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INCMLab, Imprensa Nacional - Casa da Moeda, Lisbon, Portugal
Mathematics Department and CEMAPRE, ISEG, University of Lisbon, Portugal

Hugo Gamboa
Associação Fraunhofer Portugal Research - AICOS, Porto, Portugal

Laboratory for Instrumentation, Biomedical Eng. and Radiation Physics (LIBPhys-UNL), NOVA

School of Science and Technology, Caparica, Portugal

Reviewed on OpenReview: https: // openreview. net/ forum? id= wqDiPP8Xm7

Editor: Yang Liu

Abstract

In today’s data-driven world, addressing bias is essential to minimize discriminatory out-
comes and work toward fairness in machine learning models. This paper presents a novel
data-centric framework for bias analysis, harnessing the power of counterfactual reasoning.
We detail a process for generating plausible counterfactuals suited for group evaluation, us-
ing probabilistic distributions and optionally incorporating domain knowledge, as a more
efficient alternative to computationally intensive generative models. Additionally, we in-
troduce the Counterfactual Confusion Matrix, from which we derive a suite of metrics
that provide a comprehensive view of a model’s behaviour under counterfactual conditions.
These metrics offer unique insights into the model’s resilience and susceptibility to changes
in sensitive attributes, such as sex or race. We demonstrate their utility and complemen-
tarity with standard group fairness metrics through experiments on real-world datasets.
Our results show that domain knowledge is key, and that our metrics can reveal subtle
biases that traditional bias evaluation strategies may overlook, providing a more nuanced
understanding of potential model bias.
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Table 1: Group Fairness Criteria and Metrics
Criterion Fairness Requirement Metric Meaning

Independence
Outcome independent of the
sensitive feature

DemP
Difference between Predicted Preva-
lence (Feldman et al. (2015))

Separation
Given an outcome, similar
probability of being correct
(Equal error rates)

EOdds
EOpp
PredEq

Error rate diff. for both outcomes
Error rate diff. for positive outcomes
Error rate diff. for negative outcomes

(Hardt et al. (2016))

Sufficiency
Given a prediction, similar
probability of being correct

PredP
Difference between Precision (Verma
and Rubin (2018))

1 Introduction

Machine Learning (ML) models have revolutionised decision-making processes across nu-
merous domains. However, these models can mirror or even amplify bias present in the
training data, raising concerns about potentially unfair or discriminatory outcomes. Stud-
ies often focus on identifying discrimination based on a sensitive feature (e.g., race, sex),
also known as a protected attribute in specific applications. Detecting and mitigating bias
is critical for equitable and trustworthy ML systems. Nonetheless, there is no consensus on
an unequivocal definition of a fair decision in ML, despite numerous philosophical streams
emerging over time, including egalitarianism and utilitarianism (Beretta et al. (2019)).

The most prevalent approach for detecting bias relies on group fairness. Existing fairness
metrics under this umbrella term are referred to as parity measures as they compare per-
formance parameters between the data sectioned by the subgroups of the sensitive feature.
These metrics can be further divided by the fairness criterion employed: Independence,
Separation, and Sufficiency (Barocas et al. (2023)) (Table 1).

While group fairness targets similar outcomes for different subgroups, another stream
evaluates bias in an instance-based approach, defending that similar instances (except for
the sensitive feature) should have similar outcomes (Dwork et al. (2011)). This concept of
individual fairness is still a disputed methodology. Fleisher (2021) argues the impractica-
bility and insufficiency of the methodology, further defending that the analysis may induce
human biases. Still, in this context, we highlight counterfactual fairness, employing the
concept of causal inference, as introduced by Kusner et al. (2017). Under this notion, a
model is deemed counterfactually fair if, for any sample, the actual prediction is the same
as the one generated in a ‘Counterfactual world’, changing the value of the sensitive feature,
while keeping other not causally dependent variables constant.

