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ABSTRACT

We study the competitive ratio between the cumulative loss of Follow-The-Leader (FTL) and that of
the best expert in hindsight for online subset and subspace selection. In the subset selection problem,
the learner chooses a set of s experts from a pool of size K at each step, and we show that FTL
is K-competitive. In the subspace selection problem, also known as online principal component
analysis, the learner chooses an m-dimensional subspace in Rd at each step, observes a context vector
x, and incurs a “compression loss.” We show that FTL achieves a competitive ratio of d under some
mild assumptions. We apply these results to sequential representation learning in multi-task linear
bandits and develop an algorithm BARON. We provide regret guarantees in the form of upper and
lower bounds, and further demonstrate its computational efficiency empirically on a synthetic dataset.

1 INTRODUCTION

A well-established framework for evaluating online algorithms is through competitive ratio analysis (Borodin &
El-Yaniv, 2005), which compares its performance to that of an optimal offline algorithm that possesses complete
knowledge of the entire input sequence. While competitive ratio has been studied for many online learning tasks, such
as the paging problem, the k-server problem, metrical task systems, scheduling, and load balancing (Buchbinder et al.,
2012; Borodin & El-Yaniv, 2005; Albers, 2003), its extension to the online expert selection setting (Warmuth & Kuzmin,
2008) or the online subspace selection is still limited.

In particular, the online subspace selection problem, or online principal component analysis (PCA), refers to performing
dimensionality reduction in scenarios involving streaming or very large datasets. This setting arises when data arrives
sequentially, making it impractical or impossible to store the entire dataset in memory for traditional batch processing.
Although much of the literature focuses on reconstruction error at the last step of online PCA algorithms (Mitliagkas
et al., 2013; Garber et al., 2015), we are interested in the cumulative loss in the online learning process, which has been
studied by Nie et al. (2016) and Warmuth & Kuzmin (2008). To the best of our knowledge, no work has studied the
competitive ratio of the greedy Follow-The-Leader (FTL) algorithm in this setting. Thus, we ask the following question:

What is the best achievable competitive ratio of the FTL algorithm for the online subspace selection problem?

In this work, we show that FTL attains the competitive ratio of d, the parameter’s dimensionality, which is useful to
solve the sequential representation transfer for the multi-task linear bandit problem . Here, a learning agent sequentially
encounters N linear bandit tasks (Qin et al., 2022; Duong et al., 2024) in a d-dimensional feature space, each lasting for
τ time steps. A key characteristic of these tasks is that their reward parameter vectors reside within an m-dimensional
linear subspace (m≪ d). This is motivated by applications such as recommender systems, where different customers
(tasks) have similar preferences. The learner’s objective is to minimize the cumulative regret across all tasks (or
meta-regret) by effectively leveraging this shared subspace structure.

A straightforward approach involves treating each task in isolation and applying a standard bandit algorithm, such as
LinUCB (Abbasi-Yadkori et al., 2011) or PEGE (Rusmevichientong & Tsitsiklis, 2010). This independent learning
strategy, which we will subsequently refer to as the individual single-task baseline, would result in a meta-regret upper
bound of Õ(Nd

√
τ)1. Conversely, if the m-dimensional subspace common to all tasks were known a priori, the learner

would only need to estimate the projection of each task’s reward predictor onto this subspace, resulting in a better

1Õ notation hides polylogarithmic factors in τ,N, d
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meta-regret of Õ(Nm
√
τ). This work focuses on the scenario where N and τ are large, and m is significantly smaller

than d (m≪ d), a regime where the benefits of representation transfer learning are most pronounced.

While significant progress has been made in multi-task linear bandits in the parallel setting (e.g. Yang et al., 2020; Hu
et al., 2021; Yang et al., 2022; Cella et al., 2023), advancements in the sequential setting have been comparatively limited.
Assuming that the action sets are well-conditioned ellipsoids, Qin et al. (2022) proposed an efficient algorithm achieving
a meta-regret of Õ

(
Nm
√
τ + dm

√
τN
)

with an additional task diversity assumption. Duong et al. (2024) remove such

a task diversity assumption by proposing an algorithm that a regret guarantee of Õ
(
Nm
√
τ+N

2
3 τ

2
3 dm

1
3 +Nd2+τmd

)
;

even then, their algorithm has limited practicality since it requires maintaining a distribution over the set of experts that
has size exponential in d. Thus, we ask the following question:

Is it possible to design sequential multi-task linear bandit algorithms that achieve provably low meta-regret
while maintaining high computational efficiency?

In this paper, we provide an affirmative answer to this question. Under some the conditions, see Assumption 1, 2, 4,
5, we present an algorithm with a meta-regret of Õ

(
Nm
√
τ +N

2
3 τ

2
3 d

5
3 +Nd3 + τd2

)
, which improves upon the

individual single-task baseline Õ(Nd
√
τ) when N is large. We also show that the lower bound regret of the problem is

Ω
(
Nm
√
τ + d

√
mτN

)
.

Our algorithm, named BARON, reduces the sequential multi-task linear bandit problem to the full-information online
subspace selection problem (when restricted to the meta-exploration tasks), for which we leverage the competitive
ratio guarantee for the analysis. Specifically, for each new task n, our algorithm selects a subspace, represented by its
canonical orthonormal basis B̂n, to approximate the true underlying subspace B and guide the exploration process. One
key contribution of this paper is the use of the competitive ratio analysis of FTL to demonstrate the regret guarantee of
our approach. We empirically demonstrate the effectiveness of our algorithm in a simulated adversarial environment
and demonstrate the efficiency of our algorithm compared to the baselines of Qin et al. (2022) and Duong et al. (2024).

1.1 RELATED WORK

1.1.1 COMPETITIVE RATIO AND ONLINE-PCA

Although there are many works studying the regret analysis of online algorithms, (Sleator & Tarjan, 1985) was the first
to suggest comparing an online algorithm to an optimal offline algorithm, which Karlin et al. (1988) later coined as
competitive analysis. (Buchbinder et al., 2012; Borodin & El-Yaniv, 2005; Albers, 2003) comprehensively study the
competitive analysis framework of online algorithms, where the goodness of an algorithm is evaluated relative to a
baseline with the performance of the best offline algorithm that has complete knowledge of the future. After much
work on the analysis of different settings, (Kakade et al., 2007) studies the competitive ratio for linear optimization
problems, both in the full-information setting and the bandit setting. In contrast, our paper focuses on the analysis of
FTL in online subspace selection, in which Kakade et al. (2007)’s results cannot be directly applied.

The online subspace selection problem, also known as the online PCA setting, has been studied extensively. Many
works focus on reconstruction error at the last step of the online PCA algorithm (Mitliagkas et al., 2013). Different
from them, (Nie et al., 2016; Warmuth & Kuzmin, 2008; Garber et al., 2015) study online PCA with the objective
of minimizing the cumulative loss. Here, for a stream of N data, the data point xn ∈ Rd ix projected (compressed)
to an m-dimensional subspace, represented by the projection matrix Pn (which is a symmetric matrix chosen by the
learner such that Pn ∈ Rd×d and Pn has m eigenvalues equal 1 and k = d −m eigenvalues equal 0). The goal of
uncentered Online-PCA is to minimize the cumulative compression loss

∑N
n=1 ∥xn − Pnxn∥2. This is different from

the centered Online-PCA setting, where the algorithm also needs to produce a data center mn−1 at step n and incurs the
instantaneous compression loss ℓn = ∥(xn −mn−1)− Pn(xn −mn−1)∥2.

To the best of our knowledge, this paper is the first work that analyzes the competitive ratio, formally defined in Section
2.1, of the FTL algorithm in the online PCA and the subset selection settings.

In Theorem 3, we show that FTL is K-competitive for subset selection, which matches the Ω(K) competitive ratio
lower bound shown by Warmuth & Kuzmin (2008). In Theorem 6, we show that FTL attains the competitive ratio d in
the subspace selection online PCA problem under some assumptions (see Assumption 4 and Assumption 5).
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Algorithm Prior
info

Additional
assumption

Polynomial
time

Adv.
robustness Regret guarantee(s)

Lower bound Ω
(
Nm
√
τ + d

√
mτN

)
3

Indep. PEGE
for each task None No Yes Bad Õ (Nd

√
τ)

Qin et al. (2022) m, τ Yes Yes Bad Õ
(
Nm
√
τ + dm

√
τN
)

Bilaj et al. (2024) None Yes Yes N/A
at least
O
(
N
√
τ(d−m) log

(
1 + m

λA
min(d−m)

))
Duong et al. (2024) N,m, τ No No Good Õ

(
Nm
√
τ +N

2
3 τ

2
3 dm

1
3 +Nd2 + τmd

)
BARON (ours) N,m, τ Yes Yes Good Õ

(
Nm
√
τ +N

2
3 τ

2
3 d

5
3 +Nd3 + τd2

)
Table 1: Comparisons of the settings, assumptions, and regret guarantees in this paper and previous works. The
“Additional Assumption” column shows whether a baseline requires any other assumption, besides the low-dimensional
structure Assumption 1 and ellipsoid action set Assumption 2 , in their analysis. The “Adv robustness” column indicates
whether the algorithm is robust when the environment is designed adversarially.

