
Grounding Code Generation with
Input-Output Specifications

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large language models (LLMs) have demonstrated significant potential in code1

generation. However, the code generated by these models occasionally deviates2

from the user’s intended outcome, resulting in executable but incorrect code. To3

mitigate this issue, we propose GIFT4CODE, a novel approach for the instruction4

fine-tuning of LLMs specifically tailored for code generation. Our method leverages5

synthetic data produced by the LLM itself and utilizes execution-derived feedback6

as a key learning signal. This feedback, in the form of program input-output7

specifications, is provided to the LLM to facilitate fine-tuning. We evaluated our8

approach on two challenging data science benchmarks, ARCADE and DS-1000.9

Our results suggest that the method enhances the LLM’s alignment with user10

intentions, reducing the incidence of executable but incorrect outputs.11

1 Introduction12

Large language models (LLMs) trained on code have demonstrated tremendous success as AI pair13

programmers in assisting developers writing code (Chen et al., 2021a; Austin et al., 2021; Li et al.,14

2023; Chowdhery et al., 2022; Li et al., 2022; Nijkamp et al., 2022; Fried et al., 2022; Li et al.,15

2023). Developers often interact with code LLMs using succinct natural language (NL) intents (e.g. x16

in Fig. 1) to describe their tasks (Barke et al., 2022; Ross et al., 2023). However, NL intents are17

often ambiguous (Yin et al., 2022b). This ambiguity can be problematic in complex tasks, such as18

manipulating Pandas DataFrames or PyTorch Tensors (Lai et al., 2022).19

Auxiliary input-output (I/O) specifications, ranging from concrete I/O examples to high-level NL20

summaries (e.g. red text in Fig. 1), offer a natural way to reduce this ambiguity (Gulwani et al.,21

2015; Balog et al., 2016; Jain et al., 2022; Yin et al., 2022a). Prior to the emergence of LLMs,22

auxiliary specifications served as essential problem descriptions in program synthesis (Gulwani, 2016;23

Devlin et al., 2017; Shi et al., 2020). Real-world synthesis systems like FlashFill are testimony to24

the adoption and effectiveness of I/O specifications (Gulwani, 2011; Gulwani et al., 2012). In this25

work, we consider the problem of LLM-based code generation when the LLM has access to both a26

natural-language intent and an additional I/O specification.27

However, code LLMs often fall short on following intents with additional complex semantic con-28

straints like I/O specifications out-of-the-box, leading to plausible solutions that fail to satisfy the29

constraints (e.g. y′, Fig. 1). Such a lack of alignment between the user’s intent and the model’s30

predictions (Chen et al., 2021a) could pose unnecessary burden on developers who are then required31

to fix the generated code (Bird et al., 2023). Therefore, we posit that addressing this misalignment by32

grounding the code generated by LLMs to the provided specifications is of paramount importance.33

Instruction fine-tuning has emerged as an effective strategy to tackle the issue of misalignment (Wei34

et al., 2021; Sanh et al., 2021; Chung et al., 2022). Classical approaches for instruction tuning typically35

Submitted to the Workshop on Instruction Tuning and Instruction Following at NeurIPS 2023. Do not distribute.

Figure 1: Left: Illustration of how developers prompt code LLMs with NL intents and I/O specifi-
cations to generate code with complex outputs (pandas Dataframes). Vanilla code LLMs fail to
understand extra I/O specifications. Right: Our proposed instruction tuning approach uses synthetic
intents and code solutions, where intents are augmented with I/O specifications derived from program
execution results. Models trained on the synthetic data could better follow a developer’s intent.

require a substantial amount of parallel labeled data of NL intents and gold model responses. The36

process of gathering such data is labor-intensive and time-consuming. Recent studies have suggested37

that generating synthetic instruction-following data using the LLM itself is a promising approach to38

improve alignment, with empirical success on natural language text generation tasks (Wang et al.,39

2022a; Honovich et al., 2022a; Taori et al., 2023; Peng et al., 2023, inter alia).40

In this paper we build upon the recent success of instruction tuning using synthetic data and fine-tune41

code LLMs to follow NL intents with additional I/O specifications. Unlike existing approaches,42

our key insight is to leverage program execution for synthetic data generation. First, in contrast to43

other open-ended text generation tasks where assessing the quality of target responses is challenging,44

the quality of synthetic code generation data can be easily improved using heuristics such as code45

executability (Yin et al., 2022c). Moreover, from the program execution states one could derive46

precise and aligned I/O specifications that can be included in the intents to supervise a model to47

follow those extra semantic constraints (Fig. 1, Right). In other words, when fine-tuned on such48

synthetic data, a model learns to ground NL task descriptions to program execution states expressed49

as I/O specifications (Berant et al., 2013).50

We apply our grounded instruction fine-tuning for code (GIFT4CODE) method to two challenging51

natural language to code generation applications: synthesizing complex pandas programs in com-52

putational notebooks (ARCADE, Yin et al. (2022b)) and answering data science questions on Stack53

