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ABSTRACT

3D point cloud is an important 3D representation for capturing real world 3D ob-
jects. However, real-scanned 3D point clouds are often incomplete, and it is im-
portant to recover complete point clouds for downstream applications. Most exist-
ing point cloud completion methods use Chamfer Distance (CD) loss for training.
The CD loss estimates correspondences between two point clouds by searching
nearest neighbors, which does not capture the overall point density distribution on
the generated shape, and therefore likely leads to non-uniform point cloud gener-
ation. To tackle this problem, we propose a novel Point Diffusion-Refinement
(PDR) paradigm for point cloud completion. PDR consists of a Conditional Gen-
eration Network (CGNet) and a ReFinement Network (RFNet). The CGNet uses
a conditional generative model called the denoising diffusion probabilistic model
(DDPM) to generate a coarse completion conditioned on the partial observation.
DDPM establishes a one-to-one pointwise mapping between the generated point
cloud and the uniform ground truth, and then optimizes the mean squared error
loss to realize uniform generation. The RFNet refines the coarse output of the
CGNet and further improves quality of the completed point cloud. Furthermore,
we develop a novel dual-path architecture for both networks. The architecture can
(1) effectively and efficiently extract multi-level features from partially observed
point clouds to guide completion, and (2) accurately manipulate spatial locations
of 3D points to obtain smooth surfaces and sharp details. Extensive experimental
results on various benchmark datasets show that our PDR paradigm outperforms
previous state-of-the-art methods for point cloud completion. Remarkably, with
the help of the RFNet, we can accelerate the iterative generation process of the
DDPM by up to 50 times without much performance drop.

1 INTRODUCTION

With the rapid developments of 3D sensors, 3D point clouds are an important data format that cap-
tures 3D information owing to their ease of acquisition and efficiency in storage. Unfortunately,
point clouds scanned in the real world are often incomplete due to partial observation and self oc-
clusion. It is important to recover the complete shape by inferring the missing parts for many down-
stream tasks such as 3D reconstruction, augmented reality and scene understanding. To tackle this
problem, many learning-based methods (Yuan et al., 2018; Yang et al., 2018; Tchapmi et al., 2019;
Xie et al., 2020; Liu et al., 2020; Pan et al., 2021) are proposed, which are supervised by using either
the Chamfer Distance (CD) or Earth Mover Distance (EMD) to penalize the discrepancies between
the generated complete point cloud and the ground truth. However, CD loss is not sensitive to overall
density distribution, and thus networks trained by CD loss could generate non-uniform point cloud
completion results (See Figure 10 and 11 in Appendix). EMD is more distinctive to measure density
distributions, but it is too expensive to compute in training. The absence of an effective and efficient
training loss highly limits the capabilities of many existing point cloud completion networks.

∗Equal Contribution. Code is released at https://github.com/ZhaoyangLyu/Point_
Diffusion_Refinement.
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Figure 1: Our ConditionalPoint Diffusion-Re�nement (PDR) paradigm �rst moves a Gaussian
noise step by step towards a coarse completion of the partial observation through a diffusion model
(DDPM). Then it re�nes the coarse point cloud by one step to obtain a high quality point cloud.

We �nd that denoising diffusion probabilistic models (DDPM) (Sohl-Dickstein et al., 2015; Ho
et al., 2020) can potentially generate uniform and high quality point clouds with an effective and
ef�cient loss function. It can iteratively move a set of Gaussian noise towards a complete and
clean point cloud. DDPM de�nes a one-to-one pointwise mapping between two consecutive point
clouds in the diffusion process, which enables it to use a simple mean squared error loss function for
training. This loss function is ef�cient to compute and explicitly requires the generated point cloud
to be uniform, as a one-to-one point mapping is naturally established between the generated point
cloud and the ground truth. Point cloud completion task can be treated as a conditional generation
problem in the framework of DDPM (Zhou et al., 2021; Luo & Hu, 2021). Indeed, we �nd the
complete point clouds generated by a conditional DDPM often have a good overall distribution that
uniformly covers the shape of the object.

