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Abstract

The development of biologically interpretable and explain-
able models remains a key challenge in computational
pathology, particularly for multistain immunohistochem-
istry (IHC) analysis. We present BioX-CPath, an explain-
able graph neural network architecture for whole slide im-
age (WSI) classification that leverages both spatial and se-
mantic features across multiple stains. At its core, BioX-
CPath introduces a novel Stain-Aware Attention Pooling
(SAAP) module that generates biologically meaningful,
stain-aware patient embeddings. Our approach achieves
state-of-the-art performance on both Rheumatoid Arthri-
tis and Sjogren’s Disease multistain datasets. Beyond per-
formance metrics, BioX-CPath provides interpretable in-
sights through stain attention scores, entropy measures, and
stain interaction scores, that permit measuring model align-
ment with known pathological mechanisms. This biologi-
cal grounding, combined with strong classification perfor-
mance, makes BioX-CPath particularly suitable for clini-
cal applications where interpretability is key. Source code
and documentation can be found at: https://github.
com/AmayaGS/BioX-CPath.

1. Introduction
Whole Slide Image (WSI) scanners capture high resolution,
multi-magnification digital images of stained tissue biopsies
presented on glass slides. The digitization of these biopsies
has spurred the development of computational pathology
methods. Analysis of these WSIs currently stands as one
of the gold standard diagnostic and subtyping methods for
many forms of cancers and autoimmune diseases, such as
Rheumatoid Arthritis (RA) and Sjogren’s Disease. Differ-
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ent types of staining exist, which highlight different aspects
of the tissue samples. Hematoxylin & Eosin (H&E) stain-
ing, a traditional and widely used technique, offers a broad
view of tissue architecture and cellular morphology, with
Hematoxylin staining cell nuclei a deep blue-purple, while
Eosin stains cytoplasm and extracellular matrix in shades of
pink. In contrast, Immunohistochemistry (IHC) is a more
specialized technique that uses antibodies tagged with vi-
sual markers to identify specific proteins or cell types within
tissue samples, allowing for precise localization and visual-
ization of cell populations present in the tissue [42].

In cancer diagnostics, H&E staining remains the foun-
dation for initial assessment and general diagnosis. How-
ever, IHC plays a crucial role in tumor classification, prog-
nosis determination, and treatment selection by pinpointing
specific cancer biomarkers, such Human Epidermal Growth
Factor Receptor 2 (HER2), Estrogen Receptor (ER) and
Progesterone Receptor (PR) [65, 66]. For autoimmune dis-
eases, while H&E staining identifies general patterns of in-
flammation and tissue damage, IHC becomes essential for a
more nuanced understanding of the disease process. It high-
lights the types of immune cells present in inflammatory in-
filtrates, detects autoantibody deposits, and visualizes spe-
cific autoantigens targeted by the immune system [44]. In
clinical pathology, a tissue sample will be taken and thinly
sliced, and different stains applied to these slices, often with
a reference H&E slide to verify tissue quality [42]. These
multi-stain WSIs stacks are rich in information about cellu-
lar types, tissue structures, and spatial patterns which relate
to disease presentation and prognosis. Expert pathologists
examining these stacks perform a semi-quantitative anal-
ysis, efficiently integrating information across both scale,
stains, and images.

Most state-of-the-art computational pathology methods
so far have focused on H&E and the single-stain domain.
Works that has tackled IHC have often done so in the con-
text of cell quantification via cell segmentation [15, 26,
52, 53], as well as prediction and scoring of biomarkers
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[26, 27, 48], or registration of multistain stacks [56]. Some
works have also explored the potential of H&E to IHC vir-
tual staining techniques [38, 49, 59] or recently of using
IHC as views for self-supervised representation learning
[26]. Most of these approaches have concentrated on ex-
tracting information from IHC slides such that this could
be predicted using H&E or on quantification of cell popula-
tions in IHC. This is because H&E is an older, more widely
available and cost-effective technology. However, the use
of IHC and more advanced techniques such as immunoflu-
orescence is only set to grow in the coming years, associ-
ated with a decrease in technology cost and more advanced
biomarker detection techniques [42]. There is therefore a
clear need for methods which explicitly focus on integrat-
ing the complex cell landscapes across stains. To the best
of our knowledge, few studies have concentrated on the is-
sue of classification of unregistered, unannotated multistain
datasets to date, with a single stain graph and mid/late fu-
sion approaches developed in [13] and a multistain atten-
tion graph approach proposed in MUSTANG [17]. How-
ever, the value of computational pathology extends beyond
classification tasks. Given the rich information contained
in multi-stain data, these methods must be interpretable and
generate actionable biological insights at both the disease
and patient level. This interpretability serves two crucial
purposes: it advances our understanding of underlying dis-
ease mechanisms, and it allows pathologists to verify that
model predictions align with established biological knowl-
edge, building trust in the system’s outputs.

1.1. Contributions
1. We introduce BioX-CPath, a biologically driven graph-

based model tailored to the complex cellular landscapes
in multistain datasets. BioX-CPath works across mul-
tiple stains using semantic and spatial cues to capture
complementary cellular and tissue information.

2. We propose a novel Stain-Aware Attention Pooling
(SAAP) module that generates expressive, stain-aware
patient embeddings. This module uniquely respects the
biological and diagnostic diversity across stains, improv-
ing interpretability and diagnostic relevance.

3. We fully leverage the biological interpretability of BioX-
CPath via derived metrics: stain attention and entropy
scores, stain-stain interaction scores and Graph Neural
Networks (GNNs) node heatmaps. These metrics pro-
vide detailed insights into stain relevance and inter-stain
relationships, uncovering key biological patterns and in-
teractions that contribute to disease pathology.

1.2. Related Work
1.2.1. Multiple Instance Learning
WSIs are gigapixel, heterogeneous image files, which
present challenges for computer vision methods given each

image can reach over 100k × 100k pixels, generally within
a low patient sample setting. A weakly supervised Mul-
tiple Instance Learning (MIL) approach is most often em-
ployed to address this challenge. The image is divided into
a regular grid of smaller patches (e.g., 224 × 224 pixels),
each inheriting slide/patient labels. Patches are then embed-
ded into a feature vector and classified at the slide/patient
level using some form of non-trainable (e.g., max or mean)
or trainable aggregation on the set of instances. Methods
such as ABMIL [25], DS-MIL [36], and CLAM introduced
trainable linear attention aggregation layers [39]. TransMIL
[51] tackles the issue of long-range dependencies by ap-
proximating self-attention operations between patches via
the Nyström method [57].

