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ABSTRACT

The training method of Spiking Neural Networks (SNNs) is an essential problem,
and how to integrate local and global learning is a worthy research interest. How-
ever, the current integration methods do not consider the network conditions suit-
able for local and global learning and thus fail to balance their advantages. In this
paper, we propose an Excitation-Inhibition Mechanism-assisted Hybrid Learning
(EIHL) algorithm that adjusts the network connectivity by using the excitation-
inhibition mechanism and then switches between local and global learning accord-
ing to the network connectivity. The experimental results on CIFAR10/100 and
DVS-CIFAR10 demonstrate that the EIHL not only obtains better accuracy perfor-
mance than other methods but also has excellent sparsity advantage. Especially,
the Spiking VGG11 is trained by EIHL, STBP, and STDP on DVS CIFAR10, re-
spectively. The accuracy of the Spiking VGG11 model with EIHL is 62.45%,
which is 4.35% higher than STBP and 11.40% higher than STDP. Furthermore,
the sparsity achieves 18.74%, which is quite higher than the above two non-sparse
methods. Moreover, the excitation-inhibition mechanism used in our method also
offers a new perspective on the field of SNN learning.

1 INTRODUCTION

Spiking neural networks (SNNs) Maass (1997) are a type of neural networks that more closely
mimics biological neural systems, with efficiency and energy-saving advantages Xu et al. (2023) Liu
et al. (2020) Xu et al. (2020) Xu et al. (2024). The learning algorithm of SNNs is vital to their
performance and application, which are mainly divided into two categories: local learning Hebb
(2005) Song et al. (2000) Lu & Sengupta (2023) and global learning Zenke & Ganguli (2018) Wu
et al. (2018). Local learning is a correlation-driven learning method, suitable for sparse networks
and low-power hardware but difficult to handle complex tasks and deep networks. Global learning is
a loss-driven learning method, suitable for dense networks to solve complex tasks, but requires a lot
of computational energy consumption. Therefore, integrating local and global learning so that the
learning algorithm has both the energy-saving advantages of local learning and the high-performance
advantages of global learning is a significant research interest in the field of SNN.

The biological three-factor learning rules Gerstner et al. (2018) Bailey et al. (2000) provide biologi-
cal insights for the new way of integrating local and global learning. The three-factor rule is that the
adjustment of synaptic weights depends not only on the activity of the pre-synaptic neuron and the
post-synaptic neuron but also on a third factor (e.g., neurotransmitter). Wu et al. (2022) also pro-
posed a hybrid synergic learning algorithm, which uses two sets of weights to update the weights of
local learning and global learning separately and then directly adds the two sets of weights, achiev-
ing comparable performance. However, the current hybrid learning algorithm needs to trade-off
between the accuracy advantage of global learning and the low energy consumption advantage of
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local learning. Moreover, the type of hybrid learning algorithms still needs more reasonable biolog-
ical plausibility. Hence, the current hybrid learning algorithms have some theoretical and practical
shortcomings and need further improvement and optimization via the excitation-inhibition mecha-
nism.

In this paper, we propose an Excitation-Inhibition Mechanism assisted hybrid Learning(EIHL) al-
gorithm. Inspired by the excitation-inhibition mechanism of biological neural networks Rosenberg
et al. (2023) Sadeh & Clopath (2021) Wang et al. (2022) Xue et al. (2014) Shea (2021) Simeone &
Rho (2009) Wang (2020), We choose to distinguish between excitation and inhibition states accord-
ing to the overall connection state of the network. When the neural network is in an over-excited
state, it switches to an inhibited state. When the neural network is in an over-inhibited state, it
switches to an excited state. Based on the dynamic balance of excitation and inhibition in the neural
network, we achieve dynamic switching between global learning and local learning.

The main contributions of this paper are as follows:

• We propose an excitation-inhibition mechanism-assisted hybrid learning(called EIHL),
which can combine the high accuracy of global learning and the low energy consump-
tion of local learning and showed excellent accuracy and sparsity in the experiments on
three datasets and two models.

• We obtained inspiration from neuroscience and adopted the excitation-inhibition mecha-
nism to solve the problem of how to reasonably integrate hybrid learning. The experimen-
tal results showed that EIHL also achieved sparsity advantages, which made it possible to
deploy on hardware.