Overflow (DS-1000, Lai et al. (2022)). First, we demonstrate the value of leveraging program54

execution information by showing that strong code LLMs can already be significantly improved by55

up to 10% absolute on ARCADE after fine-tuning on intents and executability-filtered code solutions56

without including any I/O specifications in synthetic data. Then, to further align model predictions to57

various types of user-provided I/O specifications, we derive those specifications at different levels of58

abstraction from code execution results. This ranges from concrete input/output examples to succinct59

natural language summaries of target variables (specifications in Fig. 1). By fine-tuning on parallel60

data of intents with I/O constraints and their target code solutions, the model is better at following a61

developer’s intents while producing code that is more likely to execute to the desired outcome.62

2 GIFT4CODE: Learning to Follow Intents with I/O Specifications63

In this section we elaborate on GIFT4CODE, our proposed approach to fine-tune code LLMs to better64

follow developers’ natural language intents along with I/O specifications, using synthetic parallel65

2

data. Fig. 1(Right) illustrates an overview of GIFT4CODE. We first synthesize a collection of intents66

with code solutions via few-shot prompting (§2.1), and then execute model-predicted code to derive67

I/O specifications from execution results (§2.2). Finally, we fine-tune the code LLM to predict code68

solutions given intents inlined with I/O specifications (§2.3).69

2.1 Generating Synthetic Intents and Code Solutions70

Programmatic Contexts We initialize a program state given some programmatic context71

and generate a series of contextualized NL-to-code problems for that context. As an72

example, the synthetic problems in Fig. 1 (Right) could have the contextual code df =73

pd.read_csv("world_statistics.csv"), which initializes the DataFrame variable df, sub-74

sequently used in the generated synthetic examples. The fact that our problems are contextualized75

sets our approach apart from existing instruction-tuning methods for text generation models (Wang76

et al., 2022a; Honovich et al., 2022a), where synthetic examples do not depend on any particular77

contexts. In our case, we mine those programmatic contexts from real-world code repositories, such78

as tabular datasets (e.g., .csv) used in data science notebooks on Github (§3).79

Creating Initial NL Intents Given a programmatic context c, we few-shot prompt an LLM to80

create a sequence of natural language intents {xi} (e.g. x1, x2 in Fig. 1(Right)). A problem xi that81

appears later in the sequence might depend on the earlier ones {x<i} (Nijkamp et al., 2022; Yin et al.,82

2022b). To generate NL intents, we use a “generalist” LLM instead of the code LLM that we aim83

to improve, since predicting intents conditioned on some context is similar to other text generation84

tasks, which could be better handled by a LM trained on general-purpose text data (Zelikman et al.,85

2022). The “generalist” LLM is a state-of-the-art general-purpose large language model. It achieves86

competitive results with GPT-4 on a variety of NL reasoning tasks. 1 Empirically, we observe that the87

problems generated by this LLM encompass a wide range of tasks relevant to the given programmatic88

context.89

Predicting Code Solutions After generating an intent x, we then prompt the code LLM to get a90

code solution y for x (e.g. y1 in Fig. 1(Right)). Specifically, a prompt to the LLM is the concate-91

nation of the programmatic context c and the intent x, with additional few-shot demonstrations of92

{〈c′,x′,y′〉}. Since many NL intents can be ambiguous and there could exist multiple alternative93

solutions (e.g. without additional I/O specifications, the intent in green in Fig. 1(Left) could be an-94

swered using tables with different layouts; see more in Yin et al. (2022b)), we therefore draw multiple95

candidate code solutions {y} for each intent. Intuitively, {y} could have a variety of alternative96

solutions for x, each leading to different execution results. This equips the model with the capacity97

to predict code for the same task but with different user-provided I/O specifications.98

2.2 Code Execution and Inference of I/O Specifications99

Given the set of synthetic problems {〈x, {y}〉} generated by few-shot prompting, we execute the100

code for each problem (step 2, Fig. 1(Right)) and derive I/O specifications from the execution results101

as additional semantic constraints to be included in the intents (step 3, Fig. 1(Right)).102

Specifically, for each candidate solution y of an intent, we first execute its original programmatic103

context c, followed by executing y. We trace the execution to collect the set of input and output104

variables in y, denoted as {v}, which are used to derive I/O specifications (details below). Executing105

code with arbitrary programmatic contexts collected from the wild is highly non-trivial due to issues106

such as library dependency. However, the use of synthetic data alleviates the need for a complex107

environment setup.108

Given the set of input and output variables extracted from execution results, we formulate an I/O109

specification, denoted as z, which serves as additional information to augment a developer’s intent,110

thereby providing a more comprehensive problem description. The level of detail and the style111

of these I/O specifications can vary based on the complexity of the problem and the developer’s112

preferences. In this work, we investigate three distinct types of I/O specifications, each characterized113

by its own linguistic style and level of abstraction, as illustrated in Tab. 1.114

1Details are publicly available in Anonymous (2023b). The model is now publicly available as an API, but
was only privately accessible at the time of submission. Anonymized for double-blind review.

