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Abstract
Decision trees (DTs) and their random forest (RF)
extensions are workhorses of classification and
regression in Euclidean spaces. However, algo-
rithms for learning in non-Euclidean spaces are
still limited. We extend DT and RF algorithms to
product manifolds: Cartesian products of several
hyperbolic, hyperspherical, or Euclidean compo-
nents. Such manifolds handle heterogeneous cur-
vature while still factorizing neatly into simpler
components, making them compelling embedding
spaces for complex datasets. Our novel angular
reformulation respects manifold geometry while
preserving the algorithmic properties that make
decision trees effective. In the special cases of
single-component manifolds, our method simpli-
fies to its Euclidean or hyperbolic counterparts, or
introduces hyperspherical DT algorithms, depend-
ing on the curvature. In benchmarks on a diverse
suite of 57 classification, regression, and link pre-
diction tasks, our product RFs ranked first on 29
tasks and came in the top 2 for 41. This highlights
the value of product RFs as straightforward yet
powerful new tools for data analysis in product
manifolds. Code for our method is available at
https://github.com/pchlenski/manify.

1. Introduction
Most machine learning algorithms assume Euclidean ge-
ometry, but real datasets often have non-Euclidean struc-
ture: tree-like hierarchies fit naturally in hyperbolic space
(Sonthalia & Gilbert, 2020), while cyclical patterns suit
spherical representations (Ding & Regev, 2021). Moreover,
many real-world datasets don’t conform to a single geo-
metric structure. Any single constant-curvature geometry—
hyperbolic, spherical, or Euclidean—struggles to capture all
of their structural nuances simultaneously.
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Figure 1: Given a sample of labeled points (X,y) from a
torus P = S1 × S1, we can factorize X into coordinates on
each component manifold. Our DT splits these factorized
coordinates, partitioning P into disjoint regions (colored
positive or negative to reflect the classes).

Product manifolds (Gu et al., 2018), which combine mul-
tiple constant-curvature components into a single product
space, are more expressive than single manifolds, facili-
tating faithful representations of more kinds of underlying
structure in the data. Although product manifolds have made
inroads in biology (McNeela et al., 2024) and knowledge
graph applications (Wang et al., 2021), general-purpose
machine learning on product manifolds remains underex-
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Continuity Convexity Equidistance

Figure 2: Decision tree splits are based on Euclidean dis-
tances in the ambient space, and their assumptions some-
times fail to hold for geodesic distances on non-Euclidean
manifolds. For example, splits can create disconnected re-
gions (Continuity), geodesics may cross boundaries within
regions (Convexity), and distances to splits become unequal
(Equidistance).

plored. In particular, decision trees (DTs) and random
forests (RFs)—some of the most successful and widely-
used algorithms in machine learning—still lack a product
space variant.

A natural approach would be to simply apply standard
DTs/RFs to the coordinate representation of points embed-
ded in the product manifold. However, this naive strategy ig-
nores the underlying geometry: splits that appear reasonable
in coordinate space can violate fundamental geometric prop-
erties when interpreted on the manifold itself. We conjecture
that the success of DTs stems from five key desiderata that
standard Euclidean splits naturally preserve:

1. Continuity: Leaves partition space into connected
regions;

2. Convexity: Leaves correspond to geodesically convex
subsets of the input space;

3. Equidistance: Splits maintain equal distance to near-
est points on either side;

4. Efficiency: Consider O(nd) candidates per split; and
5. Speed: Evaluate splits in O(1) time.

Figure 2 illustrates how these desiderata fail on curved mani-
folds: standard linear splits through the ambient space leave
room for topologically discontinuous leaves, geodesics that
cross decision boundaries, and unequal distances to the deci-
sion boundary. Such issues could lead to misgeneralization,
undermining the geometric intuition that makes decision
trees interpretable and effective.

We present a unified framework that preserves all five
desiderata across arbitrary product manifolds. By repre-
senting splits as angles in two-dimensional subspaces, our
approach naturally handles hierarchical data (hyperbolic
components), cyclical patterns (spherical components), and
traditional features (Euclidean components) within a single,
principled framework.

Our contributions:

1. We generalize DTs and RFs to all constant-curvature
manifolds: By representing data and splits as angles
in two-dimensional subspaces, we guarantee the five
desiderata above. For single manifolds, this extends
existing Euclidean and hyperbolic models or intro-
duces hyperspherical DTs and RFs.

2. We introduce novel DT and RF algorithms for product
manifolds.

3. We extend techniques for sampling mixtures of Gaus-
sians to product manifolds.

4. We show how problems like link prediction in graphs
and signal analysis can be recast as inference problems
on product manifolds.

5. We demonstrate the effectiveness of our algorithms on
a diverse suite of 57 benchmarks.

1.1. Related work

Non-Euclidean representation learning. Important back-
ground on manifolds in machine learning is given in Cayton
(2005) and Bengio et al. (2014). Much of the work on
product manifolds is indebted to early works on hyperbolic
spaces, including Nickel & Kiela (2017); Chamberlain et al.
(2017), and Ganea et al. (2018).

Machine learning in product manifolds. Tabaghi et al.
(2021) describe linear classifiers, including perceptron and
support vector machines; Tabaghi et al. (2024) adapt prin-
cipal component analysis; and Cho et al. (2023) generalize
transformer architectures to product manifolds.

Product manifold-derived features. Sun et al. (2021) and
Borde et al. (2023b) use product manifolds to compute rich
similarity measures as features for classification.Giovanni
et al. (2022) introduce a heterogeneous variant of product
manifolds; Borde et al. (2024) combine quasi-metrics and
partial orders for graph representation.

Manifold random forests. Our method is inspired by re-
cent work by Doorenbos et al. (2023) and Chlenski et al.
(2024) extending RFs to hyperbolic space. Other work
has explored generalizations of random forests to man-
ifolds, including random forest regression for manifold-
valued targets (Tsagkrasoulis & Montana, 2017), manifold
oblique random forests (Li et al., 2022), and Fréchet random
forests (Capitaine et al., 2024). Chlenski & Pe’er (2025)
explores faster ways to train hyperbolic random forests.

Applications of product manifolds. Product manifolds
are used to embed knowledge graphs (Wang et al., 2021;
Nguyen-Van et al., 2023; Li et al., 2024). In biology, they
have been used to represent pathway graphs (McNeela et al.,
2024), cryo-EM images (Zhang et al., 2021), and single-cell
transcriptomic profiles (Tabaghi et al., 2021). Skopek et al.
(2020) also embed image datasets into product manifolds.
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Figure 3: Decision boundaries in any constant-curvature manifold can be found by projection into 2-dimensional subspaces.
Depending on the manifold, points end up inside a circle, a line, or a hyperbola; from there, data and splits can both be
represented as a single angle θ. Each split divides the manifold into positive and negative regions.

2. Preliminaries
We review relevant details of different Riemannian mani-
folds (Euclidean spaces, hyperspheres, hyperboloids, and
product manifolds), along with key properties of the Eu-
clidean and hyperbolic variants of DTs and RFs.

2.1. Riemannian manifolds

We will begin by reviewing key details of hyperspheres, hy-
perboloids, and Euclidean spaces. For more details, readers
can consult Do Carmo (1992).

Each space described is a Riemannian manifold, meaning
that it is locally isomorphic to Euclidean space and equipped
with a distance metric. The shortest paths between two
points u and v on a manifold are called geodesics. As all
three spaces we consider have constant Gaussian curvature,
we define simple closed forms for geodesic distances in
each of the following subsections in lieu of a more general
discussion of geodesics in arbitrary Riemannian manifolds.

Any constant-curvature manifold M is parameterized by
a dimensionality D and a curvature K, and resides in an
ambient space RD+1. Finally, for each point x ∈ M, the
tangent plane at x, TxM, is the space of all tangent vectors
at x:

TxM = {v ∈ RD+1 : ⟨v,x⟩M = 0}. (1)

2.1.1. EUCLIDEAN SPACE

Euclidean spaces are naturally understood as RD, but we
will use the notation ED = RD when treating Euclidean
spaces as manifolds. In contrast, we will continue to use
RD to refer to ambient spaces. Euclidean spaces use the
familiar inner product (dot product), norm (ℓ2 norm), and
distance function (Euclidean distance):

⟨u,v⟩ = u0v0 + u1v1 + . . .+ u2v2, (2)

∥u∥ =
√
⟨u,u⟩, (3)

δE(u,v) = ∥u− v∥. (4)

2.1.2. HYPERSPHERICAL SPACE

Hyperspherical space is characterized by constant positive
curvature. In such spaces, angles in any triangle sum to more
than π and there are no parallel lines. The familiar examples
of circles and 2-spheres are low-dimensional examples of
hyperspherical spaces.

Hyperspheres can be viewed as surfaces embedded in a
higher-dimensional, Euclidean ambient space. Hyperspheri-
cal space uses the same inner products as Euclidean space.
The hypersphere is the set of points in the ambient space
having a Euclidean norm equal to some radius inversely
proportional to the curvature K > 0:

SD,K = {x ∈ RD+1 : ∥x∥ = 1/K}. (5)

Because shortest paths between two points u and v in SD,K

through the ambient space leave the surface of the manifold,
we must define the hyperspherical distance function for the
shortest path entirely in SD,K between u and v:

δS(u,v) = cos−1(K2⟨u,v⟩)/K. (6)

2.1.3. HYPERBOLIC SPACE

Hyperbolic space is characterized by constant negative met-
ric curvature. This has several consequences: for instance,
the angles in any triangle sum to less than π, many lines
through a point can be parallel to any given line, and neigh-
borhoods grow exponentially with radius.

