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Maximum Images Processed on a Single 80G GPU
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Figure 1: Comparison of the maximum images processed by MLLMs on a single 80GB GPU (Int8
Quantization), and plotted against their release dates. Our model, LongLLaVA, leads the way with
the ability to handle up to 1173 images, demonstrating its superior processing capability. Res refers
to resolution. Although these baseline models are capable of processing these images as input, their
performance often deteriorates significantly (Song et al., 2024) with more images.

ABSTRACT

Expanding the long-context capabilities of Multi-modal Large Language Mod-
els (MLLMs) is crucial for video understanding, high-resolution image under-
standing, and multi-modal agents. This involves a series of systematic optimiza-
tions, including model architecture, data construction and training strategy, par-
ticularly addressing challenges such as degraded performance with more images
and high computational costs. In this paper, we adapt the model architecture to a
hybrid of Mamba and Transformer blocks, approach data construction with both
temporal and spatial dependencies among multiple images and employ a progres-
sive training strategy. The released model LongLLaVA (Long-Context Large
Language and Vision Assistant) is the first hybrid MLLM, which achieved a bet-
ter balance between efficiency and effectiveness. LongLLaVA not only achieves
competitive results across various benchmarks, but also maintains high through-
put and low memory consumption. Especially, it could process nearly a thousand
images on a single A100 80GB GPU, showing promising application prospects
for a wide range of tasks.

1 INTRODUCTION

The rapid advancement of MLLMs (Liu et al., 2024b; 2023a; Dong et al., 2024a; Chen et al., 2024a)
has demonstrated their remarkable capabilities across various applications (Chu et al., 2024; Yang
et al., 2023; Wu et al., 2023b; Chen et al., 2024b). However, multi-image scenario remain an impor-
tant yet to-be-explored aspect. In particular, expanding the context of MLLMs to understand longer
videos (Zhang et al., 2023; Cheng et al., 2024b), higher-resolution images (Xu et al., 2024c; Wu &
Xie, 2023b), and make decisions based on more historical messages (Wang et al., 2024b; Liu et al.,
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2024c) is crucial for enhancing user experience (Li et al., 2024b) and further broadening MLLMs’
application scope (Apple, 2024).

However, extending the context length of MLLMs to improve their usability poses challenges related
to degraded performance and high computational costs when processing more images. To maintain
the performance in longer context, some studies (Zhang et al., 2024a; Zhao et al., 2024c) have con-
centrated on curating long-context training data involving multiple images to enhance performance.
Additionally, other research efforts have explored innovative training strategies (Liu et al., 2024a;
Zhang et al., 2024b; Li et al., 2024a; Zhang et al., 2024d) to mitigate performance declines. Re-
garding the issue of high computational costs, Xue et al. (2024) have made strides in improving
multi-node efficiency by reducing communication costs. However, there remains a gap in solutions
for accelerating the computation itself when managing longer contexts.

To address the challenges mentioned above, we propose a systematic solution called LongLLaVA,
especially using a hybrid architecture for acceleration. This solution comprehensively optimizes
across three dimensions: Multi-modal Architecture, Data Construction, and Training Strategy.

• For Multi-modal Architecture, we adopt a hybrid hybrid Transformer-Mamba architec-
ture and an efficient image representation method that applies 2D pooling to compress
image tokens, significantly reducing computational costs while maintaining performance.

• For Data Construction, we have designed unique formats for different tasks, enabling the
model to distinguish between temporal and spatial dependencies among images.

• For Training Strategy, we use a three-stage method for multi-modal adaptation—Single-
image Alignment, Single-image Instruction-tuning, and Multi-image Instruction-
tuning—to incrementally enhance the model’s ability to handle multi-modal long contexts.

Experiemntal results show that LongLLaVA excels in understanding multi-modal long contexts with
high efficiency. It leads in retrieval, counting, and ordering tasks in VNBench (Zhao et al., 2024e)
and achieves nearly 100% accuracy with 1,000 images on a single 80GB GPU for Needle-In-A-
Haystack evaluation (Zhang et al., 2024b). Our summarized contributions are as follows:

• We introduce LongLLaVA, a solution optimized through data construction, training strate-
gies, and multi-modal architecture, effectively balancing performance and efficiency. To
the best of our knowledge, this is the first hybrid architecture for MLLMs.

• LongLLaVA demonstrates exceptional performance in multi-modal long-context under-
standing, excelling in retrieval, counting, and ordering tasks. In our commitment to trans-
parency and community research, we will open source all models, codes, and datasets
associated with LongLLaVA.

2 TOWARDS SCALING UP THE IMAGE NUMBER IN MLLMS

2.1 THE CURSE OF IMAGE NUMBERS

Degraded Performance with More Images. While many open-source MLLMs match closed-
source models on single-image tasks (Bai et al., 2023; Li et al., 2024a; Zhang et al., 2024a; OpenAI,
2024; Google, 2024), their performance degrades significantly in multi-image scenarios, particularly
in tasks involving temporal or semantic relationships (Song et al., 2024). This limitation restricts
their usability and calls for systematic solutions from the open-source community.

Excessive Input Length. Processing multiple images results in excessive input length due to the
large number of tokens generated by visual encoders like CLIP (Radford et al., 2021). For example,
representing a three-minute video at 1 FPS requires 103,680 tokens, causing increased computa-
tional demand and memory usage. Compression methods (Chen et al., 2023a; Zhang et al., 2024b;
Xu et al., 2024b) partially alleviate this issue but often compromise performance.

High Computational and Memory Complexity. The quadratic scaling of Transformer architec-
tures with sequence length leads to high computational and memory overhead when handling mul-
tiple images. Techniques like ring attention (Liu et al., 2024a; Zhang et al., 2024b), sequence par-
allelism (Xue et al., 2024), and Mamba architectures (Gu & Dao, 2024; Zhao et al., 2024a) offer

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

partial relief but introduce trade-offs, such as time overhead or reduced in-context learning capabil-
ities (Lieber et al., 2024). A balanced solution is needed to address these challenges in multimodal
contexts.