Nonetheless, due to the probabilistic nature of DDPM and the lack of a suitable network architecture
to train the conditional DDPM for 3D point cloud completion in previous works, we �nd DDPM
completed point clouds often lack smooth surfaces and sharp details (See Figure 1 and Appendix
Figure 12), which is also re�ected by their high CD loss compared with state-of-the-art point cloud
completion methods in our experiments. Another problem with DDPM is its inef�ciency in the
inference phase. It usually takes several hundreds and even up to one thousand forward steps to
generate a single point cloud. Several methods (Song et al., 2020; Nichol & Dhariwal, 2021; Kong
& Ping, 2021) are proposed to accelerate DDPM using jumping steps without retraining networks,
which however, leads to an obvious performance drop when using a small number of diffusion steps.

In this work, we propose the ConditionalPoint Diffusion-Re�nement (PDR) paradigm to generate
both uniform and high quality complete point clouds. As shown in Figure 1, our PDR paradigm
performs point cloud completion in a coarse-to-�ne fashion. Firstly, we use the Conditional Gen-
eration Network (CGNet) to generate a coarse complete point cloud by the DDPM conditioned on
the partial point cloud. It iteratively moves a set of Gaussian noise towards a complete point cloud.
Following, the ReFinement Network (RFNet) further re�nes the coarse complete point cloud gen-
erated from the Conditional Generation Network with the help of partial point clouds. In addition,
RFNet can be used to re�ne the low quality point clouds generated by an accelerated DDPM, so
that we could enjoy an acceleration up to50 times, while minimizing the performance drop. In this
way, the completion results generated by our PDR paradigm demonstrate both good overall density
distribution (i.e. uniform) and sharp local details.

Both CGNet and RFNet have a novel dual-path network architecture shown in Figure 2, which
is composed of two parallel sub-networks, a Denoise subnet and a Condition Feature Extraction
subnet for noisy point clouds and partial point clouds, respectively. Speci�cally, we propose Point
Adaptive Deconvolution (PA-Deconv) operation for upsampling, which can effectively manipulate
spatial locations of 3D points. Furthermore, we propose the Feature Transfer (FT) module to directly
transmit encoded point features at different scales from the Condition Feature Extraction subnet to
the corresponding hierarchy in the Denoise subnet. Extensive experimental results show that our
PDR paradigm can provide new state-of-the-art performance for point cloud completion.

OurKey contributions can be summarized as:1) We identify conditional DDPM to be a good model
with an effective and ef�cient loss function to generate uniform point clouds in point cloud comple-
tion task.2) By using RFNet to re�ne the coarse point clouds, our PDR paradigm can generate com-
plete point cloud with both good overall density distribution (i.e. uniform) and sharp local details.
3) We design novel point learning modules, including PA-Deconv and Feature Transfer modules,
for constructing CGNet in DDPM and RFNet, which effectively and ef�ciently utilizes multi-level
features extracted from incomplete point clouds for point cloud completion.4) With the help of
our proposed RFNet, we can accelerate the generation process of DDPM up to50 times without a
signi�cant drop in point cloud quality.
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Figure 2: Network architecture of the Conditional Generation Network (CGNet) and ReFinement
Network (RFNet). It consists of the Condition Feature Extraction subnet and the Denoise subnet.

2 PROBLEM STATEMENT

In this paper, we focus on the 3D point cloud completion task. A 3D point cloud is represented by
N points in the 3D space:X = f x j j1 � j � N g, where eachx j 2 R3 is the 3D coordinates of the
j -th point. We assume the dataset is composed ofM data pairsf (X i ; C i )j1 � i � M g, whereX i
is thei -th ground-truth point cloud, andC i is the incomplete point cloud from a partial observation
of X i . The goal is to develop a model that completes the partial observationC i and outputs a point
cloud as close to the ground truthX i as possible. For algebraic convenience, we letx 2 R3N be
the vector form of a point cloudX , and similarlyc be the vector form ofC .

3 METHODOLOGY

We consider the point cloud completion task as a conditional generation problem, where the incom-
plete point cloudC serves as the conditioner. We use the powerful generative model called de-
noising diffusion probabilistic models (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Kong
et al., 2020) to �rst generate a coarse completion of the partial observation. Then we use another
network to re�ne the coarse point cloud to improve its visual quality. Our point cloud completion
pipeline is shown in Figure 1. We �rst brie�y introduce the theory of DDPM in Section 3.1, and
then describe detailed architecture of the Conditional Generation Network (CGNet) and ReFinement
Network (RFNet) in Section 3.2 and Section 3.3.

