized content delivery. Social media platforms, for
instance, use algorithms to determine which posts to present to users to maximize engagement [30,
47,135,116, 16]. These algorithms typically assume access to a model of how a recommendation system
(RS) may affect user preferences and content exposure [24, 23| |8]]. Tommasel et al. [43] model the
dynamics of echo chambers to construct a friend recommendation system that mitigates echo chamber
effects by enhancing recommendation diversity. We extend the state of the art by introducing a model-
free technique that, with high confidence, mitigates repercussions such as the exacerbation of existing
echo chambers. Carroll et al. [8] investigate a setting similar to ours. They optimize an RS so it does
not result in a manipulative or undesirable influence on user preferences. This is achieved by training



a dynamics model of how user preferences evolve under new RS policies, and using it to identify
“safe” RS policies. THEIA, by contrast, can identify repercussion-aware models using a model-free
OPE approach and is supported by strong formal guarantees on user-defined notions of repercussions.

Fairness over time. Liu et al. [27]] showed that classifiers’ predictions that appear fair with respect
to static fairness criteria can negatively impact the long-term wellness of the community it aims
to protect. Many works addressed the challenge of identifying classifiers that optimize measures of
fairness over time [21} 122,127, [13,|19]]. Existing methods assume access to a model relating decisions
and their repercussions on different populations 27,47, [17]. We showed that it is possible to achieve
this same goal using only existing data, without having to learn models— which is often challenging
or infeasible. Appendix |D|discusses how this setting may be mapped to our mathematical framework.

Seldonian algorithms. THEIA extends the existing body of work on Seldonian algorithms [42]],
which provide high-confidence guarantees on user-defined metrics of interest, such as fairness and
safety, and have shown strong performance in real-world applications [42]29]]. They also provide
a straightforward way for users to define multiple constraints on metrics of interest [42]]. THEIA is
the first classification Seldonian algorithm capable of providing high-confidence guarantees that
constraints on the repercussions of deploying a predictive model will be satisfied.

7 Conclusions

We introduced THEIA, a novel approach to mitigating the real-life repercussions of deploying ML
models. Unlike existing methods, it does not rely on complex analytical models describing the relation-
ship between a classifier’s predictions and their repercussions. THEIA, by contrast, is the first method
that can provably provide high-confidence guarantees on a model’s repercussions using only available
data. Importantly, it can reason about its own uncertainty: if there is insufficient data to satisfy all
constraints with the required confidence, it proactively notifies the user that no safe solution can be
provided, rather than returning a model it does not trust. A promising direction for future research is ex-
tending THEIA to settings with complementary assumptions about the statistical properties of training
data, such as those where the relationship between predictions and repercussions evolves over time.
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Appendix

A Other motivating examples

In our paper we discussed two important real-life examples where our method could be applied. First,
we introduced a motivating problem where a social media platform wished to take into account the
repercussions of presenting users with different posts. Secondly, in our empirical evaluation, we
considered the repercussions of providing financial aid to youth in foster care. Here, we discuss three
additional examples of possible applications of THEIA in real-life settings:

» Consider a university that has a 1-on-1 tutoring program. However, the university has
limited resources and cannot offer tutoring for all students. To select which students should
participate in the program, the university’s decision is based on GPA predictions. This can
have repercussions in students’ lives: receiving tutoring (or not) can influence the chances
of a student graduating from college.

* Consider a police department deciding which crime prevention strategy to use in each district
of a city, based on predictions about crime recidivism. This could have repercussions in the
form of, e.g., changes in the average incarceration rate after this decision.

» Assume that medical decisions are influenced by predictions of whether a person qualifies
for high-risk care management. These predictions may have a repercussion on a person’s
health; e.g., the severity of chronic illnesses after receiving the treatment.

B Proof of Theorem /I

Proof. Atahigh level, we start with E[R™ | ¢(X,Y)] and apply a series of transformations, standard
probabilistic identities, and general properties of the setting (see below) to arrive at E[R™ | ¢(X,Y)].
To simplify notation, throughout this proof we let C' = ¢(X,Y"). Also, for any random variable Z, let
supp(Z) denote the support of Z (e.g., if Z is discrete, then supp(Z) = {z : Pr(Z = z) > 0}). To
begin, we substitute the definition of R™ and expand this expression using the definition of expected
value:

N X. V5
Bl |c] =k | 7Y pol o
B(X,YF)
=3 Pr(X=2,Y=y,VP=j, RP=r|C) gg’ff)) r. (5)
(x,y,7,r)€supp(X,Y,Y 8, RS) Y
Using the chain rule repeatedly, we can rewrite the joint probability in (3)) as follows:
Pr(X=z,Y=y,Y"=j, R°=r|C) (6)
— Pr(R’=r|X=2,Y=y,V’=j,C) Pr(X=2,Y=y,V’=j|C) ™)

—Pr(R’=r|X=x,Y=y,Y’=j,C) Pr(Y?=j| X=2,Y=y,C) Pr(X=2,Y=y|C).  (8)

Furthermore, recall that our algorithm addresses a classification problem. In standard machine
learning settings, the predicted label depends only on the input features provided to the model. As a
result, conditioning the label’s probability on any additional variables not seen by the model does

not change that probability. That is, Pr(Y?=g|X=z,Y =y, C) = Pr(Y#=g| X =x), which is the
definition of (z, §).
We perform this substitution and simplify by canceling out the [ terms:

E[R™|C] =) Pr (Rﬂ:r|X=x, Y=y, VA=, C) B(z,9) Pr (X=z,Y =y|C) 7;((;’;)
(z,y,5,r)Esupp(X,Y,Y 8, RO) ’
=3P (Rﬁ=r|X=x, Y=y, V9=, C) Pr(X=z,Y=y|C) m(z, 9)r (10)
(@,y,,r)€supp(X,Y,Y 8, RF)

r 9
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Note that my(z, §) can be rewritten as Pr(Y ™ =§|X =z, Y=y, C). Using the multiplication rule
of probability, we can combine this term with the Pr(X=z,Y=y|C) term in (I0) to obtain the
joint probability Pr(X=z,Y =y, ymo =g|C"). Furthermore, notice that in the setting we investigate,
predictions’ repercussions do not depend on how a prediction was made. That is, it does not matter,
e.g., if a neural network or a random forest determined which posts to show to a user. Formally, this
means that Va, y, §, 7, Pr(RP=r|X=xz,Y =y, YP=g)=Pr(R"=r|X=z, Y=y, Y™ =j). For this rea-
son, we can substitute Pr(R%=r|X=z,Y =y, Y#=g, C) for Pr(R™=r|X=z,Y =y, Y™ =j,C).
We substitute these terms into (T0) and apply the multiplication rule of probability once more:

E[R™|C] =) Pr(R™=r|X=2,Y=y,Y™=j,C) Pr(X=2,Y=y, Y™ = §|C)r (1)
(:c,y,g},r)Esupp(X,Y,f’B,RB)

:ZPr(X:x,Y:y,?B:Q,R”9:T|C)T. (12)
(w,y,gj,r)Esupp(X,Y,?ﬁ,Rﬁ)

Finally, we make the standard assumption in the importance sampling literature that predictions
made by 7y can, in principle, be evaluated using the available data. This means that predictions
that are possible under 7y (the model being evaluated) have a non-zero probability of occurring
under 3 (the classifier used to generate training data). In other words, for all « and y, 7y (z,y) > 0
implies that 3(x, y) > 0. This assumption is trivially satisfied in our setting: we consider predictive
models § € O that naturally satisfy this condition, such as standard stochastic classifiers that assign
non-zero probability to all outputs (e.g., Softmax layers in neural networks). Under this assumption,

supp(Y™) C supp(Y#), and so supp(R™) C supp(R?). So, we can rewrite (12) as

ZPr(X:%Y:y,?’m:gj,]:?”“’:rw)r. (13)
(z,y,@,r)Gsupp(X,Y,}/;"G ,R™6)

By the definition of expectation, this is equivalent to E [R™|C]. Therefore, we have shown that
E[R™|C]=E[R™|C]. O

C Bounds on repercussions using Hoeffding’s inequality

This section focuses on how one can use unbiased estimates of g(6) together with Hoeffding’s
inequality [20] to derive high-confidence upper bounds on g(#). Given a vector of m i.i.d. samples
(Zi)1™, of a random variable Z, let Z = -~ 3" Z; be the sample mean, and let § € (0,1) be a
confidence level.

Property 2 (Hoeffding’s Inequality). If Pr(Z € [a,b]) = 1, then
Pr (E[Zi] >Z—(b—a) hlé”‘”) >1-4. (14)
m

Proof. See the work of Hoeffding [20)]. O

Property [2can be used to obtain a high-confidence upper bound for the mean of Z:

= log(1/6
UHoeff(Zh Zg, cey Zm) =7 + (b_a) O(g2(7n/)) (15)

Let g be a vector of i.i.d. and unbiased estimates of g(#). Once these are procured (using importance
sampling as described in Section[3), they can be provided to Ugeets to derive a high-confidence upper
bound on g(0):

Pr (E [R”G

e(X,Y)] = 7 < Unoass (3)) 2 1 - 6. (16)

Notice that using Hoeffding’s inequality to obtain the upper bound requires the assumption that § is
bounded.
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D Extensions of THEIA

In this section we discuss how THEIA can be extended to provide similar high-confidence guarantees
for the regression setting and for repercussion objectives beyond the form assumed in (T)).

D.1 Repercussion-awareness guarantees in the regression setting

In our problem setting, we study repercussion-awareness in the classification setting, in which the
labels Y produced by a model are discrete. However, our method can also be applied in the regression

setting, where a (stochastic) regression model produces continuous predictions Y, instead of discrete
labels. To use THEIA in this setting, one may adapt Algorithm 2]so that it uses a loss function suitable
for regression; e.g., sample mean squared error. Furthermore, notice that the importance sampling
technique described in Section [3]is still applicable in the regression setting, requiring only minor
changes so that it can be used in such a continuous setting. In particular, the importance sampling
technique we described can be adapted by replacing summations with integrals, probability mass
functions with probability density functions, and probabilities with probability densities. By doing
so, all results presented in our work (e.g., regarding the unbiasedness of the importance sampling
estimator) carry to the continuous case. Notice, finally, that in order to apply THEIA in the regression
setting, the behavior model, /3, and the new candidate model, 7wy, must be stochastic regression
models—this is similar to the assumption we made when addressing the classification setting (see
the discussion in Section [2).

D.2 Alternative definitions of repercussion objectives

Until now, we have assumed that the repercussion objectives take the form of (I)). However, this
can be restrictive when the user’s notion of repercussion-awareness requires a different definition of
repercussions. Below, we discuss how users of THEIA may construct other repercussion objectives,
and how our formulation (shown in (I)) is related to the definitions introduced in the work of Liu
et al. [27].

Connections to delayed-impact fairness and the work of Liu et al. [27]. Consider the lending
scenario described in Liu et al. [27]], in which a bank’s objective is to maximize loan repayments, and
its lending decisions are informed by a classifier that predicts repayment success. For simplicity, the
population of loan applicants consists of two mutually exclusive groups, A and B (e.g., based on race
or gender). The repercussions of lending decisions are multi-fold—payment defaults not only reduce
the bank’s profit, but worsen the financial situation of the borrowers, whereas successful repayments
lead to profit for the bank and an increase in the borrowers’ financial welfare.

In their work, Liu et al. [27] define long-term improvement and long-term stagnation as repercussion
objectives that do not cause long-term harm. Specifically, they use Ap; to represent the difference
in repercussions (such as changes in financial welfare) for group j € { A, B} between a previously
deployed model and a new model. If Ap; < 0, then the new model has resulted in long-term harm.