• We used the neural excitation-inhibition mechanism to achieve the integration of global and
local learning and implemented it by adjusting the weights. This not only provides a new
perspective for the field of SNN training methods but also prepares for the generalization
of EIHL to the ANN domain.

2 RELATED WORKS

2.1 LEARNING ALGORITHMS FOR SPIKING NEURAL NETWORKS

Local learning: The Hebb learning rule Hebb (2005) states that the pre-synaptic neuron must be
activated before the post-synaptic neuron. Based on these rules, spike-timing dependent plasticity
(STDP) was proposed by Song et al. (2000). STDP is a local learning algorithm that adjusts synaptic
weights based on the pulse timing interval between pre-synaptic and post-synaptic neurons. Deep-
STDP Lu & Sengupta (2023) is a local learning algorithm based on STDP, which uses pseudo-labels
obtained through clustering for loss backpropagation and updating of synaptic weights, significantly
improving performance. However, Deep-STDP also increases computational complexity and energy
consumption.

Global learning: The Backpropagation (BP) BP (1990) algorithm performs well in artificial neural
networks (ANNs) Agatonovic-Kustrin & Beresford (2000), but cannot be directly applied to spiking
neural networks (SNNs) Maass (1997). So, the SuperSpike Zenke & Ganguli (2018) algorithm em-
ploys a gradient approximation method but does not consider the unique spatiotemporal information
of SNNs. The Spatio-Temporal Backpropagation (STBP) Wu et al. (2018) algorithm compensates
for the insufficient SuperSpike algorithm. STBP is a modified variant of the backpropagation al-
gorithm specifically designed for training SNNs. STBP considers the temporal relationships and
connectivity between spiking neurons, emphasizing the temporal nature of spikes. While STBP
performs excellently in task recognition accuracy, it also brings greater computational complexity.

In practice, Wu et al. (2022)proposed hybrid plasticity (HP), which uses two sets of weights to
update local and global learning weights, respectively. This hybrid learning method integrates local
and global learning, resulting in higher accuracy. HP inspired our method to fuse local and global
learning from the weights perspective. In biology, the three-factor learning rules Gerstner et al.
(2018) Bailey et al. (2000) indicate that another factor affects synaptic strength besides the activity
between presynaptic and postsynaptic neurons, such as neurotransmitters.

2



Published as a conference paper at ICLR 2024

2.2 EXCITATORY AND INHIBITORY MECHANISMS IN NEURAL SYSTEMS

Neuronal excitation and inhibition mechanisms have pathological and functional significance Rosen-
berg et al. (2023) Sadeh & Clopath (2021) Wang et al. (2022) Xue et al. (2014). From a pathological
perspective, excitation-inhibition not only regulates the emotions of impulse or hesitation but also
induces or reduces the frequency and duration of epileptic seizures, as well as improves cognitive
and memory functions Rosenberg et al. (2023). From a functional perspective, networks with exci-
tation and inhibition have stronger learning abilities than networks with only excitation, as shown
by Wang et al. (2022) who set positive weights as excitation and negative weights as inhibition in
an ANN with a monotonic activation function. They proved that networks with only excitation can
achieve monotonic functions and can not implement the XOR function.

3 PRELIMINARY

3.1 INTEGRATE-AND-FIRE MODEL

This paper uses the integrate-and-fire (IF) model as a single computational unit in SNNs, which is
a biological neuron model that describes how neurons produce action potentials. The membrane
potential of an IF neuron at a certain time step is the decay of the membrane potential from the
previous time step plus the external stimulus at this moment. When the membrane potential exceeds
a threshold, neuron triggers to firing a spike at this time step. The calculation formula of IF is as
follows:

M(t) = V(t− 1) + I(t), (1)

whereM(t) and V(t− 1) is the membrane potential of the neuron at time step t and t− 1 without
spike firing, respectivley. I(t) is the external stimulus the neuron receives at time step t.

S(t) =
{
1 ifM(t) ≥ Vthr

0 ifM(t) < Vthr
(2)

S(t) is the marker of whether the neuron fires a spike at time step t, and Vthr is the threshold for
spike firing. If the membrane potential is greater than the Vthr, it fires; if the membrane potential is
less than the Vthr, it does not fire.

V(t) =M(t)− S(t) · Vthr (3)

V(t) is the membrane potential after spike firing. It is obtained by subtracting Vthr from M(t) if
there is spike firing.