3.1 BACKGROUND ON CONDITIONAL DENOISING DIFFUSION PROBABILISTIC MODELS

We assumepdata to be the distribution of the complete point cloudx i in the dataset, andplatent =
N (03N ; I 3N � 3N ) to be the latent distribution, whereN is the Gaussian distribution. Then, the con-
ditional DDPM consists of two Markov chains called the diffusion process and the reverse process.
Both processes have length equal toT. We setT = 1000 in this paper.

The Diffusion Process. The diffusion process is a Markov process that adds Gaussian noise into
the clean data distributionpdata until the output distribution is close toplatent . The diffusion process
is irrelevant of the conditioner, the incomplete point cloudci . Formally, letx 0 � pdata . We use
the superscript to denote the diffusion stept. For conciseness, we omit the subscriptioni in the
following discussion. The diffusion process from clean datax 0 to x T is de�ned as

q(x 1; � � � ; x T jx 0) =
TY

t =1

q(x t jx t � 1); whereq(x t jx t � 1) = N (x t ;
p

1 � � t x t � 1; � t I ): (1)

The hyperparameters� t are pre-de�ned, small positive constants (See details in Appendix Sec-
tion A.1). According to Ho et al. (2020), there is a closed form expression forq(x t jx 0). We �rst de-
�ne constants� t = 1 � � t , �� t =

Q t
i =1 � i . Then, we haveq(x t jx 0) = N

�
x t ;

p
�� t x 0; (1 � �� t )I

�
.
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Therefore, whenT is large enough,�� t goes to0, andq(x T jx 0) becomes close to the latent distri-
butionplatent (x T ). Note thatx t can be directly sampled through the following equation:

x t =
p

�� t x 0 +
p

1 � �� t � ; where� is a standard Gaussian noise. (2)

We emphasize thatq(x t jx t � 1) can be seen as a one-to-one pointwise mapping asx t can be sampled
through the equationx t =

p
1 � � t x t � 1 + � t � . Therefore, the order of points inx 0 is preserved

in the diffusion process. However, it does not matter what kind of order we input the points inx 0.
That is because whenT is large enough,x T will become a Gaussian distribution. Every point in a
Gaussian distribution is equivalent and there is no way to distinguish one point from another.

The Reverse Process. The reverse process is a Markov process that predicts and eliminates the
noise added in the diffusion process. The reverse process is conditioned on the conditioner, the
incomplete point cloudc. Let x T � platent be a latent variable. The reverse process from latentx T

to clean datax 0 is de�ned as

p� (x 0; � � � ; x T � 1jx T ; c) =
TY

t =1

p� (x t � 1jx t ; c); wherep� (x t � 1jx t ; c) = N (x t � 1; � � (x t ; c; t); � 2
t I ):

(3)

The mean� � (x t ; c; t) is a neural network parameterized by� and the variance� 2
t is a time-step de-

pendent constant. To generate a sample conditioned onc, we �rst samplex T � N (03N ; I 3N � 3N ),
then drawx t � 1 � p� (x t � 1jx t ; c) for t = T; T � 1; � � � ; 1, and �nally outputsx 0.

Training. DDPM is trained via variational inference. Ho et al. (2020) introduced a certain pa-
rameterization for� � that can largely simplify the training objective. The parameterization is

� 2
t = 1� �� t � 1

1� �� t
� t , and � � (x t ; c; t) = 1p

� t

�
x t � � tp

1� �� t
� � (x t ; c; t)

�
, where� � is a neural net-

work taking noisy point cloudx t � q(x t jx 0) in equation (2), diffusion stept, and conditionerc as
inputs. Then, the simpli�ed training objective becomes

L(� ) = Ei �U ([ M ]) ;t �U ([ T ]) ;� �N (0 ;I ) k� � � � (
p

�� t x 0
i +

p
1 � �� t � ; ci ; t)k2; (4)

whereU([M ]) is the uniform distribution overf 1; 2; � � � ; M g. The neural network� � learns to pre-
dict the noise� added to the clean point cloudx 0, which can be used to denoise the noisy point cloud
x t =

p
�� t x 0 +

p
1 � �� t � . Note that traditional CD loss or EMD loss is NOT present in Equation 4.