2.2 MOTIVATION FOR HYBRID ARCHITECTURE

Table 1: Comparative Analysis of Architectures. A checkmark (✓) indicates that the architecture
supports in-context learning (ICL) capabilities, while a cross (✗) denotes a relatively weaker ICL
ability. For a more detailed experimental analysis, please refer to Sec. 5.1.

Architecture Compute Complexity ICL Representative models

Transformer Quadratic ✓ Gemma (Team et al., 2024), LLaMA (Touvron et al., 2023)
Mamba Linear ✗ Mamba (Gu & Dao, 2024), Mamba-2 (Dao & Gu, 2024)
Hybrid Quasi-Linear ✓ Jamba (Lieber et al., 2024), Zamba (Glorioso et al., 2024)

Transformer architectures are highly effective in multimodal tasks but face significant computa-
tional challenges due to their quadratic complexity with sequence length. This inefficiency becomes
a bottleneck in long-context scenarios, requiring high memory and computation resources. Mamba
architectures address this issue with their linear computational complexity, making them signif-
icantly more efficient. However, they exhibit notable weaknesses in In-Context Learning (ICL)
tasks, particularly those involving complex retrieval or reasoning (Park et al., 2024). These limi-
tations may attributed to Mamba’s reliance on reduced attention mechanisms (Olsson et al., 2022),
which constrain its ability to learn contextual patterns effectively. While explicit training can enable
Mamba models to perform simple ICL tasks, this approach restricts the utilization of the model’s
full capacity and training data (Dao & Gu, 2024).

Recent advancements have demonstrated the potential of hybrid Mamba-Transformer architectures,
which integrate Mamba’s efficiency with the robust ICL capabilities of Transformers (Dao & Gu,
2024; Wang et al., 2024a). Comparative experiments show that these hybrids achieve superior per-
formance on ICL tasks and maintain computational efficiency. For instance, Jamba (Lieber et al.,
2024), a hybrid model, can process 256K tokens with only 4GB of KV-Cache memory, far sur-
passing the capabilities of Mixtral (Jiang et al., 2024a), which has the same activation parameters.
This balance between effectiveness and efficiency makes hybrid architectures an ideal solution for
long-context multimodal tasks, addressing both computational and functional limitations.

2.3 THE BENEFIT OF SCALING UP THE IMAGE NUMBER

Adopting more images significantly broadens the application scenarios for current MLLMs. We will
explore this from two dimensions: Temporal Expansion and Spatial Expansion.

Temporal Expansion. Understanding the temporal dependencies between images is crucial for a
variety of applications. In multi-modal assistants, it enhances real-time recall capabilities, which is
particularly beneficial for the elderly (Li et al., 2024b; Loveys et al., 2022). For mobile agents, it
enables more personalized services and improves task planning (Deng et al., 2024; Li et al., 2024f;
Wu et al., 2023a). In the healthcare sector, it assists in anomaly detection in 3D medical videos,
thereby reducing diagnostic errors (Bai et al., 2024a).

Spatial Expansion. When dealing with high-resolution images (Xu et al., 2024c; Dong et al.,
2024b) or when detailed understanding of images (Wu & Xie, 2023b) is required, images are often
decomposed into sub-images. This process highlights the importance of grasping spatial dependen-
cies among these sub-images. In remote sensing, an increased number of images enhances both
coverage and granularity (Guo et al., 2024; Liu et al., 2022). In pathology, it minimizes information
loss and improves diagnostic accuracy (Sun et al., 2024; Xu et al., 2024a). In the field of Molecu-
lar Learning, it facilitates the processing of complex reactions and the analysis of larger molecular
graphs (Zhang et al., 2024c; Le et al., 2024).

3 LONGLLAVA: SCALING LLAVA TO LONGER CONTEXT

To address the aforementioned challenges and enhance the model’s adaptability to long-context,
multi-image scenarios, we introduce improvements from three perspectives: multi-modal model
architecture (Sec. 3.1), data processing protocol (Sec. 3.2), and training strategy (Sec. 3.3).

3
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3.1 MULTI-MODAL ARCHITECTURE

Our multimodal architecture is constructed around three core components inspired by LLaVA (Li
et al., 2024a): the Vision Encoder, the Projector, and the LLM. The primary strategies for adapting
to multimodal long-context are predominantly derived from two aspects.

Mamba MoE Layer

Mamba Layer 

Mamba MoE Layer

Mamba Layer 
Transformer Layer

Mamba MoE Layer

Mamba MoE Layer

Mamba Layer 
Vision Encoder

Projector

2D

Token Compression

Pooling

Image Set MRI

Image

RSI Movie Nvigation

Video

3D

Multimodal 
Long Inputs

    Long Text

Figure 2: Architecture of LongLLaVA. The LongLLaVA model is capable of (1) accommodating a
variety of multimodal inputs and efficiently processing image tokens via 2D token compression; (2)
uniformly managing the preprocessed inputs within its hybrid LLM architecture, which comprises
four stacks of hybrid layers, each blending Transformer and Mamba layers in a 7:1 ratio.
Vision Information Processing. We employ CLIP1 as the vision encoder to encode visual infor-
mation and a two-layer MLP as the projector to map vision features into the text embedding space
suitable for the LLM. Prior to projection, bilinear pooling is applied, reducing the token representa-
tion of an image from 576 to 144 by aggregating 2×2 patch units into a single token. This approach
effectively conserves training and inference time while maintaining essential spatial relationships
between patches. Further details on the effectiveness of this strategy are provided in Section 4.5.

Hybrid LLM Architecture. Our model employs a hybrid LLM architecture comprising four stacks
of hybrid layers, each integrates Transformer and Mamba layers in a 7:1 ratio, as depicted in Fig-
ure 2. It also features a Mixture of Experts (MoE) approach in every other layer, utilizing 16 experts
and selecting the top-2 experts for each token. RMSNorm (Zhang & Sennrich, 2019) is used be-
tween layers to enhance normalization, although positional embeddings are omitted. The model
incorporates Grouped Query Attention (GQA) (Ainslie et al., 2023) and SwiGLU activation func-
tions (Shazeer, 2020), similar to other large language models. The total parameter count of the
model is 53B, with activation parameters during inference totaling 13B; we designate this model
as LongLLaVA-A13B. In an effort to make the model more efficient, we have retained only the
Expert-0 in the Mamba MoE Layer2, thereby constructing LongLLaVA-9B.