3

Spec. Type Description Example I/O Specification

TypeDesc Variable type name Generate a variable with name df and type
pandas.DataFrame

I/O Examples Concrete I/O examples

Output variable df:

|Bangalore(float)|Chennai(float)|Delhi(float)|Hyderabad
(float)|Kolkata(float)|Hyderabad(float)|Kolkata(float)|...
|-----|-----|-----|-----|-----|-----|
| nan | 1.04 | 8.08 | 3.62 | 7.56 | 7.56 | 8.32 |
| 1.18 | nan | 11.96 | 6.80 | 6.31 | 8.75 |
| 8.46 | 11.10 | nan | 9.19 | 9.52 | 10.32 |

I/O Summary
LLM-generated NL sum-
maries of I/O examples

Given the user intent and the code, the salient columns (at
most given 3) in the input dataframe are airline, source_city,
destination_city. The output dataframe has columns (at most
given 3) such as Delhi, Mumbai, Chennai.

Table 1: Types of I/O specifications proposed in this work at different levels of abstraction. Example
specifications are for the intent in Fig. 1(Left). Only the output specifications for I/O Examples are
shown for brevity.

First, as a simple baseline, we utilize the variable type (TypeDesc, Tab. 1) as the I/O specification.115

Next, we incorporate the concrete values of the input/output variables into the specification, which116

we refer to as I/O Examples. This is reminiscent of classical program synthesis using I/O exam-117

ples (Gulwani et al., 2012; Alur et al., 2013; Balog et al., 2016). However, in our scenario, these118

I/O examples are used in conjunction with natural language (NL) intents to define the problem, in119

line with Jain et al. (2022). Given that the majority of the problems in our synthetic dataset involve120

complex Python objects such as pandas DataFrames, we simplify the I/O specification to include121

only partial variable states (e.g. by excluding some rows and columns in large DataFrames).122

In our effort to generate a more natural variety of I/O specifications that closely resemble the style of123

specifications in developers’ NL intents, we employ an LLM to summarize the values of input/output124

variables {v} into a succinct natural language description z (I/O Summary). Intuitively, the NL I/O125

summary includes salient information in the variables that can best clarify the original intent (e.g. the126

subset of columns in a DataFrame that are most relevant to solve a problem, as in Tab. 1, Bottom).127

Specifically, we few-shot prompt the generalist LLM to generate z, using information from its128

programmatic context c, the intent x, the code solution y, as well as I/O variables {v}, i.e. z ∼129

PLLM(· | c,x,y, {v}). We then update the intent x by appending z to it. The few-shot exemplars130

used for prompting cover example I/O summaries for various types of Python objects, such as nested131

container types (e.g. nested dicts), along with more complex objects like pandas DataFrames and132

pytorch or tensorflow Tensors.133

2.3 Fine-tuning Code LLMs to Follow Intents with I/O Specifications134

Our approach, GIFT4CODE, aims to fine-tune code LLMs to generate code that adheres closely to135

the desired intents which are supplemented by I/O specifications. In our synthetic training data, each136

example 〈c,x,y〉 consists of a programmatic context c, an intent x augmented with I/O specifications,137

and the corresponding code solution y. During fine-tuning, the code LLM learns to generate code that138

not only satisfies the provided intents but also respects the specified I/O constraints, while leveraging139

any relevant information in the programmatic contexts. In other words, we optimize PLLM(y | c,x).140

It is worth noting that the code LLM that undergoes this optimization is different from the “generalist”141

LLM employed to generate the NL intents and I/O specification z.142

3 Experiments143

The core research question explored in this section is whether GIFT4CODE enhances the LLM’s144

ability to follow developers’ NL intents with complex I/O specifications. While common code145

generation benchmarks like HumanEval and MBPP Chen et al. (2021a); Austin et al. (2021) feature146

simple algorithmic tasks (e.g., sorting) utilizing basic Python data types (e.g., lists), thus allowing for147

the use of concrete I/O examples as specifications, they lack the diverse and complex I/O specifications148