3.2 SPIKE-TIMING-DEPENDENT PLASTICITY

Spike-Timing Dependent Plasticity (STDP) Song et al. (2000) is a synaptic plasticity mechanism that
depends on the firing sequence of pre- and post-synaptic neurons. In STDP, if the pre-synaptic neu-
ron fires before the post-synaptic neuron, synaptic strength increases; if the pre-synaptic neuron fires
after the post-synaptic neuron, synaptic strength decreases. Long-Term Potentiation (LTP) Malenka
et al. (1999a) and Long-Term Depression (LTD) Ito (1989) are the two components that constitute
STDP Zenke et al. (2017). However, significant LTP only occurs at synapses with relatively low ini-
tial strength, whereas the extent of LTD does not show an obvious dependence on the initial synaptic
strength Bi & Poo (1998). Therefore, the overall effect of STDP tends to exhibit the LTD.

∆ωij =

A · exp
(
− |ti−tj |

τ+

)
if ti ≤ tj , A > 0

B · exp
(
− |ti−tj |

τ−

)
if ti > tj , B < 0

(4)

where A and B are the maximum values of synaptic weight change, τ+ and τ− are time constants.
STDP determines the sign of weight change ∆ωij based on the order of spike firing of pre-neuron
i and post-neuron j, and the magnitude of ∆ωij based on the time interval between pre-spike and
post-spike firing.
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3.3 SPATIO-TEMPORAL BACKPROPAGATION

Spatio-temporal backpropagation (STBP) Wu et al. (2018) combines the elements of STDP and
backpropagation (BP) for training SNNs. In STBP, the STDP rule is usually used to adjust the
synaptic weights between neurons, simulating the biological learning rule. Then, the BP algorithm
is used to adjust the parameters in the artificial neural network. Due to BP’s powerful learning
capabilities, most weights increase after STBP learning, which corresponds to the excitation of LTP.
Eq. 5 simply introduces the BP loss function L in STBP.

L =
1

2G

G∑
g=1

∥∥∥∥∥Yg − 1

T

T∑
t=1

Ot,N
g

∥∥∥∥∥
2

2

, (5)

where G is the number of samples in a batch, Yg is the label of the g sample in a batch, T is the size
of the time window. Ot,N

g is the model output of the g sample at time step t, where N is the number
of classes. It represents the prediction of the model for the g sample at time step t.

4 EXCITATION-INHIBITION MECHANISM-ASSISTED HYBRID LEARNING

Figure 1: The illustration of the training processing SNNs via EIHL. The solid lines represent the
connections that exist, and the dashed lines represent the connections that are broken. In global
learning, the LTP effect of excitation is synaptic enhancement, which makes the neurons in the net-
work more active to fire spikes. In local learning, the LTD effect of inhibition is synaptic shrinkage
or even disconnection, which makes the neurons in the network more passive to fire spikes.

First of all, the challenge of hybrid learning lies in the integration of global and local learning.
While current hybrid learning methods have achieved excellent results in terms of accuracy Wu
et al. (2022), they could do slightly better in integrating the low energy consumption advantage
of local learning. Therefore, based on the exciting Long-Term Potentiation (LTP) Malenka et al.
(1999a) results of global learning and the inhibitory Long-Term Depression (LTD) Ito (1989) results
of local learning, an excitatory-inhibitory mechanism is adopted to balance the two. Secondly, in
the cerebral cortex, the excitatory mechanism can enhance synaptic strength Malenka et al. (1999b),
while the inhibitory mechanism can weaken it Abraham & Bear (1996) Li et al. (2017b). Unlike
previous works Kern & Chao (2023) Zhu et al. (2017) that directly distinguish between excitation
and inhibition at the synaptic and neuronal levels from a microscopic perspective, we use the net-
work connection status to differentiate between excitatory and inhibitory states from a macroscopic
perspective. Finally, according to the excitatory-inhibitory mechanism, excitation and inhibition
are automatically balanced. As shown in Fig. 1. when the network is overly excited, it should be
inhibited, and when it is in an overly inhibited state, it should be excited. We propose an Excitatory-
Inhibitory Hybrid Learning (EIHL) method, which better integrates the advantages of local and
global learning, resulting in a model with high accuracy and low power consumption. We use the
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Algorithm 1: Excitation-Inhibition Mechanism assisted Fusion learning method.
Require: current sparsity Curr S, previous sparsity Pre S, current target sparsity b, the