There are several equivalent models of hyperbolic space.
For our purposes, we will describe the hyperbolic space
from the perspective of the hyperboloid model. First, we
must define the ambient Minkowski space. This is a vector
space equipped with the Minkowski inner product:

⟨u,v⟩L = −u0v0 + u1v1 + . . .+ unvn. (7)

Similar to the Euclidean case, we let ∥u∥L = ⟨u,u⟩L (we
do not wish to take the square root of a negative number).
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The hyperboloid of dimension D and curvature K < 0,
written HD,K , is a set of points with constant Minkowski
norm:

HD,K = {x ∈ RD+1 : ∥x∥L = −1/K2, x0 > 0}, (8)

Finally, the hyperbolic distance function for geodesic dis-
tances between u,v ∈ HD,K is given by

δH(u,v) = − cosh−1(K2⟨u,v⟩L)/K. (9)

2.1.4. MIXED-CURVATURE PRODUCT MANIFOLDS

We reiterate the definition of product manifolds from Gu
et al. (2018). Following the convention of using

∏
i Xi to

refer to the iterated Cartesian product over sets, the product
manifold is defined as

P =
n∏

i=1

Ssi,Ki ×
m∏
j=1

Hhj ,K
′
j × Ed. (10)

The total number of dimensions is
∑n

i si+
∑m

j hj+d. Each
individual manifold is called a component manifold, and
the decomposition of the product manifold into component
manifolds is called the signature. Informally, the signature
can be considered a list of dimensionalities and curvatures
for each component manifold.

Distances in P decompose as the ℓ2 norm of the distances
in each of the component manifolds:

δP(u,v) =

√∑
M∈P

δM(uM,vM)2, (11)

where uM and vM denotes the restriction of u and v to
their components inM and δM refers the distance function
appropriate toM.

For x ∈ P , the tangent plane at x, TxP , is the direct sum
(concatenation) of all component tangent planes:

TxP =
⊕
M∈P

TxMM. (12)

We additionally define the origin of P , µ0, as the concatena-
tion of the origins of each respective manifold. The origin is
(1/|K|, 0, . . .) for HD,K and SD,K , and (0, 0, . . .) for ED.

2.2. Decision trees and random forests

The Classification and Regression Trees (CART) (Breiman,
2017) algorithm fits a DT T to a set of labeled data (X,y).
At each step, it greedily selects the split which partitions the
dataset with maximum information gain,

IG(y) = C(y)− |y
+|
|y|

C(y+)− |y
−|
|y|

C(y−). (13)

Here, C(·) is some impurity function (we use Gini impurity
for classification and variance for regression). A splitting
function S(·) partitions the labels y into y+ and y− and
the input space into decision regions. Classically, S(·) is a
thresholding function which partitions the input space into
high-dimensional boxes given dimension d and threshold θ:

S(x) = I{xd > θ}. (14)

This algorithm is applied recursively to each decision region
until a stopping condition is met (e.g., maximum number of
splits is reached). The result is a fitted DT, T , which can be
used for inference. During inference, an unseen point x is
passed through T until it reaches a leaf node corresponding
to some decision region. For classification, the point is then
assigned the majority label inside that region; for regression,
it is assigned the mean value inside that region.

Finally, a RF is an ensemble of DTs, typically trained on
a bootstrapped subsample of the points and features in
X (Breiman, 2001).

2.2.1. HYPERBOLIC DECISION TREE ALGORITHMS

The hyperplane perspective on DTs is helpful background
for understanding our method: mathematically, threshold-
ing x on a dimension is equivalent to taking its dot prod-
uct with the normal vector of a separating hyperplane P,
even in hyperbolic space. Although this is easy to compute
for classical thresholding boundaries, which are zero in all
dimensions but d, this perspective principally admits any
hyperplane P as a valid decision boundary.

Naturally, considerations around choosing an appropriate
(and computationally efficient) P abound. To this end,
Chlenski et al. (2024) impose homogeneity and sparsity
constraints on the hyperplanes they consider for hyperbolic
DTs. In hyperbolic space, homogenous hyperplanes— hy-
perplanes that contain the origin of the ambient space—
intersect HD,K at geodesic submanifolds: that is, P∩HD,K

is closed under shortest paths according to δH . The sparsity
constraint enforces that the normal vectors of P must be
nonzero only in two positions: the timelike coordinate x0
and some other xd, which ensures that only O(nd) candi-
date hyperplanes are considered per split, and each decision
can be computed in O(1) time using sparse dot products.

3. Mixed-curvature decision trees
For any DT, we must transform the input X into a set of
candidate hyperplanes. To this end, we reframe and general-
ize the hyperplane approach of hyperbolic DTs. First, we
observe that homogenous hyperplanes are geodesically con-
vex in any constant-curvature manifold; therefore, we can
extend the hyperbolic DT approach to E and S. Second, we
observe that fitting sparse, homogenous DTs is equivalent
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Algorithm 1 Product Space Decision Tree

1: Procedure FIT(P,X,y):
2: for each componentM of P do
3: for each dimension d > 0 ofM do
4: θi,d ← tan−1(xi,0/xi,d) {Eq. 15}
5: end for
6: end for
7: return FITNODE(Θ,y, 0)
8:
9: Procedure FITNODE(Θ,y, depth):

10: if depth = max depth or other stopping criteria then
11: return Leaf(y)
12: end if
13: (d∗, θ∗, IG∗)← (−,−,−∞)
14: for each dimension d of Θ do
15: for each θ ∈ GETCANDIDATES(Θ, d) do
16: Partition (Θ,y)→ (Θ±,y±) via Eq. 16
17: IG← Eq. 13 on (y+,y−)
18: if IG > IG∗ then
19: (d∗, θ∗, IG∗)← (d, θ, IG)
20: end if
21: end for
22: end for
23: if IG∗ = −∞ then
24: return Leaf(y)
25: else
26: N ← Node(d∗, θ∗)
27: N .left← FITNODE(Θ−,y−, depth+1)
28: N .right← FITNODE(Θ+,y+, depth+1)
29: return N
30: end if
31:
32: Procedure GETCANDIDATES(Θ, d):
33: θ̃ ← sorted unique Θ:,d

34: return {mM(θ̃i, θ̃i+1)}i {Eqs. 18–22}

to thresholding on angles under 2-dimensional projections.

We consider the set of all projections onto the basis {x0, xd},
which are computable in O(1) time per projection by coor-
dinate selection. First, we compute the projection angle:1

θ(x, d) = tan−1(x0/xd). (15)

Next, we use a modified splitting criterion to account for
the geometry of angular splits:

S(x, d, θ) = I{θ(x, d) ∈ [θ, θ + π)}. (16)

Once the best angle is selected, we must compute angular
midpoints to select P that intersectsM at a point geodesi-

1We use the PyTorch arctan2 function to ensure that we can
recover the full range of angles in [0, 2π). This is essential for
properly specifying decision boundaries in S.

cally equidistant from the two points to either side of it
(Euclidean DTs do this by sample-averaging the threshold
values). Angular midpoints for each component manifold
are described in the following sections and summarized in
Table 5 in the Appendix.

With the angular features and manifold-informed midpoint
modifications in place, the rest of the algorithm follows
Section 2.2 unmodified.

3.1. Euclidean decision trees

To unify our treatment of all three geometries, we first re-
formulate the standard Euclidean DT in a geometrically-
informed, albeit unconventional, way that is equivalent to
the classical model.

While the intersections of homogenous hyperplanes in RD

with ED are (trivially) convex, these lack the expressiveness
of an ambient-space formulation. Thus, we embed ED in
RD+1 by a trivial lift:

ϕ : ED → RD+1, ϕ(u) = (1,u). (17)

For two points u,v ∈ ED, the midpoint angles in ED can
be described in terms of the coordinates of u and v or their
respective projection angles (θu, θv) as

mE(u,v) = tan−1 (2/(ud + vd)) (18)

= tan−1 (2/(cot(θu) + cot(θv))) (19)

See Appendix B for a proof that this formulation is equiva-
lent to thresholding on basis dimensions.

3.2. Hyperbolic decision trees

For two points u,v ∈ HD,K , we compute θu and θv accord-
ing to Eq 15 and follow Chlenski et al. (2024) in computing
the hyperbolic midpoint angle in HD,K as:

V :=
sin(2θu − 2θv)

sin(θu + θv) sin(θv − θu)
, (20)

mH(u,v) =

{
cot−1(V −

√
V 2 − 1) if θu + θv < π

cot−1(V +
√
V 2 − 1) otherwise.

(21)

3.3. Hyperspherical decision trees

The hyperspherical case is quite simple, except that unlike
hyperbolic space and the “lifted” Euclidean space after ap-
plying Eq 17, we lack a natural choice of x0. We adopt the
convention of fixing the first dimension of the embedding
space as x0, which intuitively corresponds to fixing a “north
pole” at the origin µ0 = (1/|K|, 0, . . .).

Angular midpoints are particularly well-behaved in hyper-
spherical manifolds: given u,v ∈ SD,K , the hyperspherical
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midpoint angle is computed by finding θu and θv using
Eq 15 and taking their mean:

mS(u,v) = (θu + θv)/2. (22)

3.4. Product decision tree algorithm

Intuitively, the transition from DTs in a single component
manifold to a product manifold is that we now iterate over
all preprocessed angles together, using the angular midpoint
formula appropriate to each component. The complete pseu-
docode for this algorithm is given in Algorithm 1.

Letting a single DT span all components—as opposed to an
ensemble of DTs, each operating in a single component—
allows the model to independently allocate its splits across
components according to their relevance to the task at hand.
Recasting DT learning in terms of angular comparisons
has three major advantages over finding planar decision
boundaries directly:

1. We can consider angles under arbitrary linear pro-
jections (not just projections onto basis dimensions)
while maintaining O(1) decision complexity.

2. It becomes possible to subsample the features (pre-
computed angles) as is typical in RFs.

3. Product manifolds can always represent additional
features in a new Euclidean manifold.

3.5. Geodesic convexity

Having detailed our algorithm, we now demonstrate that its
splits satisfy the geodesic convexity property. Establishing
this is essential to our stated goals: geodesic convexity
implies topological continuity. The remaining desiderata (3–
5) follow straightforwardly from our angular preprocessing
and midpoint splitting strategy.