4

that we aim to explore. For more open-ended tasks such as data science programming, the output149

data type is more complex and diverse (e.g., Pandas DataFrames, PyTorch tensors). Hence, we apply150

our method to two different data science code generation applications.151

ARCADE (Yin et al., 2022b) is a benchmark of natural language to code generation in interactive152

data science notebooks. Each evaluation notebook consists of a series of interrelated NL-to-code153

problems in data wrangling (e.g. “Min-max normalize numeric columns”) and exploratory data154

analysis (e.g. intents in Fig. 1) using the pandas library. ARCADE features succinct NL intents to155

reflect the style of ephemeral queries from developers when prompting LLMs for code completion.156

More than 50% of the dataset’s problems are under-specified, which means that additional I/O157

specifications could provide extra clarification. To construct programmatic contexts for synthetic158

training data generation, we scraped 7,500 CSV files that are used in public Jupyter notebooks. Each159

context contains a DataFrame import statement, for example, df = pd.read_csv(·), followed by160

an NL description of the DataFrame to help the LLM understand its content. We generated 6 intents161

for each programmatic context and sampled 5 candidate code solutions for each intent. Roughly 60%162

of the code samples were executable. After filtering based on executability and API diversity (§2.1),163

we obtained around 20K synthetic training examples.164

DS-1000 (Lai et al., 2022) is a benchmark of data science problems sourced from Stack Overflow165

(SO). Compared to ARCADE, problems in DS-1000 feature a wider variety of I/O types, such166

as numpy/scipy Arrays and pytorch/tensorflow Tensors, making it particularly appealing to167

evaluate our instruction tuning approach aimed at generating code following I/O specifications.168

However, in contrast to ARCADE which features succinct NL intents, DS-1000 follows the typical169

style of detailed problem descriptions found in SO posts. These elaborate descriptions often include170

additional information such as task background and descriptions of unsuccessful attempts, providing171

a more complex intent structure, with an average length of 140 words. Given that such elaborate172

intents may not reflect the style of developers’ prompts to code LLMs, we do not focus on generating173

intents with similar styles. Instead, we held-out 500 problems in DS-1000 and use their annotated174

intents as training data, while evaluating on the remaining problems.2175

3.1 Setup176

Base Code LLM We use a strong decoder-only code language model with 62B parameters. The177

model was first pre-trained on a collection of 1.3T tokens of web documents and github code data,178

and was then fine-tuned on a disjoint set of 64B Python code tokens together with 10B tokens from179

Python Jupyter notebooks (Anonymous, 2023a).3180

Learning Methods We evaluated the performance of both the baseline and instruction-tuned181

models across a range of data formats, as shown in Tab. 2. For each I/O specification type, we182

augmented the intents and few-shot exemplars with specifications of the corresponding type. Similarly,183

at test time, we augmented the intents with the same type of I/O specifications. The baseline models184

are tested under both zero-shot and few-shot prompting. For the latter, we manually created exemplars185

for all types of specifications. These exemplars were prepended to the prompt when querying the186

LLM for code generation during inference.187

Simulate Noisy I/O Specifications at Test Time At testing time, the generation of I/O Summary188

underwent a minor modification from the process detailed in §2.2. We remove the concrete input/out-189

put variable states {v} to produce noisy I/O summaries, simulating scenarios where users might give190

noisy I/O specifications (Devlin et al., 2017). While the “generalist” LLM uses the code solution to191

generate noisy I/O summaries, we remark that the code LLM, which we aim to evaluate, does not192

have access to the ground truth solution. In other words, the “generalist” LLM acts merely as a “data193

labeler” to create I/O summaries in prompts in order to construct the evaluation dataset. It is also a194

common practice in program synthesis to derive specifications from ground truth solutions, which195

then serve as the sole input to the model during its evaluation (Balog et al., 2016).196

2We only use the annotated intents, while the code solutions and I/O specifications are still predicted by the
LLM. We ensure the training and evaluation problems are disjoint and from different SO posts.

3Model details are available in Anonymous (2023a), but withheld from this submission for review.

5

Methods
ARCADE DS-1000

pass@5 pass@20 pass@1
No Context Full Context No Context Full Context

Zero-shot Prompting
Code LLM (no spec.) 12.45 24.67 19.85 37.47 22.62

Few-shot Prompting
Code LLM (no spec.) 15.96 30.98 26.35 42.30 23.92
+ TypeDesc 16.58 29.68 29.68 42.30 25.90
+ I/O Examples 19.85 32.47 30.79 43.23 26.41
+ I/O Summary 23.75 37.11 34.50 46.75 26.25

Synthetic Data Fine-tuning
Code LLM (no spec.) 20.78 34.33 33.40 46.94 24.56
+ TypeDesc 21.52 36.73 33.58 48.61 27.35
+ I/O Examples 25.23 42.30 38.03 53.99 28.66
+ I/O Summary 28.01 43.79 43.04 55.47 29.34

StarCoder 15B 11.75 22.38 17.24 32.52 26.52
WizardCoder 15B 12.45 24.04 18.58 34.30 27.35

Table 2: pass@k on ARCADE and DS-1000. For each type of I/O specification in Tab. 1
(e.g. +I/O Summary), intents are augmented with I/O specifications of that type (e.g. intents inline
with I/O summary) in fine-tuning data or few-shot exemplars. At test time, input intents use the same
type of I/O specifications.