1.1.2 SEQUENTIAL REPRESENTATION LEARNING FOR MULTI-TASK LINEAR BANDIT

In this setting, Qin et al. (2022) introduces a task diversity assumption, which posits that any sufficiently large subset of
tasks adequately spans the m-dimensional subspace in a well-conditioned manner. Based on this assumption, they derive
a meta-regret bound of Õ

(
Nm
√
τ + dm

√
τN
)

, which nearly matches the lower bound of Ω
(
Nm
√
τ + d

√
mτN

)
2. In this paper, we propose the BAndit Representation transfer by ONline-PCA (BARON) algorithm. Our algorithm has
some similarity with Qin et al. (2022) since we both use singular value decomposition (SVD) to estimate the global
feature extractor B. The key difference is that they use a deterministic exploration schedule, while BARON explores each
task with probability p; thus, Qin et al. (2022) is more susceptible to adversarial choices of task sequences, which we
demonstrate in Section 5. Furthermore, Qin et al. (2022)’s guarantee is conditioned on their task diversity assumption,
while BARON’s guarantee the competitive ratio of FTL under some milder assumptions (see Assumption 7).

Aiming to remove the task diversity assumption, Duong et al. (2024)’s algorithm achieves the upper bound Õ
(
Nm
√
τ +

N
2
3 τ

2
3 dm

1
3 + Nd2 + τmd

)
by maintaining a distribution over the set of experts that has size exponential in d. At

a high level, BARON shares similarities with Duong et al. (2024), where the underlying subspace is explored with a
small probability p to facilitate the learning of the global feature extractor B. A key distinction of our approach from
Duong et al. (2024) lies in the approach for estimating B̂n: we use a greedy approach where we apply SVD on the
data collected so far, whereas their method involves maintaining a probability distribution over an ε-net of potential B
matrices.

In a related study, Bilaj et al. (2024) considers a setting where task parameters are independently and identically
distributed, exhibiting high variance within an m-dimensional subspace and low variance in the orthogonal directions.
From Duong et al. (2024)’s analysis, Bilaj et al. (2024)’s regret guarantee can be as large as Õ(Nd

√
τ). For a concise

comparison between our work and other relevant studies, please refer to Table 1.

2 PROBLEM SETUP

2.1 COMPETITIVE ANALYSIS OF ONLINE ALGORITHMS

We consider the problem where the learner is faced with an N -round online decision problem. The learner is given a
decision space A. In each round n, the learner chooses wn ∈ A and receives a loss ℓn : A → R. The learner suffers a
loss of ℓn(an) in round n, and its cumulative loss is LN =

∑N
n=1 ℓn(an). We also define the cumulative loss of the

2Qin et al. (2022) provides this lower bound without a proof. We provide the proof in Theorem 9.
3See footnote 2
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benchmark as L∗
N = mina∈A

∑N
n=1 ℓn(a). The goal of the learner is to compete with the best fixed action in hindsight

(i.e., the benchmark) such that
N∑

n=1

ℓn(an) ≤ a ·min
a∈A

N∑
n=1

ℓn(a) + b,

for some constants a, b > 0. The follow the leader (FTL) algorithm, in this setting, can be formally stated as

an = argmin
a∈A

n−1∑
i=1

ℓi(a).

In this paper, we focus on the following settings of decision set A and loss functions ℓn:

Online subset selection. The online subset selection problem, first studied in (Warmuth & Kuzmin, 2008), generalizes
the online expert selection problem (Freund & Schapire, 1997). In each round n, the learner chooses An, a subset of m
experts from [K], and observes a loss vector (ℓkn)

K
k=1; its loss in round n is the total loss over the chosen subset An.

When m = 1, this is the classical online expert selection problem. It can be cast in the above framework by letting
A =

(
[K]
m

)
, i.e., all size-m subsets of [K], and ℓn(a) =

∑
k∈a ℓ

k
n.

Online subspace selection. The online subspace selection, first studied in (Warmuth & Kuzmin, 2008), lifts the
above online subset selection problem to online decision making with projection matrices. In each round, the learner
chooses a rank-k projection matrix Pn, and sees a loss matrix Xn; its loss at round n is the linear loss ⟨Pn, Xn⟩,
where the inner product here is over d × d matrices. The online subspace selection problem is closely related to
online PCA, in which case Xn = xnx

⊤
n is the dyad induced by the n-th sample xn, and I − Pn is the projection

matrix the learner uses to compress the data into a smaller subspace. It can be cast in the above framework by letting
A =

{
rank-k projection matrices in Rd

}
, and ℓn(a) = ⟨a,Xn⟩.

2.2 SEQUENTIAL REPRESENTATION LEARNING FOR MULTI-TASK LINEAR BANDIT

Consider a sequential learning problem involving N 4 distinct d-dimensional linear bandit tasks, denoted by
θ1, · · · , θN ∈ Rd, each interacted with a horizon of τ steps. A key characteristic of these tasks is that they re-
side within an m-dimensional linear subspace of Rd (as detailed in Assumption 1). Specifically, for each task n and
at each time t, the algorithm selects an action ant from a predefined action set A (which adheres to Assumption 2)
and observes a reward rnt = ⟨ant , θn⟩+ ηnt , where ηnt represents independent, zero-mean noise that is 1-sub-Gaussian.
Upon completion of task n, the process is repeated for the subsequent task.

The learning agent’s objective is to minimize the total (pseudo) regret accumulated across all tasks. The expected pseudo-
regret for a single task n over its horizon is defined as Rn

τ := τ ·maxa∈A ⟨a, θn⟩ − E [
∑τ

t=1 ⟨ant , θn⟩]. Consequently,
the cumulative meta-regret across all N tasks is given by:

Rτ :=

N∑
n=1

Rn
τ =

N∑
n=1

(
τ ·max

a∈A
⟨a, θn⟩ − E

[
τ∑

t=1

⟨ant , θn⟩

])
. (1)

Assumption 1 (Low-Dimensional Structure of Task Parameters). Suppose m < d. For the set of task parameters
θ1, · · · , θN , there exists: (i) a global feature extractor B ∈ Rd×m with orthonormal columns, and (ii) a corresponding
set of task vectors w1, . . . , wN ∈ Rm, such that for every task i ∈ [N ], the parameter θi can be expressed as θi = Bwi.

In line with prior work (Rusmevichientong & Tsitsiklis, 2010; Duong et al., 2024), we also impose structure on the
action space A, specifically assuming it to be an ellipsoid, and a bound on the ℓ2 norms of the task parameters.
Assumption 2 (Linear Bandits with Ellipsoid Action Set). The feasible action set is given by the ellipsoid A := {x ∈
Rd : x⊤M−1x ≤ 1}, where M is a symmetric and positive definite matrix. Additionally, we assume the existence
of constants θmin and θmax ≤ 1 such that for all tasks n ∈ [N ], the ℓ2 norm of the task parameter is bounded as
θmin ≤ ∥θn∥2 ≤ θmax.

4We abuse the notation N to mean the number of rounds in the Online subspace selection problem and the number of tasks in the
sequential multi-task linear bandit problem. This was done to ensure consistency and make it easy to follow when applying the
competitive ratio result in the sequential multi-task linear bandit’s analysis.
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3 THE COMPETITIVE RATIO OF THE FOLLOW-THE-LEADER ALGORITHM

3.1 ONLINE SUBSET SELECTION

Theorem 3. In the online subset selection problem, where the learner chooses a set of size s at each step, the cumulative
loss of FTL is:

LN,Alg ≤ KL∗
N +Km.

Recall that L∗
N = mina∈A

∑N
n=1 ℓn(a). In prior work, (Freund & Schapire, 1997) propose the Hedge algorithm with

the guarantee LN,Alg ≤ − log(1−γ)
γ L∗

N + lnK
γ , for γ ∈ (0, 1). When γ = 1, the Hedge algorithm turns into FTL,

and the guarantee becomes vacuous. In contrast, our analysis shows that FTL in fact has a non-vacuous guarantee
on its competitive ratio. To the best of our knowledge, this is a novel result. Our proof of Theorem 3 uses induction
with the potential function Φn =

∑K
i=1 ϕn,i, where ϕn,i = min

(
Ln,i, Ln,i∗n

+ 1
)
, to prove the inductive hypothesis

ℓn,i∗n−1
≤ Φn − Φn−1. In the interest of space, we defer the proof of Theorem 3 to the Appendix A.

3.2 ONLINE SUBSPACE SELECTION

Here, we will assume that the data {Xn}n=1:N has diverse covariance as stated in Assumption 4. We also assume that
the instantaneous loss under the concentration event, defined in Assumption 4, is bounded in Assumption 5.

Define αi := dλd+1−i(CN )+d
N and let k := d − m be the number of noise direction, where λd+1−i(CN ) is small.

Define the covariance matrix Cn :=
∑n

j=1 xjx
⊤
j . Let λi(C) and vi(C) be the i-th largest eigenvalues of C and its

corresponding eigenvector. In Assumption 4, the Concentration event Dαi,i
n happens when the data xn lies in the

subspace defined by the eigenvectors of Cn−1 with large eigenvalues. The Diversity event happens when the gap
between the largest and smallest eigenvalues of Cn−1 is less than one. The global bad event Ei happens when the local
bad event Gi,c

n happens too many times.

Assumption 4 (Covariance Diversity). For all i ∈ [k], define

Dαi,i
n :=

{
λj(Cn)− λj(Cn−1) < αi ∀ j ∈ [2, d+ 1− i] s.t. λj(Cn−1) = λd+1−i(Cn−1)

}
; (Concentration event)

F i
n := {λ1(Cn−1) < λd+1−i(Cn−1) + 1 AND λ1(Cn) < λd+1−i(Cn) + 1} ; (Diversity event)

Gi
n := Dαi,i

n ∪ F i
n;

Ei :=

{
N∑

n=1

I(Gi,c
n ) ≥ dλd+1−i(CN ) + d

}
.