The reason that we are able to use the simple mean squared error is because DDPM naturally de�nes
a one-to-one pointwise mapping between two consecutive point clouds in the diffusion process as
shown in Equation 1. Note that at each training step, we not only need to sample a pair of point
cloudsx i ; ci , but also a diffusion stept and a Gaussian noise� .

3.2 CONDITIONAL GENERATION NETWORK

In this section, we introduce the architecture of Conditional Generation Network (CGNet)� � . The
inputs of this network are the noisy point cloudx t , the incomplete point cloudc, and the diffusion
stept. We can intuitively interpret the output of� � as per-point difference betweenx t andx t � 1

(with some arithmetic ignored). In addition,� � should also effectively incorporate multi-level infor-
mation fromc. The goal is to infer not only the overall shape but also the �ne-grained details based
on c. We design a neural network that achieves these features. The overall architecture is shown in
Figure 2. It is composed of two parallel sub-networks similar to PointNet++ (Qi et al., 2017b), and
they have the same hierarchical structure.

The upper subnet, which we refer as the Condition Feature Extraction subnet, extracts multi-level
features from the incomplete point cloudc. The lower subnet, which we refer as the Denoise subnet,
takes the noisy point cloudx t as input. We also add the diffusion stept, the global feature extracted
from c, and multi-level features extracted by the Condition Feature Extraction subnet to the Denoise
subnet. The diffusion stept is �rst transformed into a512-dimension step embedding vector through
positional encoding and fully connected (FC) layers (See Appendix Section A.1 for details), and then
inserted to every level of the Denoise subnet. Similarly, the conditionerc is �rst transformed into
a 1024-length global feature through a two-stage PointNet, and then inserted to every level of the
Denoise subnet. The multi-level features extracted by the Condition Feature Extraction subnet are
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(a) (b) (c)

Figure 3: (a) Insert information of the diffusion step embedding and the global feature to the shared
MLP. (b) The Feature Transfer module maps features from the incomplete point cloud to the noisy
point cloud. (c) Re�ne and upsample the coarse points at the same time.

inserted to every level of the Denoise subnet through Feature Transfer modules. Finally, the Denoise
subnet is connected to a shared MLP and outputs� � (x t ; c; t).

Additionally, while Zhou et al. (2021) argues PointNet++ cannot be used in a DDPM that generates
point clouds, we �nd attaching the absolute position of each point to its feature solves this problem.
See Appendix Section A.3 for detailed analysis. We also improve the backbone PointNet++ so that
it manipulates positions of points more accurately.

In the next paragraphs, we elaborate on the building blocks of the improved PointNet++: Set Ab-
straction modules in the encoder, and Feature Propagation modules in the decoder, and Feature
Transfer modules between the Condition Feature Extraction subnet and the Denoise subnet.

Set Abstraction (SA) Module. Similar to PointNet++, this module subsamples the input point
cloud and propagates the input features. Assume the input isf x j j1 � j � N l g, wherex j is the
3D coordinate of thej -th point andN l is the number of input points to the Set Abstraction module
of level l . Each point has a feature of dimensiondl . We concatenate these features with their
corresponding 3D coordinates and group them together to form a matrixF l of shapeN l � (dl + 3) .
The SA module �rst uses iterative farthest point sampling (FPS) to subsample the input points to
N l +1 points: f yk j1 � k � N l +1 g. Then it �nds K neighbors in the inputf x j j1 � j � N l g for
eachyk . We denote theK neighbors ofyk asf x j jj 2 Bx (yk )g, whereBx (yk ) is the index set of
theK neighbors. See de�nition of neighbors in Appendix A.2. These neighbors and their features
are grouped together to form a matrixG in of shapeN l +1 � K � (dl + 3) . Then a shared multi-
layer perceptron (MLP) is applied to transform the grouped featureG in to Gout , which is of shape
N l +1 � K � dl +1 anddl +1 is the dimension of the output feature. Finally, a max-pooling is applied
to aggregate features from theK neighborsf x j jj 2 Bx (yk )g to yk . We obtain the output of the SA
module, the matrixF l +1 , which is of shapeN l +1 � dl +1 .