1.2.2. GNNs in Histopathology
Applications in histopathology can be divided into cell,
patch, or tissue-level graphs, with both node and graph clas-
sification approaches being employed. Patch-graphs can be
constructed using features extracted from a WSI or a set of
WSIs, then connected via edges [2, 3, 63, 64]. DeepGraph-
Conv [37], PatchGCN [9], GTP [63], CAMIL [16] and
HEAT [8] adopt this approach by constructing a graph con-
necting either the k-nearest neighbors in feature space or re-
gion adjacent patches. DeepGraphConv uses spectral graph
convolution on a subset of patches, whereas Patch-GCN
employs graph convolutional layers with residual connec-
tions and a final global attention pooling mechanism layer,
which GTP replaces with a Transformer layer. CAMIL
[16] combines a spatial neighbor constrained attention mod-
ule with a transformer layer. HEAT [8] incorporates node
and edge attributes in a heterogeneous graph, together with
a pseudo-label pooling algorithm based on predicted cell
types using KimiaNet, a feature extractor which was pre-
trained on H&E images from The Cancer Genome Atlas
Program (TCGA) [47].

These methods were designed for accurate classification
and prognosis in H&E staining and cancer datasets. Be-
cause of this, these models are optimized to focus on fea-
tures and patterns linked to tissue architecture and cell mor-
phology. Notably, because these models were designed for
the single-stain cancer domain, they concentrate on spatial
awareness which aligns well with the need in cancer to ac-
curately detect tumors and tumor microenvironment based
on tissue architecture and cell morphology [8, 9, 34]. More-
over, these approaches provide insight into tumor localiza-
tion by providing heatmaps overlays showing the attention
scores obtained per patch. Other methods, such as TEA-
Graph [34] and Slide-Graph [40] also provide insight into
interpretable prognostic biomarkers linked to tissue type.

In line with previous work, we adopt a patch-graph ap-
proach to efficiently integrate information across multistain
WSI stacks. However, although we provide insight into
the model decision making process through examination of
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layer importance and GNN heatmap, our focus is on pro-
viding insight into the alignment of our model with un-
derlying biology and in understanding how the cell pop-
ulations interact. This approach bridges the gap between
performance-based approaches and explainable, insight-
driven approaches.

2. Preliminaries
In this section we provide definitions and background on
the concepts used throughout this work.

Graph Neural Networks. GNNs are capable of learn-
ing representations of graphs by propagating node fea-
tures through a series of computationally efficient message-
passing and aggregation operations [14]. Given a graph
over a set of nodes V , during the k-th message-passing
iteration, the embedding h

(k)
u corresponding to each node

u ∈ V is updated according to information aggregated from
the neighbors of u, i.e.,

h(k+1)
u = UPDATE(k)

(
h(k)
u ,m

(k)
N (u)

)
m

(k)
N (u) = AGGREGATE(k)

({
h(k)
v ,∀v ∈ N (u)

})
,

(1)
where the neighborhood N (u) is defined as the set of nodes
that share an edge with u, UPDATE and AGGREGATE are
arbitrary differentiable functions, and m

(k)
N (u) is the “mes-

sage” that is aggregated from N (u). At each iteration, the
AGGREGATE function takes as input the set of embed-
dings of the nodes in N (u) [21]. When each node u of
the input graph has an associated dx-dimensional input fea-
ture xu ∈ Rdx , h(0)

u is set to xu. As a result, through sev-
eral message-passing iterations h

(k)
u captures increasingly

rich information encapsulating both the topological struc-
ture and the features surrounding each graph node u. How-
ever, after successive message-passing operation GNNs can
suffer from vanishing gradients due to over-smoothing of
the signal, leading to increasingly similar node represen-
tations [1, 4, 14]. In tasks where long-range interactions
between far away nodes are important, this leads to loss of
local neighborhood topological information.

Graph Attention Network. Graph Attention Networks
(GATs) [55] are a type of GNN which incorporate masked
self-attention layers [5, 54] into message-passing and use at-
tention weights to define a weighted sum of the neighbors,
i.e.,

m
(k)
N (u) =

∑
v∈N (u)

βu,vh
(k)
v , (2)

where βu,v denotes the attention on neighbor v ∈ N (u)
when aggregating information at node u.

Graph pooling. Graph pooling methods aim to down-
sample graphs while preserving essential structural in-
formation. There are two different type of approaches:
spectral-based and top-k-based methods [60]. Spectral ap-
proaches such as DiffPool [60], LaPool [43] or EigenPool
[41] transform the graph into a compressed representation
through learned soft clustering assignments, producing new
abstract node representations. In contrast, top-k methods
[62] such as gPool [20], TopKPool [19] or SAGPool [33]
directly identify and preserve the most important nodes
through various scoring mechanisms. The resulting scores
enable direct node selection, maintaining a clear correspon-
dence between the original and pooled graph, which main-
tains interpretability by producing a subgraph where node
identity is conserved. gPool and TopKPool use a learn-
able vector to calculate projection scores and select the top-
ranked nodes, but do not fully take into account graph topol-
ogy [7, 33]. SAGPool [33] uses the GCN defined in [29] to
calculate the self-attention scores z ∈ RN×1 as follows:

z = σ
(
D̃− 1

2 ÃD̃− 1
2Xθatt

)
, (3)

where Ã ∈ RN×N represents the adjacency matrix with
self-connections, D̃ is its degree matrix, X ∈ RN×F con-
tains node features, and θatt ∈ RF×1 are the learnable pa-
rameters.

By utilizing graph convolutions to obtain self-attention
scores, the result of the pooling is based on both graph and
topological features, while remaining efficient to calculate
in terms of memory and runtime [33]. The node selection
method follows [7, 19, 30] by retaining a portion of nodes
of the input graph, even when graphs of varying sizes and
structures are input. The pooling ratio k ∈ (0, 1] hyper-
parameter determines the number of nodes to keep at each
pooling layer.

Graph readouts. Graph readout operations are specifi-
cally focused on obtaining a fixed-size graph-level repre-
sentation by aggregating all node features. This is gener-
ally done through simple statistical operators such as global
mean and global max pooling operations [58]. However,
these basic aggregation procedures cause information loss
through oversmoothing of the node signals, failing to cap-
ture complex topological relationships encoded into graphs.
Recent methods have examined how to obtain more expres-
sive graph readouts through the use of clustering [32], at-
tention [9] or variance[50] based techniques. Notably in
the histopathology area HEAT [8] proposed to aggregate
based on the assignment of tissue type pseudo-labels. How-
ever, approaches based on pseudo-cluster can be inconsis-
tent across graphs [8] and fail to align with meaningful and
interpretable biology.
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Positional encoding. Random walk positional encoding
is a technique used to incorporate structural information
from a graph into the node embeddings [14]. Specifi-
cally, for each node u in the graph, a random walk of
fixed length is performed, starting from that node u and
considering only the landing probability of transitioning
back to the node u itself at each step, i.e., pu

RWPE =[
RWuu, RW 2

uu, . . . RW l
uu

]⊤ ∈ Rl , where pu
RWPE repre-

sents the random walk positional encoding for node u,
RW l

uu is the l-step landing probability of returning to
node u after a random walk of length l starting from u,
and the positional encoding concatenates these l-step land-
ing probabilities into a vector in Rl. The node random
walk positional encoding is then concatenated with its fea-
ture vector to obtain a new enriched input feature, i.e.,
hu = Wc [xu ∥pu

RWPE] where hu ∈ Rd is the final d-
dimensional embedding for node u, xu ∈ Rdx is the ini-
tial dx-dimensional feature vector for node u, pu

RWPE ∈ Rl

is the l-dimensional random walk positional encoding for
node u, ∥ denotes the vector concatenation operation, and
Wc ∈ Rd×(dx+l) is a learnable weight matrix that projects
the concatenated node feature and positional encoding to an
d-dimensional embedding space. This allows the node em-
beddings to capture not only the local neighborhood struc-
ture around each node, but also higher-order proximity in-
formation between nodes that are multiple hops away, po-
tentially improving their ability to capture complex global
patterns and dependencies within the graph structure.