Metrics We adopted the pass@k metrics as defined in Chen et al. (2021a); Austin et al. (2021),197

which is calculated as the fraction of problems with at least one correct sample given k samples.198

Following Yin et al. (2022a), we drew 50 samples to calculate pass@5 and pass@20 to reduce the199

variance in ARCADE. Similar to Lai et al. (2022), we drew 40 samples to calculate pass@1 on200

DS-1000. Consistent with the original works’ settings, the sampling temperature was set to 0.8 for201

ARCADE and to 0.2 for DS-1000 respectively.202

3.2 Main Results203

Tab. 2 presents the pass@k results on ARCADE and DS-1000. We evaluate both few-shot prompting204

and fine-tuning with synthetic data. Specifically, for ARCADE we evaluate on two versions of the205

dataset. First, we consider the original version where an intent is prefixed by prior notebook cells as206

its programmatic context (Full Context), as well as a No Context ablation to simulate the scenario207

where users query a code LLM using an intent without any context. This no-context setting is more208

challenging, where the zero-shot performance of the base code LLM is nearly halved. The standard209

errors in all cells of the table are less than 0.5%, and are excluded for clarity in presentation.210

In our few-shot prompting experiments, we observe that pass@k generally improves with more211

detailed I/O specifications. Interestingly, on ARCADE, the improvements from prompting using212

I/O specifications compared to the baseline where no I/O specifications were used (no spec), are213

more notable in the more challenging no-context scenario (e.g. 15.96 7→ 23.75 v.s. 30.98 7→ 37.11214

for +I/O Examples). This trend suggests that additional specifications could provide more valuable215

clarifications when adequate programmatic contexts are lacking.216

Next, we fine-tune the base code LLM using our synthetic parallel data using different types of I/O217

specifications. Interestingly, without using any I/O specifications in the synthetic intents, on ARCADE218

the model already registers significant improvements compared to the zero- and few-shot settings.219

The model-predicted code solutions are filtered using executability heuristics, which helps improve220

the quality of the synthetic data, and a model fine-tuned on such data could generally be better at221

following users’ intents, even without I/O specifications. Moreover, by fine-tuning the model to222

follow intents with additional I/O specifications, we observe significantly better results. We also223

remark that instruction fine-tuning using natural language I/O summaries (+I/O Summary) yields224

the best results on both datasets. Intuitively, those I/O summaries could encode salient information in225

target input and output variables through natural language descriptions, which could make it easier226

for the model to capture patterns in the data as compared to other more elaborate versions such as227

using concrete I/O examples.228

6

We also evaluated Starcoder (Li et al., 2023) and its instruction tuned variant WizardCoder (Luo et al.,229

2023) on ARCADE and DS-1000. The result shows that GIFT4CODE is a more effective instruction230

tuning method in the data science domain. This is especially observed by the fact that GIFT4CODE231

offers much more relative improvement to the base model than the gains WizardCoder boasts over232

StarCoder. Overall, our results demonstrate that GIFT4CODE significantly improves the performance233

of code LLMs in following intents with I/O specifications at varying level of abstraction.234

4 Related Work235

Execution Guided Code Generation One area of study primarily focuses on utilizing execution236

as I/O examples, facilitating the synthesis of programs that align with the intended behavior. Gulwani237

(2016) involves synthesizing intended programs in an underlying domain-specific language (DSL)238

from example based specifications. This method has been further explored and adapted to different239

applications in subsequent studies (Devlin et al., 2017; Chen et al., 2018; Bunel et al., 2018). Another240

strand of research (Chen et al., 2021b; Wang et al., 2018; Ellis et al., 2019) leverages intermediate241

execution results to guide the search of programs. More recently, there have been attempts to utilize242

program execution results to verify and select code samples predicted by LLMs, either during auto-243

regressive decoding to prune search space (Zhang et al., 2023), or by few-shot prompting (Chen et al.,244

2023) and post-hoc reranking (Shi et al., 2022; Ni et al., 2023).245

Instruction Fine-tuning Instruction fine-tuning is a widely adopted approach to address the mis-246

alignment issue in LLM-generated content. LLMs such as FLAN (Wei et al., 2021), which excel247

at understanding and executing instructions from prompts, are trained on labeled training data. Re-248

inforcement learning with human feedback (RLHF) aims to mitigate the amount of labeling effort249

using model-based reward (Ouyang et al., 2022). Other works also confirmed the effectiveness of250

using instructional data in the fine-tuning stage (Mishra et al., 2021; Sanh et al., 2021; Chung et al.,251