Then, for all i ∈ [k],
I(Ei)Tr(CN ) ≤ dλd+1−i(CN ) + d.

Assumption 5 (Bounded instantaneous loss under Concentration event). Define ℓin(a) :=
〈
P i
naP

i,⊤
n , Xn

〉
, where P i

n

is the projection matrix mapping to vd+1−i(Cn−1) . Then, there exists a constant c such that, for all i ∈ [k], under
event Dαi,i

n , the instantaneous loss is bounded,

I(Dαi,i
n )ℓin ≤ c αi.

Note: In the special setting where k = 1 (i.e., dyad selection), then i = 1. Hence, when the context is clear, we omit the
superscript i.

Remark: This assumption is mild because

• Conditioned on the sequence of data {xn}n=1:N , α can be very large, even larger than one, thus making this
assumption redundant.
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• The assumption is also redundant when I(Dα
n) = 0.

• In the special case where α = 0 or when, for any n ∈ [N ], Cn−1 and Cn have the same eigensystem, this assumption
redundant. This is further elaborated in Section D.

• We also show that removing Assumption 4 is non-trivial by providing an example in Appendix E.

We want to highlight that our proof for the competitive ratio in the Online subset selection is one of our key innovations
in this paper. Another key contribution is Assumption 4 and Assumption 5, where we show why it’s needed. Removing
these assumptions is a non-trivial task that we leave for future work. These assumptions are necessary to show FTL’s
competitive ratio in Theorem 6.
Theorem 6. The FTL’s performance in the online subspace selection problem, under Assumption 4 and Assumption 5 ,
satisfies

LN,Alg ≤ O
(
dL∗

N + d2
)
.

Previously, Warmuth & Kuzmin (2008)’s uncentered online PCA algorithm provided a guarantee of LN,Alg ≤
− log(1−γ)

γ L∗
N + ln(K/s)

γ . With γ = 1, their algorithm becomes FTL, making their guarantee vacuous. To the best of
our knowledge, we are the first to provide a non-vacuous competitive ratio guarantee for the FTL algorithm in online
subspace selection.

4 SEQUENTIAL REPRESENTATION LEARNING FOR MULTI-TASK LINEAR BANDIT

4.1 ALGORITHM

As stated in Duong et al. (2024), without Qin et al. (2022)’s Task Diversity assumption, it’s non-trivial for the learner to
efficiently estimate the global feature extractor B. Instead, the learner must infer B based on the knowledge acquired
from previously encountered situations while dealing with uncertainty for future tasks.

High-level Overview: Our approach tackles the sequential multi-task bandit problem by employing a bi-level strategy
for simultaneously learning and leveraging an estimated B.

• At the upper level, for each task n, the learner faces two key decisions: (1) whether to engage in meta-exploration
or meta-exploitation, and (2) if choosing meta-exploitation, which subspace B̂n to employ to estimate θ∗n sample-
efficiently. To address these decisions, we introduce Algorithm 1, designed to make these choices in a feedback-driven
manner to ensure minimal meta-regret.

• At the lower level, for each task n, the learner executes meta-exploration and meta-exploitation depending on the
decision made at the upper level. The first option, meta-exploration, performs exploration without relying on prior
knowledge of B, using a variant of a full-dimensional linear bandit algorithm (specifically, PEGE as described
by Rusmevichientong & Tsitsiklis (2010), detailed in Algorithm 2). The second option, meta-exploitation, involves
incorporating a learned subspace B̂ as prior information, aiming for a more sample-efficient estimation of θ∗n that
results in reduced regret (Algorithm 3). Since Algorithm 2 and 3 are proposed in previous work (Duong et al., 2024,
e.g.), we only give a brief recap of them in Appendix C.1 for completeness.

A more detailed description of the full algorithm is in Appendix C.1. To use the subspace selection’s competitive ratio
guarantee for regret analysis in Theorem 6, we make the following assumption:

Assumption 7. Define Fn :=
{
Zn = 0 ∨ (Zn = 1 ∧ ∥θ̂n − θn∥ ≤ Õ

(
d√
τ1

)
)
}

, and F := ∩Nn=1Fn. Under event F ,

the sequence of
{
xn | xn = Znθ̂n, ∀n ∈ [N ]

}
, satisfies Assumption 4 and Assumption 5.

Assumption 7 assumes that the sequence of estimations θ̂n of the meta-exploration tasks satisfies Assumption 4 and
Assumption 5, thus enabling us to use the competitive ratio guarantee. Here, since θn lies in the same subspace as per
Assumption 1, the Concentration event Di,αi

n would happen for most tasks, making Assumption 4 mild, especially in
comparison to Qin et al. (2022)’s Task Diversity assumption. For the same reason, the instantaneous loss under the
Concentration even Di,αi

n can’t be too large, thus making Assumption 5 mild.

6
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Algorithm 1 BARON: BAndit Representation transfer by ONline-PCA

1: Input: Task length τ , number of task N , task dimension d, subspace dimension m, and exploration rate p.
2: Initialize: A dataset D1 = {∅} over the estimated task parameters
3: for n ∈ [N ]: do
4: Estimate B̂n = SVD(Dn)
5: With probability p: Zn = 1, otherwise Zn = 0
6: if Zn = 1 then
7: Perform meta-exploration using Algorithm 2 and receive θ̂n
8: Update the dataset Dn+1 = Dn ∪ θ̂n
9: else

10: Perform meta-exploitation using Algorithm 3 with B̂n

11: end if
12: end for

Theorem 8. Let p = min
[(

τd
N2

) 1
3 , 1

]
, the meta-exploration’s exploration duration τ1 = d ·

⌊
min

(
d
√

dτ
p , τ

)
/d
⌋

, and

the meta-exploitation’s exploration duration τ2 = m
√
τ . Under Assumption 1, 2, and 7, the meta-regret of Algorithm 1

satisfies

Rτ ≤ Õ
(
Nm
√
τ +N

2
3 τ

2
3 d

5
3 +Nd3 + τd2

)
. (2)

The proof of Theorem 8 is in Appendix C.2. In particular, we use Theorem 6 in Lemma 16 to show that

N∑
n=1

Zn∥B̂⊤
n,⊥θ̂n∥22 ≤ d ·min

B

N∑
n=1

Zn∥B⊤
⊥ θ̂n∥22 + d2. (3)

Using equation 3, we have an upper bound on the subspace estimation error, which can be used to bound the regret of
all meta-exploitation tasks, leading to the meta regret upper bound in equation 2. Here, we see that our regret bound is
slightly worse than Duong et al. (2024), both in terms of the first two dominant terms and the “burn-in” initial learning
costs. Compared with Duong et al. (2024), we think this could be a reasonable exchange for a practical and efficient
algorithm.

Comparison Against Individual Single-Task baseline. The meta-regret of learning each task independently is
O(Nd

√
τ). Our derived meta-regret guarantee offers an improvement over this baseline under the conditions that

τ ≫ d3 and N ≫ d2
√
τ . Expanding the parameter ranges where our guarantee outperforms the individual single-task

baseline remains an important area for future research.

4.2 LOWER BOUND

In this section, we provide a lower bound for the Sequential Representation Learning for Multi-task Linear Bandit in
Theorem 9. This lower bound was given in (Qin et al., 2022), but there was no proof. In this work, for completeness,
we provide a proof in Theorem 9.

Theorem 9. The lower bound for the Sequential Representation Learning for Multi-task Linear Bandit is:

Rτ ≥ Ω̃
(
Nm
√
τ + d

√
mτN

)
.

The proof of Theorem 9 is in Appendix C.3. When N is large, our regret upper bound in equation 2 matches this lower
bound.
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5 EXPERIMENTS

In this section5, we detail a comparative analysis of our BARON algorithm’s performance against the baselines within
simulated environments. The algorithms under evaluation are:

• SeqRepL: our implementation of the method presented in (Qin et al., 2022), where the estimate B̂n is derived via
SVD, and tasks for meta-exploration are selected according to the deterministic sequence n = i(i+1)

2 for i = 1, 2, · · · .
• BOSS: A computationally efficient approximation of Duong et al. (2024)’s algorithm, utilizing a set of 100,000

experts sampled uniformly at random.
• BOSS-semi-oracle: A computationally efficient approximation of Duong et al. (2024)’s algorithm using oracle

information to demonstrate its ideal performance. It has an expert set of 100,000 experts drawn uniformly at random
and includes the true subspace B added in.

The experimental setup involves parameters (N, τ, d,m) = (4000, 500, 10, 3). In this experiment, the action space
A is a unit sphere, i.e., M = Id. For each task n, let Bn ∈ Rd×mn represent the basis of the subspace used by the
environment to generate θn, with mn increasing to 1, 2, 3 at n = 1, 501, 1001, respectively. The parameter θn is
generated as θn = λnBnwn, where wn is sampled uniformly from the unit sphere Smn−1 and λn is a random scaling
factor from the interval [0.8, 1] , consistent with Assumption 2 (θmin = 0.8, θmax = 1). The adversary hides all new
subspace dimensions according to Qin et al. (2022)’s exploration schedule: when n = i(i+1)

2 , θn = λnB1wn.

The hyper-parameters are chosen such that (p, τ1, τ2) = (0.15, 1000, 300). The shaded regions in the figures depict ±1
standard deviation across 5 independent trials.

Figure 1a illustrates the linear relationship between cumulative regret and the number of tasks N . Notably,
BARON outperforms both the BOSS and SeqRepL baselines. The observed performance difference between
BOSS-semi-oracle and BOSS arises because the expert set of BOSS employed in this experiment does not
fully encompass the true B (the theoretical size of the expert set ≈ 1130), significantly exceeding the size used in BOSS.

