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Abstract

Natural images often exhibit underlying sparse structures, with information density
varying significantly across different spatial locations. However, most generative
models rely on dense grid-based pixels or latents, neglecting this inherent spar-
sity. In this paper, we explore modeling visual generation paradigm via sparse
non-grid latent representations. Specifically, we design a sparse autoencoder that
represents an image as a small number of latents with their positional properties
(i.e., regions of interest, RoIs) with high reconstruction quality. We then explore
training flow-matching transformers jointly on non-grid latents and RoI values. To
the best knowledge, we are the first to address spatial sparsity using RoIs in genera-
tive process. Experimental results show that our sparse flow-based transformers
have competitive performance compared with dense grid-based counterparts with
significantly reduced lower compute, and reaches a competitive 2.76 FID with just
64 latents on class-conditional ImageNet 256× 256 generation.

1 Introduction

Deep visual generative models have advanced significantly in recent years, achieving impressive visual
quality on image [1, 2], video [3], and 3D domains [4]. Current visual generation pipelines typically
start by encoding raw data (e.g., images) into compact latent representations with autoencoders, and
then use diffusion, masking modeling, or autoregressive methods to generate such latents, as this
pipeline exemplified by latent diffusion [1]. Flagship text-to-image models, e.g., Stable Diffusion [5]
and FLUX [6], follow this line and compress spatial dimensions at typically 8× factor, significantly
lowering computational costs and modeling complexity in generative training.

Though being a core component of visual generation, autoencoders conventionally assume a grid-
based space of latent structures with the uniform information density. However, natural images
often exhibit highly non-uniform information density and require adaptive computation across spatial
locations [7, 8]. For example, in a landscape image, the sky background occupies numerous pixels
while being worth fewer latent units to reconstruct and generate. In contrast, intricate foreground
objects may require more latents to capture their details. Existing visual generation pipelines fail to
address this point, as they rely on dense uniform grid-based latent structures and cannot adaptively
allocate more computation to intricate foregrounds.

This paper aims to study this point. First, we propose a sparse visual autoencoder that learns to
compress an image into a set of sparse non-grid latents along with their positional property, i.e.,
region of interests (RoIs), and then recover image pixels from them. The RoIs explicitly characterize
the spatial locations of the latents in bounding box formulation, and can be learned jointly with latents
in an end-to-end manner by the plain reconstruction loss. The resulting sparse visual autoencoder
reaches high compression rates by prioritizing latents to detailed regions while maintaining high
reconstruction fidelity. Then, we design sparse flow-based transformers to generate latents and RoIs
by modeling the joint flow of them with the velocity prediction in the denoising process [9, 10]. At
∗The corresponding author.
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Figure 1: Left: conventional autoencoders encode pixels into latent grid representations. Right: our
method encodes them into fewer non-grid latents with region of interests (RoIs).

every timestep, our model learns to estimate both latent and RoI velocity from initial noise to target
samples. Divergent from prior grid-based latent approaches, our method dynamically adjusts latent
spatial positions during sampling via ordinary differential equations (ODEs) at inference, allowing
adaptive refinement of both content and spatial focus.

We show the feasibility of representing and generating images with sparse latents and RoIs on the
challenge ImageNet benchmark. Our proposed sparse flow autoencoder, SF-VAE, can represent
256 × 256 images with just 64 latents with 0.70 reconstruction FID, or even down to 32 latents
with 1.70 rFID. Then, the presented sparse flow-based transformers, SF-SiTs, have competitive
performance on par with diffusion/flow-based grid-based transformers [11, 10]. The largest SF-SiT,
XL variant, can reach 2.76 FID with classifier-free guidance [12] on the class-conditional ImageNet
generation benchmark with just 64 latents.

