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ABSTRACT

Traditional verification methods in chip design are highly time-consuming and
computationally demanding, especially for large scale circuits. Graph neural net-
works (GNNs) have gained popularity as a potential solution to improve verifi-
cation efficiency. However, there lacks a joint framework that considers all chip
design domain knowledge, graph theory, and GPU kernel designs. To address
this challenge, we introduce GROOT, an algorithm and system co-design frame-
work that contains chip design domain knowledge and redesigned GPU kernels,
to improve verification efficiency. More specifically, we redesign nodes features
utilizing the circuit node types and the polarity of the connections between the in-
put edges to nodes in And-Inverter Graphs (AIGs). We utilize a graph partitioning
algorithm based on the observation that approximately only 10% boundary edges
(nodes) between cluster, to divide the large graphs into smaller sub-graphs for fast
GPU processing. We carefully profile the EDA graph workloads and observe the
uniqueness of their polarized distribution of high degree (HD) nodes and low de-
gree (LD) nodes. We redesign two GPU kernels (HD-kernel and LD-kernel), to fit
the EDA graph learning workload on a single GPU. We evaluate the performance
of GROOT on large circuit designs, e.g., Carry Save Adder (CSA) multipliers,
the 7nm technology mapped CSA multipliers and Booth Multipliers. We compare
the results with state-of-the-art GNN-based GAMORA and the traditional ABC
framework. Results show that GROOT achieves a significant reduction in memory
footprint (59.38 %), with high accuracy (99.96%) for a very large CSA multiplier,
i.e. 1,024 bits with a batch size of 16, which consists of 134,103,040 nodes and
268,140,544 edges. We compare GROOT with state-of-the-art GPU-based GPU
Kernel designs such as cuSPARSE, MergePath-SpMM, and GNNAdvisor. We
achieve up to 1.104x, 5.796 x, and 1.469 x improvement in runtime, respectively.

1 INTRODUCTION

Logic synthesis plays a vital role in chip design by converting high-level circuit descriptions into
optimized gate-level implementations and helps to bridge the gap between high-level synthesis and
physical design (7). Verification is a critical step in logic synthesis that ensures internal functionality,
prevents costly errors, and reduces the time-to-market by identifying and fixing issues early in the
design cycle (19). However, traditional verification methods are computationally demanding and
increasingly time-consuming, especially for complex designs (8 28). For example, as measured in
(20), the verification process takes more than 100 hours for the booth multiplier using the OneSpin
commercial equivalence checker tool. Furthermore, using the open-source verification tool ABC
(1)), a 2048-bit multiplier requires 8.6 x 10° seconds (more than nine days) (25).

Graph neural networks (GNNs) have gained popularity as a potential solution to improving verifi-
cation efficiency, e.g., GAMORA (235)), since graph is one the most natural ways to represent many
fundamental objects in circuits, such as Register Transfer Level (RTL) descriptions, netlists, lay-
out, and Boolean functions. In GNN-based methods, GNN is leveraged to classify the graph nodes
which significantly reduces the verification time. For example, the 2048-bit multiplier verification
time reduces from more than nine days to 0.919 seconds when GNN is used (25).
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Figure 1: (a) Extremely high GPU memory requirements on large circuit graphs in EDA. Example:
verification of Carry Save Adder (CSA) multiplier with different bits and batch sizes in logic syn-
thesis. (b) Comparison of verification methods.

Despite their promising results, there are research gaps. First, an effective graph machine-learning
solution for logic synthesis requires a fusion of electronic design automation (EDA) domain ex-
pertise and knowledge of graph machine learning. However, existing efforts tend to focus on just
one aspect, such as applying GNN algorithms to EDA tasks, and may lack EDA domain expertise.
For instance, GAMORA (25)) does not distinguish Primary Inputs and Primary Outputs (PO) when
creating graph node features, however, PI and PO are inherently different and need to be distin-
guished. Second, processing a large-scale EDA GNN on a single hardware, which is crucial to
efficient AL has been largely neglected. Figure[I]shows the memory consumption (on two high-end
GPUs NVIDIA A100 40 GB and 80 GB, and one low-end GPU GeForce RTX2080) required for
the verification of various bit widths multipliers. We observe that even the NVIDIA A100 could not
accommodate the 1,024-bit CSA multiplier graph when batch size equals 16. Please note that batch
processing is essential to achieve high throughput as GPUs are designed to process parallel data.
Third, the state-of-the-art (SOTA) high-performance solutions often use GPU, and simply adopt
commercialized multi-GPU solutions (e.g., GAMORA directly uses Pytorch Geometric (5) on two
or more GPUs). However, an important aspect that frequently goes unnoticed is the consideration of
GPU primitives. This fundamentally limits making single GPU achievable for EDA GNN and the
applicability of broadening accessibility in economically disadvantaged districts.

In this research, we propose GROOT, Graph Edge Re-growth and Partitioning for the Verification of
Large Designs in Logic Synthesis. GROOT is a single-GPU-based framework and simultaneously
achieves high accuracy, and low memory footprint at run-time. The classical open-source EDA tool
ABC (15)) is not capable of obtaining verification results at run-time, and GAMORA (25)) faces the
out-of-memory issue on large circuit graphs, as summarized in Table[T}

Our key contributions are: (i) We create the EDA graph node features. We utilize the circuit node
types and the polarity of the connections between the input edges to nodes in And-Inverter Graphs
(AIGs), to form the input embedding of the EDA graph. With the addition of more features, our
GNN model possesses the capacity to learn from a broader spectrum of circuit characteristics. (ii)
At the graph processing level, we utilize a graph partitioning algorithm to divide the large graphs into
smaller sub-graphs for GPU processing and develop a boundary edge re-growth algorithm. (iii) We
carefully profile the EDA graph workloads and observe the uniqueness of their polarized distribution
of high degree (HD) nodes and low degree (LD) nodes. We redesign two GPU kernels (HD-kernel
and LD-kernel), to fit the EDA graph learning workload on a single GPU.