3. Methods
Here we introduce our proposed pipeline, which we illus-
trate graphically in Fig. 1.

3.1. Preprocessing
Feature extraction. We start by preprocessing each stack
of patient multistain WSIs by thresholding tissue areas from
background and extracting patches. For each extracted
patch, the (x, y)-coordinates are saved. Each patch is then
processed by a feature extractor to obtain an embedded fea-
ture vector. Here we use the UNI feature encoder [11] as
it has shown reasonable performance on IHC benchmark-
ing tasks [18]. This produces a feature matrix Xp ∈ RN×d

which represents the stack of WSIs for a given patient p,
with d the embedding dimension of the feature encoder. See
SM. E for further details.

Graph initialization. Given our feature matrix Xp, we
first construct a k-Nearest Neighbor (k-NN) graph in fea-
ture space. This feature space graph GFS contains relation-
ships between semantically similar patches, regardless of
their spatial relationship, and has an adjacency matrix de-
noted AFS [i, j] where AFS [i, j] = 1 if patch j is among

k nearest neighbors of i in feature space. We then con-
struct a region adjacency graph GRA using the extracted
(x, y) coordinates, with adjacency matrix ARA[i, j] where
ARA[i, j] = 1 if patch j is among k region adjacent nearest
neighbors of i both on the (x, y) plane (same WSIs) and z-
axis of the WSIs stack. We illustrate these two types of con-
nectivity in Fig. 1B. We then combine max(AFS ,ARA) to
obtain our full AFRA ∈ {0, 1}N×N , which we use to ini-
tialize our input graph GFRA = (V,E). For each node,
we store as a categorical node attribute their stain type S,
while for each edge we store the edge type. The combina-
tion of feature and spatial proximity was chosen to connect
stains across the stack and permit information flow during
message passing operations.

Positional encoding. For each node in GFRA, a fixed
length random walk is performed [13], starting from a given
node and considering only the landing probability of tran-
sitioning back to the initial node at each step. The ran-
dom walk positional encoding vector is appended to the ini-
tial feature vector of its associated node and re-appended
through each layer of our backbone. We employ this ap-
proach to alleviate issues with long-range cross WSIs stack
connectivity by providing global topological information to
the graph.

3.2. Patient Level Encoding
Hierarchical graph blocks. To obtain patient-level en-
coding, we use as our backbone a hierarchal graph approach
as presented in [7, 60], with the aim of attenuating over-
smoothing issues. Our patient level encoder backbone con-
sists of alternating GAT layers [55] and our proposed Stain-
Aware Attention Pooling (SAAP) module, which refines the
node features whilst selecting the most relevant ones - us-
ing an importance score - to be forwarded to the next layer
[33]. Finally, we apply multi-head self-attention (MHSA)
to the concatenated stain-aware patients encoding returned
by the SAAP module at each layer, with the resultant fea-
tures passed to a fully connected classification head. Our
backbone architecture choice is motivated by the desire to
obtain the most expressive representation of patient encod-
ing [8, 17, 22, 46]

Stain-Aware Attention Pooling module. The SAAP al-
gorithm, illustrated in Fig. 1, begins with calculating node
attention scores a ∈ RN . Here we use the SAGPool al-
gorithm as defined in 2. Briefly, the attention scores are
computed as a = GNN(X,AFRA). These node attention
scores represent the importance of each node in the graph
based on both their features and graph topology. Both the
node attention scores a and the feature matrix X are sorted
and a subset X′ is selected based on the top k nodes wrt the
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Figure 1. Architecture: Our approach begins by preprocessing the WSIs into patch features using UNI [11] (Section A). The resultant
features are combined into two graphs, GFS and GRA, representing the feature space similarity and region adjacency respectively. Given
that the node sets of the two graphs are shared, we join the edge sets together, yielding graph GFRA (Section B). GFRA is then passed
through hierarchical GNN blocks (Section C) consisting of a Graph Attention Network (GAT) [55] and our proposed Stain-Aware Attention
Pooling (SAAP) (detailed in the top right), which updates the node features while selecting the most relevant ones using an importance
score. We obtain stain-aware patient encoding, which we pass through a final MHSA layer, before classification. Derived from both SAAP
and GAT layers we propose metrics which provide biological insights into the model’s predictions (Section D).

attention scores, forming the subgraph G′
FRA. This pre-

serves the most relevant nodes while reducing the compu-
tational complexity. The attention scores of the k nodes are
then used to scale the node features X′ through element-
wise multiplication. This injects relevance ranking in the
feature matrix X′, such that more relevant nodes now have
higher weight. For each stain s, a stain-level weight αs

is then calculated as the sum of the normalized attention
scores a′ of the Ns nodes belonging to that stain, i.e.,

αs =

Ns∑
n=1

a′n, (4)

The algorithm then pools weighted features by stain.
Stain attention (SA) scores are then calculated as

SA scores =
∑
s∈S

αs ·X′
s (5)

where S is the set of stains, αs is the attention weight
for stain s and X′

s represents the features specific to stain

s. Finally, we obtain stain-aware readouts Readout =
[meanp(SA)∥maxp(SA)] where meanp and maxp represent
mean pooling and max pooling operations respectively, and
∥ represents the vector concatenation operation. SAAP
explicitly handles multiple stain modalities by computing
stain-specific weights (αs), allowing the model to learn the
relative importance of different stains for downstream tasks.
With this we aim to maximize expressiveness, while align-
ing it with relevant biological information.

Biological insight. Based on our SAAP module and the
proposed backbone architecture, we introduce a number of
derived metrics which allow us to verify if the model aligns
with known biology and can help provide clinical insights.
These metrics are:
• SAAP scores, defined above. This score informs us on

which stains were most diagnostically relevant for the
downstream task.

