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Abstract

Adapting sparse autoencoders (SAEs) to domains beyond language, such as sci-1

entific data with group symmetries, introduces challenges that can hinder their2

effectiveness. We show that incorporating such group symmetries into the SAEs3

yields features more useful in downstream tasks. More specifically, we train au-4

toencoders on synthetic images and find that a single matrix can explain how their5

activations transform as the images are rotated. Building on this, we develop adap-6

tively equivariant SAEs that can adapt to the base model’s level of equivariance.7

These adaptive SAEs discover features that lead to superior probing performance8

compared to regular SAEs, demonstrating the value of incorporating symmetries9

in mechanistic interpretability tools.10

1 Introduction11

Sparse autoencoders (SAEs) are increasingly used in domains beyond language, particularly with12

scientific data such as proteins [1, 2, 3, 4] and cell images [5, 6]. Mechanistic interpretability of13

scientific models can help us detect missing labels in our datasets [2], steer model outputs such as14

generated proteins [1], and discover novel predictors for quantities of interest [3]. Scientific data is15

frequently characterized by underlying symmetries: transformations such as rotations or translations16

that alter particular attributes in particular ways. Although accounting for those symmetries can lead17

to more data-efficient models [7], applications of SAEs in such settings overlook those symmetries.18

In this paper, we present early results suggesting that building SAEs that automatically adapt to19

symmetries in the data can greatly improve their performance in downstream tasks.20

A set of symmetries such as rotations can be modeled as a group G. Groups act on sets such as21

images; e.g. with g ∈ G, gx can denote the rotated version of an image x. Transformations of the22

same element x form an orbit {gx : g ∈ G}. We can then split the features of x into those that23

are invariant with respect to G and those that are equivariant. For example, the types of atoms24

in a molecule would be features invariant under 3D rotations, but the force vectors acting on each25

atom would be equivariant features, rotating along with the molecule. More generally, we define26

invariant features as those shared across an orbit, while equivariant features depend on the particular27

transformation applied to x. We provide a more detailed background on groups and symmetries in28

Appendix B.29

This reveals two pitfalls for training SAEs on data with group symmetries. First, the optimally sparse30

solution learns one latent per transformation for each equivariant feature, requiring O(|G|) latents31

per semantic feature, which is undesirable for larger groups. Second, since we do not know a priori32

the degree of equivariance in base model activations, we should adapt to what the model has learned33

rather than prematurely enforcing exact symmetries. We will demonstrate that designing SAEs34

while avoiding these two pitfalls can lead to improved performance in downstream applications.35

More specifically:36
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Figure 1: Overview of our approach. Left: We train an invariant SAE that maps activations of the
transformed inputs to the same latents, and optimize the matrix M to estimate how the activations
transform. Right: Transforming the decoder dictionary D 7→ MD allows us to observe which
features discovered by the SAE are invariant or equivariant with respect to input transformations.

• We show that a single matrix M acting on the activations explains more than 98% of the37

variance in the transformed activations on MLP and CNN-based autoencoders trained on a38

synthetic image dataset transformed under the group of 90◦ rotations.39

• We build on this observation to design adaptively equivariant SAEs consisting of an invariant40

autoencoder (avoiding the pitfall of exploding number of latents) which is made equivariant with41

the addition of M (avoiding the pitfall of unnecessarily-exact equivariance).42

• We demonstrate our adaptively equivariant SAEs learn more useful features that outperform43

regular SAEs in a set of binary probing tasks over our synthetic dataset despite lagging behind44

in the reconstruction/sparsity frontier.45

2 SAEs with adaptive equivariance46

We consider groupsG where all transformations can be obtained as powers of a generator g ∈ G, i.e.47

G = {gp}|G|
p=1. Our design consists of a group-invariant TopK SAE [8, 9] with a two-layer encoder48

E and linear decoderD, and a matrix M that learns to fit how the base model’s activations transform49

as its inputs are transformed with the action of group G. Thus, with canonical (one representative50

per orbit) inputs x ∈ X ⊂ Rn and model activations ψ(x) ∈ Rd, for p = 1, ..., |G|,51

D (E (ψ(gpx))) = ψ(x), and MpD (E (ψ(gpx))) = ψ(gpx). (1)
First, the SAE reconstructs all activations ψ(gpx) of the transformed inputs as the canonical activa-52

tion ψ(x). Then this reconstruction is transformed with M to obtain Mpψ(x) = ψ(gpx).53