2 Related Work

Diffusion models. In recent years, generative models has been marked as a breakthrough in the field
of visual synthesis [1, 13, 14]. Commercial systems like DALL-E [2] or FLUX [6] are typically rooted
in denoising diffusion architectures. The seminal work, denoising diffusion probabilistic models [15],
take the image generative process as a gradual denoising trajectory, iteratively refining pure noise
into target images. Building on this foundation, subsequent advancements further accelerated and
refined diffusion-based generation. Improved variants including [16, 17, 9] investigate the training
and sampling trajectories, enabling high-quality results with fewer sampling steps. Latent diffusion
models [1] democratize the high resolution image synthesis by operating in a compressed latent
space with reduced computational costs. The following up work, including diffusion/flow-matching
transformers [18, 11, 10], also follows this convention to speed up training. Although training
diffusion models directly on raw pixels is technically feasible [19, 20], the preference for latent space
modeling stems from practical challenges: raw pixel data often contains high-frequency details and
perceptually complex patterns that are computationally intensive and difficult for diffusion processes
to model effectively.

Latent space for diffusion models. The compact latent space is crucial for diffusion models to
achieve high-quality image synthesis. Latent diffusion models [1] propose to train an autoencoder to
map raw pixels to a latent space first, where the latent space is typically 8× spatially downsampled
and comes with 4 channels, reaching a compression rate of 48. The follow up work on autoencoders,
including [5, 21, 22], mainly investigate the channel number and shows that increasing channel
number can improve the quality of diffusion samples via larger transformer models. Recently
proposed deep compression autoencoders (DC-AE) [23] compress the latent space at more aggressive
spatial downsampling rates, e.g., 32 or 64, further reducing the training cost of diffusion models.

However, there is a lack of exploration and discussion on the structure of latents for diffusion models.
Most autoencoders for diffusion models encode pixels into dense 2D grid-based latents and ignore
the underlying non-uniform and sparse structures in natural images, where a background region in an
image might be worth less latents than foregrounds. Here in this paper, we study this sparsity as well
as visual non-uniformity explicitly with region of interests (RoIs) along with latents for diffusion
models, following the sparse visual generation research line [8].
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3 Methods

Our image synthesis pipeline follows the common practice of latent diffusion models: an autoencoder
first that compresses images into a set of latents and RoIs, followed by a generative model that takes
noised latents and RoIs as input and predicts diffusion targets. We first describe the design of our
sparse flow autoencoders, and then introduce sparse flow-based generative transformers for modeling
joint flow.

3.1 Sparse Flow Autoencoders

Given an image I ∈ RH×W×3, conventional autoencoders encode it into grid-based latent representa-
tions and decode latents back into pixels by the encoder E and decoder D:

z = E(I) ∈ RH/f×W/f×d, (1)

Î = D(z) ∈ RH×W×3, (2)

where f is the downsampling factor, typically 8 in practice, and d is the latent dimension. The training
for E and D is done by minimizing the reconstruction loss `rec(I, Î). Variational autoencoders also
impose a Kulback-Leibler divergence loss `KL on z to regularize the latent distribution [24].

Latent and RoI representation. Different from grid-based latent representations, we propose
sparse flow variational autoencoders, SF-VAE, to use a sparse set of latents z ∈ RN×d with their
corresponding regions of interests (RoIs) r ∈ RN×4 to represent an image. The latent space of
SF-VAE is simply structured as one flattened dimension space, and the spatial property of latents
is characterized in RoIs. The RoIs are represented as bounding boxes in the format of (x, y, h, w),
where (x, y) and (h,w) are center points and height and width. The encoder E now outputs both
latents and RoIs, and the decoder D takes both latents and RoIs as input to reconstruct raw pixels:

(z, r) = E(I), Î = D(z, r). (3)

By eliminating the grid-based spatial prior, the number of latents N can be decoupled from image
pixels H ×W and can be arbitrarily chosen and further greatly reduced according to our experiments.

Encoding pixels into latents and RoIs. Typical object detectors [25, 26] can encode image
pixels into latent representations and RoIs. However, they often lack emphasis on backgrounds
and need bounding box annotations as individual supervision. Here, we resort to the SparseFormer
architecture [27] to build our encoder E from scratch, which can encode image pixels into latents and
RoIs in an end-to-end manner without bounding box supervision. SparseFormer takes early image
features Ĩ as input and gradually refines latents z and RoIs r via local image features within RoIs r
by several SparseFormer transformer layers, where refinement on z and r are both differentiable:

(zt, rt) = SPARSEFORMERLAYERt(Ĩ, z
t−1, rt−1), (4)

where z0 and r0 are parameters of the model. The RoIs r are updated using delta-formulation [25]
on (x, y, h, w).