Figure 1b displays ∥B̂⊤
n,⊥Bn∥F , a metric quantifying the proximity of B̂n,⊥ to Bn. Following the environment’s

introduction of a new subspace dimension at tasks 1, 501, and 1001, the estimated subspace B̂n for all algorithms
undergoes updates and converges after some time. Once again, BARON’s superior regret performance can be attributed
to a better estimation of both θ̂n as demonstrated in Figure 1c and B̂n as demonstrated in Figure 1b.

In Figure 2, we compare our performance with the baseline algorithms on a benign environment where θn is sampled
uniform at random from [−1, 1]d, for all n ∈ [N ], such that it satisfies Assumption 1 and Assumption 2. Thus, the
subspace B can be estimated efficiently even when only a small number of tasks are seen. While BARON is still
competitive with the best algorithms, Duong et al. (2024) showed its limitation when using a computationally efficient
approximation, even when dealing with a non-adversarial setting.

While performing the experiment, we also noticed that Duong et al. (2024) is very sensitive to the hyperparameter choices
(p, τ1, α), while BARON and Qin et al. (2022) have much more robust performance under different hyperparameter
choices.

6 DISCUSSION AND FUTURE WORK

In this paper, we show that the Competitive Ratio of FTL in the online subset selection problem is K. For the Online
subspace selection (Online PCA) problem, we show that FTL is d competitive under some assumptions.

We demonstrate one application of the Competitive Ratio in the Sequential Representation Transfer in Multi-task Linear
Bandit problem. Our BARON algorithm achieves the regret guarantee of Õ

(
Nm
√
τ +N

2
3 τ

2
3 d

5
3 +Nd3 + τd2

)
under

some assumptions. We also show that the lower bound of this problem is Ω
(
Nm
√
τ + d

√
mτN

)
.

5The codebase associated with this work is available at https://anonymous.4open.science/r/BOSS-7774/
README.md. We build our code on top of Duong et al. (2024).
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Figure 1: Cumulative regret comparison between BARON and other baselines. BARON is both computationally efficient
and approaches the performance of Duong et al. (2024)’s BOSS-semi-oracle using oracle information, which is much
better over Duong et al. (2024)’s BOSS, a computationally efficient approximation.

Figure 2: Cumulative regret comparison between BARON and other baselines in a benign setting where the subspace B
can be estimated efficiently. BARON performance is still better than BOSS, the computationally efficient approximation
of Duong et al. (2024), and competitive with other baselines. The environments are sampled from the subspace
uniformly.

In the future, we would like to remove Assumption 4 and Assumption 5 for the competitive ratio analysis, which would
lead to removing Assumption 7. We would also want to close the gap with the lower bound and remove the ellipsoid
action set Assumption 2 in the Sequential Representation Transfer in Multi-task Linear Bandit problem.
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A ONLINE SUBSET SELECTION

We first analyze the Online expert selection problem, a special case of the Online subset selection where the subset size
is one.
Lemma 10. In the Online expert selection problem, We define the potential at time step n, Φn, as: Φn =

∑K
i=1 ϕn,i,

where ϕn,i := min(Ln,i, L
∗
n +1) and Ln,i =

∑n
j=1 ℓj(i). We also define L∗

n := minj∈[K] Ln,j as the best cumulative
loss at time step n.

Then, for every step n, we have:
ℓn,i∗n−1

≤ Φn − Φn−1.

Proof. We look at the right-hand side, which is

Φn − Φn−1 =

K∑
i=1

(ϕn,i − ϕn−1,i) =:

K∑
i=1

∆ϕn,i
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For any fixed expert i, its potential ϕn,i is monotonically increasing in n. As a result, every ∆ϕn,i in the sum above is
nonnegative. As a consequence, The above is at least the growth of the potential of the expert i∗n−1,

K∑
i=1

∆ϕn,i ≥ ∆ϕn,i∗n−1
= ϕn,i∗n−1

− ϕn−1,i∗n−1

A close examination of the above two terms reveals the following:

• For ϕn−1,i∗n−1
, it equals min

(
Ln−1,i∗n−1

, L∗
n−1 + 1

)
, which is exactly Ln−1,i∗n−1

= L∗
n−1.

• For ϕn,i∗n−1
, it equals min

(
Ln,i∗n−1

, L∗
n + 1

)
. The key observation is that the first term in the minimum is

always active, making the expression evaluate to Ln,i∗n−1
. The reason is as follows:

Ln,i∗n−1
≤ Ln−1,i∗n−1

+ 1 = min
i∈[K]

Ln−1,i + 1 ≤ min
i∈[K]

Ln,i + 1 = L∗
n + 1.

The last inequality is true because Ln−1,i∗n−1
≤ Ln−1,i∗n

≤ Ln,i∗n
.

In summary, we just found that

∆ϕn,i∗n−1
= Ln,i∗n−1

− Ln−1,i∗n−1
= ℓn,i∗n−1

.

This concludes the proof of the lemma.

Lemma 11. In the Online expert selection problem, the cumulative loss of FTL is:

LN,Alg ≤ KL∗
N +K.

Proof. From Lemma 10, for every n,
ℓn,i∗n−1

≤ Φn − Φn−1.

Summing over all n ∈ [N ], we have

LN,Alg =

N∑
n=1

ℓn,i∗n−1
≤ ΦN =

K∑
i=1

min(LN,i, L
∗
N + 1) ≤ K(L∗

N + 1).

We next consider the online subset selection problem with s > 1. To this end, we consider the Online m-th best expert
selection problem. Denotes minmi Xi as the m-th smallest value of Xi. Then, at each round, FTL chooses in to be
i∗n−1 := i∗n−1(m) := argminmi∈[K] Ln−1,i.

Then, for any m ∈ [s], we aim to use Lemma 11 to show

N∑
n=1

ln,i∗n−1
≤ KLN,i∗N

+K

Define:

ϕn,i = ϕn,i(m) = min
(
Ln,i(m), Ln,i∗n

(m) + 1
)

Φn = Φm
n =

K∑
i=1

ϕn,i(m),
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Φn − Φn−1 = Φn(m)− Φn−1(m) =

K∑
i=1

(ϕn,i(m)− ϕn−1,i(m)) =:

K∑
i=1

∆ϕn,i(m) =:

K∑
i=1

∆ϕn,i.

We will hide the m in the following proof when the context is clear.

Lemma 12. For every step n ∈ [N ], we have

s∑
m=1

ℓn,i∗n−1(m) ≤
s∑

m=1

(
Φm

n − Φm
n−1

)
.

Proof.

Φn − Φn−1 =

K∑
i=1

∆ϕn,i ≥ ∆ϕn,i∗n−1
= ϕn,i∗n−1

− ϕn−1,i∗n−1

We always have: ϕn−1,i∗n−1
= min

(
Ln−1,i∗n−1

, L∗
n−1 + 1

)
= Ln−1,i∗n−1

We also have: ϕn,i∗n−1
= min

(
Ln,i∗n−1

, L∗
n + 1

)
• If Ln−1,i∗n−1

≤ Ln−1,i∗n
, then ϕn,i∗n−1

= min
(
Ln,i∗n−1

, L∗
n + 1

)
= Ln,i∗n−1

similar to the previous proof in
Lemma 10. Thus, the proof is the same, and we can conclude Φn − Φn−1 ≥ ℓn,i∗n−1

.

• Otherwise (i∗n is rank < m at round n− 1):

– If Ln,i∗s−1
≤ Ln,i∗n + 1. Then, ϕn,i∗n−1

= min
(
Ln,i∗n−1

, L∗
n + 1

)
= Ln,i∗n−1

. Thus, the proof is the
same as before.

–
Ln,i∗n−1

> Ln,i∗n
+ 1. (4)

Since i∗n is rank < m (arm i-th has small rank means Ln,i is small) at round n− 1 and m-th at round n,
and i∗n−1 is rank m-th at round n− 1 and > m at round n, there must exists an arm z such that:

Ln−1,z > Ln−1,i∗n−1

Ln,z ≤ Ln,i∗n
.

Hence:

Ln,z ≤ Ln,i∗n

< Ln,i∗n−1
− 1 (Eq. (4))

=⇒ Ln−1,i∗n−1
+ ℓn,z < Ln,i∗n−1

− 1

=⇒ ℓn,z < ℓn,i∗n−1
− 1

=⇒ 1 < ℓn,i∗n−1

Since this is impossible, we conclude that this case never happens.

The proof is finished by summing Φm
n − Φm

n−1 ≥ ℓn,i∗n−1(m) over m ∈ [s].

Theorem 3. In the online subset selection problem, where the learner chooses a set of size s at each step, the cumulative
loss of FTL is:

LN,Alg ≤ KL∗
N +Km.
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Proof. From Lemma 12, for every n,

s∑
m=1

ℓn,i∗n−1(m) ≤
s∑

m=1

(
Φm

n − Φm
n−1

)
.

Summing over all n ∈ [N ], we have

LN,Alg =

N∑
n=1

s∑
m=1

ℓn,i∗n−1(m)

≤
N∑

n=1

s∑
m=1

(
Φm

n − Φm
n−1

)
≤

s∑
m=1

Φm
N

=

s∑
m=1

K∑
i=1

min(LN,i(m), L
∗
N (m) + 1)

≤ K

s∑
m=1

L∗
N (m) +Ks

≤ KL∗
N +Ks

B ONLINE SUBSPACE SELECTION

We first analyze the Online dyad selection problem, a special case of the Online subspace selection where the subspace
is the outer product of a rank-one unit vector: B = vv⊤ (k = 1).