• Stain entropy scores, Hs = −
∑Ns

n=1(a
′
n · log(a′n))

5



where Hs is the entropy for stain s and a′n are the nor-
malized attention scores of the Ns nodes belonging to
stain s. This measures how uniformly distributed the at-
tention scores are within each stain type, with lower en-
tropy values indicating more concentrated, focused atten-
tion patterns aligning with organized, localized cellular
structures, while higher entropy represents uniformly dis-
tributed attention corresponding to diffuse, disorganized
cellular structures present throughout the tissue.

• Stain-stain interaction scores, I are defined as Ii,j =
Ij,i =

1
|Pi,j |

∑
p∈Pi,j

βp where i, j are indices in the set of
unique stains S, Pi,j is the set of all pairs between stains
si and sj and βp represents the GAT attention weights
for pair p, extracted from the model’s attention mecha-
nism. |Pi,j | is the number of pairs between stains si and
sj . This score quantifies the importance of edge connec-
tions between nodes of different stain types.

GNN Heatmap. Extending on the use of attention scores,
we design a simple GNN heatmap visualization method.
The attention scores calculated for each node at the first
SAAP layer are extracted and successively updated after
each the pooling procedure. The final attention scores are
min-max normalized and mapped back to their spatial lo-
cation to obtain an attention heatmap of node importance.
The resulting heatmap overlay provides a visual interpreta-
tion of the GNN model attention, highlighting the regions of
the image that are considered most important for the down-
stream task.

4. Experiments

4.1. Datasets

We test our pipeline on two autoimmune multi-stain
datasets, one for Rheumatoid Arthritis and the other for
Sjogren’s Disease. Each dataset is composed of H&E
slides, with approximately 3 IHC slides of different immune
biomarkers per patient. In SM. A, we give further informa-
tion on the stains present in each dataset.

4.1.1. Rheumatoid Arthritis

This dataset consists of 607 Whole Slide Images (WSIs)
from 153 RA patients, categorized into low (N=66) and
high (N=87) inflammatory subtypes [24]. Samples were
stained with H&E and the IHC markers CD20+ B cells,
CD68+ macrophages, and CD138+ macrophages (see Fig.
SM. A for details). The dataset features a variable num-
ber of stains, averaging 3.9 per patient. We perform binary
classification on low (N=66) and high (N=87) inflamma-
tory subtypes. We extract non-overlapping patches at a 10x
magnification, keeping those with over 40% tissue cover-
age, totaling approximately 275k patches.

4.1.2. Sjogren
This dataset consists of 347 WSIs of labial salivary gland
biopsies sampled from 93 patients, with 46 cases of non-
specific Sicca and 47 cases of Sjpgren. Samples were
stained with H&E and the IHC stains CD20+ B cells,
CD3+ T cells, CD21+ follicular dendritic cell network, and
CD138+ plasma cells (see SM. B for details). Each patient
has a variable set of multi-stain WSIs, averaging 3.7 stains
per patient. We perform detection of inflammatory patterns.
We extract non-overlapping patches at a 20x magnification,
keeping those with over 30% tissue coverage, totaling ap-
proximately 237k patches.

4.2. Implementation Details
Experimental setup and evaluation metrics. We sep-

arate a random label stratified 20% hold out test set and
perform 5-fold random label stratified cross validation on
the remaining data (train:val:test / 60:20:20). Models were
trained for a maximum 200 epochs, with patience set to 15
such that early stopping was called if no change was ob-
served in either the loss, accuracy, or AUC score for 15
epochs. Weights were kept for the model obtaining the best
accuracy score on each validation set while ensuring there
was no under-fitting or over-fitting of the models. Each of
the 5 trained model was applied to the hold-out test. We
report the mean and standard error (SE) of the results ob-
tained on the hold-out test set for accuracy, macro F1-score,
precision, recall, AUC, and average precision.

Training schedule. All models were trained using cross-
entropy loss, with the AdamW optimizer set to β1 = 0.9,
β2 = 0.98, and ϵ = 10−9, with a learning rate 1e−3 and
weight decay L2 = 0.01. No learning scheduler was used.
We show the hyperparameters used in Table SM.3. Training
was conducted on an NVidia A100 GPU (40Gb). See SM.
C, SM. D for hyperparameters used and peak VRAM and
memory use.

Benchmarking and ablation studies. We compare
our method against seven SOTA methods, ABMIL [25],
CLAM-SB [39], DeepGraphConv [37] PatchGCN [9],
TransMIL [51], GTP [63] and MUSTANG [17]. We per-
form ablation on the different components of our pipeline:
the SAAP module, the RW positional encoding, and the
Multi Head Self-Attention layer.

5. Results
In Table 1 we present the results obtained by BioX-CPath
on both datasets. On the RA dataset, our model achieved
0.90 (±0.019) accuracy, representing a 4 percent point im-
provement over the next best performing model, MUS-
TANG (0.86 ±0.021). BioX-CPath did not outperfrom
MUSTANG in AUC (0.96 ±0.007) and average precision
(0.98 ±0.004), however did well compared to other meth-
ods. On the Sjogren dataset BioX-CPath achieved 0.84
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Figure 2. RA Dataset Explainability: The top row shows box
plots of the SAAP scores distribution for different stain types
(H&E, CD68, CD138, and CD20) for each classification label in
the RA dataset (Pauci-Immune and Lymphoid/Myeloid). The bot-
tom row shows the entropy score distributions for each of the stain
types according to the classification label.

(±0.018) accuracy, showing a significant improvement over
both CLAM-SB and MUSTANG (0.80 ±0.018). The model
also demonstrated stronger AUC (0.88 ±0.023) and average
precision (0.86 ±0.032) compared to all baseline methods.

Ablation results shown in Tables 2 and 3 highlight the
contribution of each component in our model. On the Sjo-
gren dataset, the baseline model achieved 0.756 (±0.059)
accuracy, while adding the RW positional encoding im-
proved the performance to 0.80 (±0.038), indicating the
importance of adding long-range topological information to
the graph. The addition of SAAP provided another substan-
tial boost, bringing the accuracy to 0.84 (±0.018). Similarly
for the RA dataset, while the positional encoding improved
the accuracy from 0.79 (±0.018) to 0.86 (±0.018), the full
model with SAAP achieved the best performance at 0.90
(±0.019). We note the addition of the MHSA brought a
slight decrease in performance. However, given the gains in
model interpretability we do not view this as a significant
disadvantage (we discuss this further in SM.8).

