
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GROOT: GRAPH EDGE RE-GROWTH AND
PARTITIONING FOR THE VERIFICATION OF LARGE
DESIGNS IN LOGIC SYNTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional verification methods in chip design are highly time-consuming and
computationally demanding, especially for large scale circuits. Graph neural net-
works (GNNs) have gained popularity as a potential solution to improve verifi-
cation efficiency. However, there lacks a joint framework that considers all chip
design domain knowledge, graph theory, and GPU kernel designs. To address
this challenge, we introduce GROOT, an algorithm and system co-design frame-
work that contains chip design domain knowledge and redesigned GPU kernels,
to improve verification efficiency. More specifically, we redesign nodes features
utilizing the circuit node types and the polarity of the connections between the in-
put edges to nodes in And-Inverter Graphs (AIGs). We utilize a graph partitioning
algorithm based on the observation that approximately only 10% boundary edges
(nodes) between cluster, to divide the large graphs into smaller sub-graphs for fast
GPU processing. We carefully profile the EDA graph workloads and observe the
uniqueness of their polarized distribution of high degree (HD) nodes and low de-
gree (LD) nodes. We redesign two GPU kernels (HD-kernel and LD-kernel), to fit
the EDA graph learning workload on a single GPU. We evaluate the performance
of GROOT on large circuit designs, e.g., Carry Save Adder (CSA) multipliers,
the 7nm technology mapped CSA multipliers and Booth Multipliers. We compare
the results with state-of-the-art GNN-based GAMORA and the traditional ABC
framework. Results show that GROOT achieves a significant reduction in memory
footprint (59.38 %), with high accuracy (99.96%) for a very large CSA multiplier,
i.e. 1,024 bits with a batch size of 16, which consists of 134,103,040 nodes and
268,140,544 edges. We compare GROOT with state-of-the-art GPU-based GPU
Kernel designs such as cuSPARSE, MergePath-SpMM, and GNNAdvisor. We
achieve up to 1.104×, 5.796×, and 1.469× improvement in runtime, respectively.

1 INTRODUCTION

Logic synthesis plays a vital role in chip design by converting high-level circuit descriptions into
optimized gate-level implementations and helps to bridge the gap between high-level synthesis and
physical design (7). Verification is a critical step in logic synthesis that ensures internal functionality,
prevents costly errors, and reduces the time-to-market by identifying and fixing issues early in the
design cycle (19). However, traditional verification methods are computationally demanding and
increasingly time-consuming, especially for complex designs (8; 28). For example, as measured in
(20), the verification process takes more than 100 hours for the booth multiplier using the OneSpin
commercial equivalence checker tool. Furthermore, using the open-source verification tool ABC
(15), a 2048-bit multiplier requires 8.6× 105 seconds (more than nine days) (25).

Graph neural networks (GNNs) have gained popularity as a potential solution to improving verifi-
cation efficiency, e.g., GAMORA (25), since graph is one the most natural ways to represent many
fundamental objects in circuits, such as Register Transfer Level (RTL) descriptions, netlists, lay-
out, and Boolean functions. In GNN-based methods, GNN is leveraged to classify the graph nodes
which significantly reduces the verification time. For example, the 2048-bit multiplier verification
time reduces from more than nine days to 0.919 seconds when GNN is used (25).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

4 8 16 32 64 128 256 512 1024 2048
Multiplier Bit Width

10

40

80

M
em

or
y

Re
qu

ire
m

en
t(G

B)

 A100-SXM (80 GB).

A100-SXM (40GB)

RTX 2080 (12GB)

Batch size 1
Batch size 8
Batch size 16

Batch size 1
Batch size 8
Batch size 16

(a)

Table 1: Comparison of verification methods.
Methods Large multipliers runtime accuracy
ABC (15) ✓ × ✓

GAMORA (25) × ✓ ✓

GROOT (ours) ✓ ✓ ✓

(b)

Figure 1: (a) Extremely high GPU memory requirements on large circuit graphs in EDA. Example:
verification of Carry Save Adder (CSA) multiplier with different bits and batch sizes in logic syn-
thesis. (b) Comparison of verification methods.

Despite their promising results, there are research gaps. First, an effective graph machine-learning
solution for logic synthesis requires a fusion of electronic design automation (EDA) domain ex-
pertise and knowledge of graph machine learning. However, existing efforts tend to focus on just
one aspect, such as applying GNN algorithms to EDA tasks, and may lack EDA domain expertise.
For instance, GAMORA (25) does not distinguish Primary Inputs and Primary Outputs (PO) when
creating graph node features, however, PI and PO are inherently different and need to be distin-
guished. Second, processing a large-scale EDA GNN on a single hardware, which is crucial to
efficient AI, has been largely neglected. Figure 1 shows the memory consumption (on two high-end
GPUs NVIDIA A100 40 GB and 80 GB, and one low-end GPU GeForce RTX2080) required for
the verification of various bit widths multipliers. We observe that even the NVIDIA A100 could not
accommodate the 1,024-bit CSA multiplier graph when batch size equals 16. Please note that batch
processing is essential to achieve high throughput as GPUs are designed to process parallel data.
Third, the state-of-the-art (SOTA) high-performance solutions often use GPU, and simply adopt
commercialized multi-GPU solutions (e.g., GAMORA directly uses Pytorch Geometric (5) on two
or more GPUs). However, an important aspect that frequently goes unnoticed is the consideration of
GPU primitives. This fundamentally limits making single GPU achievable for EDA GNN and the
applicability of broadening accessibility in economically disadvantaged districts.

In this research, we propose GROOT, Graph Edge Re-growth and Partitioning for the Verification of
Large Designs in Logic Synthesis. GROOT is a single-GPU-based framework and simultaneously
achieves high accuracy, and low memory footprint at run-time. The classical open-source EDA tool
ABC (15) is not capable of obtaining verification results at run-time, and GAMORA (25) faces the
out-of-memory issue on large circuit graphs, as summarized in Table 1.

Our key contributions are: (i) We create the EDA graph node features. We utilize the circuit node
types and the polarity of the connections between the input edges to nodes in And-Inverter Graphs
(AIGs), to form the input embedding of the EDA graph. With the addition of more features, our
GNN model possesses the capacity to learn from a broader spectrum of circuit characteristics. (ii)
At the graph processing level, we utilize a graph partitioning algorithm to divide the large graphs into
smaller sub-graphs for GPU processing and develop a boundary edge re-growth algorithm. (iii) We
carefully profile the EDA graph workloads and observe the uniqueness of their polarized distribution
of high degree (HD) nodes and low degree (LD) nodes. We redesign two GPU kernels (HD-kernel
and LD-kernel), to fit the EDA graph learning workload on a single GPU.