increment step of parameter b step.
Ensure: SNN model with EIHL

for i=1 to epoch do
if Curr S >= Pre S and Curr S < b then

Running STDP;
Disconnect the weak connections of excitation or inhibition according to the LTD
principle using Eq. 6 and Eq. 7;

else
Running STBP and x undergoes self-decay in Eq. 6.;
if just flipped to STBP then
b← b+ step

end if
end if

end for

degree of network connectivity to distinguish between excitation and inhibition, so we set a target
sparsity b as the threshold for the network to be in an over-inhibited state. In local learning, due to
the effect of LTD, the network sparsity gradually increases. When it exceeds the target sparsity b, the
network is considered to be in an over-inhibited state, and the network will switch to excited global
learning. The contraction formula Eq. 6 accelerates the process of the network gradually becoming
sparse in local learning.

H(x) = thresh(b) · x · α, (6)

Actually, H(x) is a weight value, and contraction implies that weights less than the boundary value
H(x) will shrink until they disconnect. Moreover, the target sparsity b is a percentage, not a weight
value, so thresh(b) is the mapping of b on the weight distribution. In simpler terms, if the weights
that are less than thresh(b) in each layer are set to 0, the current sparsity will directly reach the
target sparsity b. The network will immediately exhibit an over-inhibited state and will switch to
excited global learning. However, defining the range and setting it to 0 directly is too crude and will
cause a lot of unnecessary losses. Therefore, x · α is to give H(x) a slow expansion process from
0. α first divides the thresh(b) into multiple scales, and as x gradually increases, H(x) will also
slowly increase until it equals thresh(b).

However, we believe that simply setting the weights below the boundary value H(x) to 0 is still
crude. Therefore, we fix the update direction of the weights at the boundary value H(x) to move
only towards 0 and then set the weights near zero to 0, to accelerate LTD in a relatively smooth
manner.

W ′ =W − lr · ∇W, (7)

W denotes the weight that has not been updated,W ′ denotes the weight that has been updated,∇W
is the weight update amount of STDP and lr denotes the learning rate.

Summarize the contraction operation of EIHL on local learning, that is, The update direction of the
weights within theH(x) boundary can only tend to 0, and the weight area close to 0 can be directly
set to 0. Then x++ ,H(x) gradually expands, and the final set to 0 area reaches the thesh(b) area,
the current sparsity reaches the target sparsity b, and switches to the excited global learning.

We set the threshold for over-inhibition as b, but we did not specify a value for the threshold of
over-excitation. The criterion for judging the state of over-excitation is “Curr S ≥ Pre S”. We
assume that in global learning, the network is over-excited when the sparsity stops decreasing, and
then switches to inhibited global learning. Meanwhile, in order to better demonstrate the low-power
advantage of local learning, the threshold for over-inhibition b is incremented by a step size every
time it switches.
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5 EXPERIMENTAL SETTINGS

5.1 DATASETS

In this section, we conduct experiments with two models: Spiking Resnet18 res Han et al. (2020)
and Spiking VGG11 Sengupta et al. (2019b), on three datasets: CIFAR10, CIFAR100 Krizhevsky
et al. (2009), and DVS-CIFAR10 Li et al. (2017a). We compare our methods with local learning
methods (STDP) and global learning methods (STBP) to demonstrate their superiority in accuracy,
robustness, and network sparsity.

CIFAR10 is a small RGB dataset with 10 classes. Each category has 6000 images, of which 5000
are used for training and 1000 are used for testing. The shape of each image is 32×32×3. It has
some representativeness and universality. It can verify whether the obtained model has general
classification ability.

CIFAR100 is an extension of CIFAR10, with 20 superclasses, each containing 5 classes. Each
category has 600 images, of which 500 are used for training and 100 are used for testing. The shape
of each image is also 32×32×3. It is a very challenging classification task.

DVS-CIFAR10 is an event-based dataset for object classification, which is obtained by scanning the
CIFAR10 dataset with a Dynamic Vision Sensor (DVS) Gallego et al. (2022). It has a total of 10,000
event streams, of which 8,000 are used for training and 2,000 are used for testing. The shape of each
event stream is 128×128×2, where the last dimension represents the timestamp and polarity. It is
more suitable for the training and testing of Spiking Neural Networks.