2 REALTED WORK

Verification: Verification can be performed at multiple stages (see Appendix to ensure that
the designed chip meets its intended functionality. Traditional formal verification techniques in-
clude Satisfiability (SAT), canonical diagrams, theorem proving (4), and algebraic re-writing. The
SAT technique models the verification problem as Boolean satisfiability (27; [9). Canonical dia-
grams propose different graph-based representations, such as binary decision diagrams (BDDs) (1)),
Taylor expansion diagrams (TEDs) (2), and binary moment diagrams (BMDs) (17). The algebraic
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Figure 2: Framework Overview: (a) Circuit to Transitional graph conversion. (b) EDA graph with
node features. (c) Large Graph Partitions to solve GPU memory issues. (d) Graph Neural Network
architecture. (e) Node classification and post processing.

approaches, based on modeling circuit specifications and hardware implementation as polynomials
(18), leverage symbolic computer algebra techniques (12535 [9) to solve verification problems.

GNN in Circuits. GNNs efficiently learn graph-like structures and extracting information (10),
particularly in EDA, where circuit netlists can be naturally represented as graphs. For instance,
NeuroSAT (21)) employs message passing in a neural network to learn SAT problems and predict
satisfiability. In another study (1.1), GNNs were utilized to predict testability analysis for netlists and
demonstrated performance comparable to commercial tools. Further work is required to optimize
their performance and overcome scalability and data management limitations, enabling their full
effectiveness in circuit verification (25)).

3 GNN FOR VERIFICATION IN LOGIC SYNTHESIS

The overview of GROOT framework is depicted in Figure 2] consisting of five stages, i.e., (a) Con-
verting the netlist into a transitional graph representation using an open-source EDA tool ABC
(15); (b) Pre-process the transitional graph and generate the standardized logic synthesis-based EDA
graph; (c) Partition of the large EDA graphs; (d) Utilize GNN for aggregation and message passing;
and (e) Node classification and post-processing.

3.1 CONVERTING NETLISTS INTO TRANSITIONAL GRAPH

A Boolean network (digital design) can be described as a directed acyclic graph (DAG), where the
nodes symbolize logic gates. An And-Inverter Graph (AIG) represents a specific type of combina-
tional Boolean network, comprised of two input AND gates and inverters (14). Essentially, AIG
graphs are specialized DAGs that encapsulate the logical functionality of Boolean networks. Inter-
estingly, through DeMorgan’s rule, the combinational logic of any given Boolean network can be
easily transformed into an AIG.

In GROOT, this transformation is accomplished through an open-source EDA tool ABC (15). Figure
[3] illustrates this process using a two-bit CSA multiplier. The ABC takes a netlist as an input, as
shown in Figure 3] (a), and generates the corresponding AIG representation, shown in Figure [3] (b).
In AIG representation, inputs ala0 and 6160 represent the two-bit binary numbers for the multiplier
and multiplicand, respectively. The multiplication result is represented using m3m2m1lm0 bits.
For example, multiplier a1a0 = 10 and multiplicand b1b0 = 11 gives the multiplication result
m3m2mlm0 = 0110. The multiplication of the least significant bits (LSB) highlighted in golden
color, symbolizing the ‘AND’ operation at node 5 (i.e., m0 = a0 - b0). The additional operation of
multiplication is ‘XOR’ (green), containing nodes 6, 7, 8, 9, and 10, and can be represented by the
equation m1 = a0 - b1 zor al - b0. The ‘NOT’ operations are indicated by dashed lines.

3.2 NODE FEATURES AND NODE LABEL CREATION

We take the node and edge information from the AIG representation (transitional graph) to form
the EDA graph. We define circuit-based EDA graph as G = (V, E) with N nodes v; € V and
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Figure 3: Input to EDA graph flow: (a) Two-bit multiplier netlist. (b) AIG representation of two-
bit multiplier using ABC (the dotted line represents inverted inputs to node). (c) Node features
(selected nodes shown). (d) EDA graph of two-bit CSA multiplier. (e) Ground truth labels for the
GNN model. (f) EDA graph embedding with node features of two-bit CSA multiplier.

edges (v;,v;) € E. We use an adjacency matrix A € RN*N to describe graph connections, a
degree matrix D;; = > ; A;; and a feature matrix X = {z1,x1,...,2nx}. We create the input
embedding graph utilizing four distinct node features. The nodes in an EDA graph (Figure [3] (d))
can be categorized into three distinct types: Input variable nodes or Primary Inputs (PI), Logic gate
nodes or internal nodes which are AND gates, and Output variable nodes or Primary Outputs (PO).
We create node features from the node types and the polarity of input edges as depicted in Figure 3]
(c). The first two bits indicate the node, e.g., P, internal node, or PO. The encoding is as follows:
PI and PO are represented by ‘00’. Internal nodes are represented by ‘11°. The subsequent two
bits are used to characterize the polarity of the input edge connections. For instance, node 5, an
internal node with non-inverted input edges, has a feature vector of 1100 as depicted in figure |3|(c).
Similarly, node 10, another internal node with inverted inputs, has a feature vector of 1111. The PI
node 1 or a0 has a feature vector of 0000, while the PO node 15 or m0 has a feature vector of 0011
as highlighted in red dotted lines between the figures [3|(c) and [3| (f).