2 REALTED WORK

Verification: Verification can be performed at multiple stages (see Appendix 7.1) to ensure that
the designed chip meets its intended functionality. Traditional formal verification techniques in-
clude Satisfiability (SAT), canonical diagrams, theorem proving (4), and algebraic re-writing. The
SAT technique models the verification problem as Boolean satisfiability (27; 9). Canonical dia-
grams propose different graph-based representations, such as binary decision diagrams (BDDs) (1),
Taylor expansion diagrams (TEDs) (2), and binary moment diagrams (BMDs) (17). The algebraic

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Circuit Design
Description

ABC Tool

Node Classification
and Post-Processing

m0 m1

5

m2

10

m3

14

1213

89

1167

a0 b0a1 b1

title1

title2

(a) (b) (c) (d) (e)

Post-Processing

15

5

9

6

31

18
12

8
7 11

42

17

1416

10 13

8

Graph Embedding and
Node Label Generation Large Graph PartitionCircuit to

Transitional Graph
Graph Neural

Network

Node Features : Base on
polarity of input connection.
Ex. Node 6 has features:1100

G
ra

ph
 e

dg
e

re
-g

ro
w

th

be
tw

ee
n

pa
rt

iti
on

ed
 c

lu
st

er

Transitional Graph

Four Layer
Architecture

Figure 2: Framework Overview: (a) Circuit to Transitional graph conversion. (b) EDA graph with
node features. (c) Large Graph Partitions to solve GPU memory issues. (d) Graph Neural Network
architecture. (e) Node classification and post processing.

approaches, based on modeling circuit specifications and hardware implementation as polynomials
(18), leverage symbolic computer algebra techniques (12; 3; 9) to solve verification problems.

GNN in Circuits. GNNs efficiently learn graph-like structures and extracting information (10),
particularly in EDA, where circuit netlists can be naturally represented as graphs. For instance,
NeuroSAT (21) employs message passing in a neural network to learn SAT problems and predict
satisfiability. In another study (11), GNNs were utilized to predict testability analysis for netlists and
demonstrated performance comparable to commercial tools. Further work is required to optimize
their performance and overcome scalability and data management limitations, enabling their full
effectiveness in circuit verification (25).

3 GNN FOR VERIFICATION IN LOGIC SYNTHESIS

The overview of GROOT framework is depicted in Figure 2, consisting of five stages, i.e., (a) Con-
verting the netlist into a transitional graph representation using an open-source EDA tool ABC
(15); (b) Pre-process the transitional graph and generate the standardized logic synthesis-based EDA
graph; (c) Partition of the large EDA graphs; (d) Utilize GNN for aggregation and message passing;
and (e) Node classification and post-processing.

3.1 CONVERTING NETLISTS INTO TRANSITIONAL GRAPH

A Boolean network (digital design) can be described as a directed acyclic graph (DAG), where the
nodes symbolize logic gates. An And-Inverter Graph (AIG) represents a specific type of combina-
tional Boolean network, comprised of two input AND gates and inverters (14). Essentially, AIG
graphs are specialized DAGs that encapsulate the logical functionality of Boolean networks. Inter-
estingly, through DeMorgan’s rule, the combinational logic of any given Boolean network can be
easily transformed into an AIG.

In GROOT, this transformation is accomplished through an open-source EDA tool ABC (15). Figure
3 illustrates this process using a two-bit CSA multiplier. The ABC takes a netlist as an input, as
shown in Figure 3 (a), and generates the corresponding AIG representation, shown in Figure 3 (b).
In AIG representation, inputs a1a0 and b1b0 represent the two-bit binary numbers for the multiplier
and multiplicand, respectively. The multiplication result is represented using m3m2m1m0 bits.
For example, multiplier a1a0 = 10 and multiplicand b1b0 = 11 gives the multiplication result
m3m2m1m0 = 0110. The multiplication of the least significant bits (LSB) highlighted in golden
color, symbolizing the ‘AND′ operation at node 5 (i.e., m0 = a0 · b0). The additional operation of
multiplication is ‘XOR′ (green), containing nodes 6, 7, 8, 9, and 10, and can be represented by the
equation m1 = a0 · b1 xor a1 · b0. The ‘NOT′ operations are indicated by dashed lines.

3.2 NODE FEATURES AND NODE LABEL CREATION

We take the node and edge information from the AIG representation (transitional graph) to form
the EDA graph. We define circuit-based EDA graph as G = (V,E) with N nodes vi ∈ V and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

z

and2 g0(.inp1(a0),.inp2(b0),.out(m0))

and2 g1(.inp1(a1),.inp2(b0),.out(n6))

and2 g2(.inp1(a0),.inp2(b1),.out(n7))

inv1 g3(.inp(n6),.out(n6_bar))

inv1 g4(.inp(n7),.out(n7_bar))

and2 g5(.inp1(n6),.inp2(n7),.out(n8))

and2 g6(.inp1(n6_bar),.inp2(n7_bar),.out(n9))

inv1 g7(.inp(n8),.out(n8_bar))

inv1 g8(.inp(n9),.out(n9_bar))

and2 g9(.inp1(n9_bar),.inp2(n8_bar),.out(m1))

and2 g10(.inp1(a1),.inp2(b1),.out(n11))

inv1 g11(.inp(n11),.out(n11_bar))

and2 g12(.inp1(n11),.inp2(n8),.out(m3))

and2 g13(.inp1(n11_bar),.inp2(n8_bar),.out(n13))

inv1 g14(.inp(n13),.out(n13_bar))

inv1 g15(.inp(n12),.out(n12_bar))

and2 g16(.inp1(n12_bar),.inp2(n13_bar),.out(m2))

EDA Tool:
ABC

AIG structure visualized by ABC
Benchmark "aig".

The AIG contains 10 nodes and spans 4 levels.

m0 m1 m2 m3

5

10

14

1213

89

1167

a0 b0a1 b1

(g10)(g0) (g2)

(g12)(g13)

(g1)

(g5)(g6)

(g9)

(g16)

(a)

m0 m1 m2 m3

14

10 13 12

9 8

5 7 6 11

a0 a1 b0 b1

15
16

17
18

14

10 13 12

9 8

5 6 7 11

1 3 2 4

Node type
(PI or PO or
Intermediate)

Input
Edge 1

Inverted

Input
Edge 2

Inverted

Node
ID

0 0 0 0 a0=1
1 1 0 0 5
1 1 1 1 10
0 0 1 1 m0=15
1 1 0 0 11

Node ID Label Label Meaning
(Node-Class)

15, 16, 17, 18 0 Primary Outputs
12, 8 1 Majority

10, 14 2 XOR
5, 6, 7, 11, 9, 13 3 AND

1, 2, 3, 4 4 Primary Inputs

(a) (b)

(c) (d)
(b) (e)

(d)(c)

(f)

Figure 3: Input to EDA graph flow: (a) Two-bit multiplier netlist. (b) AIG representation of two-
bit multiplier using ABC (the dotted line represents inverted inputs to node). (c) Node features
(selected nodes shown). (d) EDA graph of two-bit CSA multiplier. (e) Ground truth labels for the
GNN model. (f) EDA graph embedding with node features of two-bit CSA multiplier.

edges (vi, vj) ∈ E. We use an adjacency matrix A ∈ RN×N to describe graph connections, a
degree matrix Dii =

∑
j Aij and a feature matrix X = {x1, x1, ..., xN}. We create the input

embedding graph utilizing four distinct node features. The nodes in an EDA graph (Figure 3, (d))
can be categorized into three distinct types: Input variable nodes or Primary Inputs (PI), Logic gate
nodes or internal nodes which are AND gates, and Output variable nodes or Primary Outputs (PO).
We create node features from the node types and the polarity of input edges as depicted in Figure 3
(c). The first two bits indicate the node, e.g., PI, internal node, or PO. The encoding is as follows:
PI and PO are represented by ‘00’. Internal nodes are represented by ‘11’. The subsequent two
bits are used to characterize the polarity of the input edge connections. For instance, node 5, an
internal node with non-inverted input edges, has a feature vector of 1100 as depicted in figure 3 (c).
Similarly, node 10, another internal node with inverted inputs, has a feature vector of 1111. The PI
node 1 or a0 has a feature vector of 0000, while the PO node 15 or m0 has a feature vector of 0011
as highlighted in red dotted lines between the figures 3 (c) and 3 (f).