Invariant SAE. We make our SAE invariant to group transformations of the base model’s inputs by54

training it with the following invariance loss:55

Linv := Ex∈X ,p=1,...,|G| ‖ψ(x)−D (E (ψ(gpx)))‖22 (2)
After observing that a linear encoder may fail to learn to be invariant, we build our encoder with two56

linear layers, but keep the decoder to one layer. Therefore, while the encoder is expressive enough57

to learn to be invariant, the canonical activations are still reconstructed as sparse linear combinations58

of the dictionary vectors.59

Activation transformation matrix M. To map the canonical reconstructions back to their original60

forms, we need to learn how the base model’s activations transform as its inputs are transformed.61

While closed-form solutions might be possible for certain cases, they are not practical for arbitrary62

neural networks. Instead, we hypothesize that a linear transformation should be able to explain to63

the transformation in the model’s activations, since many group actions we care about, including64

rotations, can be represented as linear transformations. Thus, we optimize M ∈ Rd×d to minimize65

LM := Ex∈X ,p=1,...,|G| ‖ψ(gpx)−Mpψ(x)‖22 . (3)
We initialize M as the identity matrix so that it fits perfectly right away if the model has learned66

invariant representations, and we optimize it using the Adam optimizer [10].67

3 Evaluation68
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Figure 2: Example images.

Dataset and models. We create a synthetic image dataset where69

each image contains four shapes. There are 8 possible shapes, each70

can be in one of four positions (see Figure 2). Applying 90◦ ro-71

tations to the images yields either two or four possible orientations72

for each shape. We train MLP and CNN-based autoencoders as base73

models where the task is to compress and reconstruct the image (see74

Appendix C for training details).75

SAE setup and baselines. We train all SAEs in our experiments over the 256-dimensional middle-76

layer activations of the base models, and compare our equivariant SAE with two regular TopK SAEs77

(linear encoder and decoder). The equivariant SAE and the first regular SAE both have an expansion78

factor of 8, resulting in 2,048 latents. The second regular SAE has |G| times the number of latents,79

corresponding to learning separate latents for each orientation of equivariant features for a total of80

8,192. The regular SAEs are trained by augmenting the dataset with 90◦ rotations.81

Probing. We define 180 binary probing tasks to evaluate the downstream usefulness of the features82

discovered by SAEs (see Appendix C). The tasks are split into four subsets, based on if a shape is83

in an image (S), and in a specific position (SP), in a specific orientation (SO), and in both a position84

and an orientation (SPO). Note that only the S tasks are invariant to rotations. It is desirable that a85

small number of latents encode the concepts used to separate the images in the binary probing task.86

Thus we first identify a small set of latents that maximally differ between the two classes by filtering87

the SAE latents with the highest absolute difference between the two classes [11]. Then for each88

task, we train three different probes over the truncated latents as well as the activations, and report89

results from the best performing probe averaged across all tasks. The probing methods are kNN,90

logistic regression, and XGBoost, with the XGBoost performing the best overall.91

3.1 Results92
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Figure 3: Sparsity/reconstruction per-
formance of SAEs for varying TopK
values. The x axis corresponds to the
base autoencoders’ reconstruction per-
formance when their intermediate acti-
vations are passed through the SAEs,
and the y axis denotes the L1 norm of
the SAE latent activations.

RESULT 1: M can be learned effectively. Over the mid-93

dle layer activations of both of our base autoencoders, we94

optimize M for 150 epochs and observe that it can be95

learned with an average R2 > 0.98 between the ground96

truth and predicted activations across all transforma-97

tions. As a naive baseline, setting M = I results in aver-98

age R2 values 0.05 and 0.49 for CNN and MLP autoen-99

coders, respectively. These results support our hypothesis100

that the activation-space transformation can be explained101

by a linear transformation.102

RESULT 2: Equivariant SAEs lag behind in the recon-103

struction/sparsity frontier. Figure 3 displays sparsity104

(L1) and the reconstruction (loss when SAE is spliced105

into the base AE) performance of the SAEs in our exper-106

iments. While for small K values the equivariant SAE107

matches the wide SAE’s reconstruction performance, reg-108

ular SAEs generally have sparser latents. The improve-109

ment in reconstruction from the invariant to the equivari-110

ant SAE further shows the effect of learning M.111

RESULT 3: Despite worse overall reconstructions, equivariant SAEs learn more useful direc-112