3.2 DATA PROCESSING PROTOCOL

To ensure that the model effectively distinguishes between temporal and spatial dependencies among
images in multi-image scenarios and performs well across various tasks, we meticulously differenti-
ated special characters in different scenarios. As shown in Figure 3, these special characters compre-
hensively address the various relationships between images in different contexts, thereby enhancing
the model’s adaptability to diverse tasks.

Regular Single and Multiple Images. For this type of inputs, we use <img> and </img> to
enclose image tokens, helping the model differentiate between image and text tokens.

Video. For video inputs, to enable the model to understand the temporal relationship between
frames, we first use <vid> and </vid> to enclose image tokens. Additionally, we add the special
symbol <t> between different frames to represent the temporal dependency between them.

High Resolution Image. For complex single-image understanding that require dividing an image
into multiple sub-images, we use \n to separate the main image from its sub-images. For the ar-
rangement of sub-images, we traverse from the top-left to the bottom-right, adding \n between split
lines to preserve the relative spatial positions of the sub-images.

1openai/clip-vit-base-patch32
2We chose Expert-0 due to minimal performance differences, detailed in Appendix A.
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Data Processing Protocol

In the Following Statement: <Image>=<img><img token>...</img>
For Single-image: “<Image>\n What is this?”
For Multi-image: “<Image>\n This is a cat. <Image>\nThis is a:”
For Video: “<vid><Image><t>...<Image></vid>\n What are they?”
For Patched-image: “<Image>\n<Image>..\n..<Image>\n What are they?”

Figure 3: Data Processing Protocol for LongLLaVA.We utilized different tokens to distinguish
various modal information, and to identify the spatial and temporal relationships within images.

3.3 TRAINING STRATEGY

In our training strategy, we implement single-modal and multi-modal adaptations to transform a
pre-trained language model into a multimodal long-context model.

Unimodal Data Multimodal Data

ALLaVA-Caption
ShareGPT4V

LLaVA-1.5
Mantis-Single

VideoChat2   Mantis
ShareGPT4Video

Evol-instruct-GPT4
WildChat
LongAlign

SubImage Replay

Pure- text Ins- T. Stage I
Single- image Align.

278K 600K 932K

750K

Stage II
Single- image Ins- T.

Stage III
Multi- image Ins- T.

Figure 4: Dataset Taxonomy of LongLLaVA. Replay refers to data sampled from former phase
to maintain single-image and dialogue understanding ability. SubImage denotes a constructed
dataset for understanding complex single images divided into sub-images. Ins-T. and Align. refer to
instruction-tuning and alignment, respectively.

Pure-text Instruction Tuning. We initially enhance the pre-trained language model’s ability to
follow instructions of varying lengths in pure-text contexts. This is achieved using a comprehensive
dataset totaling 278k pure text entries from Evol-instruct-GPT4 (Xu et al., 2023), WildChat (Zhao
et al., 2024d), and LongAlign (Bai et al., 2024b).

For multi-modal adaptation, following the Single-image Alignment and Single-image Instruction-
tuning stages in LLaVA (Li et al., 2024a), we introduce a Multi-image Instruction-tuning stage to
progressively enhance the model’s long-context capabilities. We adopt progressive training not only
for better control of variables but also to increase model reusability (Fu et al., 2024b). The specific
dataset usage is detailed in Figure 4.

Stage I: Single-image Alignment. This stage is to align visual modal features with textual modality.
We utilize datasets such as ALLaVA-Caption (Chen et al., 2024a) and ShareGPT4V (Chen et al.,
2023b), which comprise approximately 600K high-quality image-caption pairs. During this phase,
only the projector is trained while freezing the parameters of the Visual Encoder and LLM.

Stage II: Single-image Instruction Tuning. This stage aims to endow the model with multimodal
instruction-following capabilities. We use datasets like LLaVA-1.5 (Liu et al., 2023b) and Mantis-
Single (Jiang et al., 2024b), totaling around 932K high-quality question-answer pairs. Here, only
the Visual Encoder is frozen, and the projector and LLM parts are trained. This process ultimately
results in the development of LongLLaVA (single image).

Stage III: Multi-image Instruction Tuning. In this stage, the model is trained to follow instruc-
tions in multimodal long-context scenarios. We sample 200K, 200K and 50K data items from Man-
tis (Jiang et al., 2024b), VideoChat2 (Li et al., 2024d) and ShareGPT4Video (Chen et al., 2024c)
respectively. To preserve the model’s single-image comprehension and pure-text dialogue capabil-
ities, we include an additional 200K and 50K data items from the Single-image Instruction-tuning
and Pure-text Instruction-tuning phases as the Replay component. Furthermore, to enhance the
model’s ability to interpret complex single images segmented into multiple sub-images, we extract
50K data items from the Single-image Instruction-tuning phase, perform padding and segmentation,
and divide the original images into sub-images of size 336× 336 as the Sub-Image component.

5
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Table 2: Results of Multi-image Evaluation. PFLOPs represents the number of floating-point oper-
ations required to infer 128 images. The highest scores for proprietary and open-source MLLMs are
marked in bold. Video-MME is evaluated under the settings of without subtitles. Precision is FP16.

Model PFLOPs #P. MileBench VideoMME w/o subs MVBenchTemporal Semantic IR Avg. Short Medium Long Avg.