Lemma 13. The FTL’s performance in the Online dyad selection problem, under Assumption 4 and Assumption 5,
satisfies:

LN,Alg ≤ O (dL∗
N + d)

Proof. To prove Lemma 13, we want to show that:

O (dL∗
N + d) ≥ LN,Alg

=

N∑
n=1

〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
(v∗n−1 := argminv∈Sd−1 Ln−1,v)

To do so, we will show that:

•
∑N

n=1 I(Gn)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
≤ O (dL∗

N + d)

•
∑N

n=1 I(Gc
n)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
≤ O (dL∗

N + d)
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We will start with the second case. Under Assumption 4, we have:

N∑
n=1

I(Gc
n)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
= I(E)

N∑
n=1

I(Gc
n)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
+ I(Ec)

N∑
n=1

I(Gc
n)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
≤ I(E)LN,Alg + I(Ec)

N∑
n=1

I(Gc
n)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
≤ I(E)Tr(CN ) + I(Ec)

N∑
n=1

I(Gc
n)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
(LN,Alg ≤ Tr(CN ))

≤ dλd(CN ) + d+ I(Ec)

N∑
n=1

I(Gc
n)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
(Assumption 4)

≤ dλd(CN ) + d+ I(Ec)

N∑
n=1

I(Gc
n) (

〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
≤ 1)

≤ O (dλd(CN ) + d) . (By Def Ec)

For the first case, we have:

I(Gn)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
≤ I(Dα

n)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
+ I(Fn)

〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉

By Assumption 5 , we also have: I(Dα
n)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
≤ cα

Next, we want to show that
∑N

n=1 I(Fn)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
≤ O (dλd(CN ) + d).

Define Φ(C) =
∑d

i=1 min (λi(C), λd(C) + 1).

We have:

I(Fn) [Φ(Cn)− Φ(Cn−1)] = I(Fn)

[
d∑

i=1

min (λi(Cn), λd(Cn) + 1)−
d∑

i=1

min (λi(Cn−1), λd(Cn−1) + 1)

]
= I(Fn) [Tr(Cn)− Tr(Cn−1)]

(By Def Fn = {λ1(Cn−1) < λd(Cn−1) + 1 AND λ1(Cn) < λd(Cn) + 1})
= I(Fn) [Tr(Cn − Cn−1)]

= I(Fn) [Tr(Xn)]

= I(Fn)∥xn∥2

≥ I(Fn)
[
(v∗n−1)

⊤xn

]2
(Cauchy-Schwarz)

= I(Fn)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉

Hence: I(Fn)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
≤ I(Fn)Φ(Cn)− Φ(Cn−1).
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Summing over all n:

N∑
n=1

I(Fn)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
≤

N∑
n=1

I(Fn) [Φ(Cn)− Φ(Cn−1)]

≤
N∑

n=1

[Φ(Cn)− Φ(Cn−1)]

= Φ(CN )

=

d∑
i=1

min (λi(CN ), λd(CN ) + 1)

≤ dλd(CN ) + d

Since we have shown I(Dα
n)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
≤ cdλd(CN )+d

N above, this means:

N∑
n=1

I(Gn)
〈
v∗n−1(v

∗
n−1)

⊤, Xn

〉
≤ O (dλd(CN ) + d)

Now that we have showed the competitive ratio in the dyad selection setting when k = 1, we want to generalize this
result in the Online PCA setting in Theorem 6.

Theorem 6. The FTL’s performance in the online subspace selection problem, under Assumption 4 and Assumption 5 ,
satisfies

LN,Alg ≤ O
(
dL∗

N + d2
)
.

Proof. For i ∈ [k], we analyze the FTL(i) algorithm which choose chooses vin to be vi,∗n−1 := argmind−i+1
v∈V n−1 L

i
n−1,v

(where V n−1 denotes the set of eigenvectors of Cn−1, and argmind−i+1
v∈V n−1 choose the eigenvector with the (d−i+1)−th

largest eigenvalue of Cn−1) for time step n.

Following the same steps in the proof of the dyad selection setting, for all i ∈ [k], we have:

N∑
n=1

I(Gi,c
n )ℓin ≤ O

(
dLi,∗

N + d
)

(Using Assumption 4)

I(Dα,i
n )ℓin ≤ c

dλd+1−i(CN ) + d

N
. (Using Assumption 5)

Similarly, by modifying the potential function Φi(C) =
∑d+1−i

j=1 min (λj(C), λd+1−i(C) + 1), following the same
steps previously, we have:

N∑
n=1

I(F i
n)ℓ

i
n ≤ dλd+1−i(CN ) + d
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Hence:

LN,Alg =

k∑
i=1

N∑
n=1

ℓin,i∗n−1

=

k∑
i=1

[
N∑

n=1

I(Gi
n)ℓ

i
n,i∗n−1

+

N∑
n=1

I(Gi,c
n )ℓin,i∗n−1

]

≤
k∑

i=1

[
N∑

n=1

I(Gi
n)ℓ

i
n,i∗n−1

+O (dλd+1−i(CN ) + d)

]

≤
k∑

i=1

[
N∑

n=1

I(Dα,i
n )ℓin,i∗n−1

+

N∑
n=1

I(F i
n)ℓ

i
n,i∗n−1

+O (dλd+1−i(CN ) + d)

]

≤
k∑

i=1

[O (dλd+1−i(CN ) + d)]

≤ O
(
dL∗

N + d2
)

C SEQUENTIAL REPRESENTATION LEARNING FOR MULTI-TASK LINEAR BANDIT

C.1 ALGORITHM DETAILS

As described in the paper, Algorithm 1 deploys a bi-level strategy for simultaneously learning and leveraging the
estimated B. We now provide a more detailed explanation of each level.

Lower-Level Algorithms. As previously mentioned, Algorithm 2 serves the purpose of meta-exploration. When
applied to task n, it simultaneously achieves two objectives: obtaining an unbiased estimate of θn and maintaining
a reasonable regret bound for the current task. During the initial τ1 steps (lines 3 to 6), the learner selects actions
from the set {λ0ei}di=1, which span the action space A. Here, ei represents the i-th standard basis vector in Rd, and
λ0 =

√
λmin(M) is a constant factor ensuring that λ0ei ∈ A (as per Assumption 2). Subsequently, the task parameter

θ̂n is estimated (line 8), and the learner acts greedily for the remainder of the task (line 10). The performance guarantee
of this algorithm, originally established by Rusmevichientong & Tsitsiklis (2010), is summarized in Lemma 14.

Conversely, Algorithm 3 is designed for meta-exploitation. It takes a subspace, represented by its orthonormal basis
B̂, as input. When applied to task n, it can yield a lower regret compared to Algorithm 2 if the provided subspace
effectively captures θn. Instead of exploring the entire Rd, the learner restricts its exploration to the subspace induced
by B̂n (lines 3 and 6). Following this, the low-dimensional task parameter ŵn is estimated (line 8), and the learner
adopts a greedy strategy for the rest of the task (line 11). The performance guarantee for this algorithm, originally
presented by Yang et al. (2020), is detailed in Lemma 15.

Lemma 15 highlights the opportunistic nature of Algorithm 3. If θn lies entirely within the subspace spanned by B̂n (i.e.,
∥B̂⊤

n,⊥θn∥ = 0), the regret bound becomes Rn
τ ≤ O

(
τ2 + τ · m

2

τ2

)
, potentially as low as O(m

√
τ). However, in the

worst-case scenario, ∥B̂⊤
n,⊥θn∥ can be as large as ∥θn∥, leading to a trivial linear regret bound. Thus, the effectiveness

of this algorithm critically depends on selecting appropriate subspaces B̂n as input. The proof of Lemma 15 can be
found in Appendix C.2.

Upper-Level Strategy. For the upper level, we introduce Algorithm 1, which decides (1) when to engage in meta-
exploration and (2) which subspace to utilize during meta-exploitation.
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Algorithm 2 Meta-Exploration Routine

1: Input: Current task index n, exploration duration τ1 (a multiple of d)
2: for i← 1 to d do
3: Set the action An,t = λ0ei for time steps t = u(i− 1) + 1, · · · , ui, where u = τ1

d
4: end for
5: for time step t← 1 to τ1 do
6: Choose action An,t and observe the resulting reward rn,t
7: end for
8: Compute the estimated task parameter θ̂n := argminθ∈Rd

1
τ1

∑τ1
t=1(⟨An,t, θ⟩ − rn,t)

2

9: for time step t← τ1 + 1 to τ do
10: Select action An,t ← argmaxa∈A

〈
a, θ̂n

〉
11: end for

Algorithm 3 Meta-Exploitation Routine

1: Input: Current task index n, exploitation exploration length τ2 (a multiple of m), and the estimated orthonormal
basis of the subspace B̂n ∈ Rd×m

2: for i← 1 to m do
3: Set the action An,t = λ0B̂n(:, i) for time steps t = u(i− 1) + 1, · · · , ui, where u = τ2

m
4: end for
5: for time step t← 1 to τ2 do
6: Choose action An,t and observe the resulting reward rn,t
7: end for
8: Compute the estimated task vector ŵn := argminw∈Rm

1
τ2

∑τ2
t=1(

〈
An,t, B̂nw

〉
− rn,t)

2

9: Obtain θ̂n := B̂nŵn

10: for time step t← τ2 + 1 to τ do
11: Select action An,t ← argmaxa∈A

〈
a, θ̂n

〉
12: end for

Regarding (1), for each task, the learner chooses to perform meta-exploration with a probability p (line 6) or to exploit
using the current online estimate of the subspace, B̂n (line 9).