tions. Figure 4 shows the classification performance on the 180 tasks of the XGBoost probes with113

the CNN autoencoder for K = 16 and truncation lengths of 8 and 32. (see Appendix E for results114

with different K and the MLP autoencoder, and Appendix D for ablations). The main outcomes are115

as follows:116

• When probing over the SAE latents, the invariant and equivariant SAEs outperform regular SAEs117

on the invariant S group of tasks. Their performance unsurprisingly drops for equivariant tasks118

since the latent activations are learned to be invariant, although in some cases they might still119

outperform regular SAEs such as when the truncation length is 8.120

• Across all tasks and setups, the invariant and equivariant SAEs perform the best when probes121

are trained over the truncated reconstructions, even matching the performance of probes trained122
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over the base model activations (taken as the upper bounds). This is our primary result, as it123

demonstrates that despite the lower overall reconstruction performance (Figure 3), the equivari-124

ant SAE learns more informative directions in activation space that can lead to increased125

performance on group-structured probing tasks.126

4 Related work127
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Figure 4: Latent and reconstruction probing perfor-
mance, with K = 16 and the CNN autoencoder. Perfor-
mance of probes over the base autoencoder activations are
duplicated for easier comparisons.

Our work is one of the first to bridge128

ideas from the sparse dictionary learn-129

ing literature and the equivariant rep-130

resentation learning literature with a131

particular application towards mech-132

anistic interpretability. Learning ap-133

proximate equivariance via objec-134

tives similar to Equation 2 has been135

proposed in [12, 13], and our general136

approach of learning an invariant en-137

coder and a separate mapping from138

the canonical outputs to their original139

forms follows that of [14]. Our main140

difference is that we adapt these ap-141

proaches to the space of neural net-142

work activations, where the symme-143

tries are induced by the input transfor-144

mations and are not well-defined.145

Group-equivariant sparse dictionary146

learning methods have also been pro-147

posed [15, 16] although such exact148

symmetries cannot be enforced over neural network activations as we do not know to what degree149

they are equivariant. Finally, [17] proposes group crosscoders to analyze how the features learned150

by a neural network change as its inputs are transformed, constructing each dictionary vector with151

G blocks each the size of the inputs. The size of the dictionary thus scales linearly with |G| unlike152

our approach where the number of parameters is constant with respect to |G|.153

5 Conclusion154

We have presented early results showing that adding domain-specific properties such as group equiv-155

ariance to sparse autoencoders can significantly increase their utility in domains beyond language.156

Our first result is that a single matrix can explain more than 98% of the variance in how the ac-157

tivations of a neural network transform as its inputs are transformed with the action of a discrete158

cyclic group. We then used this result to design equivariant SAEs that discover features that lead to159

better probing performance than regular SAEs, indicating that they are more useful in downstream160

applications.161

Limitations and future work. Although our results are promising, they are so far limited to a syn-162

thetic task, relatively small models, and a small discrete group, and thus many important questions163

remain to establish the practical usefulness of adaptively equivariant SAEs: Can M be learned as164

effectively in larger models such as frontier foundation models? Can the optimization of M be im-165

proved by better utilizing the group structure, e.g. by constraining the optimization to M|G| = I?166

Does the two-layer encoder qualitatively alter what kind of features are discovered, and how can the167

features best be labeled incorporating the knowledge of how they transform with M? Finally, can168

the reconstruction performance of the equivariant SAE be improved to match that of regular SAEs?169

While the concept of interpretability is domain-agnostic, progress in mechanistic interpretability has170

largely been driven by its applications in language, which has led to certain concepts such as group171

equivariance being represented far less prominently than they are in the broader ML literature. Our172

results highlight the potential benefit of bridging that gap and tailoring mechanistic interpretability173

tools for domains beyond language, despite being early results for a work in progress.174
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A Reproducibility247

We make our SAE and probing implementations public at https://anonymous.4open.science/248

r/equivariant-sae. We implement our models from scratch using PyTorch [18], and use the249

scikit-learn [19] and XGBoost [20] packages for the various probing methods. We utilize the250

