
Guardian: Detecting Robotic Planning and Execution
Errors with Vision-Language Models

Paul Pacaud, Ricardo Garcia Pinel, Shizhe Chen, Cordelia Schmid
Inria, École normale supérieure, CNRS, PSL Research University

firstname.lastname@inria.fr

Abstract: Robust robotic manipulation requires the ability to detect and recover
from failures. While recent Vision-Language Models (VLMs) show promise in
detecting manipulation failures, their effectiveness is hindered by limited training
data and reliance on single images, restricting their ability to capture fine-grained
failure modes and generalize to real-world scenarios. In this work, we introduce
a new VLM named Guardian which leverages high-resolution, multi-view visual
observations combined with carefully designed language prompts to enhance
manipulation failure detection. We propose an automatic failure synthesis pipeline
that perturbs successful trajectories in both simulator and real world to generate a
diverse set of failure scenarios, covering both task planning and action execution
errors. This enables the creation of two new benchmarks: RLBench-Fail and
BridgeDataV2-Fail for training and evaluation. Guardian achieves state-of-the-art
performance on both benchmarks and demonstrates strong generalization to the
manually created real-world RoboFail and UR5-Fail benchmarks. Furthermore,
plugging Guardian into a state-of-the-art vision-language manipulation framework
improves task success rates in both simulation and real robots.

Keywords: Robotic Manipulation, Failure Detection, Vision-Language Models

1 Introduction

Despite recent advances in task planning and action execution enabled by Large Language Models
(LLMs) [1, 2] and Vision-Language Models (VLMs) [3], current robotic manipulation systems
remain vulnerable to a range of failures [4, 5, 6]. The LLMs suffer from hallucinations [7], leading to
incorrect task plans [8]. Visual models are prone to perception inaccuracies like confusing similar
objects [9, 10], and motion planners frequently encounter precision errors or unstable object grasping,
such as slippage [11]. These errors accumulate during task execution, severely hindering the reliability
of robots in real-world scenarios. In contrast, humans excel in failure detection and recovery by
reasoning about visual information and interpreting the semantic context of tasks [12, 13]. Inspired
by this, we explore the development of failure detection models that can leverage vision and language
to reason about task execution and autonomously identify and rectify errors.

A key challenge in failure detection is how to leverage visual information effectively. REFLECT [14]
addresses this by first converting images into textual descriptions and then prompting an LLM for
failure detection. However, this multi-stage pipeline is prone to error accumulation. Other recent
approaches [15, 16] directly feed images into VLMs, but typically rely on single-view images, which
are susceptible to occlusions. To overcome this, AHA [17] concatenates multi-view images across
timesteps into a single grid-based image. While this can cover broader visual information, such a
compressed format of images can hinder fine-grained spatial-temporal understanding.

Another challenge is the lack of comprehensive robotic failure datasets. Most real-world robot
datasets consist of successful demonstrations [18, 19, 20], offering limited insight into failure modes.
Manually collecting failure data [21, 22] is time-consuming and often lacks diversity and realism. As
a result, existing work [17] mainly uses simulation to construct failure cases, which, however, suffers

Task: “put pear in drawer”

Ro
bo

Fa
il

imprecision

Subtask Execution is
Correct/Incorrect

Planning Failures

Execution Failures

Subtask: put bowl
in fridge

Missing subtask:
open drawer

start

start end

Plan is
Correct/Incorrect

1

2 put pear in drawer

pick up pear

Proposed plan:

Task: “store apple in fridge”

Guardian

A VLM fine-tuned on
robot failure datasets

Figure 1: Illustration of our Guardian model - a VLM fine-tuned on our constructed failure datasets.
It detects planning failures (top) and execution failures (bottom) in robotic manipulation.

from the well-known sim-to-real gap [23]. This data scarcity significantly hampers the development
and evaluation of failure detection methods.

To address these challenges, we introduce Guardian, built on top of an open-source VLM for
failure detection in robotic manipulation. As illustrated in Figure 1, Guardian formulates failure
detection as a visual question-answering problem, reasoning over high-level task instructions, subtask
descriptions, and the visual scene. It leverages high-resolution, multi-view images to enhance
fine-grained spatial-temporal understanding. To support model training, we propose a new failure
generation pipeline that automatically perturbs successful robot trajectories in simulator and real
world examples. Using this pipeline, we generate two new datasets: RLBench-Fail (19K execution
and 8K planning samples) and BridgeDataV2-Fail (11K execution and 6K planning samples). We
fine-tune Guardian on our constructed datasets via parameter-efficient fine-tuning. Guardian achieves
state-of-the-art performance across RLBench-Fail and BridgeDataV2-Fail datasets, and generalizes
well to RoboFail [14] and our constructed UR5-Fail datasets that are manually collected with real
robots in a zero-shot manner. We further demonstrate Guardian’s plug-and-play capability as a
feedback mechanism within a robotic manipulation framework in RLBench simulated and real-world
tasks, improving 3DLotus++ [9] via iterative planning and execution monitoring.