5.1. Biological Interpretability

5.1.1. RA
The Pauci-Immune pathotype exhibited lower attention
scores for CD138 (µ = 0.20, σ = 0.10, p < 0.01) and
CD20 (µ = 0.18, σ = 0.15, p < 0.05) markers, reflecting
the characteristic scarcity of lymphocytic and plasma cell
infiltrates in this disease subset. The lower entropy values

Figure 3. Sjogren Dataset Explainability: The top row shows
box plots of the SAAP scores for different stain types (HE, CD3,
CD138, CD20, and CD21) for each classification label in the Sjo-
gren dataset (Sicca and Sjogren). The bottom row shows the en-
tropy score distributions for each of the stain types according to
the classification label.

observed in these samples (CD20: µ = 3.41, σ = 1.29;
CD138: µ = 3.95, σ = 1.63) quantitatively capture the
more ordered tissue architecture and sparse inflammatory
foci associated with this RA pathotype. Conversely, Lym-
phoid/Myeloid samples showed more balanced attention
distribution across CD68 (µ = 0.32, σ = 0.11) and CD138
(µ = 0.27, σ = 0.11) with consistently higher entropy
values (CD68: µ = 5.26, σ = 0.91; CD138: µ = 4.96,
σ = 0.94), reflecting the established role of plasma cells
and macrophages in driving severe disease through autoan-
tibody production and pro-inflammatory cytokine secretion
[12, 61]. These computational findings provide quantita-
tive support for the histological classification of RA sub-
types, where Lymphoid/Myeloid pathotypes demonstrate
abundant but disorganized immune cell infiltrates, while
Pauci-Immune samples show more limited inflammatory
patterns and more ordered tissue architecture [23, 35]. The
relatively high attention scores for H&E staining in Pauci-
Immune (µ = 0.36, σ = 0.17, p < 0.05) align with the
understanding that when specific immune cell infiltrates are
less prominent, general tissue architecture becomes more
informative for pathotype classification, reflecting the het-
erogeneous nature of RA synovitis and its immunological
basis.

5.1.2. Sjogren
Sjogren’s samples show a balanced attention across im-
mune markers, with CD3 (µ = 0.24, σ = 0.07), CD20
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Table 1. Performance comparison of BioX-CPath against SOTA methods on the RA and Sjogren datasets. We report accuracy, AUC, and
average precision (AP) with standard error shown in parentheses. The best results for each metric are shown in bold, with the second best
underlined.

RA Sjogren

Accuracy (↑) AUC (↑) AP (↑) Accuracy (↑) AUC (↑) AP (↑)
ABMIL [25] 0.79 (0.028) 0.89 (0.027) 0.92 (0.019) 0.73 (0.018) 0.80 (0.035) 0.79 (0.044)

CLAM-SB [39] 0.81 (0.026) 0.92 (0.011) 0.95 (0.008) 0.80 (0.018) 0.85 (0.017) 0.85 (0.026)

TransMIL [51] 0.80 (0.025) 0.87 (0.024) 0.91 (0.021) 0.75 (0.018) 0.73 (0.011) 0.74 (0.017)

DeepGraphConv [37] 0.81 (0.025) 0.88 (0.009) 0.92 (0.007) 0.77 (0.038) 0.83 (0.031) 0.83 (0.039)

Patch-GCN [10] 0.83 (0.015) 0.91 (0.019) 0.94 (0.014) 0.77 (0.019) 0.85 (0.015) 0.83 (0.030)

GTP [63] 0.79 (0.020) 0.87 (0.012) 0.92 (0.007) 0.62 (0.048) 0.73 (0.031) 0.72 (0.024)

MUSTANG [17] 0.86 (0.021) 0.96 (0.010) 0.97 (0.006) 0.80 (0.018) 0.85 (0.019) 0.84 (0.026)

BioX-CPath [ours] 0.90 (0.019) 0.96 (0.007) 0.98 (0.004) 0.84 (0.018) 0.88 (0.023) 0.86 (0.032)

Table 2. Ablation on model components shown on the Sjogren
dataset.

Accuracy (↑) AUC (↑) AP (↑)

Baseline 0.756 (0.059) 0.849 (0.024) 0.84 (0.036)
+ MHSA 0.736 (0.049) 0.849 (0.021) 0.86 (0.036)
+ RW 0.80 (0.038) 0.84 (0.035) 0.81 (0.034)

+ SAAP 0.84 (0.018) 0.88 (0.023) 0.86 (0.032)

Table 3. Ablation on model components shown on the RA dataset.

Accuracy (↑) AUC (↑) AP (↑)

Baseline 0.79 (0.018) 0.87 (0.011) 0.92 (0.010)
+ MHSA 0.78 (0.025) 0.88(0.024) 0.92 (0.018)
+ RW 0.86 (0.018) 0.95 (0.010) 0.98 (0.007)

+ SAAP 0.90 (0.019) 0.96 (0.007) 0.98 (0.004)

(µ = 0.23, σ = 0.09), and CD21 (µ = 0.21, σ = 0.12)
receiving balanced attention, along with HE staining
(µ = 0.26, σ = 0.09). This reflects characteristic organized
lymphocytic infiltrates with a mix of B-cells, plasma cells,
and T-cells [6], as well as the importance of changes in
tissue architecture. Most notably CD138 shows signifi-
cantly lower attention in the Sjogren’s group (µ = 0.18,
σ = 0.07) compared to Sicca (µ = 0.29, σ = 0.04,
p < 0.001), with lower entropy scores (µ = 4.14,
σ = 1.16) suggesting that specific plasma cell organization
patterns, rather than overall abundance, are distinctive for
Sjogren’s pathology, which is consistent with the formation
of ectopic lymphoid structures typical in Sjogren’s [45].
Additionally, CD21 shows significant attention differences
between groups (Sjogren’s µ = 0.21, σ = 0.12; Sicca
µ = 0.25, σ = 0.01, p < 0.01), with notable outliers in the
Sjogren’s group suggesting well-formed follicular dendritic
networks in some cases. These patterns align with current
understanding where Sicca represents non-inflammatory
dryness with more homogeneously distributed immune

cells (higher entropy), while Sjogren’s demonstrates
organized autoimmune infiltrates with more concentrated
immune cell groupings (lower entropy). The model appears
to have learned biologically relevant features that align
with known pathological mechanisms.

In Supplementary materials, we conduct further analysis
of model interpretability, looking at stain interaction scores
(SM. F), GNN heatmaps (SM. G) and Layer Importance
(SM. H).

6. Conclusion
BioX-CPath is an explainable GNN-based architecture for
multistain IHC analysis, that bridges computational pathol-
ogy and biological interpretability. By integrating multi-
stain histopathological data into a unified framework, our
approach not only achieves state-of-the-art accuracy but
also provides mechanistic insights that align with estab-
lished pathological mechanisms. This work establishes a
foundation for developing and extending explainable com-
putational pathology to other complex autoimmune and in-
flammatory diseases where multistain tissue analysis is es-
sential for accurate diagnosis and subtyping.
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BioX-CPath: Biologically-driven Explainable Diagnostics for Multistain IHC
Computational Pathology

Supplementary Material

The content of the supplementary material are as follows: in
A we describe IHC and the different immune markers used in this
study and in B, we give further details on the datasets. We go over
hyperparameters, memory usage and further technical clarification
in sections C, D and E. Finally, we conduct further analysis of
model interpretability, by looking at stain interaction scores in F,
GNN heatmaps in G and Layer Importance H.