OpenCV package [21] to create our dataset.251

B Background252

B.1 Symmetries & group equivariance253

Data in scientific problems often involve various symmetries, transformations that preserve certain254

properties of the data while some properties can transform along with the symmetries. For exam-255

ple, rotating a molecule, moving it in space, or permuting its identical atoms does not change the256

molecule’s identity, but rotating it can change the orientation of certain vector quantities such as the257

forces acting on each atom.258

The frame of reference we associate with such data, e.g. the particular 3D coordinates we assign259

to atoms in a molecule, is not an inherent property of the molecule or the world but an artifact of260

our observational bias. Thus to model physical phenomena more faithfully, we would prefer to be261

independent of particular reference frames, and developing such tools has become an active research262

area [22].263

Symmetries share certain properties such as being composable (subsequent rotations can also be264

modeled as a single rotation) and invertible (any rotation can be inverted). Moreover, the identity265

transform is a trivial symmetry for any object, and the order of composition of three transforma-266

tions does not change the end result. These notions are unified by the definition of a group that267

characterizes symmetry transformations:268

Definition 1 (Group). A group (G, ∗) is a set G along with an operation ∗ : G×G→ G such that269

the following axioms are satisfied:270

• (Associativity) For all g, h, j ∈ G, it holds that (g ∗ h) ∗ j = g ∗ (h ∗ j).271

• (Identity element) There exists e ∈ G such that e ∗ g = g for all g ∈ G.272

• (Inverses) Any g ∈ G has an inverse g−1 ∈ G such that g ∗ g−1 = e.273

A group is further called abelian if its group operation is commutative, i.e. g ∗ h = h ∗ g for all274

g, h ∈ G.275

Groups are often denoted by their set, e.g. as G alone, omitting the operation. Groups can be276

discrete, such as permutation groups Sn of n objects and the cyclic groups Cn corresponding to277

rotations of an n-gon, or continuous, such as the group of rotations in n-dimensional space, defined278

as SO(n) := {R ∈ Rn×n : RRT = I, detR = 1}.279

Groups transform sets of objects such as images or molecules via their actions:280

Definition 2 (Group action). A (left) action of the group (G, ∗) on set X is a map α : G×X → X ,281

denoted282

(g, x) 7→ α(g, x) = g · x,
that satisfies these axioms for all x ∈ X:283

• α(e, x) = x with e the identity element in G.284

• α(g, α(h, x)) = α(g ∗ h, x) for all g, h ∈ G.285

A right group action can similarly be defined, and the set X is said to be a G-set.286

Definition 3 (Orbit). Let X be a G-set. The orbit of x ∈ X is the set of all points in X reachable287

by transforming x with G, denoted288

Gx := {α(g, x) : g ∈ G}.
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Figure 5: Set of available shapes in our dataset. None of the shapes is rotation-invariant, with the
horizontal rectangle and diagonal line having two orientations and the other six shapes having four
orientations.

Functions mapping between G-sets can then be invariant or equivariant depending on how they289

behave in each orbit:290

Definition 4 (Invariant and equivariant functions). For G-sets X and Y with associated actions291

αX , αY , a function f : X → Y is G-invariant if for all g ∈ G, x ∈ G,292

f(αX(g, x)) = f(x),

and G-equivariant if293

f(αX(g, x)) = αY (g, f(x)).

Using neural networks, approximate invariance or equivariance can be achieved by augmenting the294

data with symmetric inputs, or explicitly via additional loss terms [12]. Straightforward ways of295

achieving exact invariance include limiting the model’s inputs to invariant properties of the data,296

such as internal bond angles in a molecule that are rotation-invariant scalars [23], or averaging the297

outputs over each orbit [24]. Achieving exact equivariance requires more careful consideration of298

how the input features are processed in each layer of the neural network, but there exists a wide-299

ranging literature of equivariant models for various groups and data types [25].300

C Experimental details301

C.1 Dataset and probing302

Figures 5 displays the base shapes in our dataset. When rotated in increments of 90◦, the rectangle303

and the diagonal shapes have two orientations, and the other six shapes have four. Each image then304

contains a randomly sampled shape in each of its four quadrants. Precise definitions of our binary305

probing tasks are then as follows, with a shape’s position denoting which of the four quadrants it is306

in in an image, and its orientation denoting which of the four or two orientations it is in:307

• S(s): Does the image contain shape s in any position or orientation?308

• SO(s, o): Does the image contain shape s in orientation o and any position?309

• SP(s, p): Does the image contain shape s in position p and any orientation?310

• SPO(s, p, o): Does the image contain shape s in position p and orientation o?311

This results in a total of 8 S (one for each shape), 28 SO (2 shapes × 2 orientations + 6 shapes ×312