5.2 PATTERN RECOGNITION TASK

We conducted four experiments to evaluate our method. First, we tested our method on CI-
FAR10/100 and DVS CIFAR10, and compared the accuracy and sparsity with local learning STDP
and global learning STBP, to verify the essential performance of the model obtained by EIHL. Sec-
ondly, we supplemented an ablation study experiment on the increment step of parameter b in the
contraction curve Eq. 6 that directly affects the sparsity in the EIHL method on CIFAR10, and
controlled the sparsity of the network by the step size, to test the sparsity advantage of the model
obtained by EIHL. Thirdly, we did a random pruning experiment on CIFAR10, which is to randomly
prune 20%, 40%, and 60% of the network connections, and test the capability of the network to clas-
sify spatiotemporal patterns under the EIHL method. Finally, we compare the performance of EIHL
and other hybrid learning methods on CIFAR10, to verify the ability of EIHL. Furthermore, for all
the experiments, we used Spiking Resnet18 and Spiking VGG11 to verify the generalization ability
of our method. In these experiments, the sparsity is an additional advantage for our EIHL method.
The sparsity evaluation metric computes the proportion of weights that are 0 among all the weight
parameters. The accuracy evaluation metric equals the proportion of samples correctly classified in
the test set.

5.3 IMPLEMENT DETAILS

We conduct experiments on a server equipped with a 16-core Intel(R) Xeon(R) Xeon(R) Gold 6330
2.80GHz CPU and 20 NVidia GeForce RTX 3090 Ti GPUs. In these experiments, we used the
SpikingJelly framework Fang et al. (2020) to simulate the whole training process, the parameters of
the STDP layer were updated by the SGD optimizer Mandt et al. (2017), and the global information
was updated by the Adam optimizer Zhang (2018). The two optimizers shared a learning rate.
The learning rates of Resnet18 on CIFAR10, CIFAR100 and DVS datasets are 2e-3, 5e-4 and 2e-3
respectively. The learning rates of VGG11 on three datasets are 2e-4, 2e-4 and 1e-5 respectively.
Besides, the increment step of parameter b in the experiments of Tab. 1 and Tab. 3 is 0.5. The number
of epochs in the four experiments is 200.

6 EXPERIMENTAL RESULTS

Firstly, we evaluate the sparsity and accuracy of EIHL’s experimental results as shown in Tab. 1.
EIHL achieved certain accuracy advantages and ensured an advantageous sparsity. Secondly, we

6



Published as a conference paper at ICLR 2024

investigate the influence of the contraction boundary value in EIHL’s experimental results as shown
in Tab. 2. We found that, overall, the step size is proportional to the sparsity and inversely propor-
tional to the accuracy. Thirdly, we compare the performance of the model on different disconnect
degrees as shown in Tab. 3. EIHL still maintained a certain accuracy and high sparsity under differ-
ent degrees of random pruning. Finally, we compare the performance of the model with other hybrid
learning methods as shown in Tab. 4. The experimental results show that the EIHL method still has
superior accuracy and unique sparsity advantages.

6.1 EVALUATION THE SPARSITY AND ACCURACY OF EIHL

We first tested the spiking resnet18 model on three datasets, and it outperformed STBP and STDP
in terms of accuracy as well as sparsity. For example, on the CIFAR100 dataset, EIHL’s accuracy is
0.15% higher than STBP and 25.97% higher than STDP. Moreover, EIHL’s sparsity is 31.75% higher
than the other two pure global or local methods. Then, we used another model framework - Spiking
VGG11 to evaluate the generalization ability of EIHL. The results show that the test accuracy on all
datasets is higher than that of STBP and STDP alone. And it also retains a certain sparsity. As shown
in Fig. 2, EIHL’s accuracy was almost always surpass STBP in the later about 25 epoches stages.
It has been shown that when the current sparsity reaches the target sparsity in the EIHL approach,
the target sparsity increases by one step when entering STBP, whereas the current sparsity steadily
decreases. When the current sparseness no longer shifts, it will switch to STDP during learning, and
the current sparsity will steadily grow until it approaches the desired sparsity. Although the EIHL
accuracy is approximately equal to STBP on the VGG model and CIFAR10 dataset, it is because
the increment step of b is 0.5 here. When the increment step of b is 2 in Tab. 2, the EIHL method
has a slightly higher accuracy than STBP, and also a 28.42% higher sparsity. Moreover, when the
increment step of b is 0.125 in Tab. 2, the EIHL accuracy is 0.3% higher than STBP, and also 4.75%
higher in sparsity.