A. Immunohistochemistry Staining
IHC serves as a critical molecular mapping tool in clinical diag-
nostics and research, enabling precise identification and localiza-
tion of disease-specific markers. The technique’s power lies in its
ability to reveal the molecular and cellular landscape of patholog-
ical processes, providing crucial information for diagnosis, prog-
nosis, and treatment decisions.

In autoimmune disease diagnosis and monitoring, IHC enables
detailed immune cell profiling through the characterization of in-
flammatory infiltrates and quantification of specific immune cell
populations. This information reveals patterns of autoantibody de-
posits, complement activation, and tissue-specific autoantigen ex-
pression. The technique proves particularly valuable in assessing
disease activity through the evaluation of inflammatory marker ex-
pression and monitoring tissue damage and repair processes.

IHC’s integration into clinical decision-making represents a
cornerstone of modern pathology practice. It supports diagnostic
algorithms by validating initial morphological findings and resolv-
ing differential diagnoses through confirmation of disease-specific
molecular patterns. In treatment strategy development, IHC helps
identify targetable pathways and predict treatment response, en-
abling more personalized therapeutic approaches.

A.1. CD Markers
CD markers (Cluster of Differentiation) are cell surface proteins
that serve as essential identifiers in immunological analysis. Each
marker identifies specific immune cell types, enabling detailed
characterization of tissue immune responses.
• CD20 is a B-lymphocyte-specific antigen expressed on the sur-

face of pre-B and mature B cells. This marker is critically im-
portant in both diagnostic and therapeutic contexts, particularly
in B-cell lymphomas and autoimmune disorders. CD20 serves
as the target for rituximab and other monoclonal antibody ther-
apies, making its detection crucial for treatment planning. In
lymphoid tissue analysis, CD20 staining helps identify B-cell
populations and assess their distribution within tissue architec-
ture.

• CD21 is predominantly expressed on mature B cells and follic-
ular dendritic cells. It plays a crucial role in the formation and
maintenance of germinal centers within lymphoid tissues. In di-
agnostic pathology, CD21 staining is particularly valuable for
visualizing follicular dendritic cell networks and assessing lym-
phoid tissue organization. This marker is often used to evaluate

lymphoid tissue architecture in conditions such as lymphomas
and autoimmune disorders.

• CD68 is a glycoprotein expressed primarily by macrophages
and monocytes. In tissue analysis, CD68 serves as a reliable
marker for identifying tissue-resident macrophages and assess-
ing inflammatory responses. In autoimmune disease diagnos-
tics, CD68 staining helps quantify macrophage infiltration and
assess disease activity.

• CD138 is a transmembrane heparan sulfate proteoglycan pri-
marily expressed on plasma cells and some epithelial cells. In
autoimmune disease diagnostics, CD138 helps evaluate plasma
cell infiltration and potential antibody production sites within
affected tissues.

• CD3 is a fundamental marker of T lymphocytes, expressed
throughout T-cell development and maintained on mature T
cells. CD3 staining is crucial in diagnosing T-cell lymphomas,
assessing T-cell-mediated immune responses. In the context of
autoimmune diseases, CD3 staining helps characterize the T-cell
component of inflammatory infiltrates.

These markers, when analyzed together, map the immune cell
landscape within tissues, revealing patterns of immune response
and inflammation that guide diagnosis and treatment decisions.

B. Dataset Characteristics

To provide a benchmark on autoimmune multistain datasets, we
use two clinical datasets. One dataset derives from a clinical trial,
where patients with difficult to treat RA were recruited for treat-
ment with rituximab. The other dataset derives from WSIs gath-
ered for research purposes with the purpose of examining dif-
ferences between patients presenting with dry eyes and mouth
(Sicca) and patients subsequently diagnosed with Sjogren’s Dis-
ease. In Figs. 4 and 5, we present clear examples of RA pathotypes
and Sicca versus Sjogren presentation. While these images high-
light characteristic differences, they represent more extreme cases
specifically selected for illustrative clarity. The actual dataset ex-
hibits considerably more heterogeneity in presentation, with many
cases showing more subtle differences. In Table 4, we give further
information on the stains present in each dataset. Each dataset is
composed of H&E slides, with approximately 3 IHC slides of dif-
ferent immune biomarkers per patient.

C. Hyperparameters

We trained using the AdamW optimizer set to β1 = 0.9, β2 =
0.98 and ϵ = 10−9, with a learning rate 1e−3 and weight de-
cay L2 = 0.01. No learning scheduler was used. We show our
model’s hyperparameters in Table 5.
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Figure 4. Example of low inflammatory vs high inflamma-
tory pathotype presentation in H&E and IHC stains for RA:
Rheumatoid Arthritis inflammatory pathotypes based on semi-
quantitative analysis of synovial tissue biopsies stained with H&E,
CD20+ B cells, CD68+ macrophages and IHC+ CD138 plasma
cells.

Figure 5. Example of Sicca vs Sjogren presentation in H&E
and IHC stains: On top, a patient diagnosed with Sicca, on bot-
tom a patient diagnosed with Sjogren. Here we show samples
stained with IHC stains CD3+ T cells, CD20+ B cells and CD138+
plasma cells.

Table 4. Metadata and dataset characteristics for Sjogren and
RA cohorts, including number of patients, WSIs, stains present
and average number of stains per patient. We highlight in pink
H&E staining and blue IHC.

Sjogren Rheumatoid Arthritis

No. Patients 93 153
No. Slides 347 607
No. Stains 5 4

Av. Stains per patient 3.7 3.97
Magnification 20x 10x

Total no. patches 237k 275k
Av. Patches per patient 2 530 1800

Patches per stain Mean Total Mean Total
HE 650 61055 434 66511

CD3 625 58712 0 0
CD138 377 35416 481 73624

CD20 626 58805 351 53768
CD21 254 23843 0 0
CD68 0 0 535 81915

ML problem type Detection Subtyping
Labels Negative 46 Low 66

Positive 47 High 87

Table 5. Our model hyperparameters. We provide the hyperpa-
rameters used for each dataset to train our model.

Dataset Seed LR # Layers PE Dim Pooling Ratio Attention Heads Dropout

RA 42 0.0001 4 20 0.7 2 0.2
Sjogren 42 0.0001 4 20 0.5 4 0.2

D. Memory Usage
Table 6 presents the RAM and VRAM utilization across all mod-
els compared against BioX-CPath. The varying RAM require-
ments stem from the distinct input representations each model
processes: ABMIL/CLAM/TransMIL operate on embeddings,
PatchGCN/GTP utilize region adjacency graphs, DeepGraphConv
and MUSTANG work with feature space graphs, while BioX-
CPath processes both feature and region adjacency graphs. VRAM
consumption differences reflect the architectural complexity of
each model. While simpler architectures like ABMIL [25] demon-
strate minimal VRAM usage, our model’s incorporation of GAT
self-attention operations and an additional MHSA mechanism for
interpretability results in higher peak VRAM consumption. We
consider this increased memory footprint an acceptable trade-off
given the model’s superior performance and enhanced explainabil-
ity. Future research could focus on developing a more memory-
efficient architecture that maintains these characteristics, enabling
translation to clinical practice.