Proprietary Models
GPT-4V - - 45.6 58.9 86.7 63.7 70.5 55.8 53.5 59.9 43.5
GPT-4o - - 56.2 63.5 88.8 69.5 72.5 63.1 58.6 64.7 -
Gemini-1.5-Pro - - 50.2 58.3 88.0 65.5 78.8 68.8 61.1 69.6 -

Open-source MLLMs
Video-LLaMA2 3.71 7B - - - - 55.9 45.4 42.1 47.8 34.1
VideoChat2 0.24 7B 25.5 25.5 9.2 20.1 48.3 37.0 33.2 39.5 51.9
LongVILA 3.90 - 8B - - - 61.8 49.7 39.7 50.5 -
LongVA 4.90 - 8B - - - 61.1 50.4 46.2 52.6 -
Phi-3-Vision 2.68 3.8B 46.9 50.0 18.7 38.5 - - - - -
OmChat 3.90 8B 51.4 52.0 34.2 45.9 - - - - 50.2

LongLLaVA-9B 0.15 9B 48.6 47.6 48.2 48.1 54.2 44.1 38.2 45.5 50.2
+ More Data* 0.15 9B 52.2 51.4 52.8 52.1 58.4 48.3 41.7 49.5 54.2

LongLLaVA-A13B 0.22 53B 54.1 55.0 68.5 59.2 62.9 52.2 46.4 53.8 56.2
* ‘More Data’ indicates model trained for around two epochs (82 hours × 8 × A800-80G) to ensure comparable training time to LongVA

(84 hours × 8 × A100-80G).

4 EXPERIMENTS

4.1 TRAINING DETAILS

For training, we utilize random sampling to concatenate data items into a token length of 176,000,
separated by the <eos> token. This approach helps in managing extensive datasets and ensuring
diverse coverage of different data segments. Training is executed across three compute nodes, each
equipped with eight A800 GPUs, leveraging DeepSpeed Zero-3 as the distributed strategy to en-
hance scalability and efficiency. We employ a cosine learning rate scheduler with a warm-up rate of
0.03, set the training epoch to 1, and the learning rate to 1e-5.

4.2 EVALUATION SETUP

Benchmarks. We mainly focus on evaluating the model’s multimodal long-context understanding
ability using three multi-image benchmarks: MileBench (Song et al., 2024) for assessing multimodal
long-context scenario performance, and Video-MME (Fu et al., 2024a) along with MVBench (Li
et al., 2024d) for video analysis capabilities. Detailed descriptions of these benchmarks are available
in Appendix B. For basic single-image evaluations, please refer to Appendix C for details.

Models. We compare our model against four commercial models: GPT-4V3 (OpenAI, 2024), GPT-
4o4, Gemini-1.5-Pro5 (Google, 2024), and Claude3-Opus6, as well as five open-source models: Phi-
3-Vision7, OmChat (Zhao et al., 2024b), LongVA, LongVILA (Xue et al., 2024), Video-LLaMA-
2 (Cheng et al., 2024a) and VideoChat2 (Li et al., 2024d). Additionally, the temperature is set
to zero to guarantee consistent performance evaluation. Unless specified otherwise, LongLLaVA-
9B and LongLLaVA-A13B are evaluated using Int8 quantization, a method designed to reduce
computational costs while preserving performance and ”LongLLaVA” refers to LongLLaVA-A13B.

4.3 MAIN RESULTS

As shown in Table 2, LongLLaVA demonstrates superior performance among open-source models
on MileBench, even surpassing Claude3-Opus, and particularly excels in retrieval tasks. This high-
lights LongLLaVA’s impressive capabilities in handling multi-image tasks. Notably, LongLLaVA’s
effectiveness is further underscored by its performance on video benchmarks such as Video-MME
and MVBench with an order of magnitude fewer FLOPs. It shows exceptional results, especially in
tasks involving medium to long-length videos, outperforming traditional video models like Video-
LLaMA2 and VideoChat2.

3gpt-4-vision-preview
4https://openai.com/index/hello-gpt-4o/
5gemini-1.5-pro
6claude-3-opus-20240229
7https://huggingface.co/microsoft/Phi-3-vision-128k-instruct
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4.4 DIAGNOSTIC EVALUATION OF LONG-CONTEXT MLLMS

Table 3: Long Context MLLMs’ Atomic Capabilities Analysis using VNBench (Zhao et al., 2024e).
PFLOPs refers to the number of floating-point operations required for inference on 54 images, which
corresponds to the average number of frames extracted from the dataset videos at 1 FPS.

Video MLLM PFLOPs #P Retrieval Ordering Counting Avg.E I-1 I-2 E I-1 I-2 E-1 E-2 I

Proprietary Models
Gemini-1.5 - - 100.0 96.0 76.0 90.7 95.3 32.7 60.7 7.3 42.0 66.7
GPT-4o - - 100.0 98.0 87.3 88.4 86.6 45.2 36.8 0.0 36.1 64.4
GPT-4V - - 100.0 99.3 82.0 42.6 22.8 23.0 37.6 0.0 32.4 48.9

Open-source MLLMs
Video-LLama2 0.85 7B 1.2 26.0 6.0 0.0 0.0 0.0 2.0 4.7 0.7 4.5
VideoChat2 0.08 7B 43.4 40.0 14.6 0.0 0.0 1.3 4.4 8.0 12.4 12.4
LongLLaVA-9B 0.07 9B 98.3 57.2 96.3 24.2 57.2 24.3 24.5 21.0 26.0 44.4
LongLLaVA-A13 0.09 53B 100 73.3 100.0 37.5 35.3 34.8 36.0 23.7 28.0 52.1

Considering that former evaluations cannot adequately capture the abilities of MLLMs over long
contexts, we use a diagnostic evaluation set, VNBench (Zhao et al., 2024e), to further analyze the
atomic capabilities of models in long contexts. VNBench is a benchmark construction framework
based on synthetic video generation, encompassing tasks such as retrieval, ordering, and counting.

The results, as presented in Table 3, indicate that LongLLaVA exhibits performance that is on par
with leading closed-source models in tasks such as cross-context retrieval, ordering, and technical
capabilities, even outperforms GPT-4V. Among open-source models, LongLLaVA also shows its su-
perior performance. This positions LongLLaVA as a prominent contender in the field, demonstrating
its advanced capabilities in managing and interpreting long contexts. To further assess the retrieval
ability of LongLLaVA, we conducted multimodal needle-in-a-haystack experiment, the specifics of
which are outlined in Appendix D.

