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Abstract

The excellent real-world performance of deep neural networks has received increasing attention.
Despite the capacity to overfit significantly, such large models work better than smaller ones. This
phenomenon is often referred to as the scaling law by practitioners. It is of fundamental interest
to study why the scaling law exists and how it avoids/controls overfitting. One approach has been
looking at infinite width limits of neural networks (e.g., Neural Tangent Kernels, Gaussian Pro-
cesses); however, in practise, these do not fully explain finite networks as their infinite counterparts
do not learn features. Furthermore, the empirical kernel for finite networks (i.e., the inner product
of feature vectors), changes significantly during training in contrast to infinite width networks. In
this work we derive an iterative linearised training method. We justify iterative lineralisation as
an interpolation between finite analogs of the infinite width regime, which do not learn features,
and standard gradient descent training which does. We show some preliminary results where it-
erative linearised training works well, noting in particular how much feature learning is required
to achieve comparable performance. We also provide novel insights into the training behaviour of
neural networks.

1. Introduction

Deep neural networks perform well on a wide variety of tasks despite their overparameterisation and
capacity to memorise random labels [12], often with improved generalisation behaviour as the num-
ber of parameters increases [10]. This goes contrary to classical beliefs around learning theory and
overfitting, meaning there is likely some implicit regularisation inducing an inductive bias which
encourages the networks to converge to well-generalising solutions. One approach to investigate
this has been to examine infinite width limits of neural networks using the Neural Tangent Kernel
(NTK) [4, 6], interestingly these often do worse than standard neural networks, though with extra
tricks they can perform equivalently well or better under certain scenarios [7]. Similarly, despite
their use for analysis due to having closed-form expressions for many terms, they don’t predict fi-
nite network behaviour very closely in many regards. For example, due to not learning features, they
cannot be used for transfer learning and the empirical NTK (outer product of Jacobians) changes
significantly throughout training whereas NTK theory states in the infinite limit that this is con-
stant. This raises important questions about in what ways they are different, most of which can be
summarised as how the use of feature learning impacts the networks that can be learnt.

To work towards answering this question, we look at an interpolation between standard training
and a finite analog of infinite training where we fix the empirical NTK by performing weight space
linearisation. One interpretation of this is that we are varying the amount of feature learning allowed.
We find that essentially any amount of feature learning is enough to eventually converge to a similar
performing network, assuming learning rates are small enough.
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1.1. Related Work

Li et al. [9] create an enhanced NTK for CIFAR10 with significantly better empirical performance
than the standard one, however it still performs less well than the best neural networks. Yang and
Hu [11] use a different limit to allow feature learning, however neither of these give much insight
as to why the standard parameterisation doesn’t work well.

Lee et al. [7] run an empirical study comparing finite and infinite networks under many scenarios
and Fort et al. [3] look at how far SGD training is from fixed-NTK training, and at what point they
tend to converge. Lewkowycz et al. [8] investigate at what points in training the kernel regime
applies as a good model of finite network behaviour. Both find better agreement later in training.

Chizat et al. [2] consider a different way to make finite networks closer to their infinite width
analogs by scaling in a particular way, finding that as they get closer to their infinite width analogs,
they perform less well empirically.

2. Problem Formulation

Consider a neural network fy(x) parameterised by weights 6 and a mean squared error loss function'

L(Y) = %H}A’ — Y'||?, where we minimise £ (fp(X)) for data X and labels Y. We can write the

change in the function over time under gradient flow with learning rate 7 as:

0y = =V f5,(X) T (fo,(X) = Y) (1)

fo(X) = 0O (X, X)(f5,(X) ~ V) where [6,] = <3feé(9X¢)’3f9t8(9Xj)> @)

)

It has been shown [1, 4, 6] that in the infinite width limit the empirical neural tangent kernel,
Oy, converges to a deterministic NTK, ©. This is a matrix dependent only on architecture and data
and does not change during training. From this perspective, training the infinite width model under
gradient flow (or gradient descent with a small step size) is equivalent to training the weight-space
linearisation of the neural network [6]. This raises a number of interesting observations about why
this doesn’t work well in finite networks and what is different in them. This is likely due to lack of
enough random features whereas running gradient descent on the full network allows features to be
learnt, reducing the reliance on having enough initial random features.