A subset of a manifold S ⊆ M is said to be geodesically
convex if p,q ∈ S implies that the geodesic γp,q ⊆ S.
That is, for any two points in S, all points in the shortest
path between them stay in S. Lack of geodesic convexity
is a potential source of misgeneralization for models, and
several classifiers in hyperbolic spaces explicitly seek to
partition the feature space in a geodesically-convex manner
(Cho et al., 2018; Chlenski et al., 2024).

Building on Udrişte (1994), Chapter 3.1, we present a proof
sketch that if S ⊂M is geodesically convex and partitions
M into disjoint regionsM+ andM−, then these regions
are geodesically convex.

By way of contradiction, suppose there exist p,q ∈ M+

such that their geodesic γp,q crosses into M−. Since S
separatesM+ andM−, γp,q must follow this path:

M+ → S →M− → S →M+. (23)

However, this implies the existence of p′,q′ ∈ S such that

γp′,q′ crosses intoM−, implying γp′,q′ ⊈ S, contradict-
ing our initial assumption that S is geodesically convex.
Tabaghi et al. (2021) shows that a linear classifier (that is, a
classifier inducing a geodesically convex decision boundary)
with weights w and bias b takes the form

lPw = sign(⟨wE,wE⟩+ αS sin
−1(⟨wS,xS⟩)

+ αH sinh−1(⟨wH,xH⟩L) + b), (24)

where vM means the restriction of some v ∈ P to compo-
nent manifoldM and αM is a weight term.

Under our angular reformulation, this simplifies to

lPw = sign(x0 cos(θ)− xd sin(θ)), (25)

where θ is our splitting angle and d is the dimension along
which the split happens; because our split is confined to a
single manifold, the weights αM do not affect the split. By
restricting our attention to two dimensions within a single
manifold, our formulation bypasses almost all of the com-
plexity of evaluating geodesic splits in product manifolds.

This simplified form directly corresponds to our angular
splitting criterion from Equation 16. Since this is an instance
of the geodesically convex linear classifiers, our method is
guaranteed to produce convex splits.

4. Benchmarks
We carried out benchmarks to evaluate which model, given
a labeled set of mixed-curvature embeddings, achieves the
lowest error on a test set. While we produced embeddings
using a range of datasets and embedding techniques, our
results focus only on performance on downstream tasks. We
describe our data generation/embedding methods in more
detail in Appendix Section D.

We summarize our benchmark results, with references to
specific figures and tables, in Table 1.

Table 1: Benchmarks summary. The “Task” column is
C (Classification), R (Regression), or LP (Link prediction).
“#Top-k” columns count how often product DTs or RFs were
among the top k predictors for a given set of benchmarks.

Manifold Task Ref #Top-1 #Top-2 Total

Single C Fig. 4 7 11 11
Single R Fig. 5 7 9 11

Product C Tab. 2 6 10 18
Product R Tab. 3 8 10 11
Product LP Tab. 4 1 1 6

Total 29 41 57
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Figure 4: Classification accuracies on mixtures of 8 Gaussians in single manifolds of curvature K. We omit results for all
models that never achieved competitive results.
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Figure 5: Regression benchmarks (RMSE) on mixtures of 8 Gaussians in single manifolds of curvature K. We follow the
convention of Figure 4 in omitting non-competitive models.

4.1. Experiment details

Given a dataset X, a set of labels y, and a product manifold
P , we evaluate a variety of classifiers on their ability to pre-
dict y from X. We apply an identical 80:20 train-test split
to all of our data, train our models on the training set, and
evaluate performance on the test set. We report 95% confi-
dence intervals for accuracy scores for classification, root
mean squared error (RMSE) for regression, and accuracy
scores again for link prediction benchmarks. Confidence
intervals are based on 10 runs with different random seeds.

4.2. Datasets

Synthetic data. We develop a novel method to sample
mixtures of Gaussians in P to generate classification and
regression datasets. For classification, we generate 8 classes
using 32 clusters. For regression, we generate a single scalar
response variable using 32 clusters with randomly generated
intercepts. For more details, see Appendix Section A.

Graph embeddings. For classification and regres-
sion on graph datasets, we generate embeddings that
approximate shortest-path distances in the graph us-
ing the method described in Gu et al. (2018). We
select the optimal signature from the candidate set
{(H2)2,H2E2,H2S2,S2E2, (S2)2,H4,E4,S4} by generat-

ing embeddings in each signature and selecting the signature
with the lowest metric distortion. For link prediction, we
embed all datasets in P = (S2E2H2), then create a bi-
nary classification dataset by associating each pair of nodes
with a point in P2E1, where each pair of points is included
and the last Euclidean dimension is the manifold distance
δP(xi,xj); labels are simply whether there is an edge be-
tween nodes i and j. Full details on graph embeddings are
described in Appendix Section D.4.

Mixed-curvature VAE latent space. We follow Skopek
et al. (2020) in training variational autoencoders (VAEs)
whose latent space is P . Once the VAE is trained, we use its
encoder to generate embeddings for our dataset and classify
these embeddings. Full details on VAE training and down-
stream inference are described in Appendix Section D.5.

Empirical datasets. Some datasets can be represented in
a non-Euclidean geometry without generating embeddings:
for instance, geospatial data lives in S2, while cyclic time
series embed in S1. We describe our approach to generating
embeddings for these empirical datasets in Appendix D.6.

4.3. Baselines

We train two variants of Scikit-Learn (Pedregosa et al., 2011)
DTs and RFs: The ambient variant operates directly on coor-
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Table 2: Accuracies for all product manifold classification benchmarks. The highest scores for each dataset are shown in
bold, while second-best predictors are underlined. For brevity, we omit columns for three low-performing methods: product
space perceptrons, ambient-space GNNs, and product space MLR.

Dataset Signature Product RF Ambient RF Tangent RF k-Neighbors Ambient MLP κ-GCN

Sy
nt

he
tic

(m
ul

ti-
K

) Gaussian E4 34.4 ± 3.0 34.2 ± 2.9 34.2 ± 2.9 34.1 ± 2.8 27.9 ± 3.1 26.5 ± 3.9
H4 69.3 ± 3.3 53.1 ± 2.9 63.8 ± 3.4 67.3 ± 4.0 42.4 ± 5.3 28.8 ± 3.3

H2E2 43.0 ± 2.8 40.4 ± 4.0 43.0 ± 3.3 44.7 ± 2.9 29.9 ± 2.7 26.9 ± 2.6
(H2)2 49.0 ± 3.0 42.6 ± 2.4 46.6 ± 2.8 50.8 ± 3.2 33.7 ± 3.9 26.2 ± 2.4
H2S2 41.8 ± 2.5 37.3 ± 2.6 37.6 ± 2.7 38.0 ± 1.9 28.7 ± 2.5 16.4 ± 4.4
S4 37.7 ± 2.8 38.4 ± 2.4 33.5 ± 2.2 40.6 ± 2.6 26.4 ± 1.9 21.1 ± 1.9

S2E2 34.4 ± 3.0 33.4 ± 2.4 31.7 ± 2.2 31.6 ± 2.5 23.7 ± 2.0 16.0 ± 2.7
(S2)2 33.1 ± 2.5 32.6 ± 3.0 29.2 ± 2.3 28.1 ± 3.3 24.3 ± 2.1 15.0 ± 2.2

G
ra

ph

CiteSeer (H2)2 26.2 ± 1.2 26.7 ± 1.8 26.3 ± 1.6 22.2 ± 1.7 23.7 ± 1.3 24.9 ± 1.5
Cora H4 29.4 ± 1.1 29.1 ± 0.8 29.1 ± 0.7 20.8 ± 0.7 29.8 ± 0.9 29.6 ± 0.9

PolBlogs (S2)2 92.8 ± 0.9 93.0 ± 1.0 93.3 ± 0.5 92.8 ± 1.2 92.2 ± 0.9 69.9 ± 10.1

VA
E

Blood S2E2(H2)3 14.5 ± 1.4 18.5 ± 1.4 18.7 ± 1.5 16.9 ± 1.7 12.8 ± 0.9 11.4 ± 0.9
CIFAR-100 (H2)4 10.4 ± 0.9 10.2 ± 1.2 10.8 ± 1.1 8.4 ± 0.9 7.6 ± 0.9 5.2 ± 0.7
Lymphoma (S2)2 84.4 ± 2.0 81.4 ± 2.1 81.2 ± 2.2 78.3 ± 2.5 78.0 ± 0.4 66.9 ± 13.9

MNIST S2E2H2 36.0 ± 5.3 38.1 ± 5.6 38.2 ± 5.5 34.8 ± 7.5 35.9 ± 6.8 14.0 ± 2.9

O
th

er

Landmasses S2 88.5 ± 1.1 87.8 ± 1.4 86.2 ± 1.5 91.5 ± 1.1 72.5 ± 2.3 73.2 ± 2.8
Neuron 33 (S1)10 64.2 ± 2.2 66.3 ± 2.9 66.5 ± 3.0 50.7 ± 1.9 47.3 ± 2.0 47.3 ± 2.0
Neuron 46 (S1)10 24.1 ± 3.7 24.4 ± 3.5 22.0 ± 5.7 30.4 ± 4.7 3.1 ± 1.0 79.1 ± 22.8

Table 3: Regression performance (RMSE) for all product manifold classification benchmarks. Following the conventions of
Table 2, we emphasize high-scoring predictors and omit columns for predictors that never achieve the highest score. CS
PhDs is a graph embedding dataset, whereas Temperature and Traffic are empirical.