By definition, counterfactual fairness applies under the premise that bias is found when
there is a causal link between a sensitive feature and the outcome. This framework assumes
the sensitive feature should not impact the outcome. While this holds true in some cases,
it is not universally feasible. As an example, an individual’s sex should not influence their
college admission decision. On the other hand, sex, or race, might be a biologically relevant
factor for clinical trials’ enrollment, as well as a source of bias.
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1.1 Contributions

To broaden the application of counterfactual fairness in diverse scenarios, we introduce a
novel framework for bias evaluation that starts by creating plausible counterfactual exam-
ples. This approach shifts from strict causal relationships to a more flexible model that
changes the sensitive feature while plausibly adjusting (cor)related features. Plausibility
is derived both from Probability Distribution Functions (PDFs), and domain knowledge,
when available. Rather than enforcing complete independence from the sensitive attribute,
our method evaluates independence from characteristics plausibly linked to it. Moreover,
recognising the challenges of generating synthetic data and its evaluation, the incorporation
of domain knowledge in various forms drives the credibility and relevance of the generated
Counterfactuals (CFs).

The proposed framework further comprises a comparison between the model outcomes
in both the original and counterfactual scenarios. This analysis is streamlined through a
novel Counterfactual Confusion Matrix (CCM) and its extended version. Several metrics,
analogous to the ones derived from a traditional confusion matrix, are proposed to aggregate
the individual results into group-based insights. This balanced use of statistical distributions
and causal insights facilitates a more nuanced transition from individual to group fairness,
enriching the robustness and applicability of our framework in different contexts.

1.2 Related Work

This subsection highlights the related work of applying counterfactual reasoning to fairness
and related applications, focusing on the methodology and challenges involved.

1.2.1 Counterfactual Explanations

We start by discussing the role of Counterfactual Explanations (CFEs) in ML. CFE is a key
framework for explainability, utilising “what if” scenarios to improve interpretability. CFs
identify minimal feature changes for different outcomes (Wachter et al. (2017)). Despite
their widespread use in model-agnostic settings across various data types, standardising
evaluation methodologies remains a challenge (Stepin et al. (2021)).

In the context of CFE, there are several studies for generating plausible CFs employing
metrics such as sparsity and diversity (Smyth and Keane (2021)), as well as improving the
consistency of the generated CF (Black et al. (2021)). Diverse Counterfactual Explanations
(DiCE) is another prevalent technique for generating CFs that satisfies two properties:
diversity and feasibility given the user context and constraints (Mothilal et al. (2020)). The
method is able to generate a diverse set of CFs that effectively approximate local decision
boundaries providing meaningful insights into the model’s predictions. Human-in-the-Loop
processes also contribute to robustness by incorporating domain expertise (Kaushik et al.
(2019)). Despite these advancements, a gap persists in applying CFE methodologies to
counterfactual fairness due to conflicting goals. Most CFE generation models aim to flip
the prediction, while counterfactual fairness focuses on changing the sensitive feature and
observing prediction changes.

3



Pinto, Carreiro et al

1.2.2 Counterfactual Features versus Outcomes

There are two main approaches to achieving counterfactual fairness. The first, more com-
mon approach previously introduced, considers CFs of sensitive features, while the second
focuses on counterfactual outcomes. The former, with which this work aligns, involves
changing a sensitive feature (e.g., sex or race) and observe whether the model’s distribution
is changed (Kusner et al. (2018); Cornacchia et al. (2023a,b); Russell et al. (2017a)). In
contrast, the latter involves estimating a change in the outcome and observing the effect
on the predictor’s distribution. This approach is often studied in Risk Assessment Instru-
ments (Coston et al. (2020, 2021); Mishler et al. (2021); Mishler and Kennedy (2021)).

However, as mentioned before, the challenge of developing accurate causal models, es-
pecially with confounding factors, remains significant (Russell et al. (2017a); Kusner et al.
(2018); Cornacchia et al. (2023a,b)).

1.2.3 Counterfactual Bias Evaluation

Regarding bias evaluation, Coston et al. (2020) propose counterfactual analogues of com-
mon performance and fairness metrics, introducing doubly robust estimation for calculating
them. They use counterfactual outcomes, which would have been observed under a differ-
ent decision policy, and a treatment/decision model that predicts the treatment or decision
based on the features.

Mishler et al. (2021) propose a post-processing method to achieve counterfactual equal-
ized odds in Risk Assessment Instruments, also computed using doubly robust estimators.
These last approaches fall under the category of counterfactual outcomes, while our pro-
posed framework focuses on counterfactual (sensitive) features.