Figure 2: This is the curve variation of the precision and sparseness of the final 25 epochs. Left: The
comparison of the accuracy of three methods on CIFAR100 using the VGG11 model. It can be seen
that the accuracy of EIHL is significantly higher than that of STDP and STBP. Right: The change in
current sparsity and target sparsity in EIHL. It can be seen that in the EIHL method, after the current
sparsity reaches the target sparsity, the target sparsity will increase by one step when entering STBP,
and the current sparsity will gradually decrease. When the current sparsity no longer changes, it will
flip to STDP for learning, and the current sparsity will gradually increase until it reaches the target
sparsity at this time.

Table 1: Evaluation of sparsity and accuracy on CIFAR10/100 and DVS CIFAR10 datasets between
the EIHL and other methods.

Spiking Resnet18 Hu et al. (2021)
CIFAR10 CIFAR100 DVS CIFAR10

Model Sparsity.(%) Accuracy.(%) Sparsity.(%) Accuracy.(%) Sparsity.(%) Accuracy.(%)

STDP 0.00 76.71 0.00 32.66 0.00 36.00
STBP 0.00 89.53 0.00 58.48 0.00 60.2
EIHL 17.17 90.25 31.75 58.63 11.42 62.9

Spiking VGG11 Sengupta et al. (2019b)
CIFAR10 CIFAR100 DVS CIFAR10

STDP 0.00 78.29 0.00 29.17 0.00 51.05
STBP 0.00 85.76 0.00 53.75 0.00 58.10
EIHL 13.10 85.75 14.12 55.33 18.74 62.45
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Therefore, the proposed hybrid learning methods of EIHL achieves superior performance on accu-
racy and sparsity compared with pure local or global learning mechanisms for SNNs models. At the
same time, compared with the hybrid plasticity (HP) method proposed in Wu et al. (2022), with a
sparsity of 0 our EIHL method has a certain sparsity advantage.

6.2 THE INFLUENCE OF THE CONTRACTION BOUNDARY VALUE IN EIHL

As shown in the right Fig. 2, the current sparsity increases with the gradual increase of b. Therefore,
in the second experiment, we set different increment steps of b to control the sparsity of the network.
The experimental results are shown in Tab. 2. When step = 0.125, the accuracy of Resnet18 is
90.00%, and the accuracy of VGG11 is 86.06%, which is still higher than the accuracy of STBP and
STDP. However, because the step size is small, the final sparsity of the network is 6.65% and 4.75%.
When step = 4, the accuracy of the two models is 74.53% and 84.66%, and the sparsity is 80.77%
and 48.68%. Too large a step size will cause some damage to the accuracy of the model. It can be
seen that the step size of b is basically proportional to the sparsity and inversely proportional to the
accuracy.

Although the accuracy is the highest for the Resnet18 model and CIFAR10 dataset when the incre-
ment step b is 0.5, the accuracy changes are not significant between the steps of 0.125, 0.25, and
0.5, and the change does not exceed 0.25%. Therefore, from an overall perspective, the increment
step of b is still proportional to the sparsity and inversely proportional to the accuracy. Moreover,
this experiment also shows that the neural excitation-inhibition mechanism also bring an absolute
sparsity advantage to EIHL.

Table 2: Evaluation of sparsity and accuracy on CIFAR10 between difference increment step of b.

SNN Model
Spiking Resnet18 Spiking VGG11

Value of b Sparsity.(%) Accuracy.(%) Sparsity.(%) Accuracy.(%)

0.125 6.65 90.00 4.75 86.06
0.25 11.58 90.02 8.31 85.49
0.5 17.17 90.25 13.10 85.75

1.000 30.31 89.61 20.28 85.65
2.000 44.62 89.08 28.42 85.77
4.000 80.77 74.53 48.68 84.66

According to the experimental results, EIHL can control the sparsity of the network structure by the
increment step of b, and has a stronger sparsity advantage than the separate local learning STDP and
the separate global learning STBP.