Decoding latents and RoIs back into pixels. To learn the distribution of latents and RoIs given
an image by just pixel reconstruction, we need to decode them back into raw pixels in a fully
differentiable way, that is, the reconstruction loss needs to be both differentiable to latents and
RoIs. Unfortunately, to our best knowledge, mapping latents and RoIs back into raw pixels in a
differentiable way has not been deeply investigated in previous works. We have first tried a simple
idea, RoI-aware cross attention, but they struggle to recover high frequency details even in a long
training schedule, and cannot learn compact latent RoIs with pixel reconstruction.

Inspired by advance in neural rendering [28, 29], we design our decoder D with the neural field
approach and divide-and-conquer strategy. Specifically, we consider a latent and its RoI indexed
by i as a neural field function F(zi,ri) : R2 → R3 whose input is the pixel coordinate and output is
the RGB tuple. In other words, a latent and its RoI can be decoded into a pixel image individually.
Considering rich high frequency details in natural images [30], we design a neural field based on
cosine transform bases similar to 2D discrete cosine transform (DCT) [31] but in a continuous
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Figure 2: Structure of our SF-VAE and neural field-based decoder. For a latent tuple (zi, ri), the
neural field function F(zi,ri) first transforms pixel coordinates into 2D cosine bases conditioned on ri
and then feed these bases into an MLP whose parameters are conditioned on zi to get downsampled
intermediate features. The pixel decoder then decode these features into raw image pixels. For clarity,
we show only a single latent case.

coordinate space. Given a raw pixel’s coordinate (x, y) in the image, we first compute relative
coordinate (x′, y′) with regard to the RoI ri for a single pixel output:

x′ = (x− xi)/wi, y′ = (y − yi)/hi, (5)

then compute our customized cosine transform bases X ∈ RC :

Xc = cos [fy(c)(y
′ + 0.5)π] cos [fx(c)(x

′ + 0.5)π] , (6)

where the number of bases C needs to be a squared number, and fy(c) and fx(c) are the frequency of
the c-th channel in y and x directions, linearly increasing from 0 to

√
C − 1.

We use a two-layered MLP to transform these cosine bases into final output values, where MLP’s
weights are conditioned by the latent zi through a shared feed forward layer. Note that all these
computation can be done with matrix multiplication efficiently. However, we find that directly
recovering raw RGB pixels from F(zi,ri) is not memory friendly despite being efficient, since we
need to “trace” 65536 pixels with their bases and MLP activations for a single latent in a 256× 256
image, which is unrealistic. Therefore, we retarget the neural field to output a downsampled feature
map I′ ∈ RH/8×W/8×C , use the softmax function to blend different feature maps produced by
different latents, and use a upsampling decoder, Dpix, to upsample I′ to the final image Î of the input
size.

Overall autoencoder architecture. In the resulting SF-VAE, a latent does not need to correspond to
a fixed spatial region across different images, and we can decouple the number of latents N from the
image size and further reduce N . Our default number of latents and RoIs is N = 64 for a 256× 256
image, where the latent dimension d is 32, reaching a high 96× compression rate2. We train SF-VAE
in an end-to-end manner using regular VAE loss with a minor difference: we only apply the KL loss
to latent variables z since RoIs r do not necessarily follow a standard Gaussian distribution. We
also design our SF-VAE to be as parameter lightweight as possible. Visualizations in Figure 3 show
that SF-VAE can learn semantic and compact latent RoIs and achieve high reconstruction quality,
allowing latents to focus on intricate foreground objects.

3.2 Sparse Flow Transformers

Now we have compact latent space defined by latent variables z and RoIs r for an image, we describe
study how to generate them jointly. Here we first describe the flow matching framework [9, 32] for
continuous data modeling, and then delve into our flow formulation and the design of our flow-based
generative transformers.