In summary, our contributions are threefold:
• We propose a novel failure generation pipeline that automatically perturbs successful trajectories

in simulation and the real world, yielding two large datasets RLBench-Fail (simulation) and
BridgeDataV2-Fail (real world) for model training and evaluation.

• We introduce Guardian, a fine-tuned VLM for planning and execution failure detection. It integrates
multi-view images and reasons over high-level instructions and subtask plans.

• Guardian achieves state-of-the-art performance across four benchmarks, covering both in- and
out-of-domain datasets. It further improves task completion of a state-of-the-art vision-language
manipulation framework in simulated and real robot tasks.

We will open-source our datasets, code, and models to advance research in robotic failure detection.

2 Related Work

Failure detection in robotic manipulation. Traditional monitoring methods rely on explicit models
of tasks, identifying model deviations during planning and execution [24, 25]. Unlike LLM-based
approaches, they depend on rigid model-based predictions. Recent works formulate failure detection
as a Question Answering (QA) task, by zero-shot prompting LLMs and VLMs [16, 26, 15, 21,
27, 28, 29, 30]. For instance, REFLECT [14] summarizes multi-sensory inputs as texts, including
audio, and feeds the text to an LLM, but its reliance on consecutive off-the-shelf models leads to
accumulated errors. Consequently, efforts have been made to fine-tune VLMs specifically for robotic
manipulation failure detection. SuccessVQA [31] fine-tunes Flamingo using both simulated and

2

Offline PerturbationsOnline Perturbations

BridgeDataV2

Task: “pick up the cube and put it in the sorter”

new task generated:
“put red spoon on top
of the blue towel”

Modify
instruction

Revert
action

Planning
Failure

Generation

new plan:
new task generated:
“put red spoon on
the left of the pot”

move_grasped_object
(“cube slot”)

grasp(“blue cube”)

Execution
Failure

Generation

Wrong object Rotation

Successful
original
demos

RLBench

Missing subtask
new plan:

Task-plan mismatch

new task generated:
“put the blue cube on
top of the yellow star”

Missing subtask Task-plan mismatch

Task: “move red spoon to stove’s upper right”

1 release()2 3 move_grasped_object
(“stove’s upper right”)

grasp(“red spoon”)1 release()2 3

Translation

set the end image
as the same as the
start image

1

2

3 release()

move_grasped_object
(“cube slot”)

grasp(“blue cube”)
move_grasped_object

(“stove’s upper right”)
release()

1

2

3

grasp(“red spoon”)

Spatial
preposition swap

new task generated:
“move red spoon to
stove’s bottom left”

Figure 2: Failure Data Generation Pipeline. We introduce a novel generation pipeline generating
failure cases both online in simulation (RLbench), and offline on the real-world dataset (Bridge-
DataV2). For each positive example, given its correct plan and successful trajectory, we generate a
corresponding incorrect plan and unsuccessful trajectory.

real-world data, but is limited to evaluating the final task success, while Guardian is designed for more
granular monitoring, checking both the overall plan and the execution of subtasks. Closest to our
work, AHA [17] fine-tunes LLaVA-1.5 [32] on a dataset generated in RLBench. AHA concatenates
multiple camera viewpoints and keysteps into a single image, leading to compressed visual inputs.
Moreover, SuccessVQA and AHA do not release the model or dataset, limiting reproducibility.
Failure detection data generation. Existing datasets for failure detection involve limited settings.
RoboFail [14] provides hand-crafted, small-scale simulation and real-world data. Sentinel [15] creates
failure cases by rolling out a trained policy on out-of-distribution scenarios through randomization of
object scales and poses, but provides data and results to only four tasks. AHA’s dataset [17] perturbs
trajectories in RLbench, creating over 49K+ image-query pairs. While they provide a scalable data
generation pipeline, it is limited to the simulated data and does not generate high-level planning
failures. In this work, we propose an automated pipeline to generate extensive datasets with diverse
failure cases using simulator and real-robot trajectories.
Learning-based robotic manipulation policies. Recent general robotic policies have achieved
remarkable performance on manipulation tasks [33, 9, 19, 34, 35]. However, their real-world
applicability is still limited by planning and execution errors leading to task failures [11]. Inspired by
Manipulate-Anything [36] and Robot Utility Models [16], which demonstrated significant benefits
from integrating VLM verifiers into manipulation pipelines, Guardian is explicitly designed as a
plug-and-play verification module trained on specific ”failure” data. It can seamlessly integrate into
existing policies, enhancing robustness by verifying both planning and execution stages.

3 Robot Failure Datasets Construction

We automatically construct robot failure datasets based on successful robot demonstrations in sim-
ulation and real world. Section 3.1 introduces the data sources, and then Section 3.2 describes the
failure data generation process. Finally, Section 3.3 presents dataset statistics and quality evaluation.