We create EDA graph embedding using these node features as shown in Figure 3 (f). Our input em-
bedding contains four-node features, a distinction from the three-node features in GAMORA (25).
Implementing additional node features offers a more robust representation of nodes and improved
generalization. Our model possesses the capacity to learn from a broader spectrum of circuit char-
acteristics. Next, we formulate labels for the ground truth using ABC (15). Figure 3 (e), depicts the
labels for the two-bit CSA multiplier. For nodes 1 to 4 (PI nodes), we label them as 4. For nodes
5, 6, 7, 9, 11, 13 (two-input AND gates), we label as 3. For nodes 10 and 14 (XOR), we label as 2.
For nodes 12 and 8 (MAJ functionality) are labeled as 1. Lastly, all PO nodes, namely 15 to 18, are
labeled as 0.

3.3 PARTITION, NODE CLASSIFICATION AND POST-PROCESSING

To deal with the memory footprint challenge caused by large EDA graphs, we use the graph par-
tition, where we divide our graph into sub-graphs as shown in Figure 2 (c), and feed them to our
GNN architecture to perform a node classification task (see Appendix 7.2). We use the GraphSAGE
framework (6), a “sampling-and-aggregation” approach to generate node representations. We ob-
serve that EDA graphs contain approximately only 10% boundary edges (nodes) between clusters.
We regenerate boundary edges between disconnected clusters to prevent the loss of features and sup-
port effective message passing between inter-cluster nodes (see boundary edge re-growth algorithm
in Appendix 7.3).

We use GNN to classify the nodes into two categories XOR and MAJ as depicted in Figure 2 (e). We
use the algebraic re-writing technique (28; 3) for verification. The algebraic representation of the
basic Boolean operators is summarized in the appendix Table 3. Consider the case involving the XOR
and MAJ operations. The sub-polynomial expression is x1 + 2x2 + . . . , where x1 = XOR(a, b, c)
and x2 = MAJ(a, b, c), where a, b, c are inputs of XOR and MAJ functions. Substituting the algebraic
representations of XOR and MAJ into the sub-polynomial, we obtain, x1 + 2x2 + . . . = (a+ b+ c−
2ab− 2ac− 2bc+ 4abc) + 2(ab+ ac+ bc− 2abc) = a+ b+ c.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

This simplification results in the elimination of the four nonlinear terms: 2ab, 2ac, 2bc, and 4abc.
This polynomial reduction based on algebraic re-writing (28; 3) is integrated in ABC (15). This
approach is reliant on detecting XOR and MAJ gates from a flattened netlist, a process that tends to
be time-consuming. We leverage the GNN node classification to detect XOR and MAJ gates which
makes verification efficient. In the two-bit CSA multiplier, nodes 10 and 14 are classified as XOR,
while nodes 12 and 8 are classified as MAJ. These nodes are subsequently used for verification with
the methodology described in (28).

4 KERNEL DESIGN - GROOT-GPU

High Degree Kernel Strategy
Static workload partition
Efficient single line accumulation

Low Degree Kernel Strategy
Degree sorting
Assemble rows workload partition
Coalesce dumping

w33 w34 w64

w1 w2 w32

w33 w34 w64

Product
Stage row2

row3

row4

Barrier

Accum
Stage

buf1

row1

← wid/32 →

⋯⋯

⋯⋯

⋯⋯

⋯⋯

row1

Degree
sorting

Single warp workload (degree 1)

Global memory

buf2 buf32

shared buf

w1 w2 w32row1 ⋯⋯

row2 row3 … row 𝑛𝑧!"#

row1
Single warp workload (degree 2)

row2 row	𝑛𝑧!"#/2

row1
Single warp workload (degree 3)

row 	𝑛𝑧!"#/3

A-❶

A-❷

B-❶

B-❸Dumping

AccumB-❷

Extremely
High degree
Macro nodes

(≥ 512)

EDA Graph

Extremely
Low degree
Macro nodes

(≤12)

← wid/32 → ← wid/32 →

…

…

⋯ global buf 1 ⋯

Accum
Stage

buf1

row1 ⋯⋯

⋯⋯

⋯

buf2 buf32

buf1

buf1
⋯

buf31
A-❷

Figure 4: GPU Kernel Design for EDA

We tailor GPU kernels (high-degree
(HD) kernel and low-degree (LD)
kernel) separately for the extremely
high-degree macro nodes (≥ 512)
and the low-degree macro nodes (≤
12) (EDA graph observation please
see Appendix 7.4). The whole GPU
kernel is programmed in CUDA C.
The codebase will be released with
the paper. We start by partition-
ing the workload (non-zero elements)
statically for each row of the adja-
cency (A) matrix (all nodes possess-
ing a degree equal to the width). This
involves splitting the non-zero ele-
ments evenly into 2n parts, then se-
quentially assigning these divisions
to distinct warps within the block, re-
peating until all rows’ workload has
been allocated.

We show an example in the Fig. 4. The HD macro nodes contain 4 rows, namely row1 to row4.
Each row contains wid non-zero elements. Each block in the kernel contains 64 warps, numbered
from w1 to w64. We divide each row into 32 equal workloads, each containing wid

32 non-zero el-
ements. Then we assign the workloads in row1 to the warps numbered w1 to w32 in turn, and
assign the workloads in row2 to warps from w33 to w64. Repeat the above process, and assign the
workloads in row3 and row4 to warps from w1 to w32, and warps from w33 to w64 in turn. In step
A-1, the kernel multiplies non-zero elements in the adjacent matrix with the corresponding rows of
the right-hand feature matrix based on static workload partitioning. Intermediate results are stored
in shared memory buffers assigned to each warp. Each warp, from w1 to w32, has its corresponding
buffer (buf1 to buf32). In step A-2, we accumulate the results in the 32 buffers using the tree-based
accumulation. First, the direction of the warp operation is reset, and the 32 threads in each warp are
responsible for one bit in the buffer with the same number. Then, the tree-shaped accumulation oper-
ation within the warp is performed using warp synchronization primitives, which can be completed
in 5 cycles. The tree-shaped accumulation, designed to ensure efficient completion, can save about
half the number of cycles compared to the AtomicAdd function to complete all accumulations. As
shown in the example in figure 4, after the first cycle, we get the first accumulation result, that is, the
sum of buf1 and buf2 is stored in buf1, the sum of buf3 and buf4 is stored in buf3, ..., and the
sum of buf31 and buf32 is stored in buf31. Following the same process, after the second cycle, we
get the second accumulation result stored in buf1, buf5, ..., buf29. After the fifth cycle, the final
accumulation result is stored in buf1. After the tree-shaped accumulation operation is completed,
the final output of a row of results is obtained, which can be directly transferred to the corresponding
row in the global memory without additional accumulation operations on the global memory, greatly
increasing the execution efficiency of this SPMM kernel.