Dataset Signature Product RF Ambient RF Tangent RF k-Neighbors

Sy
nt

he
tic

(m
ul

ti-
K

) Gaussian E4 0.023 ± 0.004 0.023 ± 0.003 0.023 ± 0.003 0.023 ± 0.004
H4 0.015 ± 0.003 0.020 ± 0.003 0.017 ± 0.003 0.016 ± 0.003

H2E2 0.023 ± 0.004 0.024 ± 0.004 0.024 ± 0.004 0.023 ± 0.004
(H2)2 0.021 ± 0.004 0.024 ± 0.003 0.022 ± 0.003 0.021 ± 0.003
H2S2 0.025 ± 0.004 0.026 ± 0.004 0.026 ± 0.004 0.027 ± 0.004
S4 0.023 ± 0.003 0.023 ± 0.003 0.024 ± 0.004 0.024 ± 0.004

S2E2 0.027 ± 0.004 0.027 ± 0.004 0.027 ± 0.004 0.028 ± 0.005
(S2)2 0.028 ± 0.004 0.028 ± 0.005 0.029 ± 0.005 0.031 ± 0.005

O
th

er

CS PhDs H4 205.842 ± 34.454 208.723 ± 36.638 207.872 ± 35.043 174.759 ± 25.074
Temperature S2S1 77.942 ± 23.689 48.221 ± 23.516 99.561 ± 24.984 138.650 ± 25.130

Traffic E(S1)4 0.307 ± 0.039 0.220 ± 0.017 0.229 ± 0.021 0.255 ± 0.021

Table 4: Accuracies for all link prediction benchmarks, also following the conventions in Table 2. The κ-GCN is trained
using a conventional link prediction approach; the other classifiers are trained as binary classifiers on the product of input
embeddings X2. All graphs were embedded into H2E2S2.

Dataset Product RF Ambient RF Tangent RF k-Neighbors Ambient MLP κ-GCN

AdjNoun 94.3 ± 0.0 94.5 ± 0.0 94.3 ± 0.0 94.5 ± 0.0 94.1 ± 0.0 94.3 ± 0.0
Dolphins 94.1 ± 0.0 93.5 ± 0.0 94.1 ± 0.0 90.5 ± 0.0 94.1 ± 0.0 92.9 ± 0.0
Football 91.8 ± 0.0 93.9 ± 0.0 91.8 ± 0.0 71.4 ± 0.0 95.9 ± 0.0 95.9 ± 0.0

Karate Club 93.9 ± 0.0 91.8 ± 0.0 87.8 ± 0.0 77.6 ± 0.0 95.9 ± 0.0 95.9 ± 0.0
PolBooks 91.4 ± 0.0 91.6 ± 0.0 91.8 ± 0.0 89.8 ± 0.0 91.4 ± 0.0 91.4 ± 0.0
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Product RF (Acc: 90.0%) Ambient RF (Acc: 85.0%) Tangent RF (Acc: 81.0%)

k-Neighbors (Acc: 89.5%) Ambient MLP (Acc: 67.5%) -GCN (Acc: 65.0%)

Figure 6: We color a world map with each model’s predicted P(Land) for the “Landmasses” dataset, a land vs. water
classification benchmark in S2. Each RF consists of 12 DTs with a max depth of 5. Note the artifacts learned by Euclidean
RFs, tangent RFs, and k-Neighbors, as well as the diffuse probabilities learned by the ambient MLP and κ-GCN.

dinates in the ambient space RD+1, while the tangent plane
variant preprocesses points by projecting from P to Tµ0P
via the logarithmic map at µ0. We use k-nearest neighbor
(k-NN) classifiers and regressors with precomputed pair-
wise distance matrices according to δP (Eq. 11). We also
use the product space perceptron algorithm (Tabaghi et al.,
2021) and multilayer perceptron (MLP) and κ-GCN model
(Bachmann et al., 2020), as implemented in the Manify
library (Chlenski et al., 2025).

For our own models, we set hyperparameters identically
to Scikit-Learn DTs and RFs, except we consider all

(
D
2

)
projections—for a total of 3 features per 2-dimensional
component manifold, just like ambient space methods use.
Full details for each model can be found in Appendix D.2.

4.4. Results

For single-curvature synthetic datasets, our method was
the best classifier in 7 out of 11 signatures (Figure 4) and
the best regressor (Figure 5) for 7 out of 11 signatures.
In Tables 2, 3, and 4, we demonstrate consistently good
performance across a diverse range of benchmarks: We
consistently outcompete baseline models in classification
and regression, and perform on par for link prediction tasks.
All in all, our method was the best for 29 out of 57 bench-
marks (51%), and was in the top-2 best for 41 out of 57
benchmarks (72%).

Further experiments can be found in the Appendix: we
provide ablations in Appendix E, detailed tables and latent
space visualizations in Appendix F, runtime and computa-
tional complexity analysis in Appendix G, interpretability
experiments in Appendix H, and benchmarks on more man-
ifolds and baselines in Appendix I.

5. Conclusion
We present strong evidence supporting the use of mixed-
curvature DTs and RFs. In particular, we motivate and de-
scribe our entire algorithm and demonstrate its effectiveness
across a highly diverse set of 57 benchmarks.

Product DTs and RFs offer a valuable balance of expres-
siveness and simplicity, positioned between extremely leg-
ible but underpowered linear classifiers and powerful but
uninterpretable neural networks operating in product mani-
folds. We believe that these qualities, combined with their
demonstrated performance across our benchmark datasets,
are compelling evidence of our method’s usefulness in a
non-Euclidean data analysis toolkit.

Limitations. While our work is downstream of signature
selection and embedding generation, it relies heavily on the
availability of good product manifold embeddings. Prod-
uct manifolds face challenges when selecting appropriate
signatures (Borde et al., 2023a), and representing certain
complex patterns in data (Borde & Kratsios, 2023). Fur-
thermore, generating embeddings can be computationally
intensive. Finally, the lack of a privileged basis (Elhage
et al., 2023) in non-Euclidean embeddings makes the induc-
tive bias of decision trees less well-motivated compared to
the classical tabular setting.

Future work. It may be possible to exploit non-privileged
basis dimensions using approaches such as rotation forests
(Bagnall et al., 2020), random 2-D subspace angles, or
oblique decision trees. A continuous unification of all three
geometries, like the κ-stereographic model described in
(Skopek et al., 2020), may be more robust and elegant. Ex-
tensions to simplex geometry (Mishra et al., 2020) are also
worth considering.
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A. Gaussian mixture details
A.1. Overall structure

The structure of our sampling algorithm is as follows. Note that, rather than lettingM be a manifold of arbitrary curvature,
we force its curvature to be one of {−1, 0, 1} for implementation reasons. This necessitates rescaling steps, which take place
in Equations 32, 36, and 42. The result is equivalent to performing the equivalent steps, without rescaling, on a manifold of
the proper curvature.

1. Generate c, a vector that divides m samples into n clusters:

praw = ⟨p0, p1, . . . , pn−1⟩ (26)
pi ∼ Uniform(0, 1) (27)

pnorm =
praw∑n−1
i=0 pi

(28)

c = ⟨c0, c1, . . . cm−1⟩ (29)
ci ∼ Categorical(n,pnorm) (30)

2. Sample Meuc, an n×D matrix of n class means:

Meuc = ⟨m0,m1, . . . ,mn−1⟩T (31)

mi ∼ N (0,
√
KI). (32)

3. Move Meuc into T0M, the tangent plane at the origin ofM, by applying ψ : x→ (0,x) per-row to Meuc:

Mtan = ⟨ψ(m0), ψ(m1), . . . ψ(mn−1)⟩T , (33)

ψ : RD → RD+1, x→ ⟨0,x⟩. (34)

4. Project Mtan ontoM using the exponential map from T0M to Mtan:

M = exp0(Mtan). (35)

5. For 0 ≤ i < n, sample a corresponding covariance matrix. Here, σ is a variance scale parameter that can be set:

Σi ∼Wishart(σ
√
KI, D) (36)

6. For 0 ≤ j < m, sample Xeuc, a matrix of m points according to their clusters’ covariance matrices:

Xeuc = ⟨x0,x1, . . .xm−1⟩T (37)
xj ∼ N (0,Σcj

). (38)

7. Apply ψ(·) from Eq 34 to each xj to move it into T0M:

Xtan = ⟨ψ(x0), ψ(x1), . . . ψ(xm−1)⟩T . (39)

8. For each row in Xtan, apply parallel transport from T0M to its class mean:

XPT = ⟨x0,µ,x1,µ, . . . ,xm−1,µ⟩ (40)
xj,µ = PT0→mcj

(xj) (41)

9. Use the exponential map at TµM to move the points onto the manifold:

XM = ⟨x0,M,x1,M, . . . ,xm−1,M⟩ (42)

xj,M =
expmcj

(xj,µ)
√
K

(43)

10. Repeat steps 2–9 for as many manifolds as desired; produce a final embedding by concatenating all component
embeddings column-wise:

X = ⟨XM0 ,XM1 , . . .XMp⟩ (44)
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A.2. Equations for manifold operations

First, we provide the forms of the parallel transport operation in hyperbolic, hyperspherical, and Euclidean spaces:

PTH
ν→µ(v) = v +

⟨µ− αν, ν⟩L
α+ 1

(ν + µ) (45)

α = −⟨ν, µ⟩L (46)

PTS
ν→µ(v) = v cos(d) +

sin(d)

d
(µ− cos(d)ν) (47)

d = cos−1(ν · µ) (48)

PTE
ν→µ(v) = v + µ− ν. (49)

The exponential map is defined as follows in each of the three spaces:

expHµ (u) = cosh(∥u∥L)µ+ sinh(∥u∥L)
u

∥u∥L
(50)

expSµ(u) = cos(∥u∥)µ+ sin(∥u∥) u

∥u∥
(51)

expEµ(u) = u. (52)

A.3. Generating classification targets

To generate classification targets covering p ≤ n classes, all we need to do is map clusters to classes. To ensure that each
class has at least one associated cluster, we arbitrarily assign the first p clusters to the first p classes. In the p = n case,
this is equal to the p-dimensional identity matrix, and we conclude. In the p < n case, we assign the remaining n− p by
drawing assignments from a uniform categorical distribution over the p classes.