3.1 Data Sources

Simulated data enables controlled failure generation through procedural perturbations [17], while real
robot data reduces the sim-to-real gap but requires significant human supervision [14]. To balance
precise control with real-world applicability, we use both simulated and real robot datasets. We
propose an automated failure data generation pipeline that derives planning and execution failures
from existing successful demonstrations, avoiding manual failure collection. In both domains, tasks
are decomposed into subtasks with corresponding video segments, which form the basis for generating
failures. Figure 2 (middle) illustrates successful episodes from the simulated and real robot datasets.

3

Table 1: Robot failure datasets covering execution (exec) and planning (plan) failure categories. The
validation and test sets consist of tasks unseen in the training set.

Source Auto
Failure

Training Validation Test
Exec Plan Exec Plan Exec Plan

RoboFail [14] Real × - - - - 153 30

RLBench-Fail Sim ✓ 12404 5832 1930 924 5282 2080
BridgeDataV2-Fail Real ✓ 8078 4932 1184 544 2362 1166

UR5-Fail Real ✓ 404 224 30 10 100 74

Simulated Data. We use the RLBench [37] simulator, selecting 52 tasks from RLBench-18Task [38]
and GemBench [9] benchmarks in our training data. The full list is provided in Section B.4 of the
supplementary material. For each task, we generate successful scripted trajectories with varied object
placements and segment them into subtasks following 3D-LOTUS++ [9].
Real Robot Data. We use BridgeDataV2 [39] with ECoT annotations [40], which provide fine-
grained subtasks and object labels using large vision and language models. We apply automatic
cleaning to mitigate annotation noise (details in Section B.3 of the supplementary material). To
increase the number of successful trajectories, we augment data by reversing successful executions
when applicable, by swapping their start and end images and updating the associated instructions
accordingly (e.g., “open drawer” becomes “close drawer”, “flip pot upright” becomes “flip pot upside
down”). This yields approximately 20% additional successful demonstrations.

3.2 Automated Failure Data Generation

We design failure modes based on established failure taxonomies [14, 17] and analysis of robot
policy failures [41]. The failures are categorized into two types: planning and execution. A planning
error denotes an incorrect decomposition of a task into subplans, whereas an execution error reflects
unsuccessful completion of a subplan.
Planning Failures. As shown in Figure 2 (top), we construct two types of planning failures:
(1) Missing subtask - randomly removing a required subtask from the ground-truth subtask sequence.

(2) Task-plan mismatch: using an LLM (Mistral-Small-24B) to subtly alter the semantics of the task
instruction, creating misalignment with the ground-truth subtasks. Leveraging LLMs enables
more diverse planning errors compared to simply omitting subtasks.

Each planning example consists of the overall task instruction, initial images and the subtask sequence.
Execution Failures. In simulation, we perturb actions at the subtask level directly (Figure 2, bottom
left), as it is easy to control the robot and generate new outcomes. Given a randomly selected subtask
in the trajectory, we modify the ground-truth action through five execution failure modes inspired
by [11, 19]: (1) no close - gripper fails to close during grasp, (2) slip - object drops as the gripper
opens mid-movement, (3) translation - apply a random 3D positional offset, (4) rotation - apply a
random angular offset along an axis, (5) wrong object manipulated - manipulate a different object,
and (6) wrong object placement - place the grasped object in an incorrect location.
For real robot data, modifying actions directly is impractical due to current limitations of image editing
and generation models. Therefore, we perturb the subtask text instruction paired with the pre-recorded
trajectory segment (Figure 2, bottom right) without direct robot control: (1) modify instruction -
an LLM (prompted with the original instruction and visible objects) generates semantically altered
subtask instruction while keeping the original start/end images; (2) spatial preposition swap - we
heuristically change spatial terms in the instruction (e.g., “move pot to stove’s top right” becomes
“move pot to stove’s top left”), again preserving the images; (3) revert action - we retain the original
subtask instruction but replace the end image by the start image to simulate a lack of progress.
Each execution example contains the task and subtask descriptions plus pre-/post-action multi-view
images. In addition, our pipeline naturally provides fine-grained failure category labels, enabling
richer feedback generation beyond binary failure detection in future work.

4

 Large Language Model
 (InternLM2.5-7b-chat)

Visual Encoder
(InternViT-300M-448px-V2.5)

Multiview images at the start and end of the subtask.

High-level goal: Stack 2 orange blocks.

Analyze whether the robot successfully performed the
subtask grasp orange cube.

LoRA

<answer> False </answer>
Fine-tuned

Frozen
Planning

Task planner

repeat for each subtask

Vi
ew

 1

Vi
ew

 K

Vi
ew

 1

Vi
ew

 K

Text inputSubtask start images Subtask end images

Text Tokenizer

Motion planner

Subtask execution

 Planning Verification

 Execution Verification

no

yes

no

yes

Guardian

Figure 4: Left: Overview of the Guardian model architecture. Right: Integration of Guardian model
into a robot manipulation pipeline for planning and execution verification.