Note that we need to incorporate information of the diffusion step embedding and global feature
extracted from the incomplete point cloudc to every SA module in the Denoise subnet as shown in
Figure 2. We insert these information to the shared MLP that transformsG in to Gout mentioned
in the above paragraph. Speci�cally, we add them to the channel dimension of the intermediate
feature maps in the shared MLP. Figure 3(a) illustrates this process in details. Inspired by the works
(Pan et al., 2021; Zhao et al., 2020), we also replace the max-pooling layer in the SA module with a
self-attention layer. Feature atyk is obtained by a weighted sum of the features of itsK neighbors
f x j jj 2 Bx (yk )g instead of max-pooling, and the weights are adaptively computed through the
attention mechanism. See Appendix A.4 for details of this attention layer.

Feature Propagation (FP) Module. Similar to PointNet++, this module upsamples the input point
cloud and propagates the input features. In PointNet++, the features are upsampled fromf yk j1 �
k � N l +1 g to f x j j1 � j � N l g by three interpolation: Feature atx j is a weighted sum of the
features of its three nearest neighbors inf yk j1 � k � N l +1 g. We think that the three interpolation
operation is not suitable in our task, because the interpolation operation may lose some information
about the accurate positions of the points. See a detailed analysis in Appendix Section A.5.
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We propose to use a Point Adaptive Deconvolution (PA-Deconv) module to upsample the point
features. In the SA module, the features are mapped from setf x j j1 � j � N l g to f yk j1 � k �
N l +1 g. The key step is to �nd the neighborsf x j jj 2 Bx (yk )g � f x j j1 � j � N l g for each
yk . Features atf x j jj 2 Bx (yk )g are transformed and then aggregated to the pointyk through either
max-pooling or attention mechanism. Now in the FP module, we need to map features the other way
around: fromf yk j1 � k � N l +1 g to f x j j1 � j � N l g. We can achieve this goal through a similar
method. We �nd the neighborsf yk jk 2 By (x j )g � f yk j1 � k � N l +1 g for eachx j . Features
at f yk jk 2 By (x j )g are transformed through a shared MLP, and then aggregated to the pointx j
through attention mechanism. Similar to SA modules, we insert information of the diffusion step
embedding and the global feature extracted from the incomplete point cloudc to the shared MLP
in every FP module in the Denoise subnet. Finally, same as the original FP module in PointNet++,
the upsampled features are concatenated with skip linked point features from the corresponding SA
module, and then passed through a unit PointNet. The Feature Propagation module are applied four
times and features are eventually propagated to the original input point cloud.

Feature Transfer (FT) Module. The FT module transmits information from the Condition Fea-
ture Extraction subnet to the Denoise subnet. Assume the point cloud at levell in the Condition
Feature Extraction subnet isf zl j1 � l � Sl g, whereSl is the number of points at levell in the
Condition Feature Extraction subnet. The FT module maps the features at pointsf zr j1 � r � Sl g
to points at the same level in the Denoise subnet, which aref x j j1 � j � N l g. Then the mapped
features are concatenated with the original features atf x j j1 � j � N l g. Next, the concatenated
features are fed to the next level of the Denoise subnet. In this way, the Denoise subnet can utilize
local features at different levels of the incomplete point cloud to manipulate the noisy input point
cloud to form a clean and complete point cloud. The key step in this process is to map features at
f zr j1 � r � Sl g to f x j j1 � j � N l g. We adopt a similar strategy in the SA module. We �nd
the neighborsf zr jr 2 Bz (x j )g � f zr j1 � r � Sl g for eachx j . Features atf zr jr 2 Bz (x j )g
are transformed through a shared MLP, and then aggregated to the pointx j through the attention
mechanism, which is a weighted sum of the features atf zr jr 2 Bz (x j )g.