A.4. Generating regression targets

To generate regression targets, we draw per-cluster slopes and intercepts:

βi,k ∼ Uniform(−1, 1) (53)
αi ∼ Uniform(−10, 10 (54)

We then multiply each xj ∈ Xeuc (i.e. the pre-transport samples from the normal distribution) by β and add α:

yj = xjβ + α+ ε (55)

To make the regression task more constrained and, therefore, to make the RMSEs across samples more comparable, we
further normalize the labels to the range [0, 1] by subtracting the minimum y value and dividing by the range.

A.5. Relationship to other work

Nagano et al. (2019) developed the overall technique used for a single cluster and a single manifold, i.e. steps 6–9. Chlenski
et al. (2024) modified this method to work for mixtures of Gaussians in Hd,1, and deployed it for d ∈ 2, 4, 8, 16. This
corresponds to steps 1–5 of our procedure (although note that our covariance matrices are sampled differently in step 5).
Thus, our contribution is simply to add step 10, modify step 5 to use the Wishart distribution, to add curvature-related
scaling factors in Equations 32, 36, and 42, and to generate classification and regression targets as described in the preceding
sections.

We apply this to hyperspherical manifolds, for which the von Mises-Fisher (VMF) distribution is typically preferred. This
is an unconventional choice, but has been employed previously by Skopek et al. (2020) in their mixed-curvature VAE
formulation. We do not argue for the superiority of our approach over the VMF distribution in general; however, we prefer
to use ours for these benchmarks, as it allows us to draw simpler parallels between manifolds of different curvatures.
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B. Proof of equivalence for Euclidean case
A classical CART tree splits data points according to whether their value in a given dimension is greater than or less than
some threshold value t. Midpoints are simple arithmetic means. This can be written as:

S′(x, d, t) =

{
1 if xd > t,

0 otherwise.
(56)

mDT (u,v) =
ud + vd

2
. (57)

In our transformed DT, we lift the data points by applying ϕ : x→ (1,x) and then check which side of an axis-inclined
hyperplane they fall on. The splitting function is based on the angle θ of inclination with respect to the (0, d) plane, i.e.,
⟨1, xd⟩. Our midpoints are computed to ensure equidistance in the original manifold:

S(x, d, θ) = sign(sin(θ)xd − cos(θ)x0) (58)

mE(u,v) = tan−1

(
2

ud + vd

)
(59)

To demonstrate the equivalence of the classical DT formulation to our transformed algorithm in E, we will show that
Equation 56 is equivalent to Equation 58 and Equation 57 is equivalent to Equation 59 under

θ = cot−1(t). (60)

B.1. Equivalence of Splits

First, we show that Equations 56 and 58 are equivalent, assuming t ̸= 0:

S(x, d, θ) = sign(sin(θ)xd − cos(θ)x0) = 1 (61)
⇐⇒ sin(θ)xd − cos(θ) > 0 (62)

⇐⇒ sin(θ)

cos(θ)
xd = tan(θ)xd > 1 (63)

⇐⇒ xd/t > 1 (64)
⇐⇒ xd > t (65)
⇐⇒ S′(x, d, t) = 1 (66)

B.2. Equivalence of midpoints

Now, we show that Equations 57 and 59 are equivalent:

cot−1(mDT (u,v)) = cot−1

(
ud + vd

2

)
(67)

= tan−1

(
2

ud − vd

)
(68)

= mE(u,v) (69)
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C. Summary of angular midpoint formulas

Table 5: Distance functions and midpoint angle formulas for each component manifold type.

Manifold M Distance δM(u,v) Midpoint angle θM(u,v)

SD,K cos−1

(
K2⟨u,v⟩

K

)
θu + θv

2

ED,0
√

⟨u,v⟩ tan−1

(
2

ud + vd

)

HD,K − cosh−1(K2⟨u,v⟩L)
K

cot−1(V −
√

V 2 − 1) if θu + θv < π,

cot−1(V +
√

V 2 − 1) otherwise.

V :=
sin(2θu − 2θv)

sin(θu + θv) sin(θv − θu)

D. Full benchmark details
D.1. Product DT/RF hyperparameters

For our models, we set the n features = "n choose 2" parameter. This means that we consider all
(
n
2

)
linear

projections. We do this because we restrict ourselves to 2-dimensional component manifolds, and therefore we only observe(
3
2

)
= 3 total angles, equal to the number of features used by ambient space Euclidean methods. All other hyperparameters

are set identically to the scikit-learn DT/RF settings below.

D.2. Scikit-learn hyperparameters

Random forests and decision trees. For fairness, we set all DT and RF hyperparameters identically. Specifically, we set
the following hyperparameters for both DTs and RFs:

• max depth = 5
• min samples split = 2
• min samples leaf = 1
• min impurity decrease = 0.0

For RFs, we also set the following hyperparameters:

• n estimators = 12
• max features = "sqrt"
• bootstrap = True (subsamples the training data)
• max samples = None (draws n samples from a set of n points)

Because the scikit-learn implementation differs substantially from ours, subsamples vary even when the random seed is set.
Nevertheless, we also employ the same random seed for all RF models.

k-nearest neighbor models. For k-nearest neighbors, we use default hyperparameters.

Product space perceptrons and SVMs. Product space perceptrons only have one hyperparameter, which is the relative
weight assigned to each component manifold. We elect to give each component manifold equal weight.

Neither the SVM code provided by Tabaghi et al. (2021) nor our own reimplementation would run on our datasets. In
particular, we had issues satisfying the convexity constraints described in their paper, causing the solver to crash. Correcting
this mistake and augmenting our benchmarks with SVM evaluations is a direction for future research.
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D.3. Neural networks

κ-GCN overview. Neural networks, especially graph neural networks, are a popular choice for representing and working
with mixed-curvature representations (Sun et al., 2021; Cho et al., 2023; Bachmann et al., 2020; McNeela et al., 2024). In
particular, we use the Manify (Chlenski et al., 2025) implementation of κ-GCNs, described in Bachmann et al. (2020), as
the basis for our neural network models. This model is heavily inspired by prior work on generalizing graph convolutional
networks (GCNs) in hyperbolic spaces (Chami et al., 2019; Ganea et al., 2018). Since the κ-GCN model uses different
models of non-Euclidean space (the Poincaré disk for hyperbolic space and the projected sphere for hyperspherical space),
we transform our points to these spaces using the standard stereographic projection:

ϕ(⟨x0, x1, . . . , xD⟩)→

〈
x1

1 +
√
|K|x0

,
x1

1 +
√
|K|x0

, . . . ,
xD

1 +
√
|K|x0

〉
. (70)

At each layer, the κ-GCN applies a weight matrix W and aggregates updated embeddings using an adjacency matrix A
(analogous to the traditional GCN update operation, H(l+1) = σ(AHlW), except using manifold-appropriate variants of
left- and right-matrix multiplication, and applying the nonlinearity through logarithmic and exponential maps. At the final
layer, the κ-GCN computes stereographic logits:

P(y = k | x) = Softmax (logitsM(x, k)) (71)

logitsM(x, k) =
∥ak∥pk√

K
sin−1

K

(
2
√
|K|⟨zk,ak⟩

(1 +K∥zk∥2)∥ak∥

)
, (72)

where ak is a column vector of the final weight matrix corresponding to class k, pk ∈M is a bias term, and zk = −pk⊕x,
with ⊕ denoting the Möbius addition operation. It is not totally apparent in Bachmann et al. (2020) how the logits aggregate
across different product manifolds; we follow Cho et al. (2023) in aggregating logits as the ℓ2-norm of component manifold
logits, multiplied by the sign of the sum of the component inner products:

logitsP(x, k) =

√∑
M∈P

logitsM(xM, k) ·
∑
M∈P

⟨xM,akM⟩ (73)

Intuitively, this generalizes the notion that output logits correspond to signed distances from some hyperplane specified by
the column vectors and biases of the final layer; all modifications to the standard logit formula simply reflect the behavior of
distances in these manifolds.

Implementation and variants. We use our own implementation of the κ-GCN architecture, loosely based on the
implementation of stereographic logits given in Cho et al. (2023). The κ-GCN class can be manipulated in several ways: in
the K = 0 case, it behaves exactly like a Euclidean graph convolutional network; when A = I, i.e. the adjacency matrix
provided is trivial, it behaves like a manifold-appropriate version of an MLP. We use this to derive the neural models we
benchmark as follows:

Table 6: A summary of the neural models benchmarked in our work. Here,Mstereo denotes the stereographic projection of
M, D means the ambient dimension ofM, and ϕ(·) is the stereographic projection.

Model Preprocessing Manifold Hidden dimensions A

Ambient MLP — ED (E32, E32) I
Tangent MLP logµ0

(X) ED (E32, E32) I

Ambient GCN — ED (E32, E32) A
Tangent GCN logµ0

(X) ED (E32, E32) A
κ-GCN ϕ(X) Mstereo (Mstereo) A
κ-MLR ϕ(X) Mstereo () I

Generating adjacency matrices. For κ-GCN to work correctly, it is important that the adjacency matrix be correctly
normalized. We use a standard method, as described in Bachmann et al. (2020), to generate appropriate adjacency matrices.
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For some adjacency matrix A, we do:

A′ = A+AT (74)

Ã = A′ + I (75)

D̃ii =
∑
k

Ãik (76)

Â = D̃−1/2ÃD̃−1/2, (77)

i.e. A′ is A made symmetric, Ã has self-connections, D is a diagonal matrix of row-wise degree sums, and Â is the
properly normalized version of A.

When an adjacency matrix is not provided (i.e., for all benchmarks except the graph embeddings), we compute A via a
standard Gaussian kernel on the normalized pairwise distances between points:

Ai,j = exp

(
−δM(xi,xj)

maxk,l δ(xk,xl)

)
, (78)

followed by the transformation from A to Â as described above.

Classification. The stereographic logits described above can be turned into classification targets through a standard softmax
function.

Regression. For regression problems, we set the output dimension of our κ-GCN to 1 and skip the final softmax. We
use a mean squared error loss function to train. This variant of κ-GCN recapitulates the typical relationship between
regression and classification; however, it has not previously been described. In our experience, it unfortunately tends to
grossly underperform other models.