3.3 Dataset Statistics and Evaluation

The resulting datasets, RLBench-Fail and BridgeDataV2-Fail, contain balanced successful and failed
examples across both planning and execution. Each dataset is split into training, validation, and test
sets, with the validation and test sets featuring unseen tasks/environments to evaluate generalization.
Dataset statistics are shown in Table 1.

Figure 3: Failure mode distributions in real execu-
tions and our constructed data.

To measure the quality and diversity of our con-
structed datasets, i.e., whether the generated fail-
ures reflect real policy execution, we run the
3D-LOTUS++ policy [9] on 92 RLBench tasks
and manually annotate failure modes for 3 fail-
ure episodes per task. As shown in Figure 3,
our designed failure modes encompass all fail-
ures observed in real executions. Although real
failures have more wrong gripper poses in exe-
cution and fewer missing subtasks in planning,
the distribution of our synthetic and real failures is broadly similar.

4 Method: The Guardian Model
4.1 Problem Formulation

We formulate robot failure detection as a visual question answering problem. For planning verification,
given a high-level task instruction T , a proposed plan P = (P1, · · · , PN), and the initial visual
context Istart, the model VLMplan must access whether P is both consistent with the visual scene and
aligned with the intended task:

VLMplan(Istart, T, P) → bplan, (1)

where bplan ∈ {0, 1} indicates whether the entire plan is valid. The execution verification instead
determines whether a subplan Pi is successfully completed given the task goal T , a subtask description
Pi, and the visual observations before and after executing the subtask - Istart and Iend:

VLMexec(Istart, Iend, T, Pi) → bexec. (2)

The planning verifier VLMplan and execution verifier VLMexec can either share the same underlying
model or be implemented as separate agents within a multi-agent system.

4.2 Model Architecture and Training

The Guardian model is built upon the state-of-the-art open-source VLM InternVL2.5-8B [42]. As
illustrated in Figure 4 (left), it consists of three key components: a text tokenizer that converts natural
language prompts into discrete token embeddings, a visual encoder (InternViT-300M) that transforms
individual images into visual embeddings, and a transformer-based LLM (internLM2.5-7b-chat) that
processes the concatenated multimodal token sequence to predict the answer.
Unlike AHA [17] that concatenates multiple images into a single grid-based image, Guardian
processes each image independently through the visual encoder. This design preserves fine-grained

5

spatial details within each image and allows the model to explicitly reason about spatial and temporal
changes for more accurate failure detection.
We fine-tune Guardian using the training splits of our constructed RLBench-Fail and BridgeDataV2-
Fail datasets. To enable efficient adaptation, we employed Low-Rank Adaptation (LoRA) to the LLM
and only update the LoRA adapter parameters with the other components remain frozen. The model
is trained using cross-entropy loss for next token prediction.
We compare two variants of Guardian: (1) a model trained jointly on both planning and execution
verification data, and (2) a multi-agent approach that uses two separately trained models for planning
and execution verification while sharing the same VLM architecture.

4.3 Integrating Guardian into Robotic Manipulation Framework

Guardian can be seamlessly plugged into existing robotic manipulation pipelines as a verification
layer without requiring any architectural modification. Without loss of generality, consider a modular
robotic manipulation framework. As shown in Figure 4 (right), Guardian can be inserted at each
planning and subtask execution step to detect potential failures. Upon detection, it can trigger
replanning strategies or re-execute the corresponding motion policy to facilitate recovery.

5 Experiments
5.1 Experimental Setup

Evaluation datasets. We assess models on four benchmarks covering both simulation and real-robot
settings. (1) RLBench-Fail: a simulated tabletop environment with a Franka Emika Panda robot arm
and four cameras; (2) BridgeDataV2-Fail: real-world toy kitchen and tabletop environments with a
WidowX 250 6DOF robot arm and a single camera; (3) RoboFail [14]: a manually created real-world
failure dataset using a UR5 robot arm with a single camera. (4) UR5-Fail: we run the 3D-LOTUS++
policy [9] on 32 task variations with a UR5 arm, recording initial and final multi-view images for
each subtask. Subtasks are manually labeled as success or failure to obtain execution failure data.
For planning failures, we annotate ground-truth plans and generate failure cases using the method
described in Section 3.2. More detail is presented in Section A of the supplementary material. Table 1
(bottom) shows the dataset size, where tasks in training, validation and test sets are not overlapped.
Evaluation metric. We report overall accuracy, computed as the average binary classification
performance across all samples for failure detection.
Implementation details. We trained our models using LoRA with a rank of 16 and an effective
batch size of 16. The training employs a cosine learning rate scheduler with a peak learning rate of
4 ∗ 10−5, the AdamW optimizer with a weight decay of 0.05, and bf16 precision. We train only on
RLBench-Fail and BridgeDataV2-Fail training sets unless otherwise specified. Training is conducted
on 2 NVIDIA H100 GPUs and completed in 1.5 hours. During training, we randomly selected
either one or four views on RLBench-Fail data to mitigate overfitting to the multiple views. The best
checkpoint is selected using the validation sets.