Flow matching. Assume we want to model a target data distribution p(x), flow matching formulates
a process starting from a sample drawn from the starting distribution, typically x0 ∼ N (0, 1), to a

2Compression rate is ∼ 85 if a RoI also counted four values.
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Figure 3: Visualizations of SF-VAE,
and learned latent RoIs (N = 64). Note
different colors are only used for distin-
guishing different RoIs.
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Figure 4: Asynchronous interpolating schedule for
latents and RoIs. RoIs approach target RoIs faster than
latents as time t increases using β = 2 polynomial
schedule.

sample from the target distribution x1 ∼ p(x) by continuous time process:

xt = σtx0 + αtx1, (7)

where t ∈ [0, 1], σt and αt are interpolating coefficients characterizing an interpolating flow. The flow
matching requires σ0 = 1, α0 = 0, σ1 = 0, and α1 = 1. A popular choice is the linear interpolation,
σt = 1− t and αt = t. The velocity, or the derivation on xt in this process is

vt =
dxt
dt

= σ̇tx0 + α̇tx1. (8)

The model F is trained by minimizing the L2 loss between the predicted velocity and the true velocity
over sampled points and sampled paths:

Et,x0,x1‖F(t,xt)− vt‖2. (9)

During inference, flow matching draws an initial sample x0 ∼ N (0, 1) and solve the oridinary
differential equation (ODE) to get the target sample x1:

dxt
dt

= F(t,xt). (10)

Flow matching eliminates the noise introduction in the sampling stage [15] and can model most
arbitrary distribution, which is suitable for our RoI distribution modeling. Recent SiT models [10]
also shows flow matching as the prediction target with transformers [33] can surpass ones with the
diffusion target.

Joint latent and RoI flow. Different from SiT models only to model grid-based latents, we need to
model both the joint distribution of latents z with their RoIs r by SF-VAE in our flow-based generative
transformers. The latents z in SF-VAE are not structured as a grid, and their positional properties are
encoded in RoIs r. Here, we keep most of the transformer architecture in SiT unchanged but retarget
it to take both latents and RoIs as input and predict the velocity of both them:

(v̂z,t, v̂r,t) = F(t, zt, rt), (11)

where zt and rt are interploated latents and RoIs following Equ 7 at time t, v̂z,t and v̂r,t are estimated
velocity of latents and RoIs. We name it as SF-SiT for modeling joint latent and RoI flow. We choose
the initial distribution of latents and RoIs both to be standard Gaussian distributions for simplicity.

Given the number of latents N already being highly reduced (e.g., 64), we do not perform any latent
“grouping” and “ungrouping” operations in SiT to reduce computation. In other words, a latent from
SF-VAE directly corresponds to a token in the transformer in SF-SiT.
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RoI-based positional encoding. Since we get rid of the grid-based latents, it is crucial to inject
positional information dependent on RoIs rt into the transformer. Otherwise, the latents z becomes
fully permutation invariant due to the transformer’s architecture. We use the sinusoidal positional
encoding on four values of RoIs, (x, y, h, w), and concatenate them together. We add them as
position encoding to a corresponding token in the transformer. It is worth noting that this positional
encoding is totally based on RoIs and therefore changes for the same latent across different training
and inference timesteps as RoIs move across different timesteps.

Asynchronous interpolation schedule. The time t indicates the signal-to-noise ratio (SNR) in the
interpolation schedule, where t = 0 means pure noise and t = 1 means target data. Recall that we
need to model both z and r and therefore SF-SiT are required to handle pure noise RoIs at time t = 0
as well as not-so-clean RoIs in early t period. This differs from the regular SiT where the position
information is always clean, and the model have strong position information given at any t to predict
the latent velocity to denoise them. Therefore, we design an asynchronous interpolation schedule for
RoIs compared with latents, where we interpolate RoIs to approach the target RoIs faster than latents
in a polynomial way:

σr,t = (1− t)β , αr,t = 1− (1− t)β , (12)

where β is a control parameter, and reduces to the synchronous linear interpolation when β = 1. We
keep the linear interpolation schedule untouched for latents:

σz,t = 1− t, αz,t = t. (13)

This asynchronous interpolation schedule for latents and RoIs allows the velocity prediction for zt
to be more position-aware with cleaner RoIs as rt approaches the target RoIs faster, as shown in
the Fig 4. It is worth noting that the asynchronous interpolation schedule only affects the training
phase, i.e., the velocity computation of latents and RoIs. The inference logic is the same as regular
SiT, where we solve the ODE to sample the target latents and RoIs. To force the model to learn the
accurate RoI distribution, we also impose an additional L1 between the predicted RoI velocity and
the ground-truth, with a balancing weight wL1

, as proposed by LayoutFlow [34] to model bounding
box flow more accurately in layout generation.

4 Experiments

To verify the feasibility of synthesizing images with sparse non-grid latents, we conduct experiments
on the standard ImageNet benchmark [35], mainly on 256 × 256 images. We first discuss our
autoencoders, SF-VAE, and then present the results of our generative model, SF-SiT. Note that our
aim is not to achieve new state-of-the-art results on a benchmark, but to explore sparsity in image
generation pipeline.

4.1 Sparse Flow Autoencoders

Setup. As discussed in previous section, our SF-VAE consists up of a SparseFormer encoder E
and a neural field-based decoder D, where the latent space defined by latent variables and RoIs. To
keep as lightweight as possible, we design a SparseFormer encoder of 8 blocks with transformer
dimension 512 to extract latents and RoIs, where the leading 4 blocks extract RoI regional features
from the image. The neural field decoder also consists of 8 transformer blocks of 512 dim, and then

Table 1: Reconstruction results on 50K ImageNet validation samples.

resolution method latent shape params rFID↓ PSNR↑ SSIM↑ LPIPS↓
256× 256 SD-VAE-ema-f8 32× 32× 4 84M 0.63 24.98 0.804 0.062

DC-AE-in-f32c32 8× 8× 32 323M 0.77 23.92 0.765 0.086
DC-AE-mix-f32c32 8× 8× 32 323M 0.96 23.75 0.763 0.088
SF-VAE 64× 32 133M 0.70 23.24 0.743 0.085

512× 512 SD-VAE-ema-f8 64× 64× 4 84M 0.19 27.36 0.849 0.061
DC-AE-in-f32c32 16× 16× 32 323M 0.20 26.23 0.815 0.078
SF-VAE 256× 32 133M 0.29 25.03 0.787 0.088
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produce dynamic MLP’s parameters, where the hidden dimension of two-layer MLP is 64. The output
of the neural field decoder is then decoded into raw pixels by Dpixel of conventional VAE decoder
architectures [1] but we reduce the dimension of most convolutional layers. The computational cost
of the resulting SF-VAE decoder is 153GFLOPs for a 256× 256 image, where the SD-VAE-ema-f8
decoder needs 311GFLOPs. The latent z is 32-dim, and the default number of latents is 64. The loss
follows the convention of VAE in latent diffusion models, with the L2 loss for pixel reconstruction,
perceptual loss [36] and GAN adversarial loss [37] for visual perceptual details, as well as KL
divergence [24] for the latent regularization on z. We train the SF-VAE on the ImageNet training set
with a batch size of 128 for 320K iterations (equivalent to 32 epochs) with a learning rate of 10−4.
We perform reconstruction FID evaluation [38] on the ImageNet validation 50K samples.

Reconstruction results. We compare our SF-VAE with the popular SD-VAE-f8 [1] that comes
with a downsampling rate of 8, resulting in a latent shape of 32 × 32 × 4. We also include the
recently proposed deep compression autoencoder (DC-AE) [23] with a latent shape of 8× 8× 32 for
comparison, which is exactly the same as our default latent shape. The results are shown in Table 1.