Cornacchia et al. (2023a) propose a counterfactual generation tool to study implicit
bias in predictive models even when sensitive features are removed. Their approach allows
to identify proxy features, defining a metric called Counterfactual Flips, representing the
percentage of the generated CFs that belong to different demographic groups through a
sensitive feature predictor. The research group further presents a novel set of fairness
metrics including the Counterfactual Fair Opportunity (CFO), a Discounted Cumulative
Counterfactual Fairness, and its normalised version (Cornacchia et al. (2023b)).

Maughan et al. (2022) devised a method to evaluate CF fairness after deployment, suited
for Neural Networks (NN). The proposed metric, Predictive Sensitivity, measures the dot
product of the gradient of the feature’s contributions in the task classifier and in predicting
the protected attribute (auxiliary model). Both factors are calculated by the difference in
weight of the feature when flipping the protected attribute. This measure is proposed as
a proxy to causal inference and higher values indicate CF bias. During training, a base
acceptable value for predictive sensitivity is established, and, after deployment, predictions
are monitored to detect if the model is striving away from the acceptable range. This
method does not require an explicit CF generation process, being a cost-efficient approach.
Nonetheless, it requires an additional model and white box access for auditing and is limited
to NNs.

Despite these developments, there remains a gap in comprehensive metrics for con-
ducting an in-depth global analysis of decision flips in counterfactual fairness applications.
The work of Black et al. (2020) presents a notable contribution in this regard, introducing
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‘fliptests’ that account for flips from positive to negative or vice versa for each subgroup, fur-
ther constraining by features as well as ground truth based on the case study. However, this
evaluation focuses on understanding which features changed in the CF generation process
instead of measuring model prediction’s flips. The generation process uses Optimal Trans-
port Maps (OTMs) or approximations through Generative Adversarial Networks (GANs)
to convert distributions between subgroups, effectively achieving feasible CFs. Still, these
methods have shortcomings: they are computationally demanding and, while effective in
reading and learning the distributions, they are easily prone to replicating statistical re-
lations that are not necessarily desirable or even representative of real-world populations.
This is used to their advantage by identifying the features that change the most for a given
fliptest in order to understand the underlying tendencies of the model. Goethals et al. (2023)
propose another metric based on CF flips, the PreCoF which measures the difference in
portion of these flips.

Albeit with similar methods and goals, our work aims for a more straightforward eval-
uation based on plausible CFs. Instead of focusing on causal links and ensuring that the
sensitive feature does not affect the model prediction, our aim aligns with the fundamental
idea behind counterfactual thinking. While ambitious, we strive to provide an evaluation
framework based on CFs that mirrors the original dataset in a ‘Counterfactual World’.
With this, each CF should only stray away from the original sample in terms of group
membership and characteristics we can argue would be different. To achieve this, we pro-
pose a controlled CF generation process, described in Section 2.1. Our goal is to set new
necessary, albeit not sufficient, conditions to define a model as unbiased.

1.2.4 Counterfactual Bias Mitigation

Regarding bias mitigation techniques employing CFs, Russell et al. (2017b) proposed a
method to make fair predictions by integrating multiple causal models. In that study, the
model is generated with an optimisation task of achieving, as the authors define it, an
Approximation Counterfactual Fairness. This metric is calculated based on the difference
of flipped instances between each sequential causal model.

Concerning data augmentation, several studies explored the benefits of utilising CFs for
attenuating the class imbalance (Pombo et al. (2023); Temraz and Keane (2022)), as well as
testing which generation processes ensure better results (Kaushik et al. (2020)), which can
be expected to translate well into minimising counterfactual bias. Our proposed framework
also investigates the impact of counterfactual augmentation in bias mitigation, guided by
the proposed metrics and domain knowledge.

2 Methodology

2.1 Generating Plausible Counterfactual Fairness

The goal of this process is to generate, for each sample, corresponding CFs (relative to a
sensitive feature) that share the same outcome. Additionally, features highly correlated with
the sensitive feature are adjusted to better fit the counterfactual subgroup. The proposed
algorithm considers the statistical distribution of each sensitive subgroup relative to each
class to adjust feature values.
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In scale, for a given sensitive attribute with G possible subgroups, at least one CF is
generated for each different subgroup for each sample, resulting in at least G − 1 CFs per
sample.