5.2 Comparison with state of the art

Compared methods. We compare our approach against state-of-the-art models, including closed-
source models GPT-4.1-mini and GPT-4.1, an open-source VLM InternVL2.5-8B [42], Sentinel [43]
and AHA-13B [17] that fine-tunes a VLM on a robotic dataset. We prompt these VLMs with
interleaved image and text tokens. Since AHA-13B is not publicly released, we report the numbers
from their original paper [17]. Sentinel is dedicated only to execution monitoring, and is thus
not evaluated on planning failures. We also include a simple MLP baseline using CLIP text and
visual features [44], without relying on LLMs. We compare the Guardian model to a multi-agent
Guardian-MA which trains two expert models for detecting planning and execution failures separately.
Results. We present results in Table 2. While GPT-4.1 outperforms the open-source model InternVL
2.5-8B, our Guardian model fine-tuned from InternVL on robotic failure datasets surpasses GPT-
4.1 by an average of 14 points on planning and 15 points on execution in in-domain benchmarks.
Guardian also exceeds the prior SOTA AHA [17] - a finetuned VLM on RLBench, by over 20% on
execution failure detection. While the numbers between ours and AHA are not directly comparable

6

Table 2: SOTA comparison for failure detection. Our Guardian model and its multi-agent (MA)
version are benchmarked against proprietary and open-source VLMs. ∗ denotes the number reported
in the AHA paper [17] as neither their trained models nor test set is publicly available.

Model
In-Domain Eval Out-of-Domain Eval (zero-shot)

RLBench-Fail BridgeDataV2-Fail Robofail UR5-Fail

Plan Exec Plan Exec Plan Exec Plan Exec

GPT-4.1-mini-2025-04-14 0.76 0.49 0.87 0.77 0.5 0.78 0.77 0.56
GPT-4.1-2025-04-14 0.79 0.58 0.86 0.78 0.63 0.84 0.89 0.75
Sentinel [43] - 0.60 - 0.69 - 0.79 - 0.66
AHA-13B [17] - - - - - 0.64* - -
InternVL 2.5-8B 0.68 0.49 0.82 0.73 0.57 0.84 0.84 0.53
CLIP+MLP [44] 0.70 0.53 0.90 0.60 0.60 0.40 0.56 0.53

Guardian (Ours) 0.94 0.80 0.99 0.86 0.63 0.86 0.92 0.74
Guardian-MA (Ours) 0.95 0.82 0.99 0.87 0.73 0.86 0.87 0.70

due to differences in base VLM and datasets, in Section 5.3 we reproduce AHA on the same base
VLM and finetuning data to show our multi-view representation is more effective than the AHA’s
method. The multi-agent variant, Guardian-MA, provides minor additional gains over Guardian at
the cost of increased memory overhead.
For zero-shot generalization, Guardian matches or surpasses GPT-4.1 on planning and execution
across two out-of-domain datasets, demonstrating strong transfer to RoboFail and UR5-Fail, which
involve new robot embodiments, environments, and tasks.

5.3 Ablation Studies

Table 3: Impact of the image representa-
tion (number of views and image format).
The AHA method [17] is equivalent to
row 3 - concatenating 4 views.

Views Image
Format

RLBench-Fail
Execution

1 concat 0.72
separated 0.72

4 concat 0.82
separated 0.87

Multi-view images. Table 3 investigates the image rep-
resentation choice on failure detection. We fine-tune and
evaluate InternVL2.5-8B solely on RLBench-Fail execu-
tion data. We vary the number of viewpoints (one or
four) and the multi-image format, either separated as
in Guardian, or concatenated into a single image as in
AHA [17]. For concatenated inputs, we represent the
views as rows, and start/end images as columns. In the
single-view setting, separating or concatenating two im-
ages (start and end) yields similar performance, as the
resolution loss from concatenation is minimal. However,
in the four-view setting, separating the images significantly boosts the performance by 5 points
over concatenation. Concatenating images not only shifts from natural image distributions but also
compresses visual information in limited image resolution. Furthermore, using multi-view images
consistently outperforms their single-view counterpart.

12.5% 25% 50% 100%
Dataset Size (in %)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

RLBench­Fail
BridgeDataV2­Fail
Robofail

Figure 5: Impact of the training data size
on the three execution datasets.

Training data mixture. Table 4 shows the impact of fine-
tuning datasets. Row 1 is the baseline InternVL 2.5-8B
without fine-tuning. Fine-tuning on simulated RLBench-
Fail data (row 2) significantly improves the performance
on the same dataset, but the gains do not transfer well
to the other two real-world datasets due to the domain
gap. A similar trend is observed when raining solely on
BridgeDataV2-Fail in row 3. In contrast, combining both
datasets during fine-tuning in the last row leads to the best
overall performance and improves generalization to the
RoboFail benchmark. This indicates the importance of
generating diverse planning and execution examples.