We create EDA graph embedding using these node features as shown in Figure 3| (f). Our input em-
bedding contains four-node features, a distinction from the three-node features in GAMORA (25).
Implementing additional node features offers a more robust representation of nodes and improved
generalization. Our model possesses the capacity to learn from a broader spectrum of circuit char-
acteristics. Next, we formulate labels for the ground truth using ABC (15). Figure 3] (e), depicts the
labels for the two-bit CSA multiplier. For nodes 1 to 4 (PI nodes), we label them as 4. For nodes
5,6,7,9, 11, 13 (two-input AND gates), we label as 3. For nodes 10 and 14 (XOR), we label as 2.
For nodes 12 and 8 (MAJ functionality) are labeled as 1. Lastly, all PO nodes, namely 15 to 18, are
labeled as 0.

3.3 PARTITION, NODE CLASSIFICATION AND POST-PROCESSING

To deal with the memory footprint challenge caused by large EDA graphs, we use the graph par-
tition, where we divide our graph into sub-graphs as shown in Figure ] (¢), and feed them to our
GNN architecture to perform a node classification task (see Appendix [7.2). We use the GraphSAGE
framework (6), a “sampling-and-aggregation” approach to generate node representations. We ob-
serve that EDA graphs contain approximately only 10% boundary edges (nodes) between clusters.
We regenerate boundary edges between disconnected clusters to prevent the loss of features and sup-
port effective message passing between inter-cluster nodes (see boundary edge re-growth algorithm

in Appendix [7.3).

We use GNN to classify the nodes into two categories XOR and MAJ as depicted in Figure 2] (e). We
use the algebraic re-writing technique (28} 3)) for verification. The algebraic representation of the
basic Boolean operators is summarized in the appendix Table[3] Consider the case involving the XOR
and MAJ operations. The sub-polynomial expression is 1 + 225 + ..., where ;1 = XOR(a, b, ¢)
and xo = MAJ(a, b, ¢), where a, b, c are inputs of XOR and MAJ functions. Substituting the algebraic
representations of XOR and MAJ into the sub-polynomial, we obtain, z1 +2z2 + ... = (a+ b+ ¢ —
2ab — 2ac — 2bc + 4abce) + 2(ab + ac + be — 2abe) = a + b + c.
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This simplification results in the elimination of the four nonlinear terms: 2ab, 2ac, 2bc, and 4abc.
This polynomial reduction based on algebraic re-writing (28} 13) is integrated in ABC (15). This
approach is reliant on detecting XOR and MAJ gates from a flattened netlist, a process that tends to
be time-consuming. We leverage the GNN node classification to detect XOR and MAJ gates which
makes verification efficient. In the two-bit CSA multiplier, nodes 10 and 14 are classified as XOR,
while nodes 12 and 8 are classified as MAJ. These nodes are subsequently used for verification with
the methodology described in (28)).

4 KERNEL DESIGN - GROOT-GPU

We tailor GPU kernels (high-degree
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been allocated.

We show an example in the Fig. The HD macro nodes contain 4 rows, namely rowl to row4.
Each row contains wid non-zero elements. Each block in the kernel contains 64 war dps numbered
from w1 to w64. We divide each row into 32 equal workloads, each containing 3 wid non-zero el-
ements. Then we assign the workloads in rowl to the warps numbered w1 to w32 in turn, and
assign the workloads in row?2 to warps from w33 to w64. Repeat the above process, and assign the
workloads in row3 and row4 to warps from w1 to w32, and warps from w33 to w64 in turn. In step
A-1, the kernel multiplies non-zero elements in the adjacent matrix with the corresponding rows of
the right-hand feature matrix based on static workload partitioning. Intermediate results are stored
in shared memory buffers assigned to each warp. Each warp, from w1 to w32, has its corresponding
buffer (bu f1 to bu f32). In step A-2, we accumulate the results in the 32 buffers using the tree-based
accumulation. First, the direction of the warp operation is reset, and the 32 threads in each warp are
responsible for one bit in the buffer with the same number. Then, the tree-shaped accumulation oper-
ation within the warp is performed using warp synchronization primitives, which can be completed
in 5 cycles. The tree-shaped accumulation, designed to ensure efficient completion, can save about
half the number of cycles compared to the AtomicAdd function to complete all accumulations. As
shown in the example in figure[d] after the first cycle, we get the first accumulation result, that is, the
sum of buf1 and buf2 is stored in buf1, the sum of bu f3 and buf4 is stored in bu f3, ..., and the
sum of bu 31 and bu f32 is stored in bu f31. Following the same process, after the second cycle, we
get the second accumulation result stored in buf1, bu f5, ..., buf29. After the fifth cycle, the final
accumulation result is stored in buf1. After the tree-shaped accumulation operation is completed,
the final output of a row of results is obtained, which can be directly transferred to the corresponding
row in the global memory without additional accumulation operations on the global memory, greatly
increasing the execution efficiency of this SPMM kernel.

The LD-kernel design for low-degree macro nodes is shown in the lower half of Fig. ] Step B
processes the degree sorting on the adjacent matrix with the following steps: (1) computing each
row’s degree using the row pointer array with time complexity of O(n) when employing count sort
(23)) or radix sort (13), with n indicating the number of rows; (2) applies a stable sorting algorithm to
sort rows by their degrees; and (3) updating the row pointer array to reflect the new rows’ order, with
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Figure 5: Detailed process of LD-kernel, from degree-sorting, row-assembling, block-partitioning,
to warp-wise multiplication and summation, with block-wise parallelism.

time complexity of O(n). The dominant time complexity of this operation arises from applying the
stable sorting algorithm. Nevertheless, employing count sort, a linear time-complexity algorithm,
can optimize the overall time complexity to O(n). This enhances efficiency compared to alternative
algorithms and the rearranged adjacent matrix has a highly regular degree distribution due to parti-
tioning. We adopt the “row-assembling” workload partitioning in step B-2, which is different from
GNNAdpvisor (24). This approach assigns multiple rows at the same degree to one warp to achieve a
higher rate of utility of a single warp, thereby increasing the overall efficiency. We set this kernel’s
number of warps per block to warp.,q., as a hyperparameter. In the example, for rows with degrees
of 1, 2, and 3, each warp is responsible for 12,4z, NZmaz/2, and nz;,q./3, rows, respectively,
where 12,4, 1S also a hyperparameter indicating the maximum amount of non-zeros each warp can
contain. When the degree is one, rows, to row,,, ., are assigned to the workload of a single warp.
Similarly, 12,4, /2, rows at the degree of 2 and 12,4, /3, rows with a degree of 3 are assigned
to two separate warps. In addition, the partitioning remains is processed recursively to ensure the
minimum error in calculation, as mentioned in part 2. The whole partitioning method significantly
improves the efficiency of the LD-kernel.