To enforce long-term fairness in our framework, we assume that the training dataset provided has

data instances of the form (X,Y, T, }7[{ RS ), where X is a real-valued vector describing information
about a loan applicant, Y indicates whether a loan should have been approved, T' € {A, B} is the

group indicator, Y? is the prediction a previous classifier 3 made given X, and R” is the resulting
change in credit score of the individual, which Liu et al. [27]] use as a proxy for financial well-being in
their work. To map this example to our framework, we can set 7 to be group 7”’s average credit score
under the current model (i.e., under the behavior model, 5) and E [R™|T = j] to be the expected
credit score of group j under the new model, y. Then, Ap; = E[R™|T = j] — 7.

Enforcing general definitions of repercussion objectives To enforce repercussion objectives
beyond (I), the importance sampling technique introduced in Section [3] can be combined with
techniques presented in the work of Metevier et al. [29]. As a concrete example, consider the
lending scenario described in the previous section. Assume that instead of long-term improvement
or stagnation, the bank is interested in ensuring (with high probability) that the repercussions of a
classifier’s predictions are approximately equal for loan applicants in groups A and B. This can be
represented by the repercussion objective ggir(6) = |E [R™|T = A] — E[R™|T = B]| — .
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To satisfy (2) with the repercussion objective gg; in place of g, the techniques in this paper and the
bound-propagation methods introduced by Metevier et al. [29] can be combined. At a high-level,
THEIA would first compute (as before) unbiased estimates of E [R™|T' = A] and E [R™|T = B]
using the importance sampling technique described in Section[3] Then, it would use the bound-
propagation methods introduced by Metevier et al. [29] to obtain high-confidence upper bounds on

gfair(g)-

The discussion above corresponds to just one example of how to deal with alternative repercussion
objectives; in this particular example, ggi;. The same general idea and techniques can also be
used to tackle alternative repercussion objectives that users of THEIA may be interested inE-] For
example, in settings where one wishes to minimize repercussions (rather than merely constrain them),
a repercussion threshold 7 can be chosen based on a target value deemed sufficiently low —thus
ensuring that any returned model also achieves near-optimal repercussion values. All other parts
of the algorithm would remain the same—e.g., the algorithm would still split the dataset into two,
identify a candidate solution, and check whether it passes the repercussion-awareness test.

Beyond conditional expectation. In Section [2, we assume that g is defined in terms of the
conditional expected value of the repercussion objectives. However, other forms of repercussion
awareness might be more appropriate for different applications. For example, conditional value at
risk [25]] might be appropriate for risk-sensitive applications, and the median might be relevant for
applications with noisy data [3]]. Chandak et al. [9] introduce off-policy evaluation methods that
produce estimates and high-confidence bounds for different distributional parameters of interest,
including value at risk, conditional value at risk, variance, median, and interquantile range. These
techniques can be combined with ours to obtain high-confidence upper bounds for metrics other than
the conditional expected value of R™.

E Proof of Theorem 2]

This section proves Theorem 2] which is restated below.

e D

Theorem Let (g;) ?:1 be a sequence of repercussion objectives, where g; : © — R, and
let (§j)§:1 be a corresponding sequence of confidence levels, where each 6; € (0,1). If
Assumptionholds, then forall j € {1, ..., k},

Pr(g;(a(D)) <0) > 1—4;. (17)

. J

In what follows, we consider the same conditions as in Theorem [T} which we restate below for
completeness:

» Conditioning the probability of a label on variables not observed by the classification model
does not affect that probability.

* The repercussions of a prediction do not depend on how a prediction was made—it does not
matter, e.g., if a neural network or a random forest determined which posts to show to a user.

* Predictions made by 7y can, in principle, be evaluated using the available data. Specifically,
predictions that are possible under 7y (the model being evaluated) have a non-zero probability
of occurring under /3 (the classifier used to generate training data).

We first provide three lemmas that will be used when proving Theorem [2]

Lemma 1. Let §; be the estimates of g constructed in Algorithm and let Dy, be a subdataset of
Dy such that a data point (X,Y,Y? RP)is only in Dy, if ¢(X,Y) is true. Then, for all § € ©, the

elements in §; are i.i.d. samples from the conditional distribution of §; given c¢(X,Y).

"This statement holds assuming that the repercussion objective of interest satisfies the requirements for the
bound-propagation technique to be applicable; for example, that the repercussion objective can be expressed
using elementary arithmetic operations (e.g., addition and subtraction) over base variables for which we know
unbiased estimators [29]. In the case of the repercussion objectives discussed in this paper, we can obtain
unbiased estimates of the relevant quantities using importance sampling, as discussed in SectionE}
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Proof. To obtain §;, each data point in Dy, is transformed into an estimate of g(¢) using the
mo(X,Y7)
BIX,YP)
is computed from a single data point in Dy_, and the points in Dy, are conditionally independent
given ¢(X,Y), it follows that each element of §; is conditionally independent given ¢(X,Y). So,
each element of g; can be viewed as an i.i.d. sample from the conditional distribution of §; given
o X,Y).

Lemma 2. Let §; be the estimates of g constructed in AlgorithmE] It follows from Theoremthat
forall § € ©, each element in §; is an unbiased estimate of g;(0).

importance sampling estimate RP — 1 (Algorithm , lines 5-8). Since each element of g;

Proof. We begin by considering the expected value of any element in g;:

X,Y? X,Y?
E | ™Y polox, vy — r| =B | YD) ol x vy (18)
B(X,YF) B(X.YF)
-E [R”e o(X, Y)] —r (19)
=E[R™|c(X,Y)] -7 (20)
=g, (0). 2n
Expression (20) follows from Theorem T} Therefore, for all 6 € ©, the elements of j; are unbiased
estimates of g;(6). O

Let 6. be the model returned by candidate selection in Algorithm (line 2), and let U} be the value
of U at iteration j of the for loop (lines 4—10).