Training data size. Figure 5 presents the scaling behaviors of training data size. On RLBench-Fail
and BridgeDataV2-Fail test sets, we observe significant gains until 50% and then the performance

7

Table 4: Impact of different dataset mixture in fine-tuning Guardian model.
Training Data RLBench-Fail BridgeDataV2-Fail Robofail UR5-Fail

RLBench-Fail BridgeDataV2-Fail Plan Exec Plan Exec Plan Exec Plan Exec

✗ ✗ 0.68 0.49 0.82 0.73 0.57 0.84 0.84 0.53
✓ ✗ 0.94 0.88 0.88 0.68 0.57 0.70 0.93 0.64
✗ ✓ 0.52 0.48 0.99 0.89 0.63 0.82 0.53 0.53
✓ ✓ 0.94 0.80 0.99 0.86 0.63 0.86 0.92 0.74

Run policy

push down
magenta button

push down
magenta button

push down
orange button

push down
navy button

Instruction:
“ ”

push down
maroon button

1 2 3 4 4

Next Retry!

Execution example

Success

Planning example
Instruction:
“ ”

Generated plan

New generated plan

Retry!
push forward grill door1

1

2 move grasped object down
release

grasp grill door

3

Success

Next Next

Figure 6: Verification with Guardian during online task execution on RLBench. Left: Successful
correction of a generated plan. Right: Successful correction of a subtask execution.

gets saturated. The performance on RoboFail remains stable under low data regimes, but gets better
with the full data. This indicates that both data scale and diversity are important.

5.4 Downstream Robotic Tasks

Table 5: Success rate for online task evaluation with and without Guardian.

Guardian Stack
blocks

Intert
bulb

Close
grill

Stack
tower

Push
buttons

× 0.30 0.35 0.20 0.10 0.50
✓ 0.45 0.50 0.40 0.20 0.60

(a) RLBench results.

Put food Put fruits Stack cups
Guardian Norm Pert Norm Pert Norm Pert

× 0.60 0.00 0.60 0.20 0.80 0.00
✓ 0.80 0.80 0.60 0.40 1.00 0.40

(b) Real robot results in normal and perturbed setups.

Simulation results. To evaluate the practical utility of Guardian, we integrate it into the 3D-LOTUS++
framework [9] and evaluate it on five challenging tasks from the RLBench-Fail test set. For each
task, we conducted 20 episodes comparing performance with and without our verification module.
If Guardian detects planning or execution failures, we rerun the 3D-LOTUS++ planning module
or motion planning policy until Guardian outputs success. Table 5a shows that this integration
consistently improves success rates across the five tasks, with gains ranging from 10% to 20%.
Figure 6 shows examples of planning and execution failures during online evaluation.
Real robot results. We further integrate Guardian into 3DLotus++ [9] on three unseen manipulation
tasks with real robot. We assess the success rate (%) both with and without Guardian across ten
episodes per task—five under normal conditions and five subjected to human-induced perturbations.
These perturbations are designed to evaluate the robotic policy’s ability to replan and recover
effectively from erroneous previous actions, rather than blindly continuing its initial plan. Results
in Table 5b show that Guardian performs strongly, particularly in perturbed setups for closed-loop
planning and execution. More detail is provided in Section A of the supplementary material.

6 Conclusion

This paper presents Guardian, a VLM designed to enhance the robustness of robotic manipulation
by accurately detecting planning and execution failures. Addressing the scarcity of failure data, we
develop an automated pipeline to generate diverse failure scenarios, resulting in two new bench-
marks: RLBench-Fail (simulation) and BridgeDataV2-Fail (real-world). These benchmarks facilitate
standardized evaluation and further research in failure detection. Guardian achieves state-of-the-art
performance across these datasets and generalizes well to the real-world RoboFail and UR5-Fail
benchmarks. Furthermore, we showcase Guardian’s plug-and-play utility, improving task success
rates when integrated into the 3D-LOTUS++ framework by enabling failure detection and triggering
retries in simulated and real-world manipulation tasks.

8

References
[1] A. Hurst and al. GPT-4o system card. arXiv:2410.21276, 2024. URL https://arxiv.

org/abs/2410.21276.

[2] A. Grattafiori and al. The Llama 3 herd of models. arXiv:2407.21783, 2024. URL https:
//arxiv.org/abs/2407.21783.

[3] Z. Chen, J. Wu, W. Wang, W. Su, G. Chen, S. Xing, M. Zhong, Q. Zhang, X. Zhu, L. Lu, B. Li,
P. Luo, T. Lu, Y. Qiao, and J. Dai. InternVL: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In CVPR, 2024.

[4] R. Sinha, A. Sharma, S. Banerjee, T. Lew, R. Luo, S. M. Richards, Y. Sun, E. Schmerling, and
M. Pavone. A system-level view on out-of-distribution data in robotics. arXiv:2212.14020,
2023. URL https://arxiv.org/abs/2212.14020.