The sorting and row-assembling details are described in Fig.[5} The warp-block operation of LD-
kernel starts with sorting on the original sparse input by the degree of each row and maps the left-
hand side (LHS) rows into an array linearly, whereby the partitioning is executed via dividing the
array into blocks of rows according to their degree, sequentially from the smallest to the largest.
Then, within the block, warps will operate in parallel to extract non-zeros in the rows to multiply the
corresponding right-hand-side (RHS) rows. The resulting product rows are summed up to produce
the output. All blocks perform the whole process in parallel. For example, in the lower left part of
Fig. [5] warp 1 traverses its non-zeros from the left to the right, meanwhile locating the correspond-
ing RHS row (1,1). The first 1 implies warp 1, and the second 1 refers to the first row, which warp 1
is responsible for.

Multiple rows of non-zero elements are assigned to the same warp rather than one row per warp.
Since the degree of each row is small, say 3, the number of warps per block in this kernel is set to
6m. For rows with degrees of 1, 2, and 3, each warp is responsible for 6m, 3m, and 2m rows, which
translates into 1n2maz, N2Zmaz/2 and Nzp,a./3 rows in the figure, respectively. This increases the
proportion of active warps. In addition, this significantly reduces the overhead of warp switching and
improves calculation efficiency. The aggregated organization method enhances access continuity to
global memory when transferring calculation results from shared memory to global memory. On
top of that, We utilize the technique of coalesce dumping to exploit this advantage fully. During step
B — 3 called coalesce dumping, it writes the intermediate results of multiple consecutive rows from
the same warp into a continuous area in global memory, its efficiency is also improved.

5 PERFORMANCE EVALUATION

This section presents the evaluation of GROOT by comparing its memory usage, and run-time
against two baselines: the traditional open source tool ABC (15) and the state-of-the-art GNN-
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Figure 6: Verification accuracy as a function number of partitions for (a, b) CSA multipliers, batch
size 1 and 16, respectively; (c) Booth multipliers, batch size 1; (d) CSA multipliers after 7nm tech-
nology mapping, batch size 1. All the multipliers were trained using 8-bits.

based GAMORA (25). When comparing with (25), we run the GAMORA framework against our
modified datasets. We use a Linux-based host with AMD EPYC 7543 32-Core Processor and an
NVIDIA A100-SXM 80 GB.

Dataset Generation. Carry Save Adder (CSA) Multipliers. We create a dataset of CSA multipliers
utilizing the open-source tool ABC (155 28)). We partition the dataset into splits of 80% for training,
10% for validation, and 10% for testing. We generate input graph embeddings with features and
labels essential for GNN-based learning. A noticeable trend is the significant increase in the number
of nodes and edges of the input embedding graph as the bit widths of CSA multipliers increase.
For instance, multiplier of 1024-bit width has around 8.3 million nodes and 16.7 million edges
(Appendix Table[d)). Furthermore, we create a dataset of large CSA multipliers to evaluate GROOT
on larger graphs. We set the batch size to 16 and created a very large graph (Appendix Table [5).

Booth Multipliers. We create a new dataset dedicated to Booth multipliers to expand the dataset op-
tions (See Appendix Table [6) Booth-encoded multipliers, compared to CSA multipliers have com-
plex structures and produce more complex graphs.

CSA Multipliers after Technology Mapping. For a thorough evaluation of GROOT, we use the ASAP
7nm technology mapping (26) on CSA multipliers to create a 7nm technology-mapped dataset.
This integration with the technology-mapped netlist offers an additional dataset intended for post-
technology mapping (See Appendix Table[7). Further, we create an FPGA-mapped CSA multiplier
dataset to evaluate GROOT.

5.1 ACCURACY ANALYSIS OF VARIOUS MULTIPLIERS

Our GNN model is trained on an 8-bit multiplier and then used in inference on larger multipliers
of the same dataset. For instance, the model is trained using an 8-bit CSA multiplier and is then
tested on a 1024-bit multiplier, with a batch size of 16. Figure[6]shows the accuracy across various
datasets as a function of the number of partitions. In all figures, solid lines indicate accuracy with
recovery, and dashed lines represent accuracy without recovery. Figure [6] (a) shows the accuracy
on CSA multipliers with batch size one. Without any partitioning (i.e., number of partition=1),
we achieve high accuracy, reaching 100% for multipliers of sizes 128-bits and above, while the
accuracy is 99.94% for the 32-bit multiplier. As the number of partitions increases, the loss in
accuracy becomes more noticeable because more partitions require the removal of more boundary
edges. However, using our boundary edge re-growth approach effectively recovers accuracy. In
Figure [6] (a), the solid line denotes the regained accuracy when using boundary edge re-growth.
Notably, this edge re-growth method achieves a maximum recovery of 8.7% boost in accuracy of a
32-bit multiplier. By adopting our edge re-growth approach, one can afford to use more partitions
while maintaining high accuracy.