6.3 COMPARISON THE PERFORMANCE OF THE MODEL ON THE DIFFERENT DISCONNECT
DEGREE

In the third experiment, we further verified the robustness and sparsity advantage of EIHL by ran-
domly pruning the network with different disconnect degrees. For example, the 20% random pruning
experiment is to randomly select 20% of the weights in each layer and set them to 0 at the initial
stage. And keep them and their gradients as 0 in the subsequent learning. As illustrated in Tab.3,
under 20% and 40% pruning proportion, the accuracy of EIHL still exceeds that of STBP and STDP.
For example, under 40% pruning, the accuracy of the Resnet18 model on EIHL is 0.36% higher than
STBP and 11.99% higher than STDP, and the sparsity is 29.73% higher than the other two methods.
Although under the Resnet18 model, when pruning 60%, the accuracy of EIHL is no longer higher
than STBP, that is because the sparsity of EIHL has reached 87.26%, and the accuracy only drops
by 0.26% compared with STBP with 60% sparsity.

This experimental result shows that, under the same pruning level, EIHL performs better than the
separate local learning STDP and the separate global learning STBP in the aspects of both accuracy
and sparsity. It also proves that EIHL has a certain robustness, as the disconnect degrees increase,
the EIHL keeps higher accuracies than the other separate methods.
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Table 3: Evaluation of sparsity and accuracy on CIFAR10 between different disconnect degrees.

Spiking Resnet18
20% 40% 60%

Model Sparsity.(%) Accuracy.(%) Sparsity.(%) Accuracy.(%) Sparsity.(%) Accuracy.(%)

STDP 20.00 77.70 40.00 75.80 60.00 72.63
STBP 20.00 89.15 40.00 87.43 60.00 84.05
EIHL 45.24 89.24 69.73 87.79 87.26 83.79

Spiking VGG11
20% 40% 60%

STDP 20.00 74.72 40.00 72.25 60.00 69.14
STBP 20.00 85.22 40.00 84.23 60.00 82.67
EIHL 33.64 85.62 50.10 84.36 74.67 82.93

6.4 COMPARISON THE PERFORMANCE OF MODEL WITH OTHER HYBRID LEARNING
METHODS

In the last experiment, we conducted a performance comparison experiment between EIHL and
Excitatory-Inhibitory Cooperative Iterative Learning (EICIL) Shao et al. (2024). EICIL is a hybrid
training method that simulates the excitatory and inhibitory behaviors of biological neurons and
seamlessly integrates them into the training process of Spiking Neural Networks (SNNs). It also has
high-precision performance. EICIL proposes two training methods: the iteration using the Surrogate
Gradient Method(GS) method and STDP-BW(which incorporates the backpropagation technique
into the STDP model) method as GSI, and the iteration using the GS method and STDP-BW-GS
method as GSGI.

Table 4: Evaluation of sparsity and accuracy on CIFAR10 between the EIHL and EICIL.

SNN Model
Spiking Resnet18 Spiking VGG11

Value of b Sparsity.(%) Accuracy.(%) Sparsity.(%) Accuracy.(%)

GSI 0.00 89.32 0.00 85.63
GSGI 0.00 88.95 0.00 85.66
EIHL 17.17 90.25 13.10 85.75

As shown in Tab. 4, EIHL’s accuracy is higher than GSI and GSGI under both models. Especially
on the Spiking resnet18 model, EIHL’s accuracy is 0.93% higher than GSI and 1.3% higher than
GSGI. And compared to GSI and GSGI, our EIHL shows a unique sparsity advantage.

7 CONCLUSION

We propose an Excitement-Inhibition Mechanism assisted Hybrid learning method (EIHL) for spik-
ing neural networks (SNNs). Benefitting from the automatic harmonization of the excitement-
inhibition mechanism, the hybrid learning method with local and global learning is designed to
extend the learning scenario of SNNs, which can automatically adjust the network connection sta-
tus according to the LTP and LTD principles and then switches between local learning and global
learning modes according to different network connection states. Hence, the proposed EIHL method
overcomes the drawback of current hybrid learning methods that fail to take advantage of the low
energy consumption of local learning and the high accuracy of global learning. Experimental re-
sults demonstrated that the SNNs model trained by the proposed EIHL method has better accuracy,
certain sparsity, and strong robustness compared with other common-used methods.

As to the future work, the proposed method needs to be evaluated on large-scale datasets Rus-
sakovsky et al. (2015) and other network architectures Sengupta et al. (2019a) Mostafa (2017) on
GPU and hardware platforms, as EIHL can achieve strong sparsity and have significant potential
once deployed on hardware platforms Roy et al. (2019). What’s more, other variants of local and
global learning methods could be explored to improve the performance of EIHL further Zhang et al.
(2021) Lu & Sengupta (2023).
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