[5] K. Kawaharazuka, T. Matsushima, A. Gambardella, J. Guo, C. Paxton, and A. Zeng. Real-world
robot applications of foundation models: A review. AR, 2024.

[6] O. Kroemer, S. Niekum, and G. Konidaris. A review of robot learning for manipulation:
Challenges, representations, and algorithms. JMLR, 2020.

[7] L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen, W. Peng, X. Feng, B. Qin, and
T. Liu. A survey on hallucination in large language models: Principles, taxonomy, challenges,
and open questions. ACM TOIS, 2025.

[8] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. In International conference on machine
learning, pages 9118–9147. PMLR, 2022.

[9] R. Garcia, S. Chen, and C. Schmid. Towards generalizable vision-language robotic manipulation:
A benchmark and LLM-guided 3D policy. In ICRA, 2025.

[10] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox. RVT: Robotic view transformer
for 3D object manipulation. In CoRL, 2023.

[11] K. Wu, C. Hou, J. Liu, Z. Che, X. Ju, Z. Yang, M. Li, Y. Zhao, Z. Xu, G. Yang, S. Fan, X. Wang,
F. Liao, Z. Zhao, G. Li, Z. Jin, L. Wang, J. Mao, N. Liu, P. Ren, Q. Zhang, Y. Lyu, M. Liu, J. He,
Y. Luo, Z. Gao, C. Li, C. Gu, Y. Fu, D. Wu, X. Wang, S. Chen, Z. Wang, P. An, S. Qian, S. Zhang,
and J. Tang. RoboMIND: Benchmark on multi-embodiment intelligence normative data for robot
manipulation. arXiv:2412.13877, 2025. URL https://arxiv.org/abs/2412.13877.

[12] H. P. Young. Learning by trial and error. Games and Economic Behavior, 2009.

[13] V. Chen, Q. V. Liao, J. W. Vaughan, and G. Bansal. Understanding the role of human intuition
on reliance in human-ai decision-making with explanations, 2023.

[14] Z. Liu, A. Bahety, and S. Song. REFLECT: Summarizing robot experiences for failure
explanation and correction. In CoRL, 2023.

[15] C. Agia, R. Sinha, J. Yang, Z. ang Cao, R. Antonova, M. Pavone, and J. Bohg. Unpacking
failure modes of generative policies: Runtime monitoring of consistency and progress. In CoRL,
2024.

[16] H. Etukuru, N. Naka, Z. Hu, S. Lee, J. Mehu, A. Edsinger, C. Paxton, S. Chintala, L. Pinto, and
N. M. M. Shafiullah. Robot utility models: General policies for zero-shot deployment in new
environments. In ICRA, 2025.

[17] J. Duan, W. Pumacay, N. Kumar, Y. R. Wang, S. Tian, W. Yuan, R. Krishna, D. Fox, A. Man-
dlekar, and Y. Guo. AHA: A vision-language-model for detecting and reasoning over failures in
robotic manipulation. In ICLR, 2025.

9

https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2212.14020
https://arxiv.org/abs/2412.13877

[18] A. Khazatsky and al. DROID: A large-scale in-the-wild robot manipulation dataset. In RSS,
2024.

[19] E. Collaboration and al. Open X-Embodiment: Robotic learning datasets and RT-X models. In
ICRA, 2024.

[20] W. Pumacay, I. Singh, J. Duan, R. Krishna, J. Thomason, and D. Fox. THE COLOSSEUM: A
benchmark for evaluating generalization for robotic manipulation. In RSS, 2024.

[21] H. Chen, Y. Yao, R. Liu, C. Liu, and J. Ichnowski. Automating robot failure recovery using
vision-language models with optimized prompts. arXiv:2409.03966, 2024. URL https:
//arxiv.org/abs/2409.03966.

[22] Q. Bu, J. Cai, L. Chen, X. Cui, Y. Ding, S. Feng, S. Gao, X. He, X. Huang, S. Jiang, et al. Agibot
world colosseo: A large-scale manipulation platform for scalable and intelligent embodied
systems. arXiv preprint arXiv:2503.06669, 2025.

[23] W. Zhao, J. P. Queralta, and T. Westerlund. Sim-to-real transfer in deep reinforcement learning
for robotics: a survey. In SSCI, 2020.

[24] G. De Giacomo, R. Reiter, M. Soutchanski, et al. Execution monitoring of high-level robot
programs. In KR, 1998.

[25] M. Gianni, P. Papadakis, F. Pirri, M. Liu, F. Pomerleau, F. Colas, K. Zimmermann, T. Svoboda,
T. Petricek, G.-J. M. Kruijff, et al. A unified framework for planning and execution-monitoring
of mobile robots. AAAI Workshop on Automated Action Planning for Autonomous Mobile
Robots, 2011.

[26] H. Ha, P. Florence, and S. Song. Scaling up and distilling down: Language-guided robot skill
acquisition. In CoRL, 2023.