The reconstruction FID of our SF-VAE is 0.70, which is competitive with the SD-VAE (rFID
0.63) with 1024 latents. Also, if counting the latent dimension together, the SF-VAE comes with
64× 32 = 2048 units, much less than SD-VAE’s 32× 32× 4 = 4096 units. Compared with DC-AE
also trained on ImageNet samples and with the same latent shape, our SF-VAE achieves a lower rFID
score while maintaining significantly fewer parameters.

More importantly, the reconstruction results further demonstrate that non-grid latents are also effective
for image reconstruction. These findings align with recent studies, which show that explicit 2D
structured latents are not necessary for high-quality reconstructions and token numbers can be
extremely compressed [39–41]. However, our methods does not necessarily belong to the 1D
tokenization family, since there are explicit geometric properties, i.e., RoIs, associated with each
latent. These 2D RoI representations also maintain the translation equivariance property of this
pipeline, while 1D tokenization methods typically fail to address this point.

256x256 input 32 latents 48 latents 64 latents

512x512 input 128 latents 256 latents

Figure 5: SF-VAE reconstructions with different
latent numbers. Better zoom in.

Varying number of latents and higher image
resolution. As discussed before, SF-VAE en-
joys the flexibility of decoupling the number of
latents from a specified image resolution. Here,
we investigate our SF-VAE with more aggres-
sive latent reduction for a fixed resolution of
256 × 256 in Table 2. We do not change the
architecture of our SF-VAE, but only changes
the number of latents from 64 to 48 and 32
and maintains the latent dimension unchanged.
To reduce training costs, we initialize SF-VAE
with new latent configurations from pre-trained
weights of the 64-latents model, and finetune
them for 20K iterations. Here, we find 32 to-
kens have already been able to reconstruct pix-
els with an rFID of 1.70, and 48 tokens give a
competitive 0.99 rFID.

Table 2: Token numbers for
SF-VAE reconstructions.

resolution #latent rFID

256× 256

128 0.35
64 0.70
48 0.99
32 1.70

512× 512
256 0.66
128 1.29

Table 3: Effects of asynchronous inter-
polating schedule.

interpolating schedule FID↓
linear, β = 1 44.4
async, β = 2 42.0
async, β = 4 44.6
async, min(2× t, 1) 54.0
async, min(4× t, 1) 55.9
decoupled, RoIs first 63.3

Table 4: Effect of
L1 loss.

wL1 FID
0.0 43.9
0.2 42.0
0.5 42.6
1.0 45.1
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Table 5: Comparison with diffusion/flow-based transformers with grid-based latents under 400K
training iterations without CFG. ∗SiT reproduced using official code. † sampled with ODE Euler
sampler with NFE=250 for fair comparison. Flops are calculated with one single NFE.

method #tokens #params flops (G) FID↓ IS↑
DiT-B/2 256 130M 21.8 43.5 -
SiT-B/2 256 130M 21.8 33.0 -
SiT-B/2∗† 256 130M 21.8 37.0 39.6
SF-SiT-B† 64 138M 5.9 33.6 41.4
DiT-XL/2 256 675M 114.4 19.5 -
SiT-XL/2 256 675M 114.4 17.2 -
SiT-XL/2∗† 256 675M 114.4 18.8 70.9
SF-SiT-XL† 64 685M 29.3 18.6 71.6

We also study SF-VAE on higher image resolution of 512 × 512 in Table 2. We first scale up the
number of latents to 256 similar to dense grid-based VAEs, where latent numbers are increasing
quadratically regarding input image size. Then we reduce the number of latents to 128. We find that
our SF-VAE can still achieve competitive reconstructions for higher images in Figure 5.

4.2 Sparse Flow Transformers

Setup. Our SF-SiT generally follows the design of original SiT transformers [10], where the input
and output are retargeted to latents z and RoIs r, and the velocity of them, v̂z and v̂r. We mainly
experiment SF-SiT-B and SF-SiT-XL variants, whose configurations strictly follow the original SiT-B
and SiT-XL. Since SF-SiT are now required to output RoI velocity besides latent velocity, we add
an additional AdaLN head [42] to predict RoI velocity, where the output is also initialized to zeros
similar to latent prediction.