Lemma 3. If Lemmas[I|and [2| hold, then the upper bounds U; calculated in Algorithm 3] satisfy
V_] S {1, ey k’}, Pr(gj(ﬁc) > UJ) < 5j~

Proof. We begin by noting that by Lemma the data points used to construct each (1—4,)-probability
bound, i.e., the data points in each §;, are (conditionally) i.i.d. Because 6. € O, by Lemma we
know that each element in §; is an unbiased estimate of g;(6.). Therefore, Hoeffding’s inequality
or Student’s t-test can be applied to random variables that are (conditionally) i.i.dF_T] and unbiased
estimates of g;(6.). Moreover, under Assumption (1, when Bound is Hoeff, the requirements of
Hoeffding’s inequality are satisfied (Property [2), and when Bound is ttest, the requirements of
Student’s ¢-test are satisfied (Property [T). Therefore, the upper bounds calculated in Algorithm [3]
satisfy Pr(g;(6.) > U;) < 4. O

Proof of Theorem 2]
Proof. To show Theorem 2| we prove the contrapositive, i.e., Vj € {1,...,k},Pr(g;(a(D)) > 0) <
d;.

Consider the event Vj € {1, ..., k}, g;(a(D)) > 0. When this event occurs, it is always the case that
a(D) # NSF (by definition, g(NSF) = 0). That is, a nontrivial solution was returned by the algorithm,
and for all j, U; < 0 (line 11 of Algorithm 3). Therefore, (22)) (shown below) holds.

Pr(g;(a(D) > 0) =Pr(g;(a(D)) > 0,U; <0) (22)
<Pr(g;(a(D)) > Uj;) (23)
=Pr(g;(0:) > Uj) (24)
<6, (25)

Expression (23)) is a result of the fact that the joint event in (22) implies the event (g;(a(D)) > Uj).
We substitute 6. for a(D) in ([24) because the event Vj € {1,...,k}, g;(a(D)) > 0 implies that a
nontrivial solution, or a solution that is not NSF, was returned: a(D) = .. Lastly, follows from
Lemma 3] This implies that Pr(g;(a(D) > 0) < §; Vj € {1, ..., k}, completing the proof.

O

12Samples that are conditionally i.i.d. given some event F can be viewed as i.i.d. samples from the conditional
distribution. Applying the confidence intervals to these samples provides high-confidence bounds on the
conditional expected value given the event F, which is precisely what we aim to bound.
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F Proof of Theorem

This section proves Theorem 3] restated below. We build upon the proof strategy introduced by Mete-
vier et al. [29]], extending it from the contextual bandit setting to the supervised learning setting with
high-confidence constraints. Extending their proof to our setting involves the following changes:

1. Changes related to the output of the function used to calculate the utility of a model: Metevier
et al. [29] consider a utility function that returns the sample reward of a policy. Instead, our
utility function (Algorithm [2)) outputs the sample loss of a model.

2. Changes due to the form of the constraints: The form of our repercussion constraint differs
from the more general form of the constraints considered by Metevier et al. [29]]. This results
in a simplified argument that our algorithm is consistent.

We present the complete proof, with these changes incorporated, below.

Theorem If Assumptionshold, then lim,,_, o Pr(a(D) # NSF, g(a(D))<0)=1.

We begin by providing definitions and assumptions necessary for presenting our main result. To
simplify notation, we assume that there exists only a single constraint and note that the extension of
this proof to multiple constraints is straightforward. As before, we consider the same conditions as in
Theorem[I] which we restate below for completeness:

* Conditioning the probability of a label on variables not observed by the classification model
does not affect that probability.

* The repercussions of a prediction do not depend on how a prediction was made—it does not
matter, e.g., if a neural network or a random forest determined which posts to show to a user.

* Predictions made by 7y can, in principle, be evaluated using the available data. Specifically,
predictions that are possible under 7y (the model being evaluated) have a non-zero probability
of occurring under [ (the classifier used to generate training data).

Recall that the logged data, D, is a random variable. To further formalize this notion, let (2, X, p) be
a probability space on which all relevant random variables are defined, and let D,, : 2 — D be a
random variable, where D is the set of all possible datasets and D,, = D. U D;. We will discuss
convergence as n — 00. D, (w) is a particular sample of the entire set of logged data with n data
points, where w € ).

Definition 1 (Piecewise Lipschitz continuous). We say that a function f : M — R on a metric space
(M, d) is piecewise Lipschitz continuous with Lipschitz constant K and with respect to a countable
partition, { My, Ms, ...}, of M if f is Lipschitz continuous with Lipschitz constant K on all metric
spaces in {(M;,d)}3°,.
Definition 2 (§-covering). If (M, d) is a metric space, a set X C M is a §-covering of (M, d) if and
only if max min d(z,y) < 4.

yeM zeX

Let &(6, D,) denote the output of a call to Algorithm 2} and let ¢(f) := liax + g(6). The next
assumption ensures that ¢ and ¢ are piecewise Lipschitz continuous. Notice that the J-covering
requirement is straightforwardly satisfied if © is countable or © C R™ for any positive natural
number m.

Assumption 2. The feasible set of policies, ©, is equipped with a metric, dg, such that for all D.(w)
there exist countable partitions of ©, ©°¢ = {65, 05, ...}, and ©¢ = {©¢,05, ...}, where c(-) and
é(+, D.(w)) are piecewise Lipschitz continuous with respect to ©° and ©°¢ respectively with Lipschitz
constants K and K. Furthermore, foralli € N5 and all 5 > 0 there exist countable §-covers of ©f
and ©f.

Intuitively, Assumption [2] states that (/) the cost function used to evaluate classifiers is smooth:

similar classifiers have similar costs/performances; and (2) each classifier can be described by a set
of real-valued parameters, as is the case with all parametric supervised learning algorithms.
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Next, we assume that a repercussion-aware model, *, exists such that g(#*) is not precisely on the
boundary of acceptable repercussions. This can be satisfied by models that are arbitrarily close to
such boundary.

Assumption 3. There exists an € > £ and a 60* € O such that g(6*) < —e.

Intuitively, Assumption [3]states that the space of classifiers is not degenerate: at least one repercussion-
aware model exists such that if we perturb its parameters infinitesimally, it would not arbitrarily no
longer satisfy the repercussion objective. Next, we assume that the sample loss, l, converges almost
surely to ¢, the actual expected loss.

Assumption 4. V0 € ©, ((0, D,) <= £(0).

Intuitively, Assumption [ states that the sample performance of a classifier converges to its true
expected performance given enough data. This is similar to the usual assumption, e.g., in the
regression setting, that a model’s sample Mean Squared Error (MSE) converges to its true MSE given
sufficient examples.