The LD-kernel design for low-degree macro nodes is shown in the lower half of Fig. 4. Step B
processes the degree sorting on the adjacent matrix with the following steps: (1) computing each
row’s degree using the row pointer array with time complexity of O(n) when employing count sort
(23) or radix sort (13), with n indicating the number of rows; (2) applies a stable sorting algorithm to
sort rows by their degrees; and (3) updating the row pointer array to reflect the new rows’ order, with

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

RHS Row 𝑵𝒁𝒎𝒂𝒙/𝑫𝒆𝒈

Figure 5: Detailed process of LD-kernel, from degree-sorting, row-assembling, block-partitioning,
to warp-wise multiplication and summation, with block-wise parallelism.
time complexity of O(n). The dominant time complexity of this operation arises from applying the
stable sorting algorithm. Nevertheless, employing count sort, a linear time-complexity algorithm,
can optimize the overall time complexity toO(n). This enhances efficiency compared to alternative
algorithms and the rearranged adjacent matrix has a highly regular degree distribution due to parti-
tioning. We adopt the ”row-assembling” workload partitioning in step B-2, which is different from
GNNAdvisor (24). This approach assigns multiple rows at the same degree to one warp to achieve a
higher rate of utility of a single warp, thereby increasing the overall efficiency. We set this kernel’s
number of warps per block to warpmax as a hyperparameter. In the example, for rows with degrees
of 1, 2, and 3, each warp is responsible for nzmax, nzmax/2, and nzmax/3, rows, respectively,
where nzmax is also a hyperparameter indicating the maximum amount of non-zeros each warp can
contain. When the degree is one, row1, to rownzmax

, are assigned to the workload of a single warp.
Similarly, nzmax/2, rows at the degree of 2 and nzmax/3, rows with a degree of 3 are assigned
to two separate warps. In addition, the partitioning remains is processed recursively to ensure the
minimum error in calculation, as mentioned in part 2. The whole partitioning method significantly
improves the efficiency of the LD-kernel.

The sorting and row-assembling details are described in Fig. 5. The warp-block operation of LD-
kernel starts with sorting on the original sparse input by the degree of each row and maps the left-
hand side (LHS) rows into an array linearly, whereby the partitioning is executed via dividing the
array into blocks of rows according to their degree, sequentially from the smallest to the largest.
Then, within the block, warps will operate in parallel to extract non-zeros in the rows to multiply the
corresponding right-hand-side (RHS) rows. The resulting product rows are summed up to produce
the output. All blocks perform the whole process in parallel. For example, in the lower left part of
Fig. 5, warp 1 traverses its non-zeros from the left to the right, meanwhile locating the correspond-
ing RHS row (1,1). The first 1 implies warp 1, and the second 1 refers to the first row, which warp 1
is responsible for.

Multiple rows of non-zero elements are assigned to the same warp rather than one row per warp.
Since the degree of each row is small, say 3, the number of warps per block in this kernel is set to
6m. For rows with degrees of 1, 2, and 3, each warp is responsible for 6m, 3m, and 2m rows, which
translates into nzmax, nzmax/2 and nzmax/3 rows in the figure, respectively. This increases the
proportion of active warps. In addition, this significantly reduces the overhead of warp switching and
improves calculation efficiency. The aggregated organization method enhances access continuity to
global memory when transferring calculation results from shared memory to global memory. On
top of that, We utilize the technique of coalesce dumping to exploit this advantage fully. During step
B − 3 called coalesce dumping, it writes the intermediate results of multiple consecutive rows from
the same warp into a continuous area in global memory, its efficiency is also improved.

5 PERFORMANCE EVALUATION

This section presents the evaluation of GROOT by comparing its memory usage, and run-time
against two baselines: the traditional open source tool ABC (15) and the state-of-the-art GNN-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1 2 4 8 16 32 64
Partitions

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

+8.70%

(a)

CSA Mult, Batch Size=1

32-bit
32-bit rec
64-bit
64-bit rec
128-bit
128-bit rec

256-bit
256-bit rec
512-bit
512-bit rec
1024-bit
1024-bit rec

1 2 4 8 16 32 64
 # Partitions

99.7

99.8

99.9

100

Ac
cu

ra
cy

 (%
)

(b)

CSA Mult, Batch Size=16

256-bit
256-bit rec
512-bit
512-bit rec
1024-bit
1024-bit rec

256-bit
256-bit rec
512-bit
512-bit rec
1024-bit
1024-bit rec

1 2 4 8 16 32 64
Partitions

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

+12.62%

(c)

Booth Mult, Batch Size=1

32-bit.
32-bit rec.
64-bit.
64-bit rec.
128-bit.
128-bit rec.

256-bit.
256-bit rec.
512-bit.
512-bit rec.

256-bit.
256-bit rec.
512-bit.
512-bit rec.

1 2 4 8 16 32 64
Partitions

60

70

80

Ac
cu

ra
cy

 (%
)

+3.18%

(d)

7nm tech map CSA, Batch Size=1

64-bit
64-bit rec
128-bit
128-bit rec
256-bit
256-bit rec

512-bit
512-bit rec
768-bit
768-bit rec

Figure 6: Verification accuracy as a function number of partitions for (a, b) CSA multipliers, batch
size 1 and 16, respectively; (c) Booth multipliers, batch size 1; (d) CSA multipliers after 7nm tech-
nology mapping, batch size 1. All the multipliers were trained using 8-bits.

based GAMORA (25). When comparing with (25), we run the GAMORA framework against our
modified datasets. We use a Linux-based host with AMD EPYC 7543 32-Core Processor and an
NVIDIA A100-SXM 80 GB.

Dataset Generation. Carry Save Adder (CSA) Multipliers. We create a dataset of CSA multipliers
utilizing the open-source tool ABC (15; 28). We partition the dataset into splits of 80% for training,
10% for validation, and 10% for testing. We generate input graph embeddings with features and
labels essential for GNN-based learning. A noticeable trend is the significant increase in the number
of nodes and edges of the input embedding graph as the bit widths of CSA multipliers increase.
For instance, multiplier of 1024-bit width has around 8.3 million nodes and 16.7 million edges
(Appendix Table 4). Furthermore, we create a dataset of large CSA multipliers to evaluate GROOT
on larger graphs. We set the batch size to 16 and created a very large graph (Appendix Table 5).

Booth Multipliers. We create a new dataset dedicated to Booth multipliers to expand the dataset op-
tions (See Appendix Table 6) Booth-encoded multipliers, compared to CSA multipliers have com-
plex structures and produce more complex graphs.

CSA Multipliers after Technology Mapping. For a thorough evaluation of GROOT, we use the ASAP
7nm technology mapping (26) on CSA multipliers to create a 7nm technology-mapped dataset.
This integration with the technology-mapped netlist offers an additional dataset intended for post-
technology mapping (See Appendix Table 7). Further, we create an FPGA-mapped CSA multiplier
dataset to evaluate GROOT.