We train SF-SiT variants from scratch on ImageNet training set with 64 latents and RoIs from SF-VAE,
unless otherwise specified. In SF-SiT, each latent directly corresponds to a token in the transformer
blocks, as our architecture eliminates extra patchifying operations. The training configurations are
the same as the original SiT models, i.e., the global batch is 256 and the Adam optimizer [43] with
constant learning rate 10−4. We set the default β to 2 in the asynchronous interpolating schedule and
the weight wL1

to 0.2 for the additional L1 loss on RoI velocity prediction. We evaluate our SF-SiT
using ADM evaluation pipeline [44] and report FID with 50K samples.

Comparison with grid-based diffusion/flow transformers. We first compare our methods under
the 400K iteration budget with grid-based DiT/SiT baseline [11, 10] in Table 5 without classifier-free
guidance (CFG). It is worth noting that original SiT models adopt the SDE sampler during inference
and report their results. This differs from SF-SiT models, which use simple ODE sampler for latent
and RoI inference. Due to the lack of publicly available intermediate SiT checkpoints, we reproduce
SiT-B and SiT-XL variants using the official code, and inference samples with ODE Euler sampler.
We also align the number of function evaluations (NFE) in SF-SiT and SiT models to 250 to make
fair comparison.

As shown in Table 5, SF-SiT models, despite operating on significantly reduced latents, achieve
performance on par with SiT models using the Euler ODE sampler. We experimented SF-SiT models
with the original SiT’s SDE sampler but observed degraded RoI quality and visual distortion in
decoded images. We hypothesize this sensitivity arises from that SF-VAE encoded RoIs being
deviating from standard Gaussian distributions, making them incompatible with the noise introduced
by SDE sampling. Overall, these findings suggest that jointly modeling the flow of latents and RoIs
have competitive performance paired with ODE-based samplers.

Ablation studies. For all ablation studies, we resort to SF-SiT-B variant with 200K budget due
to the limited computational resource. We also inference samples in ablations with the Heun ODE
solver with 50 NFE for efficiency.

Asynchronous interpolation schedule. Our proposed SF-SiT introduces additional RoIs r as
additional modeling targets. As discussed before, we propose the asynchronous interpolation schedule
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Figure 6: Visualization of RoI flows and decoded images with SF-SiT-XL and CFG=4.0.

for r to be more compatible in the joint modeling with the latents z. Here we investigate the effect of
the asynchronous interpolation schedule in Table 3. We can find that the asynchronous interpolation
schedule β = 2 for r gives the best result. In contrast, synchronous interpolation (β = 1) between r
and z, or purely linear interpolation for both, results in the inferior FID. We also try more aggressive
asynchronous schedule, where the interpolated RoI r reaches the target RoI linearly but at the earlier
timestep, e.g., t = 0.25 for min(4 × t, 1). These clamped linear schedules are also asynchronous,
where we suppose to sample RoIs first and then sample latents in a hard way, leading to significant
degradation in FID. Finally, the decoupled interpolation schedule indicates that we first schedule RoI
denoising separately and individually when t is in [0, 0.5] and then schedule latent denoising when t
is in [0.5, 1], where the denoising processes for r and z are fully decoupled and disjoint, leading to the
worst FID. These findings show that the joint flow of latents and RoIs is crucial to good performance
in SF-SiT framework but also needs soft asynchronous interpolation between z and r to have better
performance.

RoI velocity L1 loss. We also investigate the effect of L1 loss on the RoI velocity prediction, as
proposed by. In line with [34], the L1 loss weight 0.2 gives the best result.