We prove Theorem 3| by building up properties that culminate with the desired result, starting with a
variant of the strong law of large numbers:

Property 3 (Khintchine Strong Law of Large Numbers). Let {X,}52, be independent and identi-
cally distributed random variables. Then (% Yo X)) is a sequence of random variables that

converges almost surely to E[X1], if E[X1] exists, i.e, L 3" | X, =5 B[X,].
Proof. See Theorem 2.3.13 of Sen and Singer [39]. O

Next, we show that the average of the estimates of g(6) converges almost surely to g(6):
Property 4. If Lemmasand hold, then V0 € ©, Avg(§) £ g(6).

Proof. Recall that if Lemmas [1| and [2| hold, estimates in § are i.i.d. and each estimate in § is
an unbiased estimate of g(#). Also, recall that if n; is the number of elements in g, Avg(g) =

L N~ 9. Then, by Propertywe have that Avg(j) == g(6). O

ng

In this proof, we consider the set © C O, which contains all models that are not repercussion-aware,
and some that are repercussion-aware but fall beneath a certain threshold: © := {0 € © : g(0) >
—&/2}. Ata high level, we will show that the probability that the candidate model, 6., viewed as
a random variable that depends on the candidate dataset D, satisfies 6. ¢ © converges to one as
n — 00, and then that the probability that 6. is returned also converges to one as n — o©.

First, we will show that the upper bounds U™ (constructed in candidate selection, i.e., Algorithm
and U (constructed in the repercussion-awareness test, i.e., Algorithm converge to g(f) for all
6 € ©. To clarify notation, we write U™ (0, D..) and U (6, D) to emphasize that each depends on
and the datasets D, and Dy, respectively.

Property S. If Assumptionthds, then it follows from Propertythat foralld € ©,UT(0,D,) 25
9(8) and U(8, Dy) == g(0).

Proof. Given Assumption[I] Hoeffding’s inequality and Student’s ¢-test construct high-confidence
upper bounds on the mean by starting with the sample mean of the unbiased estimates (in our case,
Avg(§)) and then adding an additional term (a constant in the case of Hoeffding’s inequality). Thus,
U (0, Dy) can be written as Avg(g) + Z,,, where Z,, is a sequence of random variables that converges
(surely for Hoeffding’s inequality, almost surely for Student’s ¢-test) to zero. So, Z, —» 0, and
we need only show that Avg(§) = ¢(#), which follows from Property |4, We therefore have that

U i)g(())

The same argument can be used when substituting U™ (6, D,.) for U (6, D). Notice that the only
difference between the method used to construct confidence intervals in the repercussion-awareness
test (that is, U™T) and in Algorithm (that is, U) is the multiplication of Z,, by a constant \. This
still results in a sequence of random variables that converges (almost surely for Student’s ¢-test) to
Zero. O

20



Recall that we define ¢(0, D) to be the output of Algorithm Below, we show that given a
repercussion-aware model 8* and data D, ¢(6*, D) converges almost surely to £(6*), the expected
loss of 6*.

Property 6. If Assumptions and hold, then it follows from Property that ¢(6*, D) =2 £(6%).

Proof. By Property we have that U (8*) = ¢(6*). By Assumption we have that g(6*) < —e.
Now, let

A={weQ: nlgrrgo U™ (6%, D.(w)) = g(6%)}. (26)
Recall that Ut (6%, D) = ¢(6*) means that Pr(lim,, ., U (6%, D.) = g(6*)) = 1. So, w is in
A almost surely, i.e., Pr(w € A) = 1. Consider any w € A. From the definition of a limit and
the previously established property that g(6*) < —e, we have that there exists an ng such that for

all n > nyg, Algorithm will return £(6*, D.) (this avoids the discontinuity of the if statement in
Algorithm 2| for values smaller than n).

Furthermore, we have from Assumption that 0(6*,D,) =55 0(6%). Let

B={weQ: lim {0, D.(w)) = £(6%)}. 27)

n—oo

From Assumption we have that w is in B almost surely, i.e., Pr(w € B) = 1, and thus by the
countable additivity of probability measures, Pr(w € (AN B)) = 1.

Consider now any w € (ANB). We have that for sufficiently large n, Algorithmwill return £(6*, D..)
(since w € A), and further that £(6*, D,) — £(6*) (since w € B). Thus, for all w € (AN B), the
output of Algorithm [2]converges to £(6*), i.e., ¢(6*, Do(w)) — £(6*). Since Pr(w € (AN B)) =1,
we conclude that ¢(6*, D, (w)) =20(6%). O

We have now established that the output of Algorithm converges almost surely to £(6*) for the 6*
assumed to exist in Assumption ‘We now establish a similar result for all § € © —that the output
of Algorithm 2] converges almost surely to c(§) (recall that ¢(6) is defined as £yax + g(6)).

Property 7. It follows from Propertythatfor all§ € ©, ¢(0,D,) 22 ¢(6).

Proof. By Property we have that U* (0, D) g(6). If § € O, then we have that g(0) > —£/2.
We now change the definition of the set A from its definition in the previous property to a similar
definition suited to this property. That is, let:

A={weQ: lim UT(0,D.(w)) = g(0)}. (28)

n—oo

Recall that U+ (0, D.)*> ¢(0) means that Pr(lim,, ., Ut (0, D.) = g()) = 1. So, w is in A
almost surely, i.e., Pr(w € A) = 1. Consider any w € A. From the definition of a limit and the
previously established property that g(6) > —&/2, we have that there exists an ng such that for all n >

ng Algorithmwill return {nax + U7 (0, Do(w)). By Property Ut (0, De(w)) 22 g(6). So, for
a.s.

all w € A, the output of Algorithm 2|converges almost surely to £max + g(0); thatis, ¢(6, D.(w)) —>
Cmax + 9(0), and since () = lina + g(6), we therefore conclude that ¢(6, D.(w)) = ¢(f). O

By Property[/|and one of the common definitions of almost sure convergence,
V0 € ©,e > 0,Pr (_lim inf{w € Q1 [&(6, Da(w)) — c(B)] < e}) = 1.
n—oo

Because O is not countable, it is not immediately clear that all § € © converge simultaneously to
their respective c(). We show next that this is the case due to our smoothness assumptions.