To introduce the method, we characterize the dataset by a set of features F , a sensitive
attribute with multiple subgroups g ∈ G, and the target variable with a set of possible
labels Y (for a classification task). We define the group of samples from which we want
to generate CFs as S and the training set, used as a reference in the generation process,
as Strain. For ease of interpretation, the proposed process is described in the context of
a binary classification problem, y ∈ {0, 1}, where 0 corresponds to the negative (-) class
and 1 to the positive (+) class, and a binary sensitive feature with subgroups g ∈ {A,B}.
However, the method generalizes to multiclass problems and categorical sensitive features,
as discussed in Appendix C.

The algorithm starts by handling continuous variables. The process (considering only
one label) is roughly illustrated in Figure 1. The generation begins by computing the
Cumulative Distribution Functions (CDFs) P ∈ {PA−, PA+, PB−, PB+} for the values of
each continuous feature f ∈ F of the training set Strain. For each sample sk in the sample
space S belonging to subgroup A that has value vk,i for a continuous feature fi and label
yk = 1, the goal is to generate a CF in the subgroup B with a modified value v′k,i, retaining
the label yk = 1. The algorithm assesses the probability of the event x ≤ xn within the PA+

distribution (CDF of training samples from subgroup A with positive label) (Figure 1B).
Defining x as the sorted possible values for the feature fi, where vk,i corresponds to its
nth value, xn = vk,i. In case xn is not represented in the distribution, the method uses
interpolation to infer the approximate probability. Defining the closest values in PA+ as
xn−1 and xn+1 where xn−1 < xn < xn+1, formally, for the sample sk ∈ SA+, the probability
of event vk,i = xn is given by Equation 1.

PA+(vk,i) = PA+(xn) = PA+(xn−1) + (PA+(xn+1)− PA+(xn−1))
xn − xn−1

xn+1 − xn−1
(1)

Then, it searches for the corresponding value v′k,i = xm in the distribution PB+ from
PA+(xn) (Figure 1C). When not represented, the value is inferred by interpolation, formally
defined in Equation 2.

v′k,i = xm = xm−1 + (xm+1 − xm−1)
PA+(xn)− PB+(xm−1)

PB+(xm+1)− PB+(xm−1)
(2)

A similar approach is adopted for categorical features. However, when finding the
corresponding feature values of the CF, instead of interpolation, the method selects the
nearest value from the new distribution, considering the discrete nature of the feature. It is
important to note that this process is specifically suited for features - whether continuous
or categorical - that exhibit an ordinal relationship, such as ‘age’ or ‘burn degree’. For
other categorical features, it is preferable to one-hot encode them and treat them as binary.
Importantly, this method is able to treat encoded features as a group, ensuring the absence
of impossible combinations.

To provide a clearer picture with an example, consider the task of generating a CF of
a male patient based on a healthy female patient’s data. It would be implausible if the
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Figure 1: Sequential steps for adjusting the value xn of the continuous feature f throughout
the generation of CF from group B from samples from group A, given the sensitive
feature g ∈ A,B. Note that the process further sections the samples by label.
A - Estimate PDF of the continuous feature sectioned by subgroups and label;
B - Estimate CDF for both distributions marking the corresponding value xm in
the other group CDF; C - Resulting CF CDF(purple) when repeating the process
for every sample; D - Resulting PDF from the CFs(purple).

testosterone levels in the CF remained the same as the original female patient’s levels. The
proposed method finds the testosterone concentration of the initial female sample within
its distribution, say, within the higher quartile, and grants that the male CF is within
the corresponding quartile. So, a female with comparatively higher testosterone levels
corresponds to a male with relatively higher levels, and the converse holds.

The process of flipping binary features is based on the probability of the original value,
conditioned for each subgroup. Initially, for each binary feature, the method tests the prob-
ability of the original feature value vi occurring in the new group. Should this probability
fall beneath a predetermined threshold, then the feature value is flipped. This step prevents
the emergence of ‘impossible’ feature combinations. For example, consider an original sam-
ple representing a pregnant woman, and we aim to generate a male CF. Since the attribute
of pregnancy is female-exclusive, the probability of a pregnant individual being female is
1, while the counterpart for a male is 0. Consequently, the algorithm modifies the feature
value from ‘pregnant’ to ‘not pregnant’ in the male CF.