3. Iterative Linearisation

NTK theory says that if the width is large enough then training the weight-space linearisation is

equivalent to training the full network [6]. However in practise training the fully linearised network

performs very poorly for practically sized networks [7]. In this section we propose iterative lineari-

sation in order to interpolate between training of the standard network and the linearised network.
Consider standard (full batch) gradient descent on a neural network.

Orp1 = 0 — nde(fo,(X) = Y) where ¢; = Vo fo,(X)"

1. We use MSE for simplicity and compatability with NTK results here. While this is needed for some NTK results, it
does not effect the algorithms we propose where any differentiable loss function can be used — see Appendix A
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Here we can think of this as two separate variables we update each step, the weights 6; and
the features ¢;. However there is no requirement that we always update both, giving rise to the
following generalised algorithm:

0141 =0 — 77<Z>lsin ( ;rt}(X) - Y) G)
P =V fo, (X)" @)

where s = K % |£]. In addition, we write the linearised version of a neural network f using its
first order Taylor expansion at the weights 65 as

(@) = fo,(x) + Vo fo,(x)" (6 — 0)

Using this framework, when K = 1 this is simply gradient descent and when K = oo it is fully
linearised training. Other values of K interpolate between these two extremes. See Algorithm 1 for
more details. Note that we can also generalise this to not be periodic in terms of when we update ¢
so we call this fixed period iterative linearisation.

Algorithm 1: Iterative Linearisation (fixed period)

Input: learning rate 7, update periodicity K, pre-initialised parameters 6
for t = I..epochs do
0 < 0,1 — nVL(f"(X));
if t mod K = 0 then
| FIX) o, () + Vo, (X)T (0 — 00):
end
end

3.1. Interpreting Iterative Linearisation

It is insightful to look a bit more closely at what is happening in Algorithm 1. In the case of
standard training of a linear model, (e.g. f'"(-)), the “features’ are fixed and the learning decides
how to use those features. This is what is happening in Equation (3) and with K = oo, we don’t
learn any new features beyond the random ones we got through the initialisation of the network.
Interestingly we can say the same for infinite width networks, this idea that infinite width networks
don’t learn features is not new (see Yang and Hu [11] for work trying to avoid this pitfall), but
the finite analogy gives us a new perspective on what is happening in Algorithm 1. We then call
Equation (4) feature learning, noting that the feature learning cannot be happening in Equation (3).
From this interpretation, the Jacobian ¢, are the features we are using at time ¢ and K tells us how
frequently to update features, putting a limit on the frequency of feature learning updates.

4. Results

To examine the effect of increasing K, or equivalently reducing the feature learning frequency, we
run a number of experiments on MNIST and CIFAR10 with a slightly larger variant of LeNet [5]
with 50 channels in each convolutional layer and softmax output. The purpose of these experiments
is not to achieve amazing performance on the datasets (it only gets to ~ 50% for CIFAR10) but
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Figure 1: Iterative linearisation results on MNIST and CIFAR10 with learning rates of le-4 and
le-5
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Figure 2: Iterative linearisation on CIFAR10 with large K