4.5 ABLATION STUDY

Table 4: Ablation on ■ model architecture, ■ dataset construction
and ■ training strategy. Each strategy builds upon the previous row,
except for 1D Pooling. Mile∗avg is the average score of MileBench.
1D and 2D denote different pooling strategies. #T refers to the to-
ken count for one image. & refers to the combination of the stages.

Method #T GQA MMMU SQAI SEEDv1
img Mile∗avg

Architecture & Data Abalation on LongLLaVA-A13B
LLaVA-1.5-13B 576 63.3 34.4 71.6 68.2 27.6
+Jamba as LLM 576 63.2 41.4 75.4 69.8 38.2
+1D Pooling 144 60.4 42.0 73.9 66.3 36.2
+2D Pooling 144 61.3 42.1 75.2 67.4 37.7
+Single-image Data 144 62.2 42.1 75.9 68.9 50.0
+Multi-image Data 144 59.9 39.2 73.4 65.3 57.4

Training Strategy Abalation on LongLLaVA-9B
+Stage1&2&3 144 56.9 32.8 67.2 66.9 42.2
+Stage1, 2&3 144 57.6 33.2 70.2 68.4 44.2
+Stage1, 2, 3 144 58.4 34.4 69.9 67.9 46.5

As shown in Table 4, signif-
icant improvements were ob-
served across all evaluation
sets when using the hybrid
LLM architecture, Jamba,
with identical data and model
parameters, demonstrating its
potential in multimodal sce-
narios. For token com-
pression, we choose the 2D
pooling, which significantly
reduces computational load
while keeping performance
degradation within acceptable
limits (less than 2.2%). Com-
pared to 1D pooling, the 2D
pooling method, which pools
along the height and width di-
rections to obtain a 12x12 token arrangement, yields better results (0.1∼1.5 improvement). For
training strategy, the results indicate that progressive training achieves better performance on
multi-image tasks while maintaining comparable results on single-image tasks. For more abla-
tion studies on token number per image, LLM architecture and replay data and , please see Appen-
dices E.1, E.2 and E.3 for details.

5 MORE ANALYSIS

In this section, we conduct further analysis to understand the inner workings and multimodal long-
context capability of LongLLaVA.
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5.1 ON THE MOTIVATION FOR THE HYBRID ARCHITECTURE

Table 5: ICL Capability and Efficiency Analysis across Different Architectures. TP and Mem. refer
to throughput and memory usage.

Model Arch. Active
Param.

#Few-shot of VL-ICL 100K Token (Efficiency)

1 2 4 5
Prefill

(s)
TP

(tokens/s)
Mem.
(GB)

Max TP
(tokens/s)

Falcon-mamba Mamba 7B 49.0 51.9 52.4 53.2 24.3 32.4 48.8 90.7
LLaVA-1.6 Transformer 13B 50.0 52.3 54.6 58.9 34.0 14.7 79.4 14.7

LongLLaVA-9B Hybrid 9B 51.6 57.8 58.4 60.2 16.5 62.1 38.7 155.2
LongLLaVA-A13B Hybrid 13B 52.3 59.0 59.0 61.3 25.5 37.6 79.1 37.6

We explore the strengths and weaknesses of different architectures in terms of ICL capabilities
and inference efficiency, highlighting the balanced advantages of multimodal hybrid architectures
that combine the strengths of both. For Mamba Architecure, we train and evaluate the Falcon-
mamba (Zuo et al., 2024) model with 7.3B parameters using the same settings as our model, as it
represents the largest available Mamba configuration, despite the difficulty in aligning parameter
counts in MLLMs. For Transformer, we choose the 13B parameter LLaVA-1.6, which has inference
parameters consistent with LongLLaVA, to enable a more accurate efficiency comparison.

ICL Analysis. We evaluate the performance on the Matching Image task from VL-ICL bench-
mark (Zong et al., 2024) for multi-modal in-context learning. This task’s inputs contain an im-
age pair x = {x1, x2}, and output y indicates whether a specific relation r holds between them.
MLLMs are required to learn the relation from examples. As shown in the Table 5, both Hybrid and
Transformer architectures exhibit rapid performance improvements with the increase in examples,
whereas the Mamba architecture shows a slower improvement, confirming its ICL shortcomings.
Building on the concept of many-shot fine-tuning (Agarwal et al., 2024), we further investigated the
inference scalability of the hybrid architecture model with respect to the larger number of ICL shots
as Application detailed in Section 6.3

Efficiency Analysis. We focus on four aspects: Prefill Time (first inference latency), Through-
put (next tokens per second), Memory Usage and Maximum Throughput (throughput under max-
imum batch size). We control the input text length to 100K and measure time and maximum
memory usage for generating outputs of 1 token and 1000 tokens. Throughput is calculated as
(1000 − 1)/(time1000 − time1). To better simulate real application scenario, Transformer and
Hybrid architectures are evaluated using vLLM framework (Kwon et al., 2023) with Int8 quan-
tization (Frantar et al., 2023). As shown in the Table 5 the Hybrid architecture achieves 2.5 times
the Throughput, 4.1 times the Maximum Throughput, 75% of the Prefill Time, and reduced memory
usage compared to the Transformer architecture with similar inference parameters.

5.2 SCALING LAW OF THE IMAGE NUMBER

With more images processed, it could support more image patches for high-resolution image un-
derstanding and more video frames for video understanding. To explore the impact of increas-
ing the number of sub-images and video frames, we evaluate LongLLaVA on the benchmarks V*
Bench (Wu & Xie, 2023a) and Video-MME (Fu et al., 2024a) respectively.

Scale up Number of SubImages. V* Bench evaluates a model’s ability to locate small objects
within large images. As shown in Figure 5, increasing the number of sub-images initially improves
model performance significantly, indicating better understanding of image details. However, we also
find that further increasing the number of sub-images slightly degraded the performance, suggesting
that an excessive number of sub-images may interfere with performance on this task.