2022; Wang et al., 2022b). To lower labeling cost, several recent works explored the possibility of252

automatic instruction generation (Ye et al., 2022; Zhou et al., 2022; Honovich et al., 2022b). In253

particular, SELF-INSTRUCT (Wang et al., 2022a) demonstrated that LLMs can be further improved254

by utilizing its own generation of instruction data. Our work differs from this line by considering255

execution-based specifications. Additionally, recent works attempted to distill instruction following256

data from more capable LLMs that have already been instruction-tuned (Honovich et al., 2022a; Taori257

et al., 2023; Chiang et al., 2023; Peng et al., 2023). In contrast, GIFT4CODE generates synthetic data258

from vanilla LLMs that have not gone through instruction-tunning.259

Synthetic Data from LLMs Besides generating data for instruction following, a number of recent260

studies have also harnessed general-purpose LLMs to generate realistic synthetic data in areas where261

labeled data limited, such as language understanding and clinical research (Rosenbaum et al., 2022a;262

Tang et al., 2023; Borisov et al., 2022; Liu et al., 2022; Rosenbaum et al., 2022b; Josifoski et al.,263

2023). To improve the quality of synthetic data extracted from LLMs, such approaches usually apply264

a rejection sampling procedure and filter predictions based on domain-specific heuristics such as265

logical consistency (Bhagavatula et al., 2022; Yin et al., 2022c). GIFT4CODE is in spirit of this line266

in that it leverages program execution feedback to filter code predictions (Xu et al., 2020).267

5 Conclusion268

We have presented GIFT4CODE, a framework for instruction fine-tuning large language models of269

code in which the training is guided by execution based specifications. Empirically, we demonstrated270

how our approach enhances the quality of generated code, substantially improving accuracy on two271

challenging data science benchmarks, ARCADE and DS-1000.272

References273

Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A.274

Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-275

guided synthesis. 2013 Formal Methods in Computer-Aided Design, pp. 1–8, 2013.276

Anonymous. Anonymous code language model. 2023a.277

7

Anonymous. Anonymous language model. 2023b.278

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,279

Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language280

models. arXiv preprint arXiv:2108.07732, 2021.281

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.282

Deepcoder: Learning to write programs. ArXiv, abs/1611.01989, 2016.283

Shraddha Barke, Michael B James, and Nadia Polikarpova. Grounded copilot: How programmers284

interact with code-generating models. arXiv preprint arXiv:2206.15000, 2022.285

J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on Freebase from question-answer286

pairs. In Empirical Methods in Natural Language Processing (EMNLP), 2013.287

Chandra Bhagavatula, Jena D. Hwang, Doug Downey, Ronan Le Bras, Ximing Lu, Keisuke Sakaguchi,288

Swabha Swayamdipta, Peter West, and Yejin Choi. I2d2: Inductive knowledge distillation with289

neurologic and self-imitation. ArXiv, abs/2212.09246, 2022.290

Christian Bird, Denae Ford, Thomas Zimmermann, Nicole Forsgren, Eirini Kalliamvakou, Travis291

Lowdermilk, and Idan Gazit. Taking flight with copilot: Early insights and opportunities of292

ai-powered pair-programming tools. Queue, 20(6):35–57, jan 2023. ISSN 1542-7730. doi:293

10.1145/3582083. URL https://doi.org/10.1145/3582083.294

Vadim Borisov, Kathrin Sessler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Language295

models are realistic tabular data generators. ArXiv, abs/2210.06280, 2022.296

Rudy Bunel, Matthew J. Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging297

grammar and reinforcement learning for neural program synthesis. ArXiv, abs/1805.04276, 2018.298

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harrison299

Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,300

Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick301

Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,302

Philippe Tillet, Felipe Petroski Such, David W. Cummings, Matthias Plappert, Fotios Chantzis,303

Elizabeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin, S. Arun304

Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,305

Alec Radford, Matthew M. Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,306

Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating307

large language models trained on code. ArXiv, abs/2107.03374, 2021a.308

Xinyun Chen, Chang Liu, and Dawn Xiaodong Song. Execution-guided neural program synthesis. In309

International Conference on Learning Representations, 2018.310

Xinyun Chen, Dawn Xiaodong Song, and Yuandong Tian. Latent execution for neural program311

synthesis beyond domain-specific languages. In Neural Information Processing Systems, 2021b.312

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to313

self-debug. ArXiv, abs/2304.05128, 2023.314

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,315

Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:316

An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:317

//lmsys.org/blog/2023-03-30-vicuna/.318

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam319

Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,320

Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam M.321

Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Benton C. Hutchinson, Reiner Pope,322

James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm323

Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier García, Vedant Misra,324

Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret325

Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,326

8

https://doi.org/10.1145/3582083
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica327

Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan328

Saeta, Mark Díaz, Orhan Firat, Michele Catasta, Jason Wei, Kathleen S. Meier-Hellstern, Douglas329

Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways.330

ArXiv, abs/2204.02311, 2022.331

Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,332

Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac333

Suzgun, Xinyun Chen, Aakanksha Chowdhery, Dasha Valter, Sharan Narang, Gaurav Mishra,334

Adams Wei Yu, Vincent Zhao, Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed Huai335

hsin Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.336

Scaling instruction-finetuned language models. ArXiv, abs/2210.11416, 2022.337

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel rahman Mohamed, and338

Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. ArXiv, abs/1703.07469,339

2017.340

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Joshua B. Tenenbaum, and Armando Solar-Lezama.341

Write, execute, assess: Program synthesis with a repl. In Neural Information Processing Systems,342

2019.343

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,344

Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling345

and synthesis. arXiv preprint arXiv:2204.05999, 2022.346

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In347

ACM-SIGACT Symposium on Principles of Programming Languages, 2011. URL https://api.348

semanticscholar.org/CorpusID:886323.349

Sumit Gulwani. Programming by examples - and its applications in data wrangling. In Dependable350

Software Systems Engineering, 2016.351

Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data manipulation using examples.352

Commun. ACM, 55:97–105, 2012.353

Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H Muggleton, Ute Schmid,354

and Benjamin Zorn. Inductive programming meets the real world. Communications of the ACM,355

58(11):90–99, 2015.356

Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning357

language models with (almost) no human labor. ArXiv, abs/2212.09689, 2022a.358

Or Honovich, Uri Shaham, Samuel R. Bowman, and Omer Levy. Instruction induction: From few359

examples to natural language task descriptions. ArXiv, abs/2205.10782, 2022b.360

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram361

Rajamani, and Rahul Sharma. Jigsaw: Large language models meet program synthesis. In362

Proceedings of the 44th International Conference on Software Engineering, pp. 1219–1231, 2022.363

Martin Josifoski, Marija Sakota, Maxime Peyrard, and Robert West. Exploiting asymmetry for364

synthetic training data generation: Synthie and the case of information extraction. ArXiv,365

abs/2303.04132, 2023.366

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen367

tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for368

data science code generation. ArXiv, abs/2211.11501, 2022.369

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,370

Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue371

Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro,372

Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar373

Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason374

Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,375

9

https://api.semanticscholar.org/CorpusID:886323
https://api.semanticscholar.org/CorpusID:886323
https://api.semanticscholar.org/CorpusID:886323

Nourhan Fahmy, Urvashi Bhattacharyya, W. Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas,376

Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire377

Schlesinger, Hailey Schoelkopf, Jana Ebert, Tri Dao, Mayank Mishra, Alexander Gu, Jennifer378

Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel379

Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean M. Hughes, Thomas380

Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source be with381

you! 2023.382

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom,383

Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien384

de, Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven385

Gowal, Alexey, Cherepanov, James Molloy, Daniel Jaymin Mankowitz, Esme Sutherland Robson,386

Pushmeet Kohli, Nando de, Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level387

code generation with alphacode. Science, 378:1092 – 1097, 2022.388

Qi Liu, Zihuiwen Ye, Tao Yu, Phil Blunsom, and Linfeng Song. Augmenting multi-turn text-to-sql389

datasets with self-play. In Conference on Empirical Methods in Natural Language Processing,390

2022.391

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,392

Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with evol-393

instruct. ArXiv, abs/2306.08568, 2023. URL https://api.semanticscholar.org/CorpusID:394

259164815.395

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization396

via natural language crowdsourcing instructions. In Annual Meeting of the Association for397

Computational Linguistics, 2021.398

Ansong Ni, Srini Iyer, Dragomir R. Radev, Ves Stoyanov, Wen tau Yih, Sida I. Wang, and Xi Victoria399

Lin. Lever: Learning to verify language-to-code generation with execution. ArXiv, abs/2302.08468,400

2023.401

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Haiquan Wang, Yingbo Zhou, Silvio Savarese,402

and Caiming Xiong. Codegen: An open large language model for code with multi-turn program403

synthesis. 2022.404

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong405

Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,406

Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan407

Leike, and Ryan J. Lowe. Training language models to follow instructions with human feedback.408

ArXiv, abs/2203.02155, 2022.409

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with410

gpt-4. ArXiv, abs/2304.03277, 2023.411

Andrew Rosenbaum, Saleh Soltan, Wael Hamza, Amir Saffari, Macro Damonte, and Isabel Groves.412

Clasp: Few-shot cross-lingual data augmentation for semantic parsing. In AACL, 2022a.413

Andrew Rosenbaum, Saleh Soltan, Wael Hamza, Yannick Versley, and Markus Boese. Linguist:414