Table 6. Training and inference memory usage. The table shows
both RAM and VRAM peak usage during training and inference
for the benchmark models shown in the main results table. We
present results for the Sjogren dataset. Lower is better.

Model Training Inference
RAM (GB ↓) VRAM (GB↓) RAM (GB↓) VRAM (GB↓)

ABMIL [25] 38.11 0.09 32.93 0.09
CLAM-SB [39] 44.38 0.14 45.03 0.10
TransMIL [51] 35.87 1.47 29.39 0.79
DeepGraphConv [37] 55.65 1.31 45.10 0.68
Patch-GCN [10] 41.03 7.42 41.99 4.37
GTP [63] 47.11 2.40 48.15 1.97
MUSTANG [17] 36.00 6.18 36.25 3.52
BioX-CPath (ours) 41.30 11.25 36.61 9.19

E. Technical clarification
The feature matrix is obtained through a hierarchical data loading
architecture: (1) A slide-level DataLoader processes each stain-
specific WSI, extracting patches and associated metadata (stain
type, spatial coordinates, patient ID); (2) A patient-level loader
stacks the stain-specific embeddings through vertical concatena-
tion; (3) graphs are constructed using patch embeddings as node
features with dual-criteria edge connectivity (feature and spatial
proximity). The preprocessed patient graphs are then stored,
loaded & batched with PyTorch Geometric DataLoader. We keep
track of node and edge attributes, stored as categorical labels,
through each layer of our model by mapping and storing their IDs
after each pooling operation. When nodes are removed, edges are
systematically pruned where either the source or target node was
dropped, updating the edge list accordingly. While this can lead to
disconnected components, the high initial connectivity of the pa-
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tient graphs means these components emerge only in deeper layers
of the encoder, where they exhibit “specialized” attention patterns
focusing on specific stain or tissue regions. We exemplify this with
a layer-wise graph WSIs overlay shown in Figure 9. The max (OR)
operator was chosen over min (AND), based on graph connectiv-
ity patterns: using AND overly restricts edges (∼10%), limiting
message passing and cross-stain interactions. In contrast, OR pre-
serves local and global connectivity, allowing the SAAP module
to dynamically prioritize relevant edges. These design choices are
all aimed at optimizing computational resources and information
flow, under minimal supervision requirements (patient-level la-
bels and stain-type slide annotations), while ensuring interpretable
biologically-aligned results.

F. Stain-Stain Interactions
The stain-stain interaction patterns highlight key insights into
model decision dynamics, which further deepen our understand-
ing of model behavior and can be linked back to biological mecha-
nisms. These attention-based interactions quantify how the model
integrates information across different stain types when making
classifications. We present the distribution of stain-stain interac-
tions for both RA and Sjogren’s in Figure 6 and 7.

F.1. RA
The stain-stain attention analysis reveals a consistent decrease
in all self-interactions (CD138-CD138: −7.5%, CD20-CD20:
−4.7%, H&E-H&E: −5.5%, CD68-CD68: −4.5%) in Lym-
phoid/Myeloid compared to Pauci-Immune pathotypes, suggest-
ing a shift from examining intra-stain features toward integrated
cross-stain attention patterns, which aligns with the higher entropy
scores observed in Lymphoid/Myeloid and the known diffuse in-
flammatory infiltrates characteristic of this pathotype. The most
pronounced changes in cross-stain interactions occur between
lymphocyte markers and other stains (CD138-CD20: −7.4%,
CD138-H&E: −5.3%, CD20-H&E: −5.3%), reflecting the dis-
ruption of normal tissue architecture by immune infiltrates in Lym-
phoid/Myeloid disease. In contrast, macrophage-related interac-
tions (CD68-H&E: −4.4%, CD138-CD68: −4.2%, CD20-CD68:
−4.0%) show more modest changes, suggesting a more consistent
role for macrophages across pathotypes. The overall higher and
more variable attention weights in Pauci-Immune samples com-
pared to the more uniform, lower weights in Lymphoid/Myeloid
indicate that Pauci-Immune classification relies on stronger, more
specific feature relationships. Lymphoid/Myeloid requires broader
integration of multiple signals, which is consistent with its more
complex, heterogeneous inflammatory profile [35].

F.2. Sjogren
We see a systematic decrease in self-interactions (CD20-CD20:
−6.0%, CD3-CD3: −2.2%, CD21-CD21: −2.1%, CD138-
CD138: −1.3%), which suggests a shift from paying attention
more broadly to the overall context in each single stain, and
more toward integrated localized attention spanning across stain
types, which aligns with the lower entropy scores obtained for
Sjogren stains and the known pathology of more structured lym-
phoid organization in Sjogren [31]. We also note differences in
the structural-immune interactions between Sjogren vs Sicca, with

an increase in stain-stain attention between HE-CD21 (+3.8%),
HE-CD138 (+1.9%) and HE-CD3 (+1.2%) and a decrease in at-
tention between HE-CD20 (−4.5%). On the other hand, changes
in immune-immune interactions (CD138-CD3: −2.9%, CD138-
CD20: −2.2%, CD20-CD3: −2.2%), taken in the context of the
balanced stain attention scores obtained for these markers, also
suggests a balanced model that integrates information across im-
mune markers.

G. GNN Heatmaps
In Fig. 8, we show an example of the multistain stack of WSIs
(CD138, CD3, CD20, C21, and HE) for one Sjogren positive pa-
tient, with the obtained cumulative node attention heatmap for
each input stains. The stack of multistain WSIs is the input to
our model, and the obtained GNN node heatmaps correspond to
the direct mapping of the node attention scores to their original
spatial location. We note that our proposed GNN heatmap ac-
curately picks up on the presence of inflammatory aggregates in
CD3, CD20, and H&E, as well as on more disperse attention pat-
terns in CD138 and CD21. CD18 plasma cells are always present
throughout the tissue, but will become over-activated and more
prevalent in the inflamed tissue, leading to a more diffuse atten-
tion pattern. CD21 also accurately focuses on areas with presence
of inflammatory aggregates, however also shows a more disperse
attention pattern, potentially due to the smaller and fainter aggre-
gates, compared to CD3/CD20 and H&E.