We set a small distance to de�ne neighbors in low level FT modules, so that they only query the
adjacent parts of the incomplete point cloudc to preserve local details in it. Large distances are
set to de�ne neighbors in high level FT modules. This makes high-level FT modules have large
receptive �elds, so that they can query a large part of the incomplete point cloud to infer high level
3D structural relations. See detailed neighbor de�nitions in Appendix Section A.2.

3.3 REFINEMENT NETWORK

We denote the coarse point cloud generated by the Conditional Generation Network asU . We use
another network of the same architecture shown in Figure 2 to predict a per-point displacement forU
to re�ne it. The differences are that the input to the Denoise subnet becomesU and we do not need
to insert the diffusion step embedding to the Denoise subnet. The predicted displacement are added
to U to obtain the re�ned point cloudV : v = u +  � f (u ; c), wherev; u ; c are the concatenated 3D
coordinates of the point cloudsV ; U ; C , respectively. is a small constant and we set it to0:001
in all our experiments.� f is the ReFinement Network. We use the Chamfer Distance (CD) loss
between the re�ned point cloudV and ground truth point cloudX to supervise the network� f :

L CD(V ; X ) =
1

jV j

X

v2 V

min
x 2 X

jj v � xjj2 +
1

jX j

X

x 2 X

min
v2 V

jj v � xjj2; (5)

wherejV j means number of points inV . If we also want to upsample points inU by a factor of� ,
we can simply increase the output dimension of the network� f . In addition to predicting one 3D
displacement of each point inU , we predict another� displacements. We consider each point in the
re�ned point cloudV as the center of a group of� points in the dense point cloud that we want to
generate. The additional� displacements are added to every point inV to form a dense point cloud.
Figure 3(c) illustrates how we upsample every point inV by a factor of� = 8 .

When training the ReFinement Network� f , parameters in the Conditional Generation Network� �
are �xed. It is not practical to generate coarse point cloudsU on the �y in the training process of
� f , because the generation process of DDPM is slow. Instead, we generate and save the coarse point
clouds in advance. Due to the probabilistic nature of DDPM, we generate10coarse point clouds for
each incomplete point cloud in the dataset to increase diversity of training data.
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4 RELATED WORKS

Point cloud completion. Inspired by the pioneering work, PointNet (Qi et al., 2017a), researchers
focus on learning global feature embeddings from 3D point clouds for completion (Yuan et al.,
2018; Tchapmi et al., 2019), which however cannot predict local and thin shape structures. To ad-
dress these challenges, following research works (Pan, 2020; Xie et al., 2020; Zhang et al., 2020;
Wen et al., 2021; Yu et al., 2021; Pan et al., 2021) exploit multi-scale local point features to re-
construct complete point clouds with �ne-grained geometric details. Recently, PointTr (Yu et al.,
2021) and VRCNet (Pan et al., 2021) provide impressive point cloud completion results with the
help of attention-based operations. Nonetheless, as a challenging conditional generation problem,
point cloud completion has not been fully resolved.
DDPM for point cloud generation. Luo & Hu (2021) are the �rst to use DDPM for unconditional
point cloud generation. They use a Pointwise-net to generate point clouds, which is similar to a
2-stage PointNet used for point cloud part segmentation. However, the Pointwise-net could only
receive a global feature. It can not leverage �ne-grained local structures in the incomplete point
cloud. Zhou et al. (2021) further use conditional DDPM for point cloud completion by training a
point-voxel CNN (Liu et al., 2019), but the way they use the incomplete point cloudc is different
from ours. They directly concatenatec with the noisy inputx t , and feed them to a single point-
voxel CNN. This may hurt performance of the network, because the concatenated point cloud is
very likely to be non-uniform. In addition,x t is very different fromc for larget's due to the large
noise magnitude inx t . Feeding two point clouds of very different properties to a single network at
once could be quite confusing for the network. The other major difference is that they do not re�ne
or upsample the coarse point cloud generated by DDPM like we do.