Subsequently, an iterative test for the remaining binary features initiates. For a sample
sk labelled as 1 from subgroup A with value vk,i for the feature fi ∈ FB, where FB is the
set of binary features, the method calculates the difference between the probability of that
event occurring for subgroup A and subgroup B. If the difference surpasses a predefined
threshold (τ = 0.5 by default), the feature value flips, remaining unchanged otherwise. In
notation,

v′k,i =

{
|vk,i − 1| if|P (vk,i|g = A, y = 1)− P (vk,i|g = B, y = 1)| ≥ τ

vk,i if|P (vk,i|g = A, y = 1)− P (vk,i|g = B, y = 1)| < τ
(3)

Acknowledging that this change might not be plausible, the procedure iteratively refines
itself, incorporating additional constraints on subsequent feature flips. In the second level,
where fi flipped, other features are tested, comparing probabilities conditioned on the new
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feature value and the sensitive feature. For instance, for the next feature fj , the value v′k,j
shall be given in relation to v′k,i, following:

v′k,j =

{
|vk,j − 1| if|P (vk,j |g = B, fi = v′k,i, y = 1)− P (vk,j |g = B, fi = |v′k,i − 1|, y = 1)| ≥ τ

vk,j if|P (vk,j |g = B, fi = v′k,i, y = 1)− P (vk,j |g = B, fi = |v′k,i − 1|, y = 1)| < τ

(4)

As the iterations progress, the pool of samples adhering to these constraints diminishes.
Consequently, the probabilities become less representative of the population. Thus, it is
crucial to consider the size of the dataset and select an appropriate depth - a hyperparameter
that determines the maximum number of iterations. Because there are features that can be
established as unrelated to the sensitive feature, it is possible to select the potential features
and keep the others unchanged.

This approach can yield multiple CFs for each sample as it evaluates each feature in
parallel, depending on the hyperparameters. To filter out inconsistent CFs, a supplementary
optional validation phase is introduced. This phase examines the feature distributions
and discards the less likely candidates. First, Principal Component Analysis (PCA) is
applied to the dataset, which is then sectioned by label and group membership. For each
possible combination of n − 1 principal components, the centroid is calculated (effectively
projecting the remaining components onto a single one). CFs are marked as invalid if they
are farther from one of the centroids than a set threshold, based on a number of standard
deviations (e.g., 1.5×σ). The generated CFs can then be used to investigate the presence of
counterfactual bias in a ML model by comparing its outcomes for both the original samples
(e.g. a validation set) versus their counterfactual versions. The main components of this
methodology are comprised in Algorithm 1, found in Appendix A.

2.2 Counterfactual World Building Considerations

This methodology requires a clear idealisation of a counterfactual world and the changes
it may entail. Deciding which features are rightly related to the sensitive feature can be
challenging and sometimes inconclusive. For instance, there may be characteristics that
are rightly related to a group in one scenario but not in another. In these circumstances,
valuable insights can still be gleaned from counterfactuals, namely through naive and greedy
approaches. A naive approach would involve only flipping the value of the sensitive feature,
while the greedy approach would allow changes in all features related to the group. While
plausibility is not guaranteed, the proposed metrics can still provide hints of potential
biases. The naive approach will display an approximation of the direct importance of the
sensitive feature in the dataset. In contrast, the greedy approach refers to the global impact
of the represented group’s distributions on the decision. In some instances, the latter may
suffice for the purposes of the project. For example, in Section 3.1, we present a scenario
where the counterfactual world is not clear-cut since the correlations with the sensitive
feature are not direct. To surpass the issue, we start by identifying the few relations
we are sure do not have a plausible effect, then attempt to decorrelate them (creating
a new base dataset), followed by a greedy approach, and finally empirically choose the
counterfactuals we are the most confident. Different methods may be employed to validate
counterfactuals; a safe approach is to adapt synthetic data validation metrics so that while
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Figure 2: Flowchart of the proposed CFs Generation process, characterising the feature
selection process, as well as the CFs filtering options.

they may not be definite plausible mirror images of the original samples, they can at least
be assumed to be feasible instances. Additionally, since the proposed metrics are intended
to complement other fairness methods, such as group fairness, assessing the effectiveness
of data augmentation with more objective metrics, namely group fairness parities, is also
possible. We include a flowchart with general interpretations to guide the reader through
the preprocessing steps to filter plausible features, such as choosing the CFs for evaluation
and augmentation (Figure 2).