Property 8. If Assumption|2|holds, then it follows from Property[?] that Ve’ > 0,

Pr ( lim inf{w € Q1 V0 € 6, 6(6, D.(w)) - c(0)] < e'}) =1 (29)
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Proof. Let C(d) denote the union of all the points in the d-covers of the countable partitions of O
assumed to exist by Assumption[2} Since the partitions are countable and the d-covers for each region
are assumed to be countable, we have that C(¢) is countable for all 4. Then by Property for all 9,
we have convergence for all § € C(§) simultaneously:

V6 > 0,Ve > 0, Pr ( lim inf{w € 01 V0 € C(9), 6(6, De(w)) — e(0)] < e}) =1 (30)

Now, consider a 8 ¢ C(¢). By Deﬁnitionand Assumption 360" € ©¢,d(0,0") < §. Moreover,
because ¢ and ¢ are Lipschitz continuous on ©¢ and ©¢ (by Assumption [2) respectively, we have
that |c(6) — ¢(0")] < K¢ and |é(0, D.(w)) — é(0', Do(w))| < K§. So, |é(0, D.(w)) — c(8)] <
6(0, De(w)) — ¢(0")| + K8 < |&(0, De(w)) — ¢(8")] + 6(K + K). This means that for all § > 0:

(ve € C(4), |&(6, Do(w)) — ¢(8)] < e) — (ve € 8,|6(0, D.(w)) — c(8)] < €+ 6(K + K)).
Substituting this into (30), we get:
V8 > 0,Ve > 0,Pr ( lim inf{w € Q:¥0 € O, |6(0, Del(w)) — c(0)] < e+ §(K + K)}) = 1.
Now, let § := ¢/(K + K) and ¢’ = 2¢. Thus, we have the following:
Ve’ >0, Pr (nILI&inf{w €Q:V0 € 0,]6(0, Do(w)) — c(9)] < e'}) ~1.
0

So, given the appropriate assumptions, for all § € ©, we have that ¢(6, D.(w)) <= ¢(#) and that

é(0%, Do(w)) 22 £(6*). Due to the countable additivity property of probability measures and
Property 8] we have the following:

Pr ({ve €6, lim &6, Do(w)) = c(e)}, ["1320 (6%, Do(w)) = e(e*)]) -1, @D
where Pr(A, B) denotes the joint probability of A and B.

Let H denote the set of w € €2 such that (3T)) is satisfied. Note that {1, is defined as the value always
greater than £(6) for all € ©, and g(0) > —¢ for all & € ©. So, for all w € H, for sufficiently large
n, candidate selection will not define 6. to be in ©. Since w is in H almost surely (Pr(w € H) = 1),
we therefore have that lim,, ., Pr(4, ¢ ©) = 1.

The remaining challenge is to establish that, given f. ¢ ©, the probability that the repercussion-
awareness test returns 6, rather than NSF converges to one as n — oo. By Property [5] we have that
U(f., Dy) = g(6,). Furthermore, by the definition of ©, when 6, ¢ © we have that g(6..) < —&/2.
So, U(0., Dy) converges almost surely to a value less than —/2. Since the repercussion-awareness
test returns 6. rather than NSF if U (6., Dy) < —¢/4 and U(6,, D) converges almost surely to a
value less than —¢/2, it follows that the probability that U (., D) < —/4 converges to one. Hence,
given that . ¢ ©, the probability that 6, is returned rather than NSF converges to one.

We therefore have that 1) the probability that ., ¢ © converges to one as n — oo and 2) given that
0. ¢ O, the probability that .. is returned rather than NSF converges to one. Since 6. ¢ © implies that
0. is repercussion-aware, these two properties imply that the probability that a repercussion-aware
model is returned converges to one as n — 00.

G Full Algorithm

Algorithm [2] corresponds to the cost function used in candidate selection (line 3 of Algorithm [I).
When given a candidate model, 6, to evaluate, the cost function first uses the training set, D,, to
estimate whether the candidate model is likely to pass the repercussions-awareness test. This is done
by using D,. to compute an upper bound, U™, on g(6.). If Ut < —£/4, a small negative constantm

We consider —¢ /4, instead of 0 as the threshold in THEIA to ensure consistency. Appendixdiscusses this
in more detail.
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Algorithm 2 cost

Input: 1) the vector 6 that parameterizes model 7; 2) D. = {(X;, Y5, }72-6 , Rf )} 1 3) confidence
level d; 4) tolerance value 7; 5) the behavior model 3; 6) Bound € {Hoeff, ttest} and 7) the
number of data points in Dy, denoted np,.
Qutput: The cost of 7.
g ()
fori e {1,...,m} do

if ¢(X;,Y;) is True then g.append(
end for
Let A =2; ngz = length(g)
if Bound is Hoeff then

a, b < upper and lower bounds of g

Ut =L (X0 4) + Ab—a), /LD

ng (2"Df)

mo(X:,V )

mo (XY, ) pf
BT R; T) end if

® RN HE L D2

9: else if Bound is ttest then Ut = % (X2 4.) + /\\/Qtl s.np,—1 end if
10: Lpax = Maxgco 5(9', D.)
11: if Ut <—§ return £(6, D..) else return ({y. + U™)

Algorithm 3 THEIA with Multiple Constraints

Input: 1) D = {(X,,Y;, Yﬂ RB )}7_1; 2) the number of repercussion constraints, k; 3) a sequence
of Boolean conditionals (cj)f=1 such that for j € {1, ..., k}, ¢;(X;, ;) indicates whether the event

associated with the data point (X;,Y;, }A’f , Rf ) occurs; 4) confidence levels § = (6j)§:1,
each d; € (0,1) corresponds to repercussion constraint g;; 5) tolerance values 7 = (Tj)le, where
each 7; is the tolerance associated with repercussion constraint g;; 6) the behavior model 3; and 7)
Bound € {Hoeff, ttest}.