To illustrate cross-stack stain-stain interaction and the graph
sparsification process through our model, Figure 9 shows GFRA

overlaid on the WSIs stack. The layer 1 graph is initially dense
with two edge types: region-adjacent edges (red) connecting both
across different stains and between spatial neighbors within each
WSI, and feature-space edges (blue) linking semantically simi-
lar patches regardless of their location. As the graph progresses
through the layers, it undergoes progressive sparsification. The
transition shows a shift from more homogeneous distributions to-
ward targeted cross-stain interactions, aligning with our quantita-
tive findings of decreased self-attention and enhanced cross-stain
integration. By layer 4, the preserved connections highlight im-
portant structural-immune relationships between tissue architec-
ture (HE) and immune markers (CD3, CD20, CD21). This pro-
gressive refinement demonstrates how the model identifies the or-
ganized, integrated nature of immune infiltrates in Sjogren’s, cap-
turing diagnostically relevant cross-stain relationships rather than
analyzing markers in isolation.

H. Layer Importance
We previously mentioned we chose to maintain a MHSA layer
before the classification head in our model architecture, despite
seeing a marginal drop in performance. This is because we con-
sidered it was a good trade-off with the additional insight obtained
into model decision mechanics, providing another aspect to the
explainability of our model with layer importance scores. Briefly,
we concatenate the fixed size readouts obtained from each layer
of our hierarchical graph patient encoder. This concatenated read-
out vector is the input to the MHSA. Because we know the size of
each layer readout, we can now take the simple step of summing
the corresponding attention weights. The rational is this will give
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Figure 6. Distribution of stain-to-stain interaction scores for Pauci-Immune (Label 0, left) and Lymphoid/Myeloid (Label 1, right) cases.
Each subplot shows the distribution of the average stain-stain attention scores for each stain pair (CD138, CD20, CD68, and H&E) interact
with each other. For each source stain (x-axis), the box plots represent the distribution of interaction scores given to each target stain
(colored boxes).

Figure 7. Distribution of stain-to-stain interaction scores for Sicca (Label 0, left) and Sjogren (Label 1, right) cases. Each subplot shows
how different stains (CD138, CD20, CD21, CD3, and HE) interact with each other. For each source stain (x-axis), the box plots represent
the distribution of interaction scores given to each target stain (colored boxes).

Figure 8. Cumulative GNN node attention heatmap obtained for a Sjogren positive patient with a stack of WSIs consisting of staining
for CD138, CD20, C21, CD3 and H&E, where the red edges connecting across and correspond to region adjacency connectivity and the
blue edges to the feature space connectivity. This stack is the input to our model and the obtained GNN heatmap corresponds to the direct
mapping of the node attention scores back to their original spatial location.
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Figure 9. Sparsification of input GFRA through the GNN layers. We plot the multistain patient input graph GFRA as a spatial overlay
on the stack of WSIs, to exemplify the connectivity both across and in the images. Edges connect nearest neighbors in both feature (blue)
and region adjacent (red) space, with edges which are both feature and region nearest neighbors shown as purple.

us further insight into the role played by each layer in the model
decision process and can potentially highlight inherent character-
istics on the input data. We present these results in Figures 10 and
12.

H.1. RA
The layer attention results reveal distinct patterns between patho-
types. Pauci-Immune samples show balanced attention across
Layers 2-4 (µ = 0.38, µ = 0.31, µ = 0.32), suggesting re-
liance on features at multiple abstraction levels. In contrast, Lym-
phoid/Myeloid samples demonstrate strong preference for Layer 2
(µ = 0.47, σ = 0.08), indicating mid-level features are particu-
larly diagnostic. This aligns with our stain-stain interaction find-
ings, where Lymphoid/Myeloid showed decreased self-attention
and likely depends more on cross-stain integrations occurring at
intermediate layers. Both pathotypes assign minimal attention to

Layer 1 (µ = 0.00), indicating here the raw features have limited
classification value without higher-level processing. The higher
variance in Layer 2 attention for Lymphoid/Myeloid (σ = 0.08 vs
σ = 0.02) suggests greater patient-to-patient variability, consis-
tent with its more heterogeneous inflammatory profile.

To exemplify this process, in Figure 11 we show the GNN node
attention heatmaps obtained for each layer of the model for a WSI
with CD18 staining of a RA patient with Lymphoid/Myeloid sub-
type. We can see a progressive refinement of attention across the
layers, with Layer 1 showing broad, diffuse attention across the
tissue, while Layers 2-4 reveal increasingly focused attention on
specific regions. Layer 2 demonstrates the most pronounced at-
tention patterns, concentrating on areas with visible cellular infil-
trates, which aligns with our finding that this layer receives the
highest attention weight (µ = 0.47) for Lymphoid/Myeloid pa-
tients. Layers 3 and 4 further refine this attention, focusing on
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Figure 10. Layer-wise attention patterns by label in the hierarchical graph patient encoder, showing the distribution of attention scores
across layers (1-4) for Pauci-Immune and Lymphoid/Myeloid cases, with corresponding mean (µ) and standard deviation (σ) values.

Figure 11. Layer-wise attention visualization for a CD18-stained WSI Lymphoid/Myeloid RA patient. The heatmaps show progres-
sion from broad attention in Layer 1 to increasingly focused attention in subsequent layers, with Layer 2 exhibiting the strongest patterns,
consistent with quantitative attention scores. Bottom panels show highest and lowest attention patches, revealing cellular infiltrates in
high-attention regions.

Figure 12. Layer-wise attention patterns by label in the hierarchical graph patient encoder, showing the distribution of attention scores
across layers (1-4) for Sicca and Sjogren cases, with corresponding mean (µ) and standard deviation (σ) values.
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smaller, more specific regions that likely represent areas with dis-
tinctive immune cell aggregates. This visualization supports our
quantitative findings and illustrates how the model progressively
builds its understanding of the pathotype from general tissue archi-
tecture to specific inflammatory aggregates characteristic of Lym-
phoid/Myeloid disease.

H.2. Sjogren
The layer attention distributions reveal distinct hierarchical
processing patterns between Sicca and Sjogren’s. For Sicca,
attention is negligible in Layer 1 (µ = 0.03, σ = 0.10) but
distributes relatively uniformly across Layers 2-4 (µ = 0.34,
µ = 0.32, µ = 0.31 respectively). In contrast, Sjogren’s shows
substantial Layer 1 attention (µ = 0.17, σ = 0.18) followed
by peak attention at Layer 2 (µ = 0.38, σ = 0.05) and then
progressive decline through Layers 3-4 (µ = 0.30, µ = 0.15),
with higher variance observed for Layers 1 and 4. The higher
early-layer attention in Sjogren’s suggests the model identifies
organized immune structures in initial processing stages, corre-
sponding to the decreased self-attention and increased cross-stain
integration observed in Sjogren’s stain-stain interaction scores.
The declining attention pattern in deeper layers for Sjogren’s,
compared to sustained attention in Sicca, indicates different
processing requirements: Sjogren’s features are captured earlier
through identification of organized lymphoid structures, while
Sicca requires more distributed processing across abstraction
levels, consistent with its more homogeneous, less struc-
tured immune distributions (reflected in higher entropy values).
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[55] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
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