2.3 The Counterfactual Confusion Matrix

The prominent Confusion Matrix (CM) allows for easy visualisation of the combinations of
the ground truth and the predictions, containing all the necessary information for evaluating
the performance of a classification problem. Inspired by this instrument, the proposed CCM
adds two dimensions to the analysis: the sensitive feature values and the resulting prediction
for the counterfactual samples. As follows, to simplify interpretation in specific applications,
we propose two versions of the matrix: a simplified format that omits the ground truth,
and an extended version.

By design, the assumption of independence in generating the CFs implies that, for a
given sample s ∈ S, the label for the pair s, sCF remains the same Thus, it is possible
to directly compare each pair with a criterion of consistency, evaluating if the prediction
changes for the CF sample. There are four possible combinations of results for a binary
problem, which can be counted and presented just like the combination between predictions
versus real values can be summarised in a CM. In this case, the reference is the original
prediction, so it occupies the spot of the ground truth in rows, while the CF predictions are
placed in the columns, as illustrated in Figure 3.

When analysing a counterfactual matrix, the base parameters account for the CFs pre-
dicted as positive (P) or negative (N) which are consistent (C) with the original sample
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ŶCF = 0ŶCF = 1
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CN

SP

SP
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SN

CP 

Consistent 

Positive

CN 

Consistent 

Negative

SN 

Switched to 

Negative

SP 

Switched to 

Positive

Figure 3: The Counterfactual Confusion Matrix (CCM) with two additional CCMs rep-
resented(right) highlighting the importance of drawing these matrices by group
membership.
Ŷ - Prediction for the factual(original) sample; ŶCF - Prediction for the CF sam-
ple.

or switch (S) its value following the nomenclature: Consistent Positive (CP), Consistent
Negative (CN), Switched to Positive (SP), and Switched to Negative (SN).

2.3.1 Derived Metrics

Several metrics can be derived from the CCM, some in direct analogy to metrics computed
from the traditional CM. We will define the proposed metrics, provide the analogue in the
traditional CM, if it exists, and describe its meaning when applied to bias analysis. When
appropriate, we further define the complement metric (comp metric = 1−metric).

• Consistency Rate (CR): The analogue to Accuracy (ACC) in the CM, this mea-
sures the proportion of instances where the original prediction remained the same in
the counterfactual scenario. It is calculated as (CP +CN)/(CP +CN + SP + SN).
Its complement is the Switch Rate (SR), calculated as (SP + SN)/(CP + CN +
SP + SN). Although measuring the consistency of counterfactual predictions is not
new (Cornacchia et al. (2023a)), we formalise it based on the proposed CCM.

• Positive Switch Rate (PSR): Measures the proportion of instances originally pre-
dicted as negative that switched to a positive outcome in the counterfactual scenario.
It is calculated as SP/(SP + CN) and stands as the equivalent to the False Positive
Rate (FPR) in the CM. Its complement can be defined as Negative Consistency
Rate (NCR), whose equivalent in the CM is the Specificity.

• Negative Switch Rate (NSR): Inversely, the NSR captures the fraction of original
positive predictions that switch to negative after the counterfactual changes. It is
calculated as SN/(SN + CP ). The analogue in the CM is the False Negative Rate
(FNR). Its complement is defined as Positive Consistency Rate (PCR) whose
CM analogue is the Sensitivity or Recall.

• Positive Consistent Precision (PCP): This metric is equivalent to the Precision
in the CM, and is computed as CP/(CP+SP ). It can be interpreted as the proportion
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of positive counterfactual predictions that are consistent before and after the counter-
factual changes. Its complement is defined as the Positive Switch Discovery Rate
(PSDR), whose analog in the CM is the False Discovery Rate (FDR).