Concerning (2), we propose selecting the subspace B̂n using SVD, as shown in line 4.

C.2 UPPER BOUND

Lemma 14. Let τ1 be a positive integer that is a multiple of d. Consider running Algorithm 2 on task n with an
exploration length of τ1. Then, there exist positive constants c1 and c2, whose values depend on λ0, θmax, θmin, and M ,
such that the following hold:

1. The regret incurred on task n over τ time steps satisfies the bound Rn
EXR ≤ c1 ·

(
τ1 +

τd2

τ1

)
.

2. With a probability of at least 1− δ, the estimation error of the parameter vector θ̂n from the true parameter vector

θn is bounded by ∥θ̂n − θn∥ ≤ c2 · d
√

ln(d/δ)
τ1

=: α, where δ := d2

Nτ1
.

Proof. The proof of this lemma can be derived from Duong et al. (2024)’s Lemma 3.

Lemma 15. Let τ2 be a positive integer that is a multiple of m. Consider running Algorithm 3 on task n, utilizing
an input subspace B̂n and an exploration duration of τ2. Then, there exists a positive constant c, dependent on
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λ0, θmax, θmin, and M , such that the cumulative regret on task n is bounded by:

Rn
τ ≤ c ·

(
τ2 + τ ·

(
m2

τ2
+ ∥B̂⊤

n,⊥θn∥22
))

.

Proof. The proof of this lemma can be derived from Duong et al. (2024)’s Lemma 4.

Lemma 16. Assuming that α = Õ
(

d√
τ1

)
as defined in Lemma 14. Then, the expected cumulative regret of all tasks

running the Meta-Exploitation routine in Algorithm 3 is:

REXT ≤ Õ

(
Nτ2 +Nτ

m2

τ2
+ τN

d3

τ1
+

τd2

p

)
.

Proof. First, we use Lemma 15 to bound the regret of the task n running the Exploitation Routine:

Rn
EXT ≤ O

(
τ2 + τ ·

(
m2

τ2
+ ∥B̂⊤

n,⊥θn∥22
))

.

Hence:

REXT =

N∑
n=1

E [Rn
EXT] I(Zn = 0)

≤
N∑

n=1

E [Rn
EXT]

≤ O

(
Nτ2 +Nτ

m2

τ2
+ τ

N∑
n=1

E
[
∥B̂⊤

n,⊥θn∥22
])

.

To bound the sum on the RHS, we need to upper bound minB̄
∑N

n=1 ∥B̄⊤
n,⊥θ̂n∥2. We will do this below by using the

Competitive Ratio for subspace selection in Theorem 6.

First, recall that Fn =
{
Zn = 0 ∨ (Zn = 1 ∧ ∥θ̂n − θn∥ ≤ α)

}
, and F = ∩Nn=1Fn, which was defined in Assumption

7.

Using Lemma 14, we have P (∥θ̂n − θn∥ > α | Zn = 1) ≤ δ. Thus, P (F c
n) = P (∥θ̂n − θn∥ > α | Zn = 1)P (Zn =

1) ≤ pδ. Hence P (F c) ≤ Npδ ≤ Nδ.

Define ℓn(A) = Zn∥A⊤
⊥θ̂n∥2. From the Competitive Ratio for subspace selection Theorem 6, we have:
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I(F )

N∑
n=1

ℓn(B̂n) ≤ I(F )O

(
dmin

B̄

N∑
n=1

ℓn(B̄) + d2

)

≤ I(F )O

(
d

N∑
n=1

ℓn(B) + d2

)

=⇒
N∑

n=1

ℓn(B̂n) ≤ I(F )O

(
d

N∑
n=1

ℓn(B) + d2

)
+ I(F c)

N∑
n=1

ℓn(B̂n)

=⇒
N∑

n=1

E
[
ℓn(B̂n)

]
≤ I(F )O

(
d

N∑
n=1

E [ℓn(B)] + d2

)
+ E

[
I(F c)

N∑
n=1

ℓn(B̂n)

]

≤ I(F )O

(
d

N∑
n=1

E [ℓn(B)] + d2

)
+N2pδ

=⇒
N∑

n=1

E
[
Zn∥B̂⊤

n,⊥θ̂n∥2
]
≤ I(F )O

(
d

N∑
n=1

E
[
Zn∥B⊤

⊥ θ̂n∥2
]
+ d2

)
+N2pδ

=⇒ p

N∑
n=1

E
[
∥B̂⊤

n,⊥θ̂n∥2
]
≤ I(F )Õ

(
dp

N∑
n=1

E
[
∥B⊤

⊥ θ̂n∥2
]
+ d2

)
+N2pδ

=⇒
N∑

n=1

E
[
∥B̂⊤

n,⊥θ̂n∥2
]
≤ I(F )Õ

(
d

N∑
n=1

E
[
∥B⊤

⊥ θ̂n∥2
]
+

d2

p

)
+N2δ

We also have:

∥B⊤
⊥ θ̂n∥2 ≤ ∥B⊤

⊥(θn − θ̂n)∥2 + ∥B⊤
⊥θn∥2 (Triangle inequality)

≤ ∥B⊤
⊥∥2∥θn − θ̂n∥2 + ∥B⊤

⊥θn∥2

≤ Õ

(
d2

τ1

)
=⇒

N∑
n=1

∥B⊤
⊥ θ̂n∥2 ≤ Õ

(
N

d2

τ1

)

=⇒
N∑

n=1

E
[
∥B̂⊤

n,⊥θ̂n∥2
]
≤ Õ

(
N

d3

τ1
+

d2

p

)
+N2δ

≤ Õ

(
N

d3

τ1
+

d2

p

)
(δ ≤ O

(
d3

Nτ1

)
)

Thus:

∥B̂⊤
n,⊥θn∥2 ≤ ∥B̂⊤

n,⊥(θn − θ̂n)∥2 + ∥B̂⊤
n,⊥θ̂n∥2 (Triangle inequality)

≤ ∥B̂⊤
n,⊥∥2∥θn − θ̂n∥2 + ∥B̂⊤

n,⊥θ̂n∥2

≤ Õ

(
d2

τ1

)
+ ∥B̂⊤

n,⊥θ̂n∥2

=⇒
N∑

n=1

E
[
∥B̂⊤

n,⊥θn∥2
]
≤ Õ

(
N

d2

τ1

)
+

N∑
n=1

E
[
∥B̂⊤

n,⊥θ̂n∥2
]

≤ Õ

(
N

d3

τ1
+

d2

p

)
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Hence:

REXT ≤ Õ

(
Nτ2 +Nτ

m2

τ2
+ τ

N∑
n=1

E
[
∥B̂⊤

n,⊥θn∥2
])

≤ Õ

(
Nτ2 +Nτ

m2

τ2
+ τN

d3

τ1
+ τ

d2

p

)

Theorem 8. Let p = min
[(

τd
N2

) 1
3 , 1

]
, the meta-exploration’s exploration duration τ1 = d ·

⌊
min

(
d
√

dτ
p , τ

)
/d
⌋

, and

the meta-exploitation’s exploration duration τ2 = m
√
τ . Under Assumption 1, 2, and 7, the meta-regret of Algorithm 1

satisfies

Rτ ≤ Õ
(
Nm
√
τ +N

2
3 τ

2
3 d

5
3 +Nd3 + τd2

)
. (2)

Proof. Define REXR as the cumulative regret of all task running Algorithm 2. Then, we have:

Rτ ≤ Õ (pREXR + (1− p)REXT) (From Duong et al. (2024)’s Theorem 7)

≤ Õ

((
τ1 + τ · d

2

τ1

)
Np+REXT

)
(Lemma 14)

≤ Õ

(
Npτ1 +Npτ

d2

τ1
+Nτ2 +Nτ

m2

τ2
+ τN

d3

τ1
+ τ

d2

p

)
(Lemma 16)

= Õ

(
Nm
√
τ +Npτ1 +Npτ

d2

τ1
+ τN

d3

τ1
+ τ

d2

p

)
(τ2 = m

√
τ )

≤ Õ

(
Nm
√
τ +Npτ1 + τN

d3

τ1
+

τd2

p

)

≤ Õ

Nm
√
τ + I(d3 ≥ pτ)(Npτ +Nd3) +

τd2

p
+Npd

√
dτ

p
+ τN

d3

d
√

dτ
p


(Choose τ1 = d ·

⌊
min

(
d
√

dτ
p , τ

)
/d
⌋

)

≤ Õ

(
Nm
√
τ + I(d3 ≥ pτ)(Npτ +Nd3) +

τd2

p
+Nd

3
2
√
pτ

)
≤ Õ

(
Nm
√
τ +Nd3 +

τd2

p
+Nd

3
2
√
pτ

)
≤ Õ

(
Nm
√
τ +Nd3 +N

2
3 τ

2
3 d

5
3 + I(τd ≥ N2)(τd2 +Nd

3
2
√
τ)
)

(Choose p = min
[(

τd
N2

) 1
3 , 1

]
)

≤ Õ
(
Nm
√
τ +N

2
3 τ

2
3 d

5
3 +Nd3 + τd2

)

C.3 LOWER BOUND

Theorem 9. The lower bound for the Sequential Representation Learning for Multi-task Linear Bandit is:

Rτ ≥ Ω̃
(
Nm
√
τ + d

√
mτN

)
.