5.1 ACCURACY ANALYSIS OF VARIOUS MULTIPLIERS

Our GNN model is trained on an 8-bit multiplier and then used in inference on larger multipliers
of the same dataset. For instance, the model is trained using an 8-bit CSA multiplier and is then
tested on a 1024-bit multiplier, with a batch size of 16. Figure 6 shows the accuracy across various
datasets as a function of the number of partitions. In all figures, solid lines indicate accuracy with
recovery, and dashed lines represent accuracy without recovery. Figure 6 (a) shows the accuracy
on CSA multipliers with batch size one. Without any partitioning (i.e., number of partition=1),
we achieve high accuracy, reaching 100% for multipliers of sizes 128-bits and above, while the
accuracy is 99.94% for the 32-bit multiplier. As the number of partitions increases, the loss in
accuracy becomes more noticeable because more partitions require the removal of more boundary
edges. However, using our boundary edge re-growth approach effectively recovers accuracy. In
Figure 6 (a), the solid line denotes the regained accuracy when using boundary edge re-growth.
Notably, this edge re-growth method achieves a maximum recovery of 8.7% boost in accuracy of a
32-bit multiplier. By adopting our edge re-growth approach, one can afford to use more partitions
while maintaining high accuracy.

We evaluate accuracy on large CSA multipliers such as the 1024-bit multiplier with a batch size
of 16 containing 134,103,040 nodes and 268,140,544 edges. The figure 6 (b) shows accuracy with
respect to number of partitions. The trends show that the accuracy is at 100% up until 16 partitions.
This accuracy can be attributed to the presence of a large number of edges in these large graphs and a
small number of edges removal does not affect message passing in GNN. Consequently, partitioning
does not much impact the accuracy. However, post the 16-partition mark, there is a slight drop in
accuracy since more edges are removed to create partitions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 2 4 8 16 32 64
 # Partitions

50

60

70
Ac

cu
ra

cy
 (%

)

FPGA Acc:Training on 8-Bit

64-bit
64-bit rec.
128-bit rec
128-bit rec

256-bit
256-bit rec
512-bit
512-bit rec

256-bit
256-bit rec
512-bit
512-bit rec

1 2 4 8 16 32 64
 # Partitions

70

80

90

Ac
cu

ra
cy

 (%
)

FPGA Accu:Training on 64-Bit

64-bit
64-bit rec.
128-bit rec
128-bit rec

256-bit
256-bit rec
512-bit
512-bit rec

256-bit
256-bit rec
512-bit
512-bit rec

1 2 4 8 16 32 64
 # Partitions

1

2

3
4
5
6

M
em

or
y

(G
B)

20.49%

FPGA Memory, Batch Size=1
64-bit
128-bit

256-bit
512-bit
256-bit
512-bit

Figure 7: FPGA mapped dataset results showing (a) memory utilization and (b) accuracy as a func-
tion of the number of partitions for CSA multipliers, following the application of FPGA mapping,
with a batch size of 1. All the multipliers were trained using 8-bits.

1 2 4 8 16 32 64
 # Partitions

1

2

3
4
5
6
78

M
em

or
y

(G
B)

64.94%

(a)

CSA Mult, Batch Size=1
32-bit
64-bit
128-bit

256-bit
512-bit
1024-bit

256-bit
512-bit
1024-bit

1 2 4 8 16 32 64
 # Partitions

1

10

50
80

M
em

or
y

(G
B) 59.38%

(b)

CSA Mult, Batch Size=16

256-bit
512-bit
1024-bit

256-bit
512-bit
1024-bit

1 2 4 8 16 32 64
 # Partitions

1

2

3

M
em

or
y

(G
B)

41.84%

(c)

Booth Mult, Batch Size=1
32-bit
64-bit
128-bit
256-bit
512-bit

32-bit
64-bit
128-bit
256-bit
512-bit

1 2 4 8 16 32 64
 # Partitions

1

2

3
4
5
6
7
9

M
em

or
y

(G
B)

70.15%

(d)

7nm tech map , Batch Size=1
64-bit
128-bit
256-bit
512-bit
768-bit

64-bit
128-bit
256-bit
512-bit
768-bit

Figure 8: Memory utilization as a function of the number of partitions for (a) CSA multipliers, for a
batch size of 1, (b) CSA multipliers, for a batch size of 16, (c) Booth multipliers, for a batch size of
1, and (d) CSA multipliers, following the application of 7nm technology mapping, with a batch size
of 1. All the multipliers were trained using 8-bits.

To evaluate GROOT’s performance with complex graphs, we utilize the Booth multipliers dataset.
Figure 6 (c) shows accuracy with respect to the number of partitions. The accuracy drop is more
compared to that in other datasets. However, the utilization of the edge re-growth approach enables
the mitigation of this accuracy drop, as illustrated by the solid line in Figure 6 (c). The re-growth
achieves a maximum 12.62% accuracy recovery in a 32-bit multiplier. Additionally, we test with the
ASAP 7nm technology (26) mapped netlist dataset. This netlist comprises 161 standard cell gates,
including the multi-output gate, leading to certain irregularities. As evidenced in Figure 6 (d), even
with such irregularity, GROOT shows high accuracy and maintains more than 76% accuracy after
edges re-growth. In summation, GROOT is capable of handling design complexities.

Figure 7 (a) shows the accuracy of FPGA-mapped CSA multipliers with batch size equal to 1 and the
model is trained on 8 bits. The accuracy is low among all the datasets. To further improve prediction
accuracy, we focus on training the GNN model using larger multipliers. This approach significantly
improves the model’s prediction accuracy. When the model trained on a 64-bit multiplier boosts the
accuracy for a 64-bit multiplier from 71.82% (Figure 7 (a), number of partition=1) to 90.8% (Figure
7 (b), number of partition=1) an 18.98% boost in accuracy. However, this accuracy gain comes with
increased training time. Training a 64-bit FPGA for 100 epochs takes 2914.42 seconds. To mitigate
this time cost, we propose designing a specialized kernel for faster matrix multiplication, a major
factor in training and inference time.

5.2 MEMORY FOOTPRINT ANALYSIS

Figure 8 illustrates the GPU memory utilization by various multipliers with respect to the number of
partitions. Figure 8 (a) shows the GPU memory utilization on the y-axis and the number of partitions
on the x-axis for CSA multipliers with batch size one. As the number of partitions increases, the
memory requirement decreases. For larger multipliers (e.g., 1024 bits), the memory reduction trend
follows an exponential decay. When partitioned into 64 sub-graphs, the 1,024-bit multiplier showed
a maximum benefit of 64.94% reduction in memory requirement as per depicted in the Figure 8 (a).

To evaluate the scalability of GROOT, we evaluate its performance on massive multiplier graphs
such as the 1024-bit multiplier with a batch size of 16 containing 134,103,040 nodes and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

32 64 128 256 512 1024
Multiplier Bit Width

10 2
10 1
100
101
102
103
104
105

Ti
m

e
(s

)

CSA Multiplier Timing Analysis
ABC Timing
GROOT No Part
GROOT 2 Part
GROOT 4 Part
GROOT 8 Part

GROOT 16 Part
GROOT 32 Part
GROOT 64 Part
GAMORA

GROOT 16 Part
GROOT 32 Part
GROOT 64 Part
GAMORA

32 64 128 256 512
Multiplier Bit Width

100

101

102

Ti
m

e
(m

s)

Booth Timing

GAMORA
GROOT No part
GROOT 2part
GROOT 4part

GROOT 8part
GROOT 16part
GROOT 32part
GROOT 64part

GROOT 8part
GROOT 16part
GROOT 32part
GROOT 64part

64 128 256 512 768
 Multiplier Bit Width

100

101

102

Ti
m

e
(m

s)

7nm Tech map Timing

GAMORA
GROOT No part
GROOT 2part
GROOT 4part

GROOT 8part
GROOT 16part
GROOT 32part
GROOT 64part

GROOT 8part
GROOT 16part
GROOT 32part
GROOT 64part

Figure 9: Different multipliers verification time comparisons: (a) CSA Multiplier, (b) Booth Multi-
plier, (c) 7nm technology mapped multiplier.