Scale up Number of Frames. Video-MME (Fu et al., 2024a) is a benchmark that tests a model’s
ability to extract information from videos. We can see from Figure 6 that as the number of sampled
frames increases, the model’s performance on the benchmark improves significantly, reaching its
peak when 256 frames are extracted. This indicates that the model can effectively understand and
utilize the information contained in the additionally sampled frames to provide better responses.

8
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Figure 6: Performance of LongLLaVA with in-
creasing frame counts on Video-MME

6 MORE APPLICATIONS FOR LONGLLAVA

Apart from the long video understanding task introduced in Section 4.3, which demands a prolonged
temporal image comprehension ability, we have investigated three additional domains, Healthcare,
Science and Many-shot ICL. These areas necessitate the utilization of LongLLaVA’s fine-grained
image understanding capability and multimodal long-context understanding ability, providing us a
broader platform to further probe its potential applications.

6.1 APPLICATION IN HEALTHCARE

Table 6: Performance of the models on the
pathology image understanding tasks.

Model Size VQA-RAD PathVQA

GPT-4V - 39.5 -
LLaVA 34B 58.6 59.1

LLaVA-Med 7B 55.5 35.9
HuatuoGPT-V 8B 63.8 59.9

LongLLaVA-Med 9B 68.5 55.0

Table 7: Performance on 3D CT image under-
standing task. Acc., Rec. and Prec. refer to
Accuracy, Recall and Precision, respectively.

Model Acc. Rec. Prec. F1

CT-CLIP 65.1 73.8 30.4 43.0
LongLLaVA-Med 86.7 77.6 35.5 48.5

To evaluate the potential of LongLLaVA in the Healthcare domain, we selected two tasks: Pathology
Image Understanding and 3D CT Image Understanding. Initially, we trained LongLLaVA-9B for
one epoch using PubMedVision to equip it with basic multimodal medical capabilities, a process
which took five hours with eight A800 GPUs. As a result, we obtained LongLLaVA-Med.

Pathology Image Understanding. We chose pathological image understanding task, which re-
quires the model to possess fine-grained recognition capabilities and medical knowledge. We eval-
uated LongLLaVA using two benchmarks, VQA-RAD (Lau et al., 2018) and PathVQA (He et al.,
2020). As presented in Table 6, our model proves competitive in comparison to SOTA models
(LLaVA-Med (Li et al., 2024c) and HuatuoGPT-V (Chen et al., 2024b)) with less training data.

3D CT Image Understanding. To evaluate LongLLaVA’s capability in 3D vision tasks, we se-
lected the CT image understanding task. Since 3D CT images can be viewed as a combination
of multiple slices of the human body, all slices were converted to RGB format and processed as a
multi-image sequence for model interpretation. We conducted a zero-shot evaluation on the CT-
RATE (Hamamci et al., 2024) validation set, with random selection of varying resolutions from the
same patients. The dataset contains 1304 samples, with slice resolutions ranging from 512×512 to
1024×1024, and an average of 690. The number of slices per sample ranges from a maximum of
984 to a minimum of 100, with an average of 300. Table 7 indicate that LongLLaVA-Med outper-
forms the SOTA model by 21.6 points in terms of accuracy, establishing a new precedent for 3D CT
images understanding.

9
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6.2 APPLICATION IN SCIENCE

Table 8: FIT-RSFG-VQA
Model Size Acc.

Zero-shot Setting
LLaVA1.5-7B 7B 58.6
GeoChat 7B 53.5
LongLLaVA 9B 65.2

Fine-tuned Setting
SkySenseGPT 7B 79.8
LongLLaVA-RS* 9B 82.3

In science domain, we focus on geology and deal with understand-
ing remote sensing images, which needs models are required to per-
form Visual Question Answering (VQA) based on high-resolution
remote sensing images (Zhou et al., 2024). We followed Sky-
SenseGPT (Luo et al., 2024), the latest MLLM in this domain and
selected the latest FIT-RSFG-VQA task from their work, which
is designed to evaluate a model’s fine-grained perception capabil-
ities and instruction-following ability in this domain. As shown in
Table 8, LongLLaVA maintains excellent performance among all
models. Moreover, it surpasses existing SOTA models after fine-
tuned on only 27% of the SkySenseGPT data.

1 2

How many red cars?

Yes, the text in the picture reads 
"Fukuoka", which is a city in Japan.

Based on the text in the picture, can 
you tell where this is?

The image you uploaded shows an aerial view of an 
airport. I can see text on the runways and taxiways that 
might indicate its location, but it’s too small for me to 
discern in this format. If you could let me know what the 
text says or zoom in and provide a clearer image of the 
text, I might be able to help identify the airport.

Case 2

Case 1

Figure 7: Comparative Study on Remote Sensing

Due to the limited image resolution of
FIT-RSFG-VQA, which is only 512 ×
512, we extended our study by incorpo-
rating two high-resolution remote sensing
images from the STAR dataset (Li et al.,
2024e), with resolutions of 1024 × 768
and 3327×4083, respectively. These im-
ages allowed us to conduct a more com-
prehensive comparative analysis of the
model’s performance. As shown in Fig-
ure 7, LongLLaVA demonstrated its ca-
pability to effectively answer VQA ques-
tions that required fine-grained recogni-
tion. This was achieved by segmenting

the images into subimages for processing, resulting in superior performance compared to GPT-4V,
particularly in tasks that demanded detailed visual understanding.

6.3 APPLICATION IN MANY-SHOT IN-CONTEXT LEARNING.
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Figure 8: Many-Shot ICL & Fine-Tuning on VL-ICL.