4 orientations), 32 SP (8 shapes × 4 orientations), and 112 SPO (2 shapes × 2 orientations × 4313

positions + 6 shapes × 4 orientations × 4 positions) tasks, for a total of 180 tasks. Note the tasks314

are not balanced and contain more negative examples than positive examples, and hence we report315

F1 scores rather than raw accuracies.316

The probe we ultimately report the results from, XGBoost [20], consists of 100 estimators with a317

maximum depth of 6, and is trained with the learning rate 0.3 and L2 regularization.318

C.2 Base models319

We train our base autoencoders for 100 epochs over 10,000 randomly generated samples from our320

dataset and augmenting with random 90◦ rotations with a batch size of 64 using Adam [10] with321

learning rate 1e-3. Their architectures are detailed in Table 1.322
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Table 1: Architectures of the MLP and CNN autoencoders. The first section of each models
corresponds to the encoder and the second section to the decoder. We train our SAEs over the
pre-activation encoder outputs.

MLP CNN
Input: 4096 (64×64) Input: 1×64×64

Linear(4096, 256) Conv2d(1, 16, 3×3, stride=2, pad=1)
ReLU ReLU
Linear(256, 256) Conv2d(16, 32, 3×3, stride=2, pad=1)
ReLU ReLU

Conv2d(32, 256, 16×16)
ReLU

Linear(256, 256) ConvTranspose2d(256, 32, 16×16)
ReLU ReLU
Linear(256, 4096) ConvTranspose2d(32, 16, 3×3, stride=2, pad=1, out_pad=1)

ReLU
ConvTranspose2d(16, 1, 3×3, stride=2, pad=1, out_pad=1)

C.3 SAEs323

The regular SAEs used in our comparisons are typical TopK SAEs with linear encoders and decoders.324

The equivariant SAEs also have linear decoders and use the TopK activation, but their encoders325

consists of two linear layers with a ReLU activation in between and hidden dimension of 512. We326

train our sparse autoencoders for 500 epochs over 10,000 samples from our dataset with batch size327

64 using Adam [10] with a learning rate of 1e-3.328

D Ablations329

Figure 6 displays the performance of XGBoost probes trained over the truncated latent activations330

and the reconstructions of the equivariant SAE, and after separately using a linear instead of a two-331

layer encoder, and replacing Linv with the typical reconstruction loss.332

We observe that when probing over the truncated latent activations, the equivariant SAE latents result333

in the best probes for the invariant S tasks, and ablating the invariance loss increases the performance334

in the equivariant tasks. This is expected and in a similar line with the results in Section 3.335

When probing over the truncated reconstructions however, the equivariant SAE results in the best-336

performing probes for all tasks except in the K = 32, truncation length = 32 setup, where ablating337

the invariance loss leads to slightly better probes.338

Overall, these results are evidence for the hypothesis that the better performance of the reconstruc-339

tion probes we have observed in Section 3 requires both the invariance loss and the two-layer en-340

coder.341

E Further probing results342

Figure 7 displays further probing results with TopK values 8 and 32. Results generally agree343

with those presented in Section 3. When probing over the truncated reconstructions, the invari-344

ant/equivariant SAEs result in the most accurate probes over all tasks while the performance of the345

latent activation probes drop with the equivariant tasks as expected.346
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(a) K = 8
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(b) K = 16

0.2

0.4

0.6

0.8

F1
 S

co
re

Truncated Latents

Truncation Length = 8

Truncated Reconstructions

S SO SP SPO
Tasks

0.2

0.4

0.6

0.8

F1
 S

co
re

S SO SP SPO
Tasks

Truncation Length = 32

Two-layer Enc + Invariance w/o Two-layer Enc w/o Invariance

(c) K = 32

Figure 6: Probing results after separately ablating the two-layer encoder and the invariance
loss from our equivariant SAE. Ablating either components reduces the performance of latent
activation probing for the invariant S task, and likewise the performance of the reconstruction probes
over all tasks except in the K = 32, truncation length = 32 setup.
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(a) K = 8, MLP
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(b) K = 8, CNN
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(c) K = 16, MLP
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(d) K = 16, CNN
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(e) K = 32, MLP
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Figure 7: Further probing results with different TopK values. Although increasing TopK and the
truncation length increases the performance of the probes trained over the regular SAEs activations
and reconstructions, results follow a similar trend with those in Figure 4, with the equivariant SAE
leading to the best overall probes over its reconstructions.
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