We evaluate accuracy on large CSA multipliers such as the 1024-bit multiplier with a batch size
of 16 containing 134,103,040 nodes and 268,140,544 edges. The figure @ (b) shows accuracy with
respect to number of partitions. The trends show that the accuracy is at 100% up until 16 partitions.
This accuracy can be attributed to the presence of a large number of edges in these large graphs and a
small number of edges removal does not affect message passing in GNN. Consequently, partitioning
does not much impact the accuracy. However, post the 16-partition mark, there is a slight drop in
accuracy since more edges are removed to create partitions.
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Figure 7: FPGA mapped dataset results showing (a) memory utilization and (b) accuracy as a func-
tion of the number of partitions for CSA multipliers, following the application of FPGA mapping,
with a batch size of 1. All the multipliers were trained using 8-bits.
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Figure 8: Memory utilization as a function of the number of partitions for (a) CSA multipliers, for a
batch size of 1, (b) CSA multipliers, for a batch size of 16, (c) Booth multipliers, for a batch size of
1, and (d) CSA multipliers, following the application of 7nm technology mapping, with a batch size
of 1. All the multipliers were trained using 8-bits.

To evaluate GROOT’s performance with complex graphs, we utilize the Booth multipliers dataset.
Figure [6] (c) shows accuracy with respect to the number of partitions. The accuracy drop is more
compared to that in other datasets. However, the utilization of the edge re-growth approach enables
the mitigation of this accuracy drop, as illustrated by the solid line in Figure [f] (c). The re-growth
achieves a maximum 12.62% accuracy recovery in a 32-bit multiplier. Additionally, we test with the
ASAP 7nm technology (26) mapped netlist dataset. This netlist comprises 161 standard cell gates,
including the multi-output gate, leading to certain irregularities. As evidenced in Figure[6](d), even
with such irregularity, GROOT shows high accuracy and maintains more than 76% accuracy after
edges re-growth. In summation, GROOT is capable of handling design complexities.

Figure[7](a) shows the accuracy of FPGA-mapped CSA multipliers with batch size equal to 1 and the
model is trained on 8 bits. The accuracy is low among all the datasets. To further improve prediction
accuracy, we focus on training the GNN model using larger multipliers. This approach significantly
improves the model’s prediction accuracy. When the model trained on a 64-bit multiplier boosts the
accuracy for a 64-bit multiplier from 71.82% (Figure[7](a), number of partition=1) to 90.8% (Figure
(b), number of partition=1) an 18.98% boost in accuracy. However, this accuracy gain comes with
increased training time. Training a 64-bit FPGA for 100 epochs takes 2914.42 seconds. To mitigate
this time cost, we propose designing a specialized kernel for faster matrix multiplication, a major
factor in training and inference time.

5.2 MEMORY FOOTPRINT ANALYSIS

Figure[§]illustrates the GPU memory utilization by various multipliers with respect to the number of
partitions. Figure([8](a) shows the GPU memory utilization on the y-axis and the number of partitions
on the x-axis for CSA multipliers with batch size one. As the number of partitions increases, the
memory requirement decreases. For larger multipliers (e.g., 1024 bits), the memory reduction trend
follows an exponential decay. When partitioned into 64 sub-graphs, the 1,024-bit multiplier showed
a maximum benefit of 64.94% reduction in memory requirement as per depicted in the Figure|§](a).

To evaluate the scalability of GROOT, we evaluate its performance on massive multiplier graphs
such as the 1024-bit multiplier with a batch size of 16 containing 134,103,040 nodes and
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Figure 9: Different multipliers verification time comparisons: (a) CSA Multiplier, (b) Booth Multi-
plier, (c) 7nm technology mapped multiplier.
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Figure 10: The runtime comparison among GROOT-GPU and SOTA GPU-based GPU Kernel de-

signs, where the acceleration ratio of 1 from GNNAdvisor is drawn as the black dash line.

268,140,544 edges, as deplcted in Figure [§] (b). Partitioning the 1,024-bit multiplier into 64 sub-
graphs resulted in a maximum memory reduction of 59.38%. Without partitioning, even high-end
GPUs such as NVIDIA A100-SXM with 80 GB memory cannot perform verification on this mas-
sive graph. Thus, GROOT offers a fundamental solution to scalability. Our method is different from
GAMORA (23)), which requires multiple GPUs to handle massive graphs while we only need one
low-end GPU. Table [2] shows the different multipliers and their GPU memory utilization. Further-
more, to recover the accuracy, our algorithm regrows the edges after partitioning. The effect of the
number of partitions on the memory requirement can be observed until the number of partitions is
equal to 16. When the partitioning size is large (say 32) as shown in Figure[§](b), the recovered edge
consumes a large portion of the memory footprint, thus we observe less memory saving.

To demonstrate GROOT’s effectiveness on complex designs, we evaluate it on different complex
datasets. Figure[§](c) illustrates memory utilization versus the number of partitions for booth multi-
pliers, indicating an exponential reduction in memory with respect to partitions. The 512-bit booth
multiplier shows maximum memory requirement reduction which is 41.84%. Figure 8] (d), displays
memory utilization versus number partitions for 7nm mapped CSA multipliers, demonstrating a
significant reduction in memory requirement for post-technology-mapped CSA multipliers. For in-
stance, the maximum memory requirement reduction for the 768-bit multiplier is 70.15%. Similarly,
Figure[7)(c) shows memory utilization for FPGA-mapped CSA multipliers. The maximum memory
requirement reduction is 57.62% for a 512-bit multiplier. The benefits of memory reduction remain
with increased design complexity.

Table 2: Large Multiplier GPU Memory Usage (In MB) Comparison. (Batch size of multipliers=16,
OOM= Out of Memory).