to examine how training changes as the learning rate 7 and update frequency K changes. For
these experiments we note that unlike the general NTK theory, no process of our derivation relies
on the use of MSE so we instead use cross-entropy loss as is standard for image classification. We
additionally include the softmax in the loss function so it is not linearised by the algorithm, this both
means that we continue to have an output for which taking the cross-entropy loss is meaningful as
well as avoiding numerical issues caused by having the linearisation happening in the middle of the
logsumexp trick.
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Figure 1 shows the results of these experiments. For MNIST, all K < 100 follow almost the
exact same learning trajectory, converging very quickly and not saturating the amount learnt from
each set of features before updating. For K = 1000, it can be seen that the training levels off each
time before ¢ is updated. This shows that the we can get close to 100% accuracy on MNIST by
only updating the features from their initialisation twice (all except K = oo are within a 0.4% range
at the end of training). From this we can conclude that the initialisation of a neural network with
this architecture creates features that are not too far from what is needed to solve MNIST. Compare
this with CIFAR10 (learning rate le-5) where it still only takes a few feature vector updates to
reach the performance of K = 1 however this is a much lower accuracy. It is still unclear from
these experiments how the few updates necessary interacts with different architectures on the same
dataset.

Comparing CIFAR10 with learning rates of 1e —4 and 1e — 5 also gives interesting conclusions.
For n = le — 4, training diverges as soon as K goes above 5, and is unstable even for K = 5,
whereas for 7 = le — 5 training stays stable for all K up to K = 20000 (see Figure 2). Note that
this is not simply because it’s moving less far as this is a 10x reduction in the step size but a 4000x
increase in K. We include SGD training for comparison, noting that plotting per-step rather than
per-epoch gives similar performance to GD training and so we should expect most runs to reach
60% accuracy if run for twice as long.

5. Conclusion

This paper has proposed iterative linearisation, a new training algorithm that interpolates between
gradient descent on the standard and linearised neural network as a parallel infinite width vs finite
networks. We show that, at least in the case of a LeNet-like architecture with small learning rates,
any amount of features learning is enough to converge to a similar performing model. This provides
an important step towards understanding feature learning and the distinction between how infinite
and finite width networks learn. Better understanding how networks change with large amounts
of parameters has important connections to empirical phenomena such as explaining deep double
descent [10].

5.1. Future Work

It is important to do more rigourous empirical investigations to confirm these results, in particular
to scale up to larger models in order to disentangle the impact of iterative linearisation training from
the fact that this architecture will never do particularly well on CIFAR10. This is also important to
better understand under what architectures/learning rates/frequencies iterative linearisation training
is stable.

Another direction is to better understand the types of solutions that iterative linearisation finds
for various values of K. This will shed light onto how the inductive bias is changing, in particular
understanding if all K < oo find similar solutions and the infinite width limit is a step change
similar to the test performance in the experiments here, or if this is a gradual change towards the
solutions which don’t learn features.

Finally, we only consider fixed period iterative linearisation here where we update the feature
vector ¢ at regular intervals. However Fort et al. [3] showed that the empirical NTK changes faster
earlier in training so it makes sense for K to be more adaptive if this was to be used directly for
training.
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Appendix A. Iterative linearisation with a general loss function

In Section 3 we show how to get to iterative linearisation from standard gradient under mean squared
error loss. The use of mean squared error is more instructive due to its similarities with NTK results,
however it is not strictly necessary. For completeness we include here the same idea but for a general
loss function L(-).

Standard gradient descent on a function fy(-) parameterised by 6, with step size 1 and data X
can be written as

Orr1 = 0 — Ve L(f5, (X))

We can apply the chain rule, resulting in

0141 = 0 — V0 fo,(X)L'(fo,(X))

Where £'(-) is the derivative of £(-) (in the case of mean squared error, this is the residual:
L'(Y)=Y —Y). Now again using ¢; = Vg fy,(X), we can write this as

0141 = 0; — e L' (fo,(X))

With a similar argument to Section 3, we note that we don’t need to update the features ¢, every
step, resulting in the following formulation.

Op1 =0 — 77¢En£/ ( ;I,Ig(X) - Y) ®)
P = Vg fy,(X) ©)
where s = K * | %]

This now lets us use softmax followed by cross-entropy in the loss £(-) while maintaining the
same interpretation, as we do for the MNIST and CIFAR10 results.
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