Longer training schedule. We further train the largest SF-SiT variant, SF-SiT-XL, with longer
training schedule. To accelerate convergence on limited hardware resource, we use REPA [45] for
our SF-SiT-XL training. We use DINOv2-B/14 [46] as our REPA align target. Since our SF-SiT

Table 6: Class conditional generation results on 256× 256 ImageNet. P refers to precision and R
refers to recall following [44].

method #tokens train steps FID↓ IS↑ P↑ R↑
LDM-4 [1] - - 10.56 103.5 0.71 0.62
DiT-XL/2 [11] 256 7M 9.62 121.5 0.67 0.67
SiT-XL/2 [10] 256 7M 8.26 131.6 0.68 0.67
SiT-XL/2 w/ REPA [45] 256 1M 6.4 - - -
SF-SiT-XL w/ REPA 64 1.4M 7.35 131.9 0.70 0.66
DiT-XL/2 (CFG=1.5) 256 7M 2.27 278.2 0.83 0.57
SiT-XL/2 (CFG=1.5) 256 7M 2.06 277.5 0.83 0.59
SF-SiT-XL w/ REPA (CFG=1.5) 64 1.4M 2.99 279.2 0.82 0.54
SF-SiT-XL w/ REPA (CFG=1.375) 64 1.4M 2.76 247.7 0.81 0.58

9



does not form grid-based feature maps, we need to transform intermediate representations in SF-SiT
transformer blocks into a grid using the time-dependent interpolated rt as positional properties. Here,
we use a simple cross attention from dense queries on grids to SF-SiT tokens with the positional
embedding based on rt added into keys and values. Dense grid queries are then passed through an
MLP to align with DINOv2.

Table 6 shows SF-SiT-XL (w/ 64 latents) results with longer training budget. Note that here we
only want to show the potential of SF-SiT-XL on our limited budget with the fast convegence of
REPA (it have already took 7 days on 8 A100s to complete 1.4M steps). SF-SiT-XL reaches the
competitive performance (7.35 FID w/o CFG and 2.76 w/ CFG) with significantly reduced tokens
and computation used. It is expected to have better results when training for more iterations and we
will investigate them further when computational resources are available.

5 Conclusion

In this paper, we proposed a paradigm for visual generative modeling by using non-grid sparse latents
with their positional properties, challenging the dense grid convention for image synthesis. We first
designed sparse flow variational autoencoder, SF-VAE, which encodes raw image pixels into latents
together with their RoIs. With SF-VAE, we can compress 256× 256 images with down to 32 latents
for good reconstruction fidelity. We then propose sparse flow-based generative transformers, SF-SiT,
to model the joint flow of latents and RoIs with the highly reduced latent space. With carefully-
designed asynchronous interpolation schedule and loss for RoIs, SF-SiT models have competitive
performance compared with diffusion/flow transformers. Although not targeting new state-of-the-art
results, SF-SiT-XL with just 64 tokens still reaches a competitive 2.76 FID on ImageNet with longer
training schedule. We hope that our work can facilitate further research directions on non-grid and
sparse generative methods, as well as sparse approaches for generation in other domain, e.g., audio
and video.

Limitations. Due to the lack of computational resources, we only train our SF-SiT-XL variant
with the help of representation alignment (REPA) for fast convergence, and under fewer tokens
settings, it might require more training iterations to converge with RoI modeling compared with
grid-based SiT/DiTs for large parameter models. Also, the large scale text-to-image experiments
remain exploration in the future. As this paper mainly aims for visual generative modeling, it inherits
safety risks regarding its generated content. As the standard ImageNet being the training dataset,
which is known to be a relatively safe for academic purposes, these concerns might not be fully
addressed in our current framework.

Acknowledgement. This project is supported by the National Research Foundation, Singapore
under its NRFF Award NRF-NRFF13-2021-0008.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work performed by the authors.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides sufficient information to reproduce the experimental
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: Now our codebase is not ready for being publicly available. We will release
the code upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides sufficient information to reproduce the experimental
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Experiments in this paper are computation-consuming and due to the limited
computational resources, we cannot run the experiments repeatedly.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides sufficient information on the computer resources needed to
reproduce the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper adheres to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper focuses on improving models in the academic area.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is investigating the new diffusion models on the standard ImageNet
dataset from scratch. The ImageNet dataset is commonly used for academic research and is
considered relatively safe.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper properly credits the creators or original owners of assets used in the
paper and mentions the license and terms of use explicitly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper are well documented.

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: No LLMs used in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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