• Counterfactual Matthew’s Correlation Coefficient (CMCC): The counterfac-
tual version of the Matthew’s Correlation Coefficient (MCC) measures the alignment
between the original and counterfactual predictions. It keeps the favourable properties
of the original MCC, like being robust to unbalanced data (in this case the predictions,
not the ground truth). It can be computed as CP×CN−SP×SN√

(CP+SP )×(CP+SN)×(CN+SP )×(CN+SN)
.

These metrics provide a comprehensive view of the model’s performance under counter-
factual conditions. To better assess the potential bias, one should compute these metrics
for the different subgroups of the sensitive attribute (e.g., males and females when Sex is
the attribute) and compare the obtained results. One could use the absolute difference to
get a measure of group disparity or use a ratio for a relative disparity, especially if higher
sensitivity to small changes is desired.

For some of the metrics, higher values for one of the subgroups may suggest that the
model is biased against that subgroup, like the PSR, and PCP. For metrics like the NSR,
higher values for a subgroup may indicate that the predictions are biased in favour of that
subgroup. High values of the SR may indicate the presence of bias, but it’s difficult to
assess in which direction. Higher values for the CR, NCR, PCR, and PCP align with a
counterfactually fair model.

However, these metrics do not account for the ground truth. This allows to study model
bias independent from knowing the real labels of the population, especially important when
a system is in production. On the other hand, it may miss important context such as
the real prevalence or model correctness in specific subgroups in the training set, to better
evaluate if the model minimises, maintains, or amplifies bias.

2.3.2 The Extended Counterfactual Confusion Matrix

We propose an Extended Counterfactual Confusion Matrix (ECCM) to allow the visuali-
sation of the relationship between the ground truth labels, or actual outcome prevalence,
with both the original and counterfactual predictions. In the binary scenario, the ECCM
is a 2 × 4 matrix, defined in Figure 4. Its structure expands the CM, dividing each of the
original matrix cells into two (consistent and switched). For instance, the first two cells of
the first row (True Consistent Positives (TCP) and True Switched Negatives (TSN)) sum
up to the known True Positive (TP), and the two cells below (False Consistent Positives
(FCP) and False Switched Negatives (FSN)) the False Positive (FP). In turn, we note that
summing each 2-cell column results in the four cells of the CCM: CP, SN, SP, and CN.

Since the ECCM purpose is to easily evaluate CF bias, it is better utilised when drawn
for each group of the sensitive feature. For this reason, we propose a version of the ECCM
broken down into groups, depicted in Figure 11 in Appendix B. The inclusion of the real
outcomes allows to understand which instances are more challenging for the model. For
instance, if the switches occur mostly on initially correctly predicted samples, it indicates
the model is not well adapted to the new (counterfactual) subgroup.
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Figure 4: The Extended Counterfactual Confusion Matrix (ECCM).
Y - Ground Truth; Ŷ - Prediction for the factual(original) sample; ŶCF - Predic-
tion for the CF sample.

Considering the additional information about the actual outcomes, a new set of metrics
can be defined:

• True Switch Negative Rate (TSNR): Calculated as TSN/(TSN + FSN), it
measures the proportion of instances originally correctly predicted as positives whose
CF predictions switch to negative. The complement is the False Switch Negative
Rate (FSNR). Analogously, we can define them for SP: the True Switch Positive
Rate (TSPR) and the False Switch Positive Rate (FSPR).

These metrics allow a more detailed analysis on whether the counterfactual switches
are more prevalent in originally correct or wrong predictions (e.g., SN can originate
from TP or FP). However, we argue they are insufficient when studied by themselves.

• True Positive Switch Rate (TPSR): This measures the proportion of TP that end
up switching (to negative) in the counterfactual setting. It’s computed as TSN/TP .
Similarly, we can define False Positive Switch Rate (FPSR) as the proportion of
FP that switch to negative in the counterfactual scenario, as computed by FSN/FP .
Additionally, we can define the equivalent metrics for the negative predictions: the
True Negative Switch Rate (TNSR) and the False Negative Switch Rate
(FNSR).

By comparing their values within a specific subgroup or between different subgroups,
we can get a more comprehensive understanding of whether the model is more biased when
returning correct or incorrect predictions. This could help focus the mitigation efforts on
the instances where the model currently fails, by collecting more diverse training data in
these samples’ neighborhoods, adjusting the model’s parameters, or other targeted bias
mitigation techniques. A summary of the proposed metrics can be found in Table 7 in
Appendix C.3.