Proof. Following the construction in (Yang et al., 2020), we prove the two terms separately:

20



1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1. By Lemma 17, there exists an N -task linear bandit problem in Rm with horizon τ , action set A =

{x : ∥x∥ ≤ 1}, and parameters (w1, . . . , wN ) such that
∑N

n=1 R
n(A, wn) ≥ Ω (Nm

√
τ). Fix any semi-

orthogonal matrix B ∈ Rd×m. We embed this problem into a fixed m-dimensional subspace of Rd. The
Ω (Nm

√
τ) lower bound remains valid.

2. For the second term, it follows from Lemma 17 that there exists an m-task linear bandit problem in Rd with
horizon Nτ

m , action set A = {x : ∥x∥ ≤ 1}, and parameters (θ1, . . . , θm) such that
∑m

n=1 R
n(A, θm) ≥

Ω
(
d
√
mτN

)
. This instance can be regarded as an N -task linear bandit problem where the underlying

parameters lie in an m-dimensional subspace and each task has a horizon of τ . To see this, one can group the
N tasks into m periods, such that each period comprises N/m tasks and spans Nτ/m rounds. Within each
period, the tasks share a common parameter. Since there are only m parameters, they lie in an m-dimensional
subspace of Rd.

From Section 2.2, we have rnt = ⟨ant , θn⟩+ ηnt , where ηnt ∼ N (0, 1).

The meta-regret of a policy is:

N∑
n=1

Rn(An, µn) = τ

N∑
n=1

max
a∈An

⟨a, θn⟩ −
N∑

n=1

τ∑
t=1

E [rnt ] ,

where the expectation is taken with respect to P, which indicates the measure on outcomes induced by the interaction
on the fixed policy and the Gaussian bandit parameterised by θn.

Lemma 17. For any N, τ, l, and action space A =
{
x ∈ Rl : ∥x∥2 ≤ 1

}
, for any algorithm σ, there exists a N -task,

horizon-τ multitask bandit instance Φ =
(
ϕ1, · · · , ϕN | ϕs ∈ Rl, s ∈ [N ]

)
that satisfies Assumption 1, such that∑N

n=1 R
n
τ (A,Φ, σ) ≥

Nl
√
τ

32
√
3

Proof. Our proof is inspired by Lattimore & Szepesvári (2020), which we extend to the sequential multitask setting.

In the following proof, we denote Rn(Φ) = Rn(ϕn) = Rn
τ (A,Φ, σ)

Fix n ∈ [N ] and i ∈ [l]. Let ε = 1
8
√
3

√
l
τ

and Φ ∈ {±ε}lN and define τn(i) = τ ∧min
{
t :
∑t

s=1 [a
n
s (i)]

2 ≥ τ
l

}
, where ant (i) is the value at dimension i of

ant .

By Lemma 18, we have:

Rn(Φ) ≥ ε
√
l

2

l∑
i=1

EΦ

τn(i)∑
t=1

(
1√
l
− ant (i) sign(ϕn(i))

)2


For x ∈ {±1}, define Un(i, x) =
∑τn(i)

t=1

(
1√
l
− ant (i)x

)2
and let Φ =

(
ϕ1, · · · , ϕN

)
and Φ−,n,i =

(
ϕ1′ , · · · , ϕN ′

)
such that ϕs′ = ϕs for all s ∈ [n− 1]∪ [n+1, N ], ϕn′

(s) = ϕn(s) for all s ∈ [l] \ {i}, and ϕn′
(i) = −ϕn(i). Assume

without loss of generality that ϕn(i) > 0.

Let P and P′ be the laws of Un(i, 1) with respect to the bandit/learner interaction measure induced by Φ and Φ−,n,i,
respectively. Let F j

t = σ(rj1, a
j
1, . . . , r

j
t , a

j
t , {rs1, as1, . . . , rsT , asT }

j−1
s=1) Then, τn(i) is an (Fn

t )
τ
t=1-measurable stopping

time.
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We have:

Un(i, 1) =

τn(i)∑
t=1

(
1√
l
− ant (i)

)2

≤ 2

τn(i)∑
t=1

1

l
+ 2

τn(i)∑
t=1

ant (i)
2

≤ 4τ

l
+ 2 (By definition of of τn(i))

Denote X j
t =

{
rj1, a

j
1, . . . , r

j
t , a

j
t , {rs1, as1, . . . , rsT , asT }

j−1
s=1

}
. Then,

EΦ [Un(i, 1)]− EΦ−,n,i [Un(i, 1)] =

∫
x

Un(i, 1)dP(x)−
∫
x

Un(i, 1)dP′(x)

≥ −
(
4τ

l
+ 2

)
∥P− P′∥1 (ℓ1/ℓ∞ Holder’s inequality)

≥ −
(
4τ

l
+ 2

)√
1

2
D(P′,P)

(Pinsker’s inequality)

≥ −ε
(
4τ

l
+ 2

)√√√√√EΦ−,n,i

τn(i)∑
t=1

(ant (i))
2

 (Lemma 19 below)

≥ −ε
(
4τ

l
+ 2

)√
τ

l
+ 1 (By def of τn(i))

≥ −8
√
3ετ

l

√
τ

l
(Assume that d ≤ 2τ )

We have:

EΦ−,n,i [Un(i,−1)] = EΦ−,n,i [Un(i, 1) + Un(i,−1)]− EΦ−,n,i [Un(i, 1)]

=⇒ EΦ [Un(i, 1)] + EΦ−,n,i [Un(i,−1)] ≥ EΦ−,n,i [Un(i, 1) + Un(i,−1)] + EΦ [Un(i, 1)]− EΦ−,n,i [Un(i, 1)]

≥ EΦ−,n,i [Un(i, 1) + Un(i,−1)]− 8
√
3ετ

l

√
τ

l

= 2EΦ−,n,i

τn(i)
l

+

τn(i)∑
t=1

(ant (i))
2

− 8
√
3ετ

l

√
τ

l

(Un(i, x) =
∑τn(i)

t=1

(
1√
l
− ant (i)x

)2
)

≥ 2τ

l
− 8
√
3ετ

l

√
τ

l

(By definition of τn(i) = τ ∧min
{
t :
∑t

s=1 [a
n
s (i)]

2 ≥ τ
l

}
)

=
τ

l
(ε = 1

8
√
3

√
l
τ )

Following Lattimore & Szepesvári (2020), proof of Theorem 24.2, using the randomization hammer, for the Rn(Φ)
inequality above from Lemma 18, we have:
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∑
Φ∈{±ε}lN

N∑
n=1

Rn(Φ) ≥ ε
√
l

2

N∑
n=1

l∑
i=1

∑
Φ∈{±ε}lN

EΦ

τn(i)∑
t=1

(
1√
l
− ant (i) sign(ϕn(i))

)2


=
ε
√
l

2

N∑
n=1

l∑
i=1

∑
Φ∈{±ε}lN

EΦ [Un(i, sign(ϕn(i)))] (By definition of Un(·))

=
ε
√
l

2

N∑
n=1

l∑
i=1

∑
{Φ\{ϕn}}∈{±ε}l(N−1)

∑
{ϕn(j)}j∈[l]\{i}∈{±ε}l−1

∑
ϕn(i)∈±ε

EΦ [Un(i, sign(ϕn(i)))]

≥ ε
√
l

2

N∑
n=1

l∑
i=1

∑
{Φ\{ϕn}}∈{±ε}l(N−1)

∑
{ϕn(j)}j∈[l]\{i}∈{±ε}l−1

τ

l
(From above)

= 2Nl−2Nτε
√
l (Since | {ϕn(j)}j∈[l]\{i} | = 2l−1 and | {Φ \ {ϕn}} | = 2l(N−1))

Hence, there exists a Φ ∈ {±ε}lN such that
∑N

n=1 R
n(Φ) ≥ Nτε

√
l

4 = Nl
√
τ

32
√
3

Lemma 18. For any N, τ, l, and action space A =
{
x ∈ Rl : ∥x∥2 ≤ 1

}
, for any algorithm σ, there exists a N -task,

horizon-τ multitask bandit instance Φ =
(
ϕ1, · · · , ϕN | ϕs ∈ Rl, s ∈ [N ]

)
that satisfies Assumption 1. Assume that

l ≤ 2τ , let ϕn ∈ {±ε}l, and define τn(i) = τ ∧min
{
t :
∑t

s=1 [a
n
s (i)]

2 ≥ τ
l

}
, where ant (i) is the value at dimension

i of ant . Then, the regret at task n is:

Rn
τ (A,Φ, σ) ≥

ε
√
l

2

l∑
i=1

EΦ

τn(i)∑
t=1

(
1√
l
− ant (i) sign(ϕn(i))

)2


Proof. In the following proof, we denote Rn(Φ) = Rn(ϕn) = Rn
τ (A,Φ, σ)
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Rn(ϕn) = EΦ

[
τ∑

t=1

(an∗ − ant )
⊤ϕn

]

= EΦ

[
τ∑

t=1

∥ϕn∥ − (ant )
⊤ϕn

]
( ϕn

∥ϕn∥ = argmaxa∈A a⊤ϕn)

= εEΦ

[
τ∑

t=1

l∑
i=1

(
1√
l
− ant (i) sign(ϕn(i))

)]
(∥ϕn∥ = ε

√
l and ϕn(i) = ε sign(ϕn(i)))

= εEΦ

[
τ∑

t=1

l∑
i=1

(
1

2
√
l
− ant (i) sign(ϕn(i))

)
+

τ∑
t=1

√
l

2

]

≥ εEΦ

[
τ∑

t=1

l∑
i=1

(
1

2
√
l
− ant (i) sign(ϕn(i))