[27] Y. J. Ma, J. Hejna, A. Wahid, C. Fu, D. Shah, J. Liang, Z. Xu, S. Kirmani, P. Xu, D. Driess,
T. Xiao, J. Tompson, O. Bastani, D. Jayaraman, W. Yu, T. Zhang, D. Sadigh, and F. Xia. Vision
language models are in-context value learners. In ICLR, 2025.

[28] K. Shirai, C. C. Beltran-Hernandez, M. Hamaya, A. Hashimoto, S. Tanaka, K. Kawaharazuka,
K. Tanaka, Y. Ushiku, and S. Mori. Vision-Language interpreter for robot task planning. In
ICRA, 2024.

[29] M. Skreta, Z. Zhou, J. L. Yuan, K. Darvish, A. Aspuru-Guzik, and A. Garg. RePLan: Robotic
replanning with perception and language models. arXiv:2401.04157, 2024. URL https:
//arxiv.org/abs/2401.04157.

[30] A. Mei, G.-N. Zhu, H. Zhang, and Z. Gan. ReplanVLM: Replanning robotic tasks with visual
language models. IEEE RA-L, 2024.

[31] Y. Du, K. Konyushkova, M. Denil, A. Raju, J. Landon, F. Hill, N. de Freitas, and S. Cabi.
Vision-Language models as success detectors. In CoLLAs, 2023.

[32] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. In NeurIPS, 2023.

[33] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai, L. Groom, K. Hausman,
B. Ichter, S. Jakubczak, T. Jones, L. Ke, S. Levine, A. Li-Bell, M. Mothukuri, S. Nair, K. Pertsch,
L. X. Shi, J. Tanner, Q. Vuong, A. Walling, H. Wang, and U. Zhilinsky. π0: A vision-
language-action flow model for general robot control. arXiv:2410.24164, 2024. URL https:
//arxiv.org/abs/2410.24164.

[34] A. Goyal, V. Blukis, J. Xu, Y. Guo, Y.-W. Chao, and D. Fox. RVT-2: Learning precise
manipulation from few demonstrations. In RSS, 2024.

10

https://arxiv.org/abs/2409.03966
https://arxiv.org/abs/2409.03966
https://arxiv.org/abs/2401.04157
https://arxiv.org/abs/2401.04157
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164

[35] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu. 3D Diffusion Policy: Generalizable
visuomotor policy learning via simple 3D representations. In RSS, 2024.

[36] J. Duan, W. Yuan, W. Pumacay, Y. R. Wang, K. Ehsani, D. Fox, and R. Krishna. Manipulate-
Anything: Automating real-world robots using vision-language models. arXiv:2406.18915,
2024. URL https://arxiv.org/abs/2406.18915.

[37] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. RLBench: The robot learning benchmark
learning environment. IEEE RA-L, 2020.

[38] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-Actor: A multi-task transformer for robotic
manipulation. In CoRL, 2022.

[39] H. Walke, K. Black, A. Lee, M. J. Kim, M. Du, C. Zheng, T. Zhao, P. Hansen-Estruch, Q. Vuong,
A. He, V. Myers, K. Fang, C. Finn, and S. Levine. BridgeData V2: A dataset for robot learning
at scale. In CoRL, 2023.

[40] M. Zawalski, W. Chen, K. Pertsch, O. Mees, C. Finn, and S. Levine. Robotic control via
embodied chain-of-thought reasoning. In CoRL, 2024.

[41] K. Wu, C. Hou, J. Liu, Z. Che, X. Ju, Z. Yang, M. Li, Y. Zhao, Z. Xu, G. Yang, et al. Robomind:
Benchmark on multi-embodiment intelligence normative data for robot manipulation. arXiv
preprint arXiv:2412.13877, 2024.

[42] Z. Chen and al. Expanding performance boundaries of open-source multimodal models with
model, data, and test-time scaling. arXiv:2412.05271, 2025. URL https://arxiv.org/
abs/2412.05271.

[43] C. Agia, R. Sinha, J. Yang, Z.-a. Cao, R. Antonova, M. Pavone, and J. Bohg. Unpacking failure
modes of generative policies: Runtime monitoring of consistency and progress. arXiv preprint
arXiv:2410.04640, 2024.

[44] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In International conference on machine learning, pages 8748–8763. PmLR, 2021.

11

https://arxiv.org/abs/2406.18915
https://arxiv.org/abs/2412.05271
https://arxiv.org/abs/2412.05271

	Introduction
	Related Work
	Robot Failure Datasets Construction
	Data Sources
	Automated Failure Data Generation
	Dataset Statistics and Evaluation

	Method: The Guardian Model
	Problem Formulation
	Model Architecture and Training
	Integrating Guardian into Robotic Manipulation Framework

	Experiments
	Experimental Setup
	Comparison with state of the art
	Ablation Studies
	Downstream Robotic Tasks

	Conclusion