Qutput: Model 6. or NSF.

where

1: D¢, Dy < partltlon(D)

2: 6, < argmingeg cost(d, D., k,d, 7, ,Bound, length(Dy))

3 U« ()

4: for j € {1,....k} do

S: gj —

6: forie{l,..,n}do

7: if ¢;(X;,Y;) is True then @.append(L};)Rﬁ 7':) end if
v B(X:.YY) !

8: end for

9:  if Bound is Hoeff then U.append(Usoes£(;)) else U.append(Ustest (G;)) end

0: end for

1:

—_

ifvj € {1,...,k},U; <0 then return 6. else return NSF

Algorithm 2| determines that 6 is likely to pass the repercussion-awareness test, and the cost associated
with the loss of 6 is returned. Otherwise, the cost of @ is defined as the sum of U™ and the maximum
loss that can be obtained on dataset D, (lines 10—11). This discourages candidate selection from
returning models unlikely to pass the repercussion-awareness test.

Notice that Algorithm [2uses importance sampling ratios between two models—the currently de-
ployed classifier, 3, and a candidate model, 7y —to compute an unbiased estimate of the repercussion
objective, g. If nothing is known in advance about the relationship between these models, the resulting
ratios can be extremely small or large, leading to high-variance estimators. However, the candidate
models evaluated by THEIA are not arbitrary. THEIA is designed to reject candidates that diverge
too much from the current model: such models produce large importance ratios, which lead to wide
confidence intervals and typically fail THEIA’s repercussion-awareness test (lines 4-9, Algorithm T)).
These candidate models, therefore, are filtered out during the search. In particular, wide confidence
intervals result in large upper bounds, U™, on the repercussion objective. These bounds are likely
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Algorithm 4 cost with Multiple Constraints

Input: 1) the vector # that parameterizes the model 7; 2) D, = {(X;, Y, )A/f , Rf )} s 3) the
number of repercussion constraints, k; 4) a sequence of Boolean conditionals (c;) ;?:1 such that for
j€{1,...,k}, ¢;(X;,Y;) indicates whether the event associated with the data point (X;,Y;, }A/f, Rzﬁ)
occurs; 5) confidence levels § = {¢; }?Zl, where each ¢; € (0,1) corresponds with constraint g;; 6)
tolerance values 7 = {7;} ?:1’ where each 7; is the tolerance associated with repercussion constraint
g;j; 7) the behavior model 3; 8) Bound € {Hoeff, ttest}; and 9) the number of data points in Dy,
denoted np,.

Qutput: The cost associated with the model 7y.

1: forj e {1,..,k} do

2 g ()

3 forie{l,..,m}do

& i ¢(X,,Y)is True then gj.append (L) R! — 7)) end it
5.  end for L

6: LetA=2; ngy = length(g;)

7:  if Bound is Hoeff then

8 Let a, b be the lower and upper bounds of g;

n g]

NG, ,a log(1 6]‘
o Uf = (S5@).) + A0-a), 5L
10:  else if Bound is ttest then

e U = (S0 + A s,
12:  endif
13: end for

14: Lpax = Maxgco f(@’, D.)
15: if Vj € {1,...,k},U;" < —£/4 then return £(0, D)

16: else return (Emax + Z;?:l Uji_nﬂated)

to exceed the threshold — %, causing the algorithm to assign the maximum possible cost, £,.x, to
high-variance candidates—effectively eliminating them from consideration (line 11, Algorithm 2)).
In practice, thus, this mechanism serves as a way to implicitly constrain importance sampling ratios

and control the variance of THEIA’s estimates of the repercussion objective.

Furthermore, notice that in Algorithm [2} instead of calculating a high-confidence upper bound on
g(0) using Upoess OF Usrest, we calculate an inflated upper bound U ™. Specifically, we inflate the
width of the confidence interval used to compute the upper bound (lines 5-9). This is to mitigate
the fact that multiple comparisons are performed on the same dataset (D) during the search for a
candidate model, which often leads candidate selection to overestimate its confidence that the model
it picks will pass the repercussion-awareness test. Our choice to inflate the confidence interval in this
way, i.e., considering the size of the dataset D used in the repercussion-awareness test and the use of
scaling constant A, is empirically driven and was first proposed for other Seldonian algorithms [42]].

Algorithm [3] shows THEIA with multiple constraints. The changes relative to Algorithm [I] are
relatively small: instead of considering only a single constraint, the repercussion-awareness test loops
over all k£ constraints and only returns the candidate model if all k£ high-confidence upper bounds
are at most zero. Similarly, the cost function, Algorithm ] changes relative to Algorithm [2)in that
when predicting the outcome of the repercussion-awareness test it includes this same loop over all k&
constraints.

H Experiments

Recall that in our experiments, we evaluate THEIA in two real-life problems: EXP-1, involving
predictions about youth in the U.S. foster care system, and EXP-2, a loan-repayment setting. In both,
the goal is to identify accurate models while ensuring acceptable repercussions for all demographic
groups.
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In EXP-1, we consider a classifier that predicts whether youth in foster care will have a job after
leaving the program. Intuitively, Equation [3| captures the idea that if a youth is predicted to get a
job, they are more likely to receive financial aid—Ieading to less severe observed repercussions.

That is, R;/’ decreases when f/iw = 1. Notice that both the mean and variance of the repercussion
resulting from a given prediction vary by race. This reflects the fact that youth from different racial
backgrounds may experience systematically different outcomes, e.g., due to structural or social biases.
This form aligns with the empirical findings of Chetty et al. [10]], who show, using real-world data,
that the distribution of financial outcomes (i.e., repercussions) differs across racial groups even when

starting from similar conditions (e.g., having the same prediction }A/f).