64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

Bit Width

0

2

4

6

8

10

booth - A100

64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

Bit Width

booth - RTX6000

64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

Bit Width

Tech Map (7nm) - A100

64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

Bit Width

Tech Map (7nm) - RTX6000

64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

Bit Width

FPGA - A100

64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

Bit Width

FPGA - RTX6000

Ac
ce

le
ra

tio
n

Ra
tio

MergePath-SpMM GROOT-GPU(Ours) CuSPARSE GNNAdvisor

Figure 10: The runtime comparison among GROOT-GPU and SOTA GPU-based GPU Kernel de-
signs, where the acceleration ratio of 1 from GNNAdvisor is drawn as the black dash line.

268,140,544 edges, as depicted in Figure 8 (b). Partitioning the 1,024-bit multiplier into 64 sub-
graphs resulted in a maximum memory reduction of 59.38%. Without partitioning, even high-end
GPUs such as NVIDIA A100-SXM with 80 GB memory cannot perform verification on this mas-
sive graph. Thus, GROOT offers a fundamental solution to scalability. Our method is different from
GAMORA (25), which requires multiple GPUs to handle massive graphs while we only need one
low-end GPU. Table 2 shows the different multipliers and their GPU memory utilization. Further-
more, to recover the accuracy, our algorithm regrows the edges after partitioning. The effect of the
number of partitions on the memory requirement can be observed until the number of partitions is
equal to 16. When the partitioning size is large (say 32) as shown in Figure 8 (b), the recovered edge
consumes a large portion of the memory footprint, thus we observe less memory saving.

To demonstrate GROOT’s effectiveness on complex designs, we evaluate it on different complex
datasets. Figure 8 (c) illustrates memory utilization versus the number of partitions for booth multi-
pliers, indicating an exponential reduction in memory with respect to partitions. The 512-bit booth
multiplier shows maximum memory requirement reduction which is 41.84%. Figure 8 (d), displays
memory utilization versus number partitions for 7nm mapped CSA multipliers, demonstrating a
significant reduction in memory requirement for post-technology-mapped CSA multipliers. For in-
stance, the maximum memory requirement reduction for the 768-bit multiplier is 70.15%. Similarly,
Figure 7 (c) shows memory utilization for FPGA-mapped CSA multipliers. The maximum memory
requirement reduction is 57.62% for a 512-bit multiplier. The benefits of memory reduction remain
with increased design complexity.

Table 2: Large Multiplier GPU Memory Usage (In MB) Comparison. (Batch size of multipliers=16,
OOM= Out of Memory).

Part. 256-Bit 512-Bit 1024-Bit
GAMORA 8,263 29,375 OOM

GROOT 2 Part. 5,457 18,135 68,923
GROOT 4 Part. 3,923 13,025 48,463
GROOT 8 Part. 3,157 8,421 32,093
GROOT 16 Part. 2,901 7,909 27,997
GROOT 32 Part. 2,901 7,909 27,997
GROOT 64 Part. 2,901 7,909 27,997

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.3 RUN TIME ANALYSIS AND COMPARATIVE STUDY

Figure 9 shows the inference run time of verifying different multipliers of different widths after
applying boundary edge re-growth for accuracy recovery. As shown in Figure 9 (a), as the bit width
increases, ABC’s run time expands exponentially compared to both GROOT and GAMORA. In
comparison, GROOT significantly outperforms ABC (15). When processing graphs for 1,024-bit
CSA multipliers partitioned into 64 subgraphs, GROOT achieves a speedup of 1.23 × 105 over
ABC. Furthermore, the verification times exhibited by different partitioned graphs using GROOT
align closely with GAMORA (25). It is important to recognize that the verification time for GROOT
depends upon the number of partitions: an increase in the number of partitions slightly increases the
verification time due to a small partition time. It is important to highlight that neither GAMORA
nor ABC can efficiently handle large graph datasets on a single GPU, as depicted in Figure 1.

Further, we show the GROOT verification time using Booth (Figure 9 (b)) and 7nm technology-
mapped (Figure 9 (c)) datasets compared to GAMORA (25). We set up the baseline for both these
datasets and compared results with GNN-based baseline GAMORA (25) since our earlier result on
CSA shows ABC (15) require excessively long verification times. In the case of booth multipliers
(Figure 9 (b)), GROOT without partition and with partition equal to two outperforms the verifica-
tion time of the GAMORA (25). Technology mapped multiplier case (Figure 9 (c)), GROOT with
no partition outperforms verification time to GAMORA (25). In both cases, partitioning does not
greatly affect runtime, but it improves memory efficiency for large graphs.

5.4 GPU KERNEL RESULTS

We compare our design with SOTA GPU-based GPU Kernel designs such as cuSPARSE (16),
MergePath-SpMM (22), GNNAdvisor (24). Figure 10 shows the comparison results of MergePath-
SpMM, our GROOT-GPU, and CuSPARSE against GNNAdvisor, represented by the black horizon-
tal dashed line. The kernels are tested on the graph of the Booth Multiplier, Technology Mapping,
and FPGA 4LUT datasets with bit widths ranging from 64 to 512 and an embedding dimension of
32. The kernels perform SpMM operations given the graph adjacency matrices with corresponding
embeddings, and the runtime of SpMM operations are recorded by the type of kernels, the bit width
of the net list which graphs describe, and the datasets where the graphs belong to. Our GROOT-GPU
demonstrates superior acceleration compared to the other three SOTA SpMM kernels in most cases.
The performance gap widens as the bit width of the multiplier datasets increases and with more
powerful GPUs. GROOT-GPU achieves the highest acceleration ratio of 10.28 for the Booth dataset
with a bit width of 512 on the A100 GPU, outperforming the second-fastest MergePath-SpMM
by 1.67× and the third-fastest CuSPARSE by 1.95×. The results highlight the efficiency of our
GROOT-GPU kernel in SpMM operations, which is an essential step in GNNs’ message passing,
particularly for complex datasets and higher bit widths, making it a promising choice for various
GNN-related applications.

6 CONCLUSION

In this paper, we introduce GROOT, an algorithm and system co-design framework that contains
chip design domain knowledge, graph theory, and redesigned GPU kernels, to improve verifica-
tion efficiency. We redesign nodes features utilizing the circuit node types and the polarity of the
connections between the input edges to nodes in And-Inverter Graphs (AIGs). We utilize a graph
partitioning algorithm to divide the large graphs into smaller sub-graphs for fast GPU processing.
After profiling EDA graph workloads, we notice their distinct distribution of high-degree and low-
degree nodes and tailor the GPU kernel accordingly. We evaluate our framework on large circuit
designs, e.g., CSA multipliers, the 7nm technology mapped CSA multipliers and Booth Multipli-
ers. We compare the results with state-of-the-arts, e.g., GAMORA and ABC. Experimental results
show that GROOT achieves a significant reduction in memory footprint, with high accuracy for a
very large CSA multiplier, i.e., 1,024 bits with a batch size of 16. We also compare GROOT with
SOTA GPU-based GPU Kernel designs such as cuSPARSE, MergePath-SpMM, and GNNAdvisor,
and achieve notable runtime improvement.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

[1] Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on
Computers, C-35(8):677–691, 1986.