LLMs often require fine-tuning for
optimal performance, but this can
be costly and time-consuming, espe-
cially when data is scarce or frequent
updates are needed. Moreover, fine-
tuning might not be feasible in real-
world applications with limited re-
sources or rapidly changing tasks. In
contrast, many-shot ICL allows mod-
els to use more task-specific exam-
ples during inference without retrain-
ing (Agarwal et al., 2024). To investi-
gate the potential of LongLLaVA in many-shot ICL tasks, we compared its performance with differ-
ent shot counts to fine-tuning on the same number of samples. As shown in Figure 8, LongLLaVA-
9B outperforms ICL up to 100 shots. Beyond 1000 shots, the benefit of adding more shots dimin-
ishes, and fine-tuning becomes more effective. This suggests that ICL is preferable with fewer than
100 samples, while fine-tuning is more beneficial with around 1000 samples.

7 CONCLUSION

In this study, we introduce LongLLaVA, an innovative hybrid architecture model that excels in long-
context multi-modal understanding. The model integrates Mamba and Transformer blocks, lever-
aging temporal and spatial dependencies between multiple images to construct data, and employs
a progressive training strategy. LongLLaVA demonstrates competitive performance across various
benchmarks while ensuring efficiency, setting a new standard for long-context MLLMs.
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A PRELIMINARY EXPERIMENTS ON EXPERT SELECTION FOR
LONGLLAVA-9B

To determine the optimal expert selection method in the MoE layers we also conducted preliminary
experiments. Using prevalent LLM benchmarks, MMLU (Hendrycks et al., 2020) and BBH (Suz-
gun et al., 2022), we evaluated three expert selection strategies: numerical averaging, spherical
averaging, and random expert selection.

Table 9: Performance of Different Downcycling Strategies on MMLU and BBH
Downcycling Strategy Arithmetic

Mean
Spherical

Mean
Expert-

0
Expert-

5
Expert-

12
Expert-

15
MMLU 52.7 53.2 53.2 51.9 52.6 52.2
Aft. Train 53.8 54.3 54.3 53.3 53.8 53.3

BBH 36.7 36.7 37.2 36.7 37.4 36.3
Aft. Train 37.8 37.9 38.4 38.9 38.9 37.9

These methods were compared both before and after Pure-text Instruction Tuning. As shown in Ta-
ble 9, the differences in model performance were minimal across the selection methods. Therefore,
for simplicity, we opted to use Expert-0.

B DETAILS OF BENCHMARKS

Single-image Benchmarks. We select seven commonly used evaluations to assess the model’s
single-image understanding capabilities. These include:

• GQA (Hudson & Manning, 2019): A benchmark for real-world visual reasoning and com-
positional question answering.

• MME (Fu et al., 2023): A comprehensive benchmark focused on perception and cognition,
from which we use the perception component.

• MM-Vet (Yu et al., 2023): Examines six core visual-linguistic (VL) capabilities and sixteen
integrations derived from these capabilities.

• ScienceQA (Lu et al., 2022): Consists of 4,210 questions across various science topics,
with detailed annotations.

• SEED-Bench-v1 (Li et al., 2023): Evaluates comprehension across twelve dimensions in
both image and video modalities; we use the image set.

• MMBench (Liu et al., 2023c): A systematically-designed benchmark across twenty ability
dimensions.

• MMMU (Yue et al., 2024): Tests multi-modal models on multidisciplinary tasks requiring
university-level knowledge, covering 183 subfields and 30 types of images.

Multi-image Benchmarks. To explore multi-image capabilities, we utilized:

• MileBench (Song et al., 2024): Assesses long-context scenario performance, focusing on
Temporal, Semantic, and Information Retrieval (IR) components.

• Video-MME (Fu et al., 2024a): Covers 30 sub-fields to evaluate video analysis capabilities.
We analyze 128 frames extracted uniformly from each video, independent of subtitles.

• MVBench (Li et al., 2024d): Addresses 20 challenging video tasks that are not effectively
solved with a single frame.

C DETAILS OF SINGLE-IMAGE EVALUATION

The single-image evaluation aims to explore the model’s fundamental capabilities and the impact of
extended long-context training on single-image understanding.
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C.1 BENCHMARKS

We utilized a series of benchmarks, including GQA (Hudson & Manning, 2019), MME (Fu et al.,
2023), MM-Vet (Yu et al., 2023), ScienceQA (Lu et al., 2022), SEED-Bench-v1 (Li et al., 2023),
MMBench (Liu et al., 2023c), MMMU (Yue et al., 2024), ChartQA (Masry et al., 2022) and
DocVQA (Mathew et al., 2021). These benchmarks assess various aspects of visual understand-
ing and cognitive processing within a single-image context.

C.2 COMPARISON MODELS

For a comprehensive comparison, we selected three commercial models for the single-image eval-
uation: GPT-4V8 (OpenAI, 2024), Gemini-1.59 (Google, 2024), and Claude3-Opus10. Addition-
ally, we included five open-source models to broaden the scope of evaluation: LLaVA-1.5-13B (Liu
et al., 2023b), LLaVA-1.6-13B (Liu et al., 2024b), Phi-3-Vision-4.2B11 and OmChat-8B (Zhao et al.,
2024b).

Model TFLOPs #P #T ChartQADocVQAGQAMM-VetMMEP MMBMMMUSQAI SEEDv1
img

Proprietary Models
GPT-4V - - - 75.6 - - 67.7 1926.5 81.3 56.8 82.1 69.1

Gemini-1.5 - - - 81.3 90.9 - 65.8 2148.9 73.6 48.9 81.4 62.9
Claude3-Opus - - - 80.8 89.3 - 74.2 1586.8 63.3 54.9 - 42.0

Open-source MLLMs
OmChat 7.61 8B576 - - - 39.6 - 78.8 45.9 - -

Phi-3-Vision 3.563.8B576 81.4 - - - - 80.5 40.4 90.8 -
LLaVA-1.6 11.86 13B576 - - 65.4 44.9 1445.0 70.0 36.2 73.6 71.4
LLaVA-1.5 11.86 13B576 - - 63.3 36.1 1531.1 67.7 34.4 71.6 68.2

LongLLaVA-9B 1.04 9B144 44.8 47.4 58.4 32.3 1504.6 65.6 34.4 69.9 67.9
LongLLaVA-A13B 1.52 53B144 46.3 51.2 59.9 35.2 1523.9 63.7 39.2 73.4 65.3

Table 10: Single-image Evaluation. TFLOPs represents the number of floating-point operations
required to infer 1 images. The highest scores for proprietary and open-source MLLMs are marked
in bold. #Token refers to the token count for one image.