5 EXPERIMENTS

5.1 DATASETS

We conduct point cloud completion experiments on the following three datasets.MVP. The MVP
dataset (Pan et al., 2021) has 62400 training partial-complete point cloud pairs and 41600 testing
pairs sampled from ShapeNet (Chang et al., 2015). Every partial point cloud has2048points. In
particular, MVP dataset provides ground truth point clouds with different resolutions, including
2048, 4096, 8192, and 16384 points.MVP-40. The MVP-40 dataset (Pan et al., 2021) consists of
41600 training samples and 64168 testing samples from 40 categories in ModelNet40 (Wu et al.,
2015). Its partial point clouds are sampled from complete point clouds with a pre-de�ned missing
ratio, i.e., 50%, 25% and 12.5% missing. Both the partial and complete point clouds have2048
points.Completion3D.It (Tchapmi et al., 2019) consists of 28974 point cloud pairs for training and
1184 for testing from 8 object categories in ShapeNet. Both the partial and complete point clouds
have2048points. We �nd some pairs of the incomplete point cloud and complete point cloud have
inconsistent scales in the Completion3D dataset. We correct the scales and use the corrected dataset
in our experiments. See details in Appendix Section B.4.

5.2 EVALUATION METRICS

We use the Chamfer Distance (CD), Earth Mover Distance (EMD), and F1 score to evaluate the
quality of the generated point clouds. CD distance is de�ned in Equation 5.

Earth Mover Distance. Consider the predicted point cloudV and the ground truth point cloudX
of equal sizeN = jV j = jX j, the EMD loss penalizes their shape discrepancy by optimizing a
transportation problem. It estimates a bijection� : V  ! X betweenV andX :

L EMD(V ; X ) = min
� :V  ! X

X

v2 V


 v � � (v)




2: (6)

F1 score.To compensate the problem that CD loss can be sensitive to outliers, we follow previous
methods (Pan et al., 2021; Tatarchenko et al., 2019) and use F1 score to explicitly evaluates the
distance between object surfaces, which is de�ned as the harmonic mean between precisionL P(� )

and recallL R(� ): L F1 = 2L P( � )L R( � )
L P( � )+ L R( � ) ; whereL P(� ) = 1

jV j

P

v2 V

�
min
x 2 X


 x � v


 2

< �
�
, L R(� ) =

1
jX j

P

x 2 X

�
min
v2 V


 x � v


 2

< �
�
, and� is a prede�ned distance threshold. We set� = 10 � 4 for the

MVP and Completion3D datasets, and set� = 10 � 3 for the MVP-40 dataset.
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Table 1: Point cloud completion results on MVP, MVP-40 and Completion3D datasets at the resolution of
2048points. CD loss is multiplied by104 . EMD loss is multiplied by102 . Scale factors of the two losses are
the same in all the other tables. The two losses are the lower the better, while F1 score is the higher the better.
Note that MVP-40 dataset has larger CD and EMD losses because objects in it have larger scales than the other
two datasets. Results of MVP-40 dataset at 25% missing ratio is complemented in Appendix Table 5.

MVP MVP40 (50%missing) MVP40 (12:5% missing) Completion3D
Method CD EMD F1 CD EMD F1 CD EMD F1 CD EMD F1

PCN (Yuan et al., 2018) 8.65 1.95 0.342 39.67 6.37 0.581 32.56 6.18 0.619 8.81 3.03 0.315
TopNet (Tchapmi et al., 2019) 10.19 2.44 0.299 48.52 8.75 0.506 40.12 9.08 0.542 11.56 3.69 0.257
FoldingNet (Yang et al., 2018)10.54 3.64 0.256 51.89 11.66 0.441 46.03 8.93 0.480 14.32 4.81 0.186
MSN (Liu et al., 2020) 7.08 1.71 0.434 34.33 9.70 0.646 20.20 4.54 0.728 8.88 2.69 0.359
Cascade (Wang et al., 2020) 6.83 2.14 0.436 34.16 15.40 0.635 26.73 5.71 0.657 7.31 2.70 0.408
ECG (Pan, 2020) 7.06 2.36 0.443 34.06 16.19 0.671 40.00 6.98 0.597 10.43 3.63 0.300
GRNet (Xie et al., 2020) 7.61 2.36 0.353 35.99 12.33 0.589 22.04 6.43 0.646 8.54 2.87 0.314
PMPNet (Wen et al., 2021) 5.85 3.42 0.475 25.41 29.92 0.721 13.00 8.92 0.815 7.45 4.85 0.386
VRCNet (Pan et al., 2021) 5.82 2.31 0.495 25.70 18.40 0.736 14.20 5.90 0.807 6.69 3.57 0.433

PDR paradigm (Ours) 5.66 1.37 0.499 27.20 2.68 0.739 12.70 1.39 0.827 7.10 1.75 0.451

Table 2: Completion results on MVP dataset at
the resolution of4096; 8192; 16384points.