[2] M. Ciesielski, P. Kalla, and S. Askar. Taylor expansion diagrams: A canonical representation
for verification of data flow designs. IEEE Transactions on Computers, 55(9):1188–1201,
2006.

[3] Maciej Ciesielski, Tiankai Su, Atif Yasin, and Cunxi Yu. Understanding algebraic rewriting
for arithmetic circuit verification: A bit-flow model. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 39(6):1346–1357, 2020.

[4] Maciej Ciesielski, Cunxi Yu, Walter Brown, Duo Liu, and André Rossi. Verification of gate-
level arithmetic circuits by function extraction. In 2015 52nd ACM/EDAC/IEEE Design Au-
tomation Conference (DAC), pages 1–6, 2015.

[5] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

[6] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs, 2017.

[7] Jie-Hong (Roland) Jiang and Srinivas Devadas. Chapter 6 - logic synthesis in a nutshell.
In Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting (Tim) Cheng, editors, Electronic
Design Automation, pages 299–404. Morgan Kaufmann, Boston, 2009.

[8] Daniela Kaufmann. Formal verification of multiplier circuits using computer algebra. it -
Information Technology, 64(6):285–291, 2022.

[9] Daniela Kaufmann, Armin Biere, and Manuel Kauers. Verifying large multipliers by combin-
ing sat and computer algebra. In 2019 Formal Methods in Computer Aided Design (FMCAD),
pages 28–36, 2019.

[10] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[11] Yuzhe Ma, Haoxing Ren, Brucek Khailany, Harbinder Sikka, Lijuan Luo, Karthikeyan Natara-
jan, and Bei Yu. High performance graph convolutionai networks with applications in testa-
bility analysis. In 2019 56th ACM/IEEE Design Automation Conference (DAC), pages 1–6,
2019.

[12] Alireza Mahzoon, Daniel Große, Christoph Scholl, Alexander Konrad, and Rolf Drechsler.
Formal verification of modular multipliers using symbolic computer algebra and boolean sat-
isfiability. In Proceedings of the 59th ACM/IEEE Design Automation Conference, DAC ’22,
page 1183–1188, New York, NY, USA, 2022. Association for Computing Machinery.

[13] Duane Merrill and Andrew Grimshaw. High performance and scalable radix sorting: A case
study of implementing dynamic parallelism for gpu computing. Parallel Processing Letters,
21(02):245–272, 2011.

[14] A. Mishchenko, S. Chatterjee, and R. Brayton. Dag-aware aig rewriting: a fresh look at com-
binational logic synthesis. In 2006 43rd ACM/IEEE Design Automation Conference, pages
532–535, 2006.

[15] Alan Mishchenko, Robert K. Brayton, and Alberto L. Sangiovanni-Vincentelli. ABC: A system
for sequential synthesis and verification.

[16] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi. Cusparse library. GPU Technology
Conference (GTC), 2010.

[17] Yirng-An Chen Randal E. Bryant. Verification of arithmetic circuits with binary moment dia-
grams. In 32nd Design Automation Conference, pages 535–541, 1995.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[18] T. Raudvere, A.K. Singh, I. Sander, and A. Jantsch. System level verification of digital
signal processing applications based on the polynomial abstraction technique. In ICCAD-
2005. IEEE/ACM International Conference on Computer-Aided Design, 2005., pages 285–
290, 2005.

[19] Daniela Sánchez, Lorenzo Servadei, Gamze Naz Kiprit, Robert Wille, and Wolfgang Ecker.
A comprehensive survey on electronic design automation and graph neural networks: Theory
and applications. ACM Trans. Des. Autom. Electron. Syst., 28(2), feb 2023.

[20] Amr Sayed-Ahmed, Daniel Große, Ulrich Kühne, Mathias Soeken, and Rolf Drechsler. Formal
verification of integer multipliers by combining gröbner basis with logic reduction. In 2016
Design, Automation Test in Europe Conference Exhibition (DATE), pages 1048–1053, 2016.

[21] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and
David L. Dill. Learning a SAT solver from single-bit supervision. CoRR, abs/1802.03685,
2018.

[22] Mohsin Shan, Deniz Gurevin, Jared Nye, Caiwen Ding, and Omer Khan. Mergepath-spmm:
Parallel sparse matrix-matrix algorithm for graph neural network acceleration. In 2023 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS), pages
145–156. IEEE, 2023.

[23] Weidong Sun and Zongmin Ma. Count sort for gpu computing. In 2009 15th International
Conference on Parallel and Distributed Systems, pages 919–924. IEEE, 2009.

[24] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and Yufei Ding.
Gnnadvisor: An efficient runtime system for gnn acceleration on gpus. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation (OSDI’21), 2021.

[25] Nan Wu, Yingjie Li, Cong Hao, Steve Dai, Cunxi Yu, and Yuan Xie. Gamora: Graph learning
based symbolic reasoning for large-scale boolean networks, 2023.

[26] Xiaoqing Xu, Nishi Shah, Andrew Evans, Saurabh Sinha, Brian Cline, and Greg Yeric. Stan-
dard cell library design and optimization methodology for asap7 pdk, 2018.

[27] Cunxi Yu, Walter Brown, Duo Liu, André Rossi, and Maciej Ciesielski. Formal verification
of arithmetic circuits by function extraction. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 35(12):2131–2142, 2016.

[28] Cunxi Yu, Maciej Ciesielski, and Alan Mishchenko. Fast algebraic rewriting based on and-
inverter graphs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 37(9):1907–1911, 2018.

7 APPENDIX

7.1 MODERN CHIP DESIGN

In modern chip design (Figure 11), we can perform verification at multiple stages.In this work, we
focus on two stages, one is before technology mapping, where we use the CSA multiplier and Booth
multiplier as examples. The second one is post-technology mapping, where we use a 7nm mapped
CSA multiplier as an example.

7.2 GNN AND GRAPH PARTITION

Generally, The EDA graphs are becoming larger due to the scaling of the netlist. by adding more
complexity. To use these large EDA graphs for the training or interference in GNN we need large
memory GPUs. To deal with the memory footprint challenge caused by large EDA graphs, we use
the graph partition, where we divide our graph into sub-graphs as shown in Figure 2 (c), and feed
them to our GNN architecture to perform a node classification task. We use the GraphSAGE frame-
work (6), a “sampling-and-aggregation” approach to generate node representations. It randomly
samples a small number of neighboring nodes for each node and then uses an “aggregator” neural

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

RTL to Boolean
functions

Technology
independent-
optimizations

Verification

Technology
Mapping

Gate Level
Design

Carry Save
Adder(CSA)

Multiplier

Booth
Multiplier

System
specifications

Architectural
Design

Functional and
Logic Design

Logic
Synthesis

Physical
Design

Fabrication

Packaging

Verification

CSA 7nm
mapped

Multiplier

Figure 11: Modern chip design flow and stages of logic synthesis (Colored verification part is our
focus and performed by using different designs).

network to combine the representations of the sampled nodes to create a new representation for the
original node. This process is repeated multiple times to create a hierarchical representation of the
graph. For the given GraphSage model with K layers, the graph embedding propagates between the
different layers as follows:

hk
N (v) ← AGGREGATEk({hk−1

u ,∀u ∈ N (v)}) (1)

hk
v ← σ(Wk · CONCAT(hk−1

v ,hk
N (v))) (2)

In above equations, Wk denotes weight matrices, k ∈ {1, ...,K}; σ represents non linear activation;
N (v) denotes the immediate neighborhood function; AGGREGATEk(k ∈ {1, ...,K}) means the
differentiable aggregator function.