C.3 RESULTS ANALYSIS

As shown in Table 10, LongLLaVA (single image) generally outperforms LLaVA-1.6-13B, despite
both models having the same inference parameter size. This advantage is particularly notable in the
MMMU benchmarks, highlighting LongLLaVA (single image)’s strengths in handling comprehen-
sive knowledge-based questions. Although LongLLaVA (single image)’s performance is slightly
lower compared to some recently emerged high-performing models, it still demonstrates the po-
tential of hybrid architectures in multi-model scenarios. To ensure complete reproducibility of our
results, we only focus on four representative public datasets. Additionally, we find that LongLLaVA
tends to underperform relative to LongLLaVA (single image). Addressing this issue may require
incorporating more single-image data during the Multi-image Instruction-tuning phase.

D MULTIMODAL NEEDLE-IN-THE-AYSTACK EVALUATION

Using the V-NIAH evaluation framework proposed in LongVA (Zhang et al., 2024b), we conduct a
needle-in-the-haystack test to evaluate the model’s performance. As shown in Figure 9, LongLLaVA
achieves nearly 100% retrieval accuracy on a set of 1200 images without requiring additional train-
ing.

8gpt-4-vision-preview
9gemini-1.5-flash

10claude-3-opus-20240229
11https://huggingface.co/microsoft/Phi-3-vision-128k-instruct
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Figure 9: Video-NIAH (Zhang et al., 2024b) evaluated on one A800 80GB GPU.

E ADDITIONAL ABLATION STUDIES

E.1 ABLATION OF TOKEN NUMBER PER IMAGE.
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Figure 10: Performance across five datasets and inference costs
with varying token numbers per image.

As demonstrated in Figure 10,
setting 144 tokens per image
effectively maintains perfor-
mance while significantly
reducing inference costs,
particularly noticeable in the
case of SEEDBench. Regard-
ing data construction, after
training on our single-image
data, the model achieved a
1.5% accuracy improvement
on SEEDBench and 12.3%
on MileBench. Subsequent
multi-image training led
to a further 7.4% increase
on MileBench, validating
the dataset construction’s
effectiveness.

E.2 ARCHITECTURE ABLATION STUDY ON 9B DENSE MODEL

To investigate whether the hybrid architecture impacts MLLM performance, we conducted experi-
ments based on a 9B dense model. Ensuring alignment in the initial performance of the LLMs prior
to MLLM adaptation is essential. Thus, we first compared the initial performance of the LLMs
before adaptation. The results, presented in Table 11, demonstrate that the two models exhibit com-
parable performance.

Table 11: Initial Performance
Comparison of LLMs

MMLU BBH

Vicuna-13B 55.3 40.5
Jamba-9B 54.3 38.4

Table 12: Performance Comparison of Different Architectures on
Multimodal Benchmarks
Model GQA MMMU SQAI SEEDv1

img Mile∗avg
LLaVA-1.5-13B 63.3 34.4 71.6 68.2 27.6
Jamba-9B 62.3 36.2 71.9 70.1 28.2
(+LLaVA-1.5 Recipe)

Difference -1.0 +1.8 +0.3 +1.9 +0.6

Subsequently, we conducted an additional ablation experiment by replacing the LLM base in
LLaVA-1.5-13B with Jamba-9B (after pure-text instruction tuning) while following the LLaVA-1.5
training recipe. As shown in Table 12, given the comparable initial performance of the LLMs and
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using the same training data combination, the hybrid architecture achieves competitive results.
Furthermore, the hybrid architecture requires fewer FLOPs for inference.

E.3 REPLAY DATA ABLATION STUDY

To assess the impact of replay data, we conducted three experiments as part of the Replay Data
Ablation Study.

Table 13: Comparison of Model Performance With and Without Replay Data
MMLU BBH GQA MMMU SQAI SEEDv1

img Mile∗avg
LongLLaVA-9B 53.9 38.8 58.4 34.4 69.9 67.9 46.5
w/o Replay Data 52.3 36.2 57.5 31.2 53.5 64.3 46.8
Replace with Multi-Image 52.6 35.9 57.2 29.8 52.6 63.8 47.2

Comparison With and Without Replay Data. We first conducted experiments comparing mod-
els trained with and without replay data. To isolate the effect of replay data from the impact of
increased training data, we performed an ablation study by replacing replay data in the original
training recipe with an equivalent amount of multi-image data. The results, presented in Table 13,
demonstrate that replay data is essential for preserving the model’s original single-image un-
derstanding and text-following capabilities.

Table 14: Impact of Text Replay Data Quantity
MMLU BBH

LongLLaVA-9B (w/o Replay Data) 52.3 36.2
with 10K 52.9 37.3
with 20K 53.4 38.1
with 50K 53.9 38.8
with 100K 53.9 39.2

Table 15: Impact of Single-Image Replay Data Quantity
GQA MMMU SQAI SEEDv1

img Mile∗avg
LongLLaVA-9B (w/o Replay Data) 57.5 31.2 53.5 64.3 46.8
with 50K 57.9 32.3 58.2 66.2 46.5
with 100K 57.9 33.5 62.7 67.1 46.5
with 200K 58.2 34.5 67.1 67.9 46.8
with 400K 58.5 35.2 73.2 68.2 46.4

Replay Data Quantity Ablation. We also examined the impact of varying the quantity of replay
data. For text replay data, the supplementary experiments reveal that adding text replay data en-
hances the model’s text-following ability, although the improvement eventually saturates, as shown
in Table 14.For single-image replay data, the results in Table 15 indicate that the model’s single-
image capability continues to improve with increased data volume and has not yet reached saturation.
However, the improvement in multi-image tasks is limited.
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