Link prediction. The link prediction variant of the κ-GCN was also not described in Bachmann et al. (2020). We follow
a closely related paper, Chami et al. (2019), in the standard choice of applying the Fermi-Dirac decoder (Krioukov et al.,
2010; Nickel & Kiela, 2017) to predict edges:

P((i, j) ∈ E|xi,xj) =

(
exp

(
δM(xi,xj)

2 − r
t

)
+ 1

)−1

, (79)

where the embeddings for points i and j, xi and xj, may be updated by κ-GCN layers.

Shared hyperparameters. For all neural networks, we used a learning rate of .0001 and trained for 4,000 epochs. For
Euclidean parameters, we used Adam (Kingma & Ba, 2017), whereas for non-Euclidean parameters we used Riemannian
Adam (Becigneul & Ganea, 2018) implemented in Geoopt (Kochurov et al., 2020). Both optimizers use the hyperparameters
β1 = 0.9 and β2 = 0.999. These hyperparameters were chosen on the basis of their convergence and good performance in
exploratory hyperparameter sweeps.

D.4. Graph embeddings

Learning embeddings. We reimplement the method in Gu et al. (2018) to learn graph embeddings. In particular, we use the
NetworkX package (Hagberg et al., 2008) to load the graph, extract the largest connected component, and compute pairwise
distances between nodes using the Floyd-Warshall algorithm. For embedding purposes, we treat all graphs as undirected.
Pairwise distances were normalized into the range [0, 1] by dividing by the maximum distance. To prevent train-test leakage,
we take a non-transductive learning approach and mask out the gradients from the test nodes to the training nodes during the
embedding process.

Embedding hyperparameters. Embeddings were learned using Riemannian Adam (Becigneul & Ganea, 2018) imple-
mented in Geoopt (Kochurov et al., 2020). For each signature, we train 10 randomly-initialized embeddings for 10,000
epochs each. We treat the first 2,000 epochs as a burn-in period, during which the learning rate is .001 and the curvature
of each manifold is fixed. For the remaining epochs, we train embedding coordinates with a learning rate of 0.01 and
scale factors with a learning rate of 0.001. These hyperparameters were chosen based on their stability and convergence in
exploratory experiments.
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Train-test split. We avoid train-test leakage during embeddings generation by masking the gradients from the test set to the
training set. Similarly, we performed the train-test split at the node level for all tasks including link prediction, meaning
there was not leakage through the adjacency matrix.

Evaluations. Since it was not clear a priori which signature would embed each graph the best, we learned 10 embeddings
for each candidate signature and took the one with the best Davg to be the benchmark signature. Our reasoning is that the
lowest-distortion embedding of the graph is the most appropriate benchmark for evaluating the geometrical appropriateness
of a classifier.

Link prediction. To generate link prediction datasets, we trained 100 randomly initialized sets of node embeddings in
S2×E2×H2. If we let X be our original node embeddings and E be the ground-truth edges of the graph, we then generated
the following dataset:

XLP = {⟨xi,xj⟩ for (xi,xj , δP(xi,xj) ∈ X} (80)
yLP = {I{(xi,xj) ∈ E} for (xi,xj) ∈ X} (81)

The corresponding signature is (P)2 × E1; in the case of our embeddings, that is (S2 × E2 ×H2)2 × E1. For GCN-based
models which use an adjacency matrix, we applied a Gaussian kernel to the normalized pairwise distances as described in
Equation 78; this prevents the labels from leaking into the training process through the adjacency matrix.

D.5. VAE training

Encoder/decoder architectures. Following Tabaghi et al. (2021), we use the following encoder/decoder architectures:

• Lymphoma dataset: Two 200-dimensional hidden layers, 500 epochs
• Blood cell dataset: Three 400-dimensional hidden layers, 200 epochs
• Omniglot and MNIST: 400-dimensional latent
• CIFAR-100: 4 × 4 convolutional kernels with stride 2 and padding 1. Encoder: 3 CNN layers of 64, 128, and 512

channels. Decoder: 2048-dimensional dense layer, followed by 2 CNN layers of 256, 64, and 3 channels.

Training hyperparameters. Our VAEs were trained using the Adam optimizer (Kingma & Ba, 2017) with default
parameters (learning rate .001, β1 = 0.9, β2 = 0.999. In all models, each layer except the last is followed by a ReLU
activation function. Curvatures were trained identically, except using a learning rate of .0001, after 100 burn-in epochs.
Because some training details were omitted from the original papers, we additionally chose the following hyperparameters:

• Batch size: 4,096
• Number of samples per point: 64
• β (weight for KL-divergence in VAE loss): 1

Train-test split. To minimize the risk of data leakage, we trained our VAEs on only the training data, then used the trained
VAEs to generate embeddings for the training and test data. Embeddings were generated by running points through the VAE
encoder and taking the returned mean parameter.

Evaluations. To conserve memory, we randomly subsampled 1,000 points from the training and test sets for each evaluation.
We ran 10 trials per dataset in total.

D.6. Empirical datasets

Landmasses. We generated a geospatial classification dataset for land versus water prediction by sampling 1,000 points
from an evenly sampled grid of 10,000 longitudes and latitudes, transforming them to 3-dimensional coordinates, and
assigning a “land” or “water” label to each point using the Basemap library in Matplotlib (Hunter, 2007). For classification,
we associate the 3-dimensional coordinates with the signature S2.

Neural spiking prediction. We use patch-clamp electrophysiology datasets downloaded from the Allen Mouse Brain
Atlas (Jones et al., 2009). We arbitrarily pick Neurons 33 and 46 for their nontrivial spiking dynamics. We perform a
train-test split by taking the first 80% of time points for training, and holding out the rest for testing. To represent signals in
product spaces, we apply a Fast Fourier Transform to the training data and take the top 10 Fourier coefficients by magnitude;
we label time points as “spiking” (1) or “not spiking” (0) according to whether their amplitude is greater than the median
amplitude in the training data. We then take their corresponding frequencies fi and represent each time point in S1 via the

20



Mixed-Curvature Decision Trees and Random Forests

following transformation:

ϕ : R1 → (S1)10, ϕ(t) =
(
cos

(
2π

t

fi

)
, sin

(
2π

t

fi

))∣∣∣∣10
i=1

(82)

This yields a product space representation in (S1)10. For each benchmarking trial, we randomly sample 800 points from the
training set and 200 points from the test set. We plot both signals, along with their reconstruction using their top 10 Fourier
components and the train-test split, in Figure 7.

Global temperature by month. We downloaded a list of global average monthly temperatures for the 400 largest cities in
the world from Wikipedia (Wikipedia, 2024). We transform longitude and latitude into 3-D coordinates to represent our
data in S2. To convert months to S1 valued coordinates, we transform ordinal representations of months t ∈ [0, 11] via the
following transformation:

ϕ : R1 → S1, ϕ(t) =
(
cos

(
2π

t

12

)
, sin

(
2π

t

12

))
(83)

This yields a product space representation of the data in S2 × S1. For each benchmarking trial, we randomly sample 1,000
(city, month) pairs, and then apply a standard train-test split.

Traffic prediction. We download an automobile traffic prediction dataset from Kaggle (Fedesoriano, 2020). This dataset
aggregates readings across four sensors with date and time annotations. We process the date and time annotation into day of
year (d), day of week (w), hour (h), and minute (m) labels and transform to (S1)4 analogously to the month timestamps in
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Figure 7: The “Neuron 33” and “Neuron 46” datasets. Their reconstruction using the top 10 Fourier coefficients is shown in
red, and the top half of voltages are colored in blue. The first 80% of time points were used to determine Fourier coefficients
and model training, while the last 20% are for testing.
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the global temperature data. Letting l be the (numeric) label of the sensor, we apply the following transformation to our data:

ϕ : R5 →(S1)5 × E1 (84)

ϕ(d,w, h,m, l) =

(
cos

(
2π

d

365

)
, sin

(
2π

d
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)
,

cos
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w
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)
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)
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)

(85)
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E. Ablations and effects of hyperparameters
For all experiments, we sampled 100 mixtures of 32 Gaussians using the signature P = S2 × E2 × H2 in an 8-class
regression setting (analogous to the multi-K benchmark in Tables 2 and 3, varying one parameter at a time. Results are
plotted in Figure 8.
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Figure 8: Effects of various hyperparameters on the performance of our algorithms. Asterisks imply that a result is
statistically significant, as determined by the Wilcoxon test with a Bonferroni correction applied; asterisks are omitted for
subfigure c, where all changes in depth are significant.
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F. Detailed results
F.1. Global temperature prediction plots
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(a) January temperatures.

Product DT (RMSE: 2.60) Ambient DT (RMSE: 2.06)

Tangent DT (RMSE: 6.39) k-Nearest Neighbors (RMSE: 6.24)

10

5

0

5

10

15

20

25

30

35

Te
m

pe
ra

tu
re

 (°
C

)

April temperature predictions by classifier

(b) April temperatures.
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(c) July temperatures.
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(d) October temperatures.

Figure 9: Decision boundaries for the temperature prediction task for the months of January, April, July, and October,
colored by predicted temperature across four trained predictors.

F.2. VAE latent space visualizations
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Figure 10: Visualizations of the latent space for all four of the datasets we embed using a VAE, colored by class. For
visualization purposes, we show S2 components in 2-dimensional polar coordinates, and project H2 embeddings to the
Poincaré disk.
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G. Runtimes and complexity
We summarize complexities for models used in this paper, as well as the pairwise distance preprocessing necessary for
operations such as computing nearest neighbors and creating reasonable graph edges for GNNs, in Table 7. Complexity
estimates are adapted from Virgolin (2021).

To see that the training time complexity of ProductDT is O(Dnd), observe that we must first preprocess the data into angles,
which takes O(nd) operations. From there, the angular comparison is a constant-time modification to the decision tree
algorithm, so the complexity of ProductDT is O(nd+Dnd) = O(nd). For inference, asymptotic performance is slightly
slower than decision trees because preprocessing an input requires O(d) operations.