# Points 4096 8192 16384
CD F1 CD F1 CD F1

PCN 7.14 0.469 6.02 0.577 5.18 0.650
TopNet 7.69 0.434 6.64 0.526 5.14 0.618
FoldingNet 8.76 0.351 6.90 0.433 6.98 0.464
MSN 5.37 0.583 4.40 0.663 4.09 0.696
Cascade 5.46 0.579 4.51 0.686 3.90 0.743
ECG 7.31 0.506 3.99 0.717 3.32 0.774
GRNet 5.73 0.493 4.51 0.616 3.54 0.700
PoinTr 4.29 0.638 3.52 0.725 2.95 0.783
VRCNet 4.62 0.629 3.39 0.734 2.81 0.780

Ours 4.26 0.649 3.35 0.754 2.61 0.817

Table 3: Comparison of different network
structures in term of training the conditional
generation network and re�nement network.

Task Network CD EMD F1

Pointwise-net 11.99 1.63 0.265
Generate Concatex t & c 10.79 1.54 0.382
Coarse PointNet++ 9.39 1.38 0.355
Points PA-Deonv 8.81 1.34 0.379

PA-Deonv & Att. 8.71 1.29 0.389

Pointwise-net 7.71 1.45 0.407
Re�ne Concatex t & c 5.78 1.38 0.490
Coarse PointNet++ 6.03 1.40 0.480
Points PA-Deonv 5.96 1.40 0.482

PA-Deonv & Att. 5.66 1.37 0.499

5.3 POINT CLOUD COMPLETION

We compare our point cloud completion method with previous state-of-the-art point cloud comple-
tion methods. The comparison is performed on MVP, MVP-40, and Completion3D datasets. Results
are shown in Table 1. We also conduct multi-resolution experiments on the MVP dataset, and results
are shown in Table 2. Detailed experimental setups are provided in Appendix Section B.1. We can
see that our ConditionalPoint Diffusion-Re�nement (PDR) paradigm outperforms other methods
by a large margin in terms of EMD loss, which is highly indicative of uniformness (Zhang et al.,
2021). We also achieve the highest F1 score and very low CD loss. Although VRCNet sometimes
has lower CD loss than ours, it tends to put more points in the parts that are known in the incomplete
point clouds, while put less points in the missing part (See Figure 10 in Appendix). In this way, its
CD loss could be very low, but this non-uniformness is undesired and leads to very high EMD loss.
We compare our method with other baselines in terms of visual quality of completed point clouds in
Figure 4. We can see that our method generally has better visual quality. More samples are provided
in Figure 9 and Figure 11 in Appendix. We also �nd that our PDR paradigm demonstrate some
diversity in completion results as discussed in Appendix B.8.

Ablation Study. We study the effect of attention mechanism, Point Adaptive Deconvolution (PA-
Deconv) module, and Feature Transfer (FT) module in term of training the Conditional Generation
Network and the Re�nement Network. The experiments are conducted on MVP dataset at the reso-
lution of 2048 points and results are shown in Table 3. “PA-Deonv & Att.” is our proposed complete
network shown in Figure 2. “PA-Deonv” removes attention mechanism. “PointNet++” further re-
moves PA-Deconv module. “Concatex t & c” removes FT modules. It concatenatesc with x t as
Zhou et al. (2021) do, and feed them to a single PointNet++ with attention mechanism and PA-
Deconv. “Pointwise-net” only utilizes a global feature extracted from the incomplete point cloud.
We can see that these proposed modules indeed improve the networks' performance. Note that the
conditional generation networks in Table 3 are trained without data augmentation. Complete exper-
imental results with data augmentation are presented in Appendix Section B.6. All the re�nement
networks are trained using data generated by our proposed complete dual-path network trained with
data augmentation. If the other ablated networks use training data generated by themselves, they
would have worse re�nement results.
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