)
+

√
l

2

τ∑
t=1

∥ant ∥22

]
(∥ant ∥22 ≤ 1 by definition of A)

= εEΦ

[
τ∑

t=1

l∑
i=1

(
1

2
√
l
− ant (i) sign(ϕn(i))

)
+

√
l

2

τ∑
t=1

l∑
i=1

(ant (i))
2

]

= εEΦ

[
τ∑

t=1

l∑
i=1

(
1

2
√
l
− ant (i) sign(ϕn(i)) +

√
l

2
(ant (i))

2

)]

=
ε
√
l

2
EΦ

[
τ∑

t=1

l∑
i=1

(
1

l
− 2√

l
ant (i) sign(ϕn(i)) + (ant (i) sign(ϕ

n(i)))
2

)]

=
ε
√
l

2
EΦ

[
τ∑

t=1

l∑
i=1

(
1√
l
− ant (i) sign(ϕn(i))

)2
]

≥ ε
√
l

2

l∑
i=1

EΦ

τn(i)∑
t=1

(
1√
l
− ant (i) sign(ϕn(i))

)2


Lemma 19 (Sequential multitask Divergence decomposition for Linear bandit with Stopping time). Let τn(i) be
a stopping time for i ∈ [l] and n ∈ [N ]. For ant , the action taken at task n and step t, let ant (i) be the value

at dimension i. Define Φ =
{
ϕs | ϕs ∈ Rl

}
s=1:N

∈ {±ε}lN and Φ′ =
{
ϕ1′ , · · · , ϕN ′

}
such that ϕs′ = ϕs for

all s ∈ [n − 1] ∪ [n + 1, N ], ϕn′
(s) = ϕn(s) for all s ∈ [l] \ i, and ϕn′

(i) = −ϕn(i). For x ∈ {±1}, define

Un(i, x) =
∑τn(i)

t=1

(
1√
l
− ant (i)x

)2
and let P and P′ be the laws of Un(i, 1) with respect to the bandit/learner

interaction measure induced by Φ = {ϕs}s=1:N and Φ′ =
{
ϕs′
}
s=1:N

, respectively.

Then:

D(P′,P) = 2ε2EΦ0,n

τn(i)∑
t=1

(ant (i))
2



Proof. When N = 1, the proof is trivial since it’s the classical Stopping time version of Divergence Decomposition in
the traditional Bandit setting (Lattimore & Szepesvári (2020)’s Exercise 15.7).

When N > 1, by denoting Xn
0 = Xn−1

T and X 0
0 = {∅}, we have:
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D(P′,P) =
∑

Xn
τn(i)

P′(Xn
τn(i)) log

(
P′(Xn

τn(i))

P(Xn
τn(i))

)

=
∑

Xn
τn(i)

P′(Xn
τn(i)) log

(
Πn−1

s=1Π
T
t=1

P′(xs
t | X s

t−1)

P(xs
t | X s

t−1)

)
+
∑

Xn
τn(i)

P′(Xn
τn(i)) log

(
Π

τn(i)
t=1

P′(xn
t | Xn

t−1)

P(xn
t | Xn

t−1)

)
(Stopping time version of Divergence Decomposition. Lattimore & Szepesvári (2020)’s Exercise 15.7)

=
∑

Xn
τn(i)

P′(Xn
τn(i))

n−1∑
s=1

T∑
t=1

log

(
P′(xs

t | X s
t−1)

P(xs
t | X s

t−1)

)
+

τn(i)∑
t=1

∑
Xn

τn(i)

log

(
P′(xn

t | Xn
t−1)

P(xn
t | Xn

t−1)

)

=

n−1∑
s=1

T∑
t=1

∑
Xn

τn(i)

P′(Xn
τn(i)) log

(
P′(xs

t | X s
t−1)

P(xs
t | X s

t−1)

)
+
∑

Xn
τn(i)

P′(Xn
τn(i))

τn(i)∑
t=1

log

(
P′(xn

t | Xn
t−1)

P(xn
t | Xn

t−1)

)

=
∑

Xn
τn(i)

P′(Xn
τn(i))

τn(i)∑
t=1

log

(
P′(xn

t | Xn
t−1)

P(xn
t | Xn

t−1)

)
The last equality holds because P′(xs

t | X s
t−1) = P(xs

t | X s
t−1) ∀s ∈ [n− 1] since the two environments are similar to

each other.

Hence:

D(P′,P) =
∑

Xn
τn(i)

P′(Xn
τn(i))

τn(i)∑
t=1

log

(
P′(xn

t | Xn
t−1)

P(xn
t | Xn

t−1)

)

=

τn(i)∑
t=1

∑
Xn

t−1

P′(Xn
t−1)D

(
P′(xn

t | Xn
t−1),P(xn

t | Xn
t−1)

)

=

τn(i)∑
t=1

∑
Xn

t−1

P′(Xn
t−1)D

[
N (⟨ant , ϕn⟩ , 1) ,N

(〈
ant , ϕ

n′
〉
, 1
)]

=
1

2

τn(i)∑
t=1

∑
Xn

t−1

P′(Xn
t−1)EΦ

[〈
ant , ϕ

n − ϕn′
〉2]

(Lattimore & Szepesvári (2020) Eq. (24.1))

=
1

2

τn(i)∑
t=1

∑
Xn

t−1

P′(Xn
t−1)EΦ′

[
(ant (i))

2 ·
(
ϕn(i)− ϕn′

(i)
)2]

(ϕn is the same as ϕn′
except at dimension i)

= 2ε2
τn(i)∑
t=1

∑
Xn

t−1

P′(Xn
t−1)EΦ′

[
(ant (i))

2
]

= 2ε2EΦ′

τn(i)∑
t=1

(ant (i))
2



D ASSUMPTION 5’S REMARK

In this section, we want to elaborate why Assumption 5 is redundant when α = 0 or when the eigensystem of Cn−1

and Cn are the same, for any n ∈ [N ]
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D.1 WHEN α = 0

By the definition of Dα
n in Assumption 4, when α = 0, there is no change in the eigenvalues of the subspace Vn−1

with the smallest eigenvalue between step n − 1 and step n. Thus, the instantaneous loss of the FTL algorithm is
ln = PVn−1

xn = 0, hence, Assumption 5 is redundant.

D.2 WHEN THE EIGENSYSTEM OF Cn−1 AND Cn ARE THE SAME

The eigensystem of Cn−1 and Cn are the same when xn = c vj(Cn−1) for some constant c and the eigenvector vj
of Cn−1. Recall that, from Assumption 5, ℓin(a) :=

〈
P i
naP

i,⊤
n , Xn

〉
, where P i

n is the projection matrix mapping to
vd+1−i(Cn−1).

If j ̸= d+ 1− i, then ℓin(a) = c2
〈
P i
naP

i,⊤
n , vj(Cn−1)v

⊤
j (Cn−1)

〉
= 0 ≤ αi.

Otherwise:

ℓin = λd+1−i(Cn)− λd+1−i(Cn−1)

=⇒ I(Dαi,i
n )ℓin = I(Dαi,i

n ) [λd+1−i(Cn)− λd+1−i(Cn−1)]

≤ αi (By definition of αi)

E JUSTIFICATION FOR ASSUMPTION 4

We have:

Dαi,i,c
n =

{
∃i ∈ [2, d] s.t. λi(Cn−1) = λd(Cn−1) AND λi(Cn)− λi(Cn−1) ≥ αi

}
(Surprise events)

F c
n = {λ1(Cn−1) ≥ λd(Cn−1) + 1 OR λ1(Cn) ≥ λd(Cn) + 1} (Big-gap events)

Gc
n = Dαi,i,c

n ∩ F c
n

Intuitively, whenever Surprise event happens, the gap between λi(·) and λd(·) + 1 got smaller, thus, the number of
times both Surprise and Big-gap happen simultaneously should not be too large, making Assumption 4 mild. Even
when both events happens O(N) times, this would inflate λd(CN ) = O(N), thus, still making Assumption 4 mild.

Even then, we provide an example to show that Theorem 6 is not true, in general, without Assumption 4.

Let d = 2 and N = 16. Then, an adversarial environment is shown in Table 2:

Sanity check:

1 ≥ 4α ( 14 ≥ α to satisfy Dα,c
n )

=
4

16
(2λ2(C16) + 2)

=
1

4
(2 + 2)

= 1

Recall that E =
{∑N

n=1 I(Gc
n) ≥ dλd(CN ) + d

}
. Since

∑N
n=1 I(Gc

n) = 4 ≥ dλd(CN ) + d = 4, then I(E) = 1.
Thus, the condition in Assumption 4 is violated: I(E)Tr(CN ) = 10 > dλd(CN ) + d = 4.
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n xn ℓn λ1 λ2

∑n
i=1 I(Gc

i )
1 e1 1 1 0 0
2 e1/2 0 1+ 1/4 0 0
3 e2/2 1/4 1+ 1/4 1/4 1
4 e1/2 0 1+ 1/2 1/4 1
5 e2/2 1/4 1+ 1/2 1/2 2
6 e1/2 0 1+ 3/4 1/2 2
7 e2/2 1/4 1+ 3/4 3/4 3
8 e1/2 0 2 3/4 3
9 e2/2 1/4 2 1 4

10 e1 0 3 1 4
11 e1 0 4 1 4
12 e1 0 5 1 4
13 e1 0 6 1 4
14 e1 0 7 1 4
15 e1 0 8 1 4
16 e1 0 9 1 4

Table 2: An example to justify the Relaxed Task Diversity Assumption 4. Here, I(E)Tr(CN ) = 10 > dλd(CN ) + d =
4.
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