If using all
(
d
2

)
2-D projections, training time complexities are all multiplied by d, and the O(d2) preprocessing step is added

to test time complexities.

Table 7: Complexity comparison of machine learning models where: n: number of samples, d: number of features, h:
neurons per layer, L: number of layers, D: maximum tree depth, s: number of support vectors. We include the complexity
of computing pairwise distance, which are necessary for operating models like k-nearest neighbors and GNNs without
topologies, as well.

Time Space
Model Phase Worst Avg Worst Avg
Dists n2d n2d n2 n2

MLP Train ndh+ Lnh2 ndh+ Lnh2 nd+ dh+ L(h2 + nh) h2L
Test h2L h2L h2L h2L

Perceptron Train nd nd d d
Test d d d d

SVM Train n3d n2d n2 n2

Test sd sd sd sd

GNN Train n2d n2d n2 n2

Test n2 n2 n2 n2

k-NN Train 1 1 nd nd
Test nd+n logn logn nd nd

Decision Tree Train Dnd Dnd 2D 2D

Test D D 1 1

ProductDT (vanilla) Train Dnd Dnd 2D 2D

Test d+D d+D d d

ProductDT (
(
d
2

)
splits)
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Test d2 +D d2 +D d2 d2
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Figure 11: Runtime comparison for all of our methods
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H. Interpretability and visualization
Alongside their demonstrated accuracy and efficiency, decision tree algorithms are attractive for their tractability and
interpretability. In particular, given a trained decision tree T , it is possible to:

1. Predict its behavior on the entire space of possible inputs (equivalently: T partitions P in a tractable way).

2. Determine the importance of features (for classic decision trees) or feature pairs/components (for ProductDT) by
observing how often and how early a feature(/pair/component) is used in the decision tree procedure. Heuristically,
early-splitting features are more important.

3. Visualize every node using a 2-dimensional projection of the input data and angle

H.1. Submanifold-level attribution experiment

To determine whether our method could accurately distinguish between relevant and irrelevant submanifolds, we drew
independent samples from Gaussian mixtures in H2, E2, and S2, and yielding datasets (XH,yH), (XE,yE), (XS,yS). We
then concatenated these embeddings together:

XP = XH ⊕XE ⊕XS. (86)

We trained three separate decision tree models on XP , using yH,yE, and yS as labels. Because the labels and embeddings
were drawn independently, it should be the case that only the component from the same manifold as the labels contains any
relevant information, and the other two components are simply noise. Therefore, measuring the fraction of splits that fall in
the “correct” manifold is a useful proxy for understanding tree models’ ability to pick out signal that happens in individual
component manifolds.

Our results are summarized in Table 8. We found that both product space and ambient decision trees perform well at this
task, which is to be expected.

We note that this analysis is unique to tree methods, where the split dimensions are part of the architecture; other methods,
such as perceptrons, k-nearest neighbors, or neural networks are harder to query for feature(/component) importances.
Therefore, we consider this simple experiment a useful demonstration of how decision tree learning can reveal aspects of
structure in mixed-curvature datasets that other learning algorithms cannot reveal.

Table 8: Intepretability outcomes for Gaussian mixture. Percentages reflect the proportion of splits in the trained decision
tree which fell in the non-spurious component manifold.

Model H2 E2 S2

Product DT 100% 83% 86%
Ambient DT 100% 83% 67%

H.2. Visualization

A trained tree gives us all of the information we need to visualize the data and how it is split at every node, since each node
looks at a 2-dimensional projection. We display three levels of a decision tree with a max depth of 3 in Figure 12. Note that,
in this case, the decision tree also gives us relevant information about which 2-dimensional projections are worth looking at
on the basis of their feature importances.
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Figure 12: An example of a visualized decision tree for a Gaussian mixture in P = S2E2H2. For each split, we show the
2-dimensional projection under which split angles are parameterized. Greyed-out points are discarded earlier in the tree, and
therefore do not participate in the split at that level.
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I. Additional results

Table 9: Neural network classification benchmarks.

Ambient Ambient Ambient Tangent Tangent Tangent
Dataset Signature GCN MLP MLR κ-GCN κ-MLP κ-MLR GCN MLP MLR

Sy
nt

he
tic

(m
ul

ti-
K

) Gaussian E4 26.5 ± 3.6 27.9 ± 3.1 28.2 ± 2.8 26.5 ± 3.9 27.7 ± 2.8 27.7 ± 2.7 26.5 ± 3.7 28.2 ± 2.3 28.2 ± 2.9
H4 12.0 ± 4.9 42.4 ± 5.3 40.7 ± 5.6 28.8 ± 3.3 41.9 ± 4.4 43.7 ± 3.7 29.8 ± 3.3 44.5 ± 3.6 44.1 ± 3.5

H2E2 16.4 ± 4.3 29.9 ± 2.7 30.0 ± 2.9 26.9 ± 2.6 28.1 ± 3.2 27.2 ± 2.9 27.7 ± 3.0 31.2 ± 3.7 31.3 ± 3.7
(H2)2 12.2 ± 4.2 33.7 ± 3.9 33.2 ± 4.0 26.2 ± 2.4 28.7 ± 2.9 27.5 ± 3.2 28.0 ± 2.1 33.5 ± 4.3 33.3 ± 4.3
H2S2 17.6 ± 5.6 28.7 ± 2.5 29.0 ± 2.4 16.4 ± 4.4 14.1 ± 3.0 15.0 ± 3.6 26.2 ± 3.7 28.6 ± 3.1 28.8 ± 3.2
S4 23.9 ± 1.7 26.4 ± 1.9 25.9 ± 1.6 21.1 ± 1.9 22.3 ± 1.7 21.1 ± 2.0 23.5 ± 2.4 25.4 ± 2.9 25.5 ± 2.8

S2E2 26.8 ± 2.7 23.7 ± 2.0 23.9 ± 1.9 16.0 ± 2.7 17.1 ± 2.9 14.1 ± 3.0 25.5 ± 2.0 25.1 ± 2.3 25.2 ± 2.4
(S2)2 23.9 ± 1.7 24.3 ± 2.1 24.3 ± 2.3 15.0 ± 2.2 14.1 ± 3.0 14.1 ± 3.0 24.6 ± 1.8 22.8 ± 3.2 22.7 ± 3.2

G
ra

ph CiteSeer (H2)2 23.8 ± 1.2 23.7 ± 1.3 23.8 ± 1.3 24.9 ± 1.5 24.0 ± 1.5 25.1 ± 1.3 24.8 ± 1.4 24.9 ± 1.5 24.8 ± 1.5
Cora H4 29.5 ± 0.8 29.8 ± 0.9 29.8 ± 0.9 29.6 ± 0.9 29.8 ± 0.9 29.7 ± 0.9 28.9 ± 0.9 29.3 ± 0.9 29.4 ± 0.9

PolBlogs (S2)2 93.3 ± 1.0 92.2 ± 0.9 92.1 ± 1.2 69.9 ± 10.1 70.3 ± 11.4 73.4 ± 10.8 86.4 ± 4.9 84.7 ± 5.1 84.9 ± 5.0

VA
E

Blood S2E2(H2)3 13.0 ± 1.2 12.8 ± 0.9 13.0 ± 0.9 11.4 ± 0.9 11.6 ± 0.8 12.2 ± 1.1 12.7 ± 1.3 12.1 ± 0.6 12.1 ± 0.6
CIFAR-100 (H2)4 5.8 ± 0.9 7.6 ± 0.9 7.5 ± 0.9 5.2 ± 0.7 5.5 ± 0.9 5.3 ± 0.6 5.4 ± 0.8 7.7 ± 1.0 7.7 ± 1.1
Lymphoma (S2)2 78.0 ± 0.4 78.0 ± 0.4 78.0 ± 0.4 66.9 ± 13.9 62.8 ± 14.8 61.4 ± 15.9 78.0 ± 0.4 78.1 ± 0.4 78.1 ± 0.4

MNIST S2E2H2 18.8 ± 4.4 35.9 ± 6.8 35.7 ± 6.9 14.0 ± 2.9 22.5 ± 5.5 21.9 ± 5.3 18.0 ± 4.3 37.4 ± 6.2 37.6 ± 6.0

O
th

er Landmasses S4 76.1 ± 2.0 72.5 ± 2.3 71.7 ± 2.1 73.2 ± 2.8 69.3 ± 3.9 70.3 ± 3.5 75.1 ± 2.4 73.4 ± 1.0 73.4 ± 0.9
Neuron 33 (S1)10 45.9 ± 2.5 45.1 ± 2.0 45.1 ± 2.0 47.6 ± 2.0 46.5 ± 2.5 47.0 ± 2.0 46.5 ± 2.5 55.0 ± 4.0 54.8 ± 4.0
Neuron 46 (S1)10 50.7 ± 2.0 50.6 ± 2.0 50.6 ± 2.0 49.7 ± 0.8 50.4 ± 1.1 50.0 ± 0.9 51.5 ± 1.2 53.7 ± 1.9 53.7 ± 1.9

Table 10: Neural network regression benchmarks. Missing values represent failed runs.