[ #Part. | 256-Bit | 512-Bit | 1024-Bit |

GAMORA | 8.263 | 29,375 | OOM
GROOT 2 Part. | 5457 | 18,135 | 68,923
GROOT 4 Part. | 3,923 | 13,025 | 48,463
GROOT 8 Part. | 3,157 | 8421 | 32,093
GROOT 16 Part. | 2,901 | 7,909 | 27,997
GROOT 32 Part. | 2,001 | 7,009 | 27.997
GROOT 64 Part. | 2,901 | 7,909 | 27,997
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5.3 RUN TIME ANALYSIS AND COMPARATIVE STUDY

Figure [9] shows the inference run time of verifying different multipliers of different widths after
applying boundary edge re-growth for accuracy recovery. As shown in Figure[9](a), as the bit width
increases, ABC’s run time expands exponentially compared to both GROOT and GAMORA. In
comparison, GROOT significantly outperforms ABC (15). When processing graphs for 1,024-bit
CSA multipliers partitioned into 64 subgraphs, GROOT achieves a speedup of 1.23 x 10° over
ABC. Furthermore, the verification times exhibited by different partitioned graphs using GROOT
align closely with GAMORA (25)). It is important to recognize that the verification time for GROOT
depends upon the number of partitions: an increase in the number of partitions slightly increases the
verification time due to a small partition time. It is important to highlight that neither GAMORA
nor ABC can efficiently handle large graph datasets on a single GPU, as depicted in Figure[I]

Further, we show the GROOT verification time using Booth (Figure [9] (b)) and 7nm technology-
mapped (Figure[9] (c)) datasets compared to GAMORA (25). We set up the baseline for both these
datasets and compared results with GNN-based baseline GAMORA (23)) since our earlier result on
CSA shows ABC (15) require excessively long verification times. In the case of booth multipliers
(Figure [9] (b)), GROOT without partition and with partition equal to two outperforms the verifica-
tion time of the GAMORA (25). Technology mapped multiplier case (Figure 9] (c)), GROOT with
no partition outperforms verification time to GAMORA (25). In both cases, partitioning does not
greatly affect runtime, but it improves memory efficiency for large graphs.

5.4 GPU KERNEL RESULTS

We compare our design with SOTA GPU-based GPU Kernel designs such as cuSPARSE (16),
MergePath-SpMM (22), GNNAdvisor (24)). Figure [10[shows the comparison results of MergePath-
SpMM, our GROOT-GPU, and CuSPARSE against GNNAdvisor, represented by the black horizon-
tal dashed line. The kernels are tested on the graph of the Booth Multiplier, Technology Mapping,
and FPGA 4LUT datasets with bit widths ranging from 64 to 512 and an embedding dimension of
32. The kernels perform SpMM operations given the graph adjacency matrices with corresponding
embeddings, and the runtime of SpMM operations are recorded by the type of kernels, the bit width
of the net list which graphs describe, and the datasets where the graphs belong to. Our GROOT-GPU
demonstrates superior acceleration compared to the other three SOTA SpMM kernels in most cases.
The performance gap widens as the bit width of the multiplier datasets increases and with more
powerful GPUs. GROOT-GPU achieves the highest acceleration ratio of 10.28 for the Booth dataset
with a bit width of 512 on the A100 GPU, outperforming the second-fastest MergePath-SpMM
by 1.67x and the third-fastest CuSPARSE by 1.95x. The results highlight the efficiency of our
GROOT-GPU kernel in SpMM operations, which is an essential step in GNNs’ message passing,
particularly for complex datasets and higher bit widths, making it a promising choice for various
GNN-related applications.

6 CONCLUSION

In this paper, we introduce GROOT, an algorithm and system co-design framework that contains
chip design domain knowledge, graph theory, and redesigned GPU kernels, to improve verifica-
tion efficiency. We redesign nodes features utilizing the circuit node types and the polarity of the
connections between the input edges to nodes in And-Inverter Graphs (AIGs). We utilize a graph
partitioning algorithm to divide the large graphs into smaller sub-graphs for fast GPU processing.
After profiling EDA graph workloads, we notice their distinct distribution of high-degree and low-
degree nodes and tailor the GPU kernel accordingly. We evaluate our framework on large circuit
designs, e.g., CSA multipliers, the 7nm technology mapped CSA multipliers and Booth Multipli-
ers. We compare the results with state-of-the-arts, e.g., GAMORA and ABC. Experimental results
show that GROOT achieves a significant reduction in memory footprint, with high accuracy for a
very large CSA multiplier, i.e., 1,024 bits with a batch size of 16. We also compare GROOT with
SOTA GPU-based GPU Kernel designs such as cuSPARSE, MergePath-SpMM, and GNNAdvisor,
and achieve notable runtime improvement.

10



Under review as a conference paper at ICLR 2025

REFERENCES

[1] Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on
Computers, C-35(8):677-691, 1986.

[2] M. Ciesielski, P. Kalla, and S. Askar. Taylor expansion diagrams: A canonical representation
for verification of data flow designs. IEEE Transactions on Computers, 55(9):1188-1201,
2006.

[3] Maciej Ciesielski, Tiankai Su, Atif Yasin, and Cunxi Yu. Understanding algebraic rewriting
for arithmetic circuit verification: A bit-flow model. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 39(6):1346-1357, 2020.

[4] Maciej Ciesielski, Cunxi Yu, Walter Brown, Duo Liu, and André Rossi. Verification of gate-
level arithmetic circuits by function extraction. In 2015 52nd ACM/EDAC/IEEE Design Au-
tomation Conference (DAC), pages 1-6, 2015.

[5] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

[6] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs, 2017.

[7] Jie-Hong (Roland) Jiang and Srinivas Devadas. Chapter 6 - logic synthesis in a nutshell.
In Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting (Tim) Cheng, editors, Electronic
Design Automation, pages 299—-404. Morgan Kaufmann, Boston, 2009.

[8] Daniela Kaufmann. Formal verification of multiplier circuits using computer algebra. if -
Information Technology, 64(6):285-291, 2022.