This framework is suitable for our EDA circuit graphs because it is designed to work on large
datasets. The GraphSAGE layer takes a graph with node features as input shown in Figure 2 (d),
and performs a graph convolution operation to aggregate

the node features. This allows the GraphSAGE model to capture and learn the relationships and
patterns in the graph data. Multiple GCN layers are stacked in our GraphSAGE model to improve
the accuracy and expressiveness of the learned representations.

Table 3: Algebraic Representations of Basic Boolean Operators (a, b, c are inputs)
Operation Boolean Model Algebraic Model
NOT ¬a 1− a
AND a ∧ b ab
XOR a⊕ b a+ b− 2ab
XOR3 a⊕ b⊕ c a+ b+ c− 2ab− 2ac− 2bc+ 4abc
MAJ (a ∨ b) ∧ (a ∨ c) ab+ ac+ bc− 2abc

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

7.3 BOUNDARY EDGE RE-GROWTH ALGORITHM

Our partitioning algorithm, shown in Algorithm 1, divides a large EDA graph into smaller sub-
clusters and facilitates the reconnection of edges between these clusters. We observe that EDA
graphs contain approximately only 10% boundary edges (nodes) between clusters, and the bound-
ary recovering process does not add complexity to the inference stage. This approach focuses on
regenerating boundary edges between disconnected clusters to prevent the loss of features and sup-
port effective message passing between inter-cluster nodes.

Algorithm 1 Graph Partition with Boundary Recovery
Require: G, V {Input graph as adj. list and embedding}

1: [G0, G1, ..., Gn], [V0,V1, ...,Vn]←METIS(C)
2: for p = 0 to n do
3: Cp, Np ← FIND BOUNDARY CONNECTIONS(Gp) {Locate all boundary edges/nodes of

partition Gp}
4: Gp ← Gp ∪ Cp {Restore the boundary edges}
5: Vp ← Vp ∪Np {Restore the boundary nodes}
6: end for
7: return G0, G1, ..., Gn and V0,V1, ...,Vn

7.4 EDA GRAPH AND KERNEL DESIGN

Observation. We analyze some EDA graphs and yield interesting and unique findings. The nodes
are split into two categories: one group of nodes with a significantly low degree, e.g. 3 or less
for 1024-bit CSA multiplier Figure (Figure 12 (a)), 6 or less for 512-bit 7nm Technology mapped
(Figure 12 (b)), 4 or less for 512-bit Booth Multiplier (Figure 12 (c)), and 12 or less in 512-bit FPGA
mapped multiplier (Figure 12 (d)); the other group of nodes with significantly higher degrees, e.g.,
1024 as shown in Figure 12 (a).

0 1 2 3 1024 1920
Degree

100

101

102

103

104

105

106

107

Co
un

t

(a) CSA Multiplier: 1024-bit
Low Degrees
High Degrees

0 1 2 3 4 5 6 512 513 514>515
Degree

101

102

103

104

105

106

Co
un

t

(b) 7nm Tech Mapped CSA Multiplier: 512-bit
Low Degrees
High Degrees

0 1 2 3 4 512 513 >1036
Degree

103

104

105

106

Co
un

t

(c) Booth Multiplier: 512-bit
Low Degrees
High Degrees

0 1 2 3 4 5 6 7 8 12 514>515
Degree

103

104

105

106

Co
un

t

(d) FPGA Mapped CSA Multiplier: 512-bit
Low Degrees
High Degrees

Figure 12: Histogram of Degree distribution of various datasets: (a) CSA multiplier: 1024-bit. (b)
7nm Technology mapped: 512-bit. (c) Booth Multiplier: 512-bit. (d) FPGA mapped multiplier:
512-bit

7.5 DATASET STATSTICS

.

Carry Save Adder (CSA) Multipliers. Table 4 presents details including the number of nodes, edges,
average node degree, and density of each adjacency matrix (with a batch size of 1). A noticeable
trend is the significant increase in the number of nodes and edges of the input embedding graph as
the bit widths of CSA multipliers expand. For instance, multiplier of 1024-bit width has around
8.3 million nodes and 16.7 million edges. Furthermore, we create a dataset of CSA multipliers to
evaluate GROOT on larger graphs. We set the batch size to 16 and generate input graph embeddings
with varying bit widths, shown in Table 5.

Booth Multipliers. Table 6, displays the statistics of the booth EDA graph.

CSA Multipliers after Technology Mapping. Table 7 provides the statistics for graphs derived from
the CSA multipliers-mapped netlist.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 4: CSA multiplier Dataset Statistics (batch size=1).
Bit size # nodes # edges Average Degree Density of A

32 7,968 21,902 2.74 3.44 × 10−4

64 32,320 64,384 1.99 6.16 × 10−5

128 130,176 259,840 1.99 1.53 × 10−5

256 1,043,968 522,496 1.99 3.84 × 10−6

512 2,093,568 4,185,088 1.99 9.54 × 10−7

1,024 8,381,440 16,758,784 1.99 2.38 × 10−7

Table 5: CSA multiplier Dataset Statistics (batch size=16).
Bit size # nodes # edges Average Degree Density of A

256 8,359,936 16,703,488 1.99 2.39 × 10−7

512 33,497,088 66,961,408 1.99 5.96 × 10−8

1,024 134,103,040 268,140,544 1.99 1.49 × 10−8

Table 6: Booth Multiplier Dataset Statistics.
Bit size # nodes # edges Average Degree Density of A

32 7,260 14,392 1.98 2.73 × 10−4

64 27,852 55,448 1.99 7.14 × 10−5

128 108,972 217,432 1.99 1.83 × 10−5

256 430,956 860,888 1.99 3.3 × 10−5

512 1,713,900 3,425,752 1.99 1.16 × 10−6

Table 7: Technology Mapped Dataset Statistics.
Bit size # nodes # edges Average Degree Density of A

64 48,088 95,920 1.99 4.14 × 10−5

128 192,487 384,462 1.99 1.03 × 10−5

256 769,337 1,537,650 1.99 2.59 × 10−6

512 3,084,427 6,166,806 1.99 6.4 × 10−7

768 6,949,193 13,895,314 1.99 2.87 × 10−7

15

	Introduction
	Realted Work
	GNN for Verification in Logic Synthesis
	Converting Netlists into Transitional Graph
	Node Features and Node Label creation
	Partition, Node Classification and Post-Processing

	Kernel Design - GROOT-GPU
	Performance Evaluation
	Accuracy Analysis of Various Multipliers
	Memory Footprint Analysis
	Run Time Analysis and Comparative Study
	GPU kernel results

	Conclusion
	Appendix
	Modern Chip Design
	GNN and Graph Partition
	Boundary Edge Re-growth Algorithm
	EDA graph and Kernel Design
	Dataset statstics