Language model instruction tuning to generate annotated utterances for intent classification and415

slot tagging. In International Conference on Computational Linguistics, 2022b.416

Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael J. Muller, and Justin D. Weisz. The417

programmer’s assistant: Conversational interaction with a large language model for software418

development. Proceedings of the 28th International Conference on Intelligent User Interfaces,419

2023.420

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,421

Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen422

Xu, Urmish Thakker, Shanya Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal V.423

Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,424

Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj,425

Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan Teehan,426

10

https://api.semanticscholar.org/CorpusID:259164815
https://api.semanticscholar.org/CorpusID:259164815
https://api.semanticscholar.org/CorpusID:259164815

Stella Rose Biderman, Leo Gao, Tali Bers, Thomas Wolf, and Alexander M. Rush. Multitask427

prompted training enables zero-shot task generalization. ArXiv, abs/2110.08207, 2021.428

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke Zettlemoyer, and Sida I. Wang. Natural429

language to code translation with execution. ArXiv, abs/2204.11454, 2022.430

Kensen Shi, David Bieber, and Rishabh Singh. Tf-coder: Program synthesis for tensor manipulations.431

ACM Transactions on Programming Languages and Systems (TOPLAS), 44:1 – 36, 2020. URL432

https://api.semanticscholar.org/CorpusID:214605958.433

Ruixiang Tang, Xiaotian Han, Xiaoqian Jiang, and Xia Hu. Does synthetic data generation of llms434

help clinical text mining? ArXiv, abs/2303.04360, 2023.435

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy436

Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.437

https://github.com/tatsu-lab/stanford_alpaca, 2023.438

Chenglong Wang, Kedar Tatwawadi, Marc Brockschmidt, Po-Sen Huang, Yi Mao, Oleksandr Polo-439

zov, and Rishabh Singh. Robust text-to-sql generation with execution-guided decoding. arXiv:440

Computation and Language, 2018.441

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and442

Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.443

ArXiv, abs/2212.10560, 2022a.444

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Anjana445

Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, Eshaan Pathak,446

Giannis Karamanolakis, Haizhi Gary Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby447

Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar Pal, M. Moradshahi, Mihir Parmar, Mirali448

Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia,449

Shailaja Keyur Sampat, Savan Doshi, Siddharth Deepak Mishra, Sujan Reddy, Sumanta Patro,450

Tanay Dixit, Xudong Shen, Chitta Baral, Yejin Choi, Noah A. Smith, Hanna Hajishirzi, and Daniel451

Khashabi. Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp452

tasks. In Conference on Empirical Methods in Natural Language Processing, 2022b.453

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,454

Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. ArXiv,455

abs/2109.01652, 2021.456

Silei Xu, Sina J. Semnani, Giovanni Campagna, and Monica S. Lam. Autoqa: From databases to457

q&a semantic parsers with only synthetic training data. ArXiv, abs/2010.04806, 2020.458

Seonghyeon Ye, Doyoung Kim, Joel Jang, Joongbo Shin, and Minjoon Seo. Guess the instruction!459

flipped learning makes language models stronger zero-shot learners. ArXiv, abs/2210.02969, 2022.460

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, A. Eashaan Rao, Yeming Wen, Kensen Shi, Joshua461

Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, Alex Polozov, and Charles Sutton.462

Natural language to code generation in interactive data science notebooks. ArXiv, abs/2212.09248,463

2022a.464

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua Howland,465

Paige Bailey, Michele Catasta, Henryk Michalewski, Alex Polozov, and Charles Sutton. Natural466

language to code generation in interactive data science notebooks. 2022b.467

Pengcheng Yin, John Frederick Wieting, Avirup Sil, and Graham Neubig. On the ingredients of an468

effective zero-shot semantic parser. In Annual Conference of the Association for Computational469

Linguistics (ACL), Dublin, Ireland, May 2022c. URL https://arxiv.org/abs/2110.08381.470

E. Zelikman, Qian Huang, Gabriel Poesia, Noah D. Goodman, and Nick Haber. Parsel: A (de-471

)compositional framework for algorithmic reasoning with language models. 2022.472

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang Gan.473

Planning with large language models for code generation. ArXiv, abs/2303.05510, 2023.474

11

https://api.semanticscholar.org/CorpusID:214605958
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2110.08381

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and475

Jimmy Ba. Large language models are human-level prompt engineers. ArXiv, abs/2211.01910,476

2022.477

12

	Introduction
	Gift4Code: Learning to Follow Intents with I/O Specifications
	Generating Synthetic Intents and Code Solutions
	Code Execution and Inference of I/O Specifications
	Fine-tuning Code LLMs to Follow Intents with I/O Specifications

	Experiments
	Setup
	Main Results

	Related Work
	Conclusion