[9] Daniela Kaufmann, Armin Biere, and Manuel Kauers. Verifying large multipliers by combin-
ing sat and computer algebra. In 2019 Formal Methods in Computer Aided Design (FMCAD),
pages 28-36, 2019.

[10] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[11] Yuzhe Ma, Haoxing Ren, Brucek Khailany, Harbinder Sikka, Lijuan Luo, Karthikeyan Natara-
jan, and Bei Yu. High performance graph convolutionai networks with applications in testa-
bility analysis. In 2019 56th ACM/IEEE Design Automation Conference (DAC), pages 1-6,
2019.

[12] Alireza Mahzoon, Daniel Grofle, Christoph Scholl, Alexander Konrad, and Rolf Drechsler.
Formal verification of modular multipliers using symbolic computer algebra and boolean sat-
isfiability. In Proceedings of the 59th ACM/IEEE Design Automation Conference, DAC *22,
page 1183-1188, New York, NY, USA, 2022. Association for Computing Machinery.

[13] Duane Merrill and Andrew Grimshaw. High performance and scalable radix sorting: A case
study of implementing dynamic parallelism for gpu computing. Parallel Processing Letters,
21(02):245-272, 2011.

[14] A. Mishchenko, S. Chatterjee, and R. Brayton. Dag-aware aig rewriting: a fresh look at com-
binational logic synthesis. In 2006 43rd ACM/IEEE Design Automation Conference, pages
532-535, 2006.

[15] Alan Mishchenko, Robert K. Brayton, and Alberto L. Sangiovanni-Vincentelli. ABC: A system
for sequential synthesis and verification.

[16] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi. Cusparse library. GPU Technology
Conference (GTC), 2010.

[17] Yirng-An Chen Randal E. Bryant. Verification of arithmetic circuits with binary moment dia-
grams. In 32nd Design Automation Conference, pages 535-541, 1995.

11



Under review as a conference paper at ICLR 2025

[18] T. Raudvere, A.K. Singh, I. Sander, and A. Jantsch. System level verification of digital
signal processing applications based on the polynomial abstraction technique. In ICCAD-
2005. IEEE/ACM International Conference on Computer-Aided Design, 2005., pages 285—
290, 2005.

[19] Daniela Sanchez, Lorenzo Servadei, Gamze Naz Kiprit, Robert Wille, and Wolfgang Ecker.
A comprehensive survey on electronic design automation and graph neural networks: Theory
and applications. ACM Trans. Des. Autom. Electron. Syst., 28(2), feb 2023.

[20] Amr Sayed-Ahmed, Daniel Grof3e, Ulrich Kiihne, Mathias Soeken, and Rolf Drechsler. Formal
verification of integer multipliers by combining grobner basis with logic reduction. In 2016
Design, Automation Test in Europe Conference Exhibition (DATE), pages 1048—-1053, 2016.

[21] Daniel Selsam, Matthew Lamm, Benedikt Biinz, Percy Liang, Leonardo de Moura, and
David L. Dill. Learning a SAT solver from single-bit supervision. CoRR, abs/1802.03685,
2018.

[22] Mohsin Shan, Deniz Gurevin, Jared Nye, Caiwen Ding, and Omer Khan. Mergepath-spmm:
Parallel sparse matrix-matrix algorithm for graph neural network acceleration. In 2023 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS), pages
145-156. IEEE, 2023.

[23] Weidong Sun and Zongmin Ma. Count sort for gpu computing. In 2009 15th International
Conference on Parallel and Distributed Systems, pages 919-924. IEEE, 2009.

[24] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and Yufei Ding.
Gnnadvisor: An efficient runtime system for gnn acceleration on gpus. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation (OSDI’21), 2021.

[25] Nan Wu, Yingjie Li, Cong Hao, Steve Dai, Cunxi Yu, and Yuan Xie. Gamora: Graph learning
based symbolic reasoning for large-scale boolean networks, 2023.

[26] Xiaoqing Xu, Nishi Shah, Andrew Evans, Saurabh Sinha, Brian Cline, and Greg Yeric. Stan-
dard cell library design and optimization methodology for asap7 pdk, 2018.

[27] Cunxi Yu, Walter Brown, Duo Liu, André Rossi, and Maciej Ciesielski. Formal verification
of arithmetic circuits by function extraction. /IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 35(12):2131-2142, 2016.

[28] Cunxi Yu, Maciej Ciesielski, and Alan Mishchenko. Fast algebraic rewriting based on and-
inverter graphs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 37(9):1907-1911, 2018.

7 APPENDIX

7.1 MODERN CHIP DESIGN

In modern chip design (Figure [IT)), we can perform verification at multiple stages.In this work, we
focus on two stages, one is before technology mapping, where we use the CSA multiplier and Booth
multiplier as examples. The second one is post-technology mapping, where we use a 7nm mapped
CSA multiplier as an example.

7.2 GNN AND GRAPH PARTITION

Generally, The EDA graphs are becoming larger due to the scaling of the netlist. by adding more
complexity. To use these large EDA graphs for the training or interference in GNN we need large
memory GPUs. To deal with the memory footprint challenge caused by large EDA graphs, we use
the graph partition, where we divide our graph into sub-graphs as shown in Figure [2| (c), and feed
them to our GNN architecture to perform a node classification task. We use the GraphSAGE frame-
work (6), a “sampling-and-aggregation” approach to generate node representations. It randomly
samples a small number of neighboring nodes for each node and then uses an “aggregator” neural

12
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Figure 11: Modern chip design flow and stages of logic synthesis (Colored verification part is our
focus and performed by using different designs).

network to combine the representations of the sampled nodes to create a new representation for the
original node. This process is repeated multiple times to create a hierarchical representation of the
graph. For the given GraphSage model with K layers, the graph embedding propagates between the
different layers as follows:

(1)
2

h\(,) ¢ AGGREGATE({hyy~!,Vu € N(v)})

hy « o(W" . concat(hy ™" hi(,))

In above equations, W* denotes weight matrices, k € {1, ..., K'}; o represents non linear activation;
N (v) denotes the immediate neighborhood function; AGGREGATEg(k € {1,..., K}) means the
differentiable aggregator function.