In experiment EXP-2, we tasked THEIA with assisting banks and clients in making responsible
financial decisions. In this experiment, a bank’s lending decisions are informed by a classifier
predicting loan repayment success. These decisions can have repercussions on clients’ lives, affecting
their financial well-being, savings rate, or debt-to-income ratio after a lending decision is made.
In this setting, repercussions are not deterministic and can be influenced by various unobserved
environmental factors. To account for this variability, our experimental setup incorporates noise
models with different means and variances. This approach reflects that repercussions may differ across
clients of different ages due to unobserved factors such as their professional stability or the likelihood
of having a support network capable of assisting in case of economic distress. Younger individuals,
e.g., who are often not yet financially stable, may experience a greater impact on their financial
well-being from receiving a new loan than more financially stable senior individuals. Importantly,
this setting involves complex non-linear relationships between predictions and their repercussions due
to the Law of Diminishing Marginal Utility of Income: as income increases (e.g., due to an approved
loan), the benefits of further increasing it decrease. This relationship is known in economics to be
non-linear [28]].

Furthermore, this setting presents a challenging scenario where distribution shift causes the repercus-
sions of ML models to change between the deployment of the baseline classifier (behavior model)
THEIA aims to improve upon and the time when THEIA searches for a repercussion-aware model.
Specifically, it models a scenario where significant societal changes have altered the relationship
between predictions and their repercussions, reflecting, for example, how loan decisions may impact
clients differently over time. This allows us to empirically evaluate THEIA’s robustness in cases
where statistical properties of the data change after the training data was collected.

In all experiments, our implementation of THEIA used ES [36} [38]] to search over the space of
candidate models and the ttest concentration inequality. We partitioned the dataset D into D, and
Dy using a stratified sampling approach where D, contains 60% of the data and D contains 40% of
the data.

Experiments were conducted on a computer cluster containing 50 computer nodes with 28 cores (2
processors, 14 cores each - 56 cores with hyper-threading) Xeon E5-2680 v4 @ 2.40GHz, 128GB
RAM, 200GB local SSD disk, and 50 compute nodes with 28 cores (2 processors, 18 cores each -
72 cores with hyper-threading) Xeon Gold 6240 CPU @ 2.60GHz, 192GB RAM, and 240GB local
SSD disk. Each node had 3GB of allocated memory. The 500 trials of each experiment were run in
parallel, and the total running time was less than 12 hours.

We now present the complete set of results for RQ1 and RQ2: does THEIA enforce repercussion
constraints with high probability, while existing algorithms fail to do so; and what is the cost (e.g.,
in terms of accuracy) of enforcing repercussion constraints. Figure f] shows the complete failure
rate plots for both constraints across both experiments (EXP-1 and EXP-2). These experiments fully
support the conclusions discussed in the main text. Specifically, they confirm that the solutions
returned by THEIA always satisfy both repercussion constraints; other methods, by contrast, either
(1) consistently fail to satisfy both constraints or (2) satisfy one but not the other.

Recall that in the main text, we presented results on EXP-1 regarding the accuracy of classifiers
returned by different algorithms and the probability with which each of them returns a solution as a
function of the amount of training data. In Figure[5} we present this analysis for EXP-2. In particular,
Figure [5]shows, on the left, the accuracy of classifiers returned by different algorithms, and on the
right, the probability of returning a solution, as a function of n, for EXP-2. Notice that THEIA’s
accuracy matches or exceeds that of competing methods while consistently satisfying all constraints
(as shown in Figure [d). Furthermore, THEIA starts returning models that satisfy all constraints with
high confidence when given a number of samples corresponding to just 0.1% of the available data. It
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Figure 4: Failure rates of various methods w.r.t. repercussion constraints as a function of n [Left:
EXP-1; Right: EXP-2]. Black lines show the maximum admissible probability of failing to enforce
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Figure 5: [Left: EXP-2] Accuracy of the models returned by algorithms (subject to different
constraints) as a function of n. [Right: EXP-2] Probability that these algorithms return a solution as
a function of n.

consistently returns models (with 100% probability) when given a number of samples corresponding
to just 0.4% of the available data. Note that although Fairlearn and logistic regression always return
a model regardless of training data size, these models never satisfy both constraints. These results
demonstrate that even in a challenging setting with non-linear prediction-repercussion dependencies
that are affected by distribution shift, THEIA still significantly outperforms all competing methods.

Finally, recall that in the main text we evaluated THEIA in EXP-1 under one representative value of «
(ov = 0.9). We now show full results for a wide range of values of « to further support the observation
that THEIA is robust with respect to various prediction-repercussion dependency levels. In particular,
we investigate the performance of THEIA and competitors in terms of failure rate, probability of
returning a solution, and accuracy, for different values of v and as a function of n. Notice that Fig-
ures [6] and [7) present results consistent with the observations made in Section 5} that is, the qualitative
behavior of all considered algorithms remains the same for all values of «, further supporting our
observation that THEIA outperforms competitors both under high prediction-repercussion dependency
and when classifiers’ predictions have little to no influence on the repercussions.
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Figure 6: Algorithms’ performances w.r.t. failure rate (first and second columns), probability
of returning a solution (third column), and accuracy (fourth column), as a function of n and for
different values of o. The black horizontal lines indicate the maximum admissible probability
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims are supported by theoretical analyses (Section ) and empirical
evaluation (Section[5|and Appendix [H).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the keys assumptions (and when they are satisfied) required for our
method to identify, with high confidence, repercussion-aware solutions. We also investigate
the performance and robustness of our approach with respect to increasing levels of noise.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We present our theory using a set of four assumptions and three theorems, with
complete proofs provided in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the experiments in detail in the main paper, and add more specific
details in the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The data for EXP-1 can be obtained directly from the NDACAN webpage.
The data for EXP-2 can also be obtained online, using the reference provided. The code
is not yet publicly available. We are in the final stages of developing a library that will be
made publicly available to the community, and we expect to release it in the coming months.
The paper contains all the necessary details for implementing the proposed method.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main details are located in Section [5]of the main paper and Section[H]of
the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Details can be found in Section 3
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Details can be found in Appendix [H]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We do not present experiments involving human subjects. Furthermore, we
comply with all policies outlined by the sources from which the datasets used in EXP-1 and
EXP-2 were obtained.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Sectiond] we discuss the conditions under which the guarantees provided by
our algorithm do not necessarily hold. This could lead to models that are not repercussion-
aware if THEIA is deployed even when its requirements are not satisfied.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The paper does not make use of LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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