Ambient Ambient Ambient Tangent Tangent Tangent
Dataset Signature GCN MLP MLR κ-GCN κ-MLP κ-MLR GCN MLP MLR

Sy
nt

he
tic

(m
ul

ti-
K

)

Gaussian E4 0.21 ± 0.03 0.25 ± 0.03 0.25 ± 0.03 0.21 ± 0.03 0.25 ± 0.03 0.25 ± 0.03 0.21 ± 0.03 0.25 ± 0.03 0.25 ± 0.03
H4 3.12 ± 2.46 6.4 ± 9.0E3 4.6 ± 4.7E3 0.17 ± 0.02 0.13 ± 0.02 0.13 ± 0.02 0.17 ± 0.02 0.02 ± 0.00 0.02 ± 0.00

H2E2 2.33 ± 4.00 0.71 ± 0.78 0.77 ± 0.78 0.17 ± 0.03 0.22 ± 0.03 0.24 ± 0.04 0.17 ± 0.03 0.03 ± 0.00 0.03 ± 0.00
(H2)2 85.94 ± 152.83 5.9 ± 1.1E4 17.79 ± 31.58 0.17 ± 0.03 0.21 ± 0.03 0.20 ± 0.03 0.17 ± 0.03 0.02 ± 0.00 0.02 ± 0.00
H2S2 1.96 ± 3.33 7.94 ± 13.50 0.63 ± 0.63 0.23 ± 0.06 0.23 ± 0.04 0.28 ± 0.06 0.17 ± 0.03 0.02 ± 0.00 0.02 ± 0.00
S4 0.17 ± 0.02 0.18 ± 0.03 0.19 ± 0.03 0.25 ± 0.04 0.26 ± 0.04 0.26 ± 0.04 0.18 ± 0.02 0.03 ± 0.00 0.03 ± 0.00

S2E2 0.17 ± 0.04 0.22 ± 0.04 0.22 ± 0.04 0.22 ± 0.05 0.28 ± 0.06 0.26 ± 0.06 0.17 ± 0.04 0.03 ± 0.00 0.03 ± 0.00
(S2)2 0.18 ± 0.04 0.21 ± 0.05 0.21 ± 0.05 0.30 ± 0.06 0.18 ± 0.02 0.37 ± 0.05 0.18 ± 0.04 0.03 ± 0.00 0.03 ± 0.00

O
th

er

CS PhDs H4 3.9 ± 2.0E3 3.9 ± 2.0E3 3.9 ± 2.0E3 3.9 ± 2.0E3 3.9 ± 2.0E3 3.9 ± 2.0E3 3.9 ± 2.0E3 3.9 ± 2.0E3 3.9 ± 2.0E3
Temperature S2S1 303.60 ± 25.76 306.03 ± 20.71 305.89 ± 20.08 436.05 ± 22.00 407.55 ± 24.70 407.33 ± 24.59

Traffic E2(S1)4 5.17 ± 0.15 1.47 ± 0.07 1.50 ± 0.06 5.21 ± 0.15 1.97 ± 0.07 1.97 ± 0.07
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Table 11: Comparison of Product RF versus Ambient RF on higher-dimensional mixtures of Gaussians, extending the
4-dimensional cases in Table 2. Asterisks indicate statistical significance (p < .05).

Signature Product RF Ambient RF p-value

H4 81.73 ± 1.64 79.25 ± 1.33 0.0078∗

S4 64.38 ± 1.42 61.18 ± 1.13 0.0001∗

(H2)2 69.27 ± 1.98 68.15 ± 1.87 0.1191
(S2)2 41.05 ± 2.27 40.45 ± 2.08 0.3330
H2S2 60.37 ± 1.89 60.17 ± 1.66 0.7323
H16 92.02 ± 1.12 90.60 ± 1.08 0.0046∗

S16 52.58 ± 1.68 46.28 ± 1.55 0.0000∗

(H8)2 81.45 ± 1.41 80.52 ± 1.44 0.1469
(S8)2 66.52 ± 1.53 64.90 ± 1.73 0.0441∗

H8S8 74.50 ± 1.66 73.33 ± 1.45 0.0960
H64 93.28 ± 0.96 94.22 ± 0.80 0.0566
S64 71.97 ± 1.04 68.37 ± 1.37 0.0000∗

(H32)2 87.28 ± 1.43 87.15 ± 1.43 0.9712
(S32)2 42.97 ± 1.81 38.03 ± 1.78 0.0000∗

H32S32 81.98 ± 1.58 82.12 ± 1.72 0.8020
H1024 94.48 ± 1.14 96.00 ± 0.68 0.0020∗

S1024 69.65 ± 1.39 63.10 ± 1.93 0.0000∗

(H512)2 87.85 ± 1.37 88.25 ± 1.33 0.5809
(S512)2 84.50 ± 1.37 83.55 ± 1.34 0.0949
H512S512 86.43 ± 1.10 83.47 ± 1.05 0.0002∗

Table 12: Model comparison with decoupled hyperparameters. Because optimal hyperparameters may differ across models,
we independently selected best-performing hyperparameters using 5-fold cross validation and evaluated these models on
a held-out test set. All values are accuracy when classifying mixtures of Gaussians in H4E4S4. In general, we find that
models converge on similar hyperparameters, and out model consistently outperforms other random forests.

Product RF Tangent RF Ambient RF

CV Accuracy 70.74 70.17 69.26
Test Accuracy 71.53 70.07 69.27

max depth 9 9 9
max features sqrt sqrt None
min samples leaf 8 2 1
min samples split 8 4 2
n estimators 24 24 24
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J. Datasets availability

Table 13: All of the datasets used in this paper, with download links and citations. CC-BY-SA is short for the Creative
Commons Attribution-ShareAlike license. Allen TOU is the Allen Institute terms of use, found at https://allenins
titute.org/terms-of-use/.

Dataset Link License Citation
CiteSeer Network Repository: CiteSeer CC-BY-SA Giles et al. (1998)
Cora Network Repository: CORA CC-BY-SA Sen et al. (2008)
Polblogs Network Repository: Polblogs CC-BY-SA Adamic & Glance (2005)
CS PhDs Pajek datasets: PhD students in CS CC-BY-SA Johnson (1984)
Adjnoun Network Repository: Adjnoun CC-BY-SA Newman (2006)
Dolphins Network Repository: Dolphins CC-BY-SA Lusseau et al. (2003)
Football Network Repository: Football CC-BY-SA Girvan & Newman (2002)
Karate Club Network Repository: Karate CC-BY-SA Zachary (1977)
Les Mis Network Repository: Les Mis CC-BY-SA Knuth (1993)
Polbooks Network Repository: Polblooks CC-BY-SA Krebs (2004)
Blood 10x Genomics: CD8+ Cytotoxic T-cells CC-BY-SA Zheng et al. (2017)
Blood CD8+/CD45RA+ Naive Cytotoxic T

Cells
CC-BY-SA Zheng et al. (2017)

Blood 10x Genomics: CD56+ Natural Killer
Cells

CC-BY-SA Zheng et al. (2017)

Blood 10x Genomics: CD4+ Helper T Cells CC-BY-SA Zheng et al. (2017)
Blood 10x Genomics: CD4+/CD45RO+ Mem-

ory T Cells
CC-BY-SA Zheng et al. (2017)

Blood 10x Genomics:
CD4+/CD45RA+/CD25- Naive T
cells

CC-BY-SA Zheng et al. (2017)

Blood CD4+/CD25+ Regulatory T Cells CC-BY-SA Zheng et al. (2017)
Blood 10x Genomics: CD34+ Cells CC-BY-SA Zheng et al. (2017)
Blood CD19+ B Cells CC-BY-SA Zheng et al. (2017)
Blood 10x Genomics: CD14+ Monocytes CC-BY-SA Zheng et al. (2017)
Lymphoma Hodgkin’s Lymphoma, Dissociated Tu-

mor: Targeted, Immunology Panel
CC-BY-SA 10x Genomics (2020a)

Lymphoma PBMCs from a Healthy Donor:
Targeted-Compare, Immunology Panel

CC-BY-SA 10x Genomics (2020b)

MNIST HuggingFace: MNIST MIT Lecun et al. (1998)
CIFAR-100 HuggingFace: CIFAR-100 None Krizhevsky (2009)
Landmasses Basemap 1.4.1: is land None None
Neurons Allen Brain Atlas Allen TOU Jones et al. (2009)
Temperature Wikipedia: List of cities by average tem-

perature
CC-BY-SA Wikipedia (2024)

Traffic Kaggle: Traffic Prediction Dataset None Fedesoriano (2020)
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https://alleninstitute.org/terms-of-use/
https://alleninstitute.org/terms-of-use/
https://networkrepository.com/citeseer.php
https://networkrepository.com/cora.php
https://networkrepository.com/polblogs.php
http://vlado.fmf.uni-lj.si/pub/networks/data/esna/CSPhD.htm
https://networkrepository.com/adjnoun.php
https://networkrepository.com/dolphins.php
https://networkrepository.com/football.php
https://networkrepository.com/karate.php
https://networkrepository.com/lesmis.php
https://networkrepository.com/polbooks.php
https://www.10xgenomics.com/datasets/cd-8-plus-cytotoxic-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-8-plus-cd-45-r-aplus-naive-cytotoxic-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-8-plus-cd-45-r-aplus-naive-cytotoxic-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-56-plus-natural-killer-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-56-plus-natural-killer-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-4-plus-helper-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-4-plus-cd-45-r-oplus-memory-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-4-plus-cd-45-r-oplus-memory-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-4-plus-cd-45-r-aplus-cd-25-naive-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-4-plus-cd-45-r-aplus-cd-25-naive-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-4-plus-cd-45-r-aplus-cd-25-naive-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-4-plus-cd-25-plus-regulatory-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-34-plus-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-19-plus-b-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-14-plus-monocytes-1-standard-1-1-0
https://www.10xgenomics.com/datasets/hodgkins-lymphoma-dissociated-tumor-targeted-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/hodgkins-lymphoma-dissociated-tumor-targeted-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/pbm-cs-from-a-healthy-donor-targeted-compare-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/pbm-cs-from-a-healthy-donor-targeted-compare-immunology-panel-3-1-standard-4-0-0
https://huggingface.co/datasets/ylecun/mnist
https://huggingface.co/datasets/uoft-cs/cifar100
https://matplotlib.org/basemap/stable/api/basemap_api.html#mpl_toolkits.basemap.Basemap.is_land
https://celltypes.brain-map.org/experiment/electrophysiology/623474400
https://alleninstitute.org/terms-of-use/
https://en.wikipedia.org/wiki/List_of_cities_by_average_temperature
https://en.wikipedia.org/wiki/List_of_cities_by_average_temperature
https://www.kaggle.com/datasets/fedesoriano/traffic-prediction-dataset