This framework is suitable for our EDA circuit graphs because it is designed to work on large
datasets. The GraphSAGE layer takes a graph with node features as input shown in Figure [2] (d),
and performs a graph convolution operation to aggregate

the node features. This allows the GraphSAGE model to capture and learn the relationships and
patterns in the graph data. Multiple GCN layers are stacked in our GraphSAGE model to improve
the accuracy and expressiveness of the learned representations.

Table 3: Algebraic Representations of Basic Boolean Operators ( a, b, ¢ are inputs)

Operation | Boolean Model | Algebraic Model

NOT —a 1—a

AND alb ab

XOR adb a+b—2ab

XOR3 a®bdc a+ b+ c— 2ab— 2ac — 2bc + 4abc
MAJ (aVb)A(aVe) ]| ab+ ac+ be — 2abe

13
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7.3 BOUNDARY EDGE RE-GROWTH ALGORITHM

Our partitioning algorithm, shown in Algorithm [T} divides a large EDA graph into smaller sub-
clusters and facilitates the reconnection of edges between these clusters. We observe that EDA
graphs contain approximately only 10% boundary edges (nodes) between clusters, and the bound-
ary recovering process does not add complexity to the inference stage. This approach focuses on
regenerating boundary edges between disconnected clusters to prevent the loss of features and sup-
port effective message passing between inter-cluster nodes.

Algorithm 1 Graph Partition with Boundary Recovery

Require: G,V {Input graph as adj. list and embedding}
1: [Go, G17 vy Gn], [V(), Vl, vy Vil METIS(C)
2: forp =0tondo
Cp, N, < FIND_BOUNDARY _CONNECTIONS(G,) {Locate all boundary edges/nodes of
partition G }
Gp < G, U C, {Restore the boundary edges}
Vp < Vp U N, {Restore the boundary nodes }
end for
return Gy, Gq,...,G, and Vo, V1, ..., V),

ol

AR AR

7.4 EDA GRAPH AND KERNEL DESIGN

Observation. We analyze some EDA graphs and yield interesting and unique findings. The nodes
are split into two categories: one group of nodes with a significantly low degree, e.g. 3 or less
for 1024-bit CSA multiplier Figure (Figure [I2](a)), 6 or less for 512-bit 7nm Technology mapped
(Figure@(b)), 4 or less for 512-bit Booth Multiplier (Figurel'lzl(c)), and 12 or less in 512-bit FPGA
mapped multiplier (Figure|12|(d)); the other group of nodes with significantly higher degrees, e.g.,
1024 as shown in Figure ﬁ).

(a) : CSA Multiplier: 1024-bit (b)  7nm Tech Mapped CSA Multiplier: 512-bit (€) Booth Multiplier: 512-bit (d) FPGA Mapped CSA Multiplier: 512-bit
.
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Figure 12: Histogram of Degree distribution of various datasets: (a) CSA multiplier: 1024-bit. (b)
7nm Technology mapped: 512-bit. (c) Booth Multiplier: 512-bit. (d) FPGA mapped multiplier:
512-bit

7.5 DATASET STATSTICS

Carry Save Adder (CSA) Multipliers. Table[d presents details including the number of nodes, edges,
average node degree, and density of each adjacency matrix (with a batch size of 1). A noticeable
trend is the significant increase in the number of nodes and edges of the input embedding graph as
the bit widths of CSA multipliers expand. For instance, multiplier of 1024-bit width has around
8.3 million nodes and 16.7 million edges. Furthermore, we create a dataset of CSA multipliers to
evaluate GROOT on larger graphs. We set the batch size to 16 and generate input graph embeddings
with varying bit widths, shown in Table[5]

Booth Multipliers. Table[6] displays the statistics of the booth EDA graph.

CSA Multipliers after Technology Mapping. Table 7] provides the statistics for graphs derived from
the CSA multipliers-mapped netlist.

14
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Table 4: CSA multiplier Dataset Statistics (batch size=1).

Bit size # nodes # edges Average Degree Density of A
32 7,968 21,902 2.74 3.44 x 104
64 32,320 64,384 1.99 6.16 x 10~°
128 130,176 259,840 1.99 1.53 x 107°
256 1,043,968 522,496 1.99 3.84 x 107°
512 2,093,568 4,185,088 1.99 9.54 x 107

1,024 8,381,440 16,758,784 1.99 2.38 x 107
Table 5: CSA multiplier Dataset Statistics (batch size=16).

Bit size # nodes # edges Average Degree Density of A
256 8,359,936 16,703,488 1.99 2.39 x 107
512 33,497,088 66,961,408 1.99 5.96 x 10~8

1,024 134,103,040 | 268,140,544 1.99 1.49 x 10~8
Table 6: Booth Multiplier Dataset Statistics.

Bit size # nodes # edges Average Degree Density of A
32 7,260 14,392 1.98 2.73 x 107*
64 27,852 55,448 1.99 7.14 x 107°
128 108,972 217,432 1.99 1.83 x 107°
256 430,956 860,888 1.99 3.3x107°
512 1,713,900 | 3,425,752 1.99 1.16 x 10~°

Table 7: Technology Mapped Dataset Statistics.

Bit size # nodes # edges Average Degree Density of A
64 48,088 95,920 1.99 4.14 x 10™°
128 192,487 384,462 1.99 1.03 x 107°
256 769,337 1,537,650 1.99 2.59 x 1076
512 3,084,427 6,166,806 1.99 6.4 x 107
768 6,949,193 13,895,314 1.99 2.87 x 107
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