Given the extensive suite of metrics and derived interpretations, we include a flowchart
of the general evaluation process using our metrics, starting with those that evaluate the
overall consistency followed by more targeted metrics that highlight tendencies (Figure 5).
As a general approach, the evaluation starts within a subgroup by evaluating the overall
flips that occurred, given either by CR or CMCC. Then, for each class, one may verify if
there is any noticeable tendency with PSR and NSR. If the data is not labelled or if we
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suspect label biases, the evaluation might end here. Otherwise, we can draw the extended
version of the CCM to have a finer look into the switch patterns. As a rule of thumb,
switches in TP or True Negative (TN), marked by TPSR and TNSR, are more telling
as the model was confidently correct in these instances, and the flips are more alarming.
However, complementing with FPSR and FNSR may help identify the best course of action
and if the problem is more an issue of optimisation or lack of representation.

To make the suggested workflow more specific, let’s consider a hypothetical scenario, of
a loan approval model.

Step 1: Problem Definition

Context: The loan approval model was trained on a dataset containing features like
income, credit score, and a sensitive attribute such as race.

Goal: Ensure eligible individuals are granted a loan with minimal occurrences of ineli-
gible individuals that receive loans (FPs). Thus, we wish to optimize the precision.

Fairness concern: Minimising differences in precision between sensitive groups (PredP).

Step 2: Model Evaluation Using the ECCM

Action: Apply the ECCM to compare the model’s predictions with CF predictions
where the race attribute is altered and other features are adjusted to remain plausible.

Group Fairness: Let’s assume the model has minimal bias in terms of PredP.

Counterfactual Metrics: The ECCM reveals that individuals from a particular racial
group are consistently less likely to receive loan approval in counterfactual scenarios (e.g.,
high NSR) for this group). Other metrics can suggest that the change in group membership
made the model deny the loan to several eligible individuals (high TPSR for this group)
and wrongly attribute more loans to ineligible individuals of the other group (high TNSR
for the latter group).

Interpretation: General bias against a group where the model ‘favours’ the other.

Step 3: Bias Mitigation

Action: Since group fairness metrics did not reveal significant bias, mitigate counter-
factual metrics using data augmentation with CFs.

Step 4: Iteration

Action: CF-based augmentation may have an impact on group fairness metrics. Go
back to Step 2 and reevaluate accordingly.

Possible Problem: Increase in group bias and decrease in performance. In this sce-
nario, a possible solution would be to reduce the set of CFs used for augmentation, using
a selection technique appropriate to the problem objective. In this case, selecting a small
number of CF samples for which the model switches the output from TPs to False Negatives
(FNs) may be sufficient to achieve better results.

2.4 Probability-based Counterfactual Analysis

In classification tasks, the model output typically is a score representing the model’s con-
fidence or an uncalibrated probability. To reach a final outcome, required for the previous
analyses, a threshold is applied (50% by default in binary problems). However, even when
the original and counterfactual predicted outcomes are identical (CR = 100%), important
insights may be overlooked. As an example, and assuming the usual decision threshold of
50%, if positive samples in a subgroup score 90%, but drop to 55% in the counterfactual
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Figure 5: Flowchart of the evaluation process using the proposed Counterfactual Metrics,
abiding by a general approach. Green boxes offer some guides on interpreting
results, whereas blue boxes suggest some actions to perform based on the results.

setting, the binary decision remains consistent, yet the variation in scores indicates potential
bias. To address this, we introduce new metrics that consider these underlying probability
scores.

2.4.1 Mean Counterfactual Differences

Let m(sk) be the output of model m for sample sk, or its confidence score. Additionally,
sCF
k is the counterfactual version of sample sk, where the sensitive feature is changed, and
correlated features adjusted for plausibility. We can define Root Mean Squared Counterfac-
tual Differences (RMSCD) that is ananalogueg to the Root Mean Squared Error (RMSE)
used in error analysis: √√√√ 1

n

n∑
k=1

(m(sCF
k )−m(sk))2 (5)

We chose specifically the RMSE version since in this case we’re dealing with values in
the interval [0, 1]. In this context, the differences, in percentage, are more easily interpreted
when using the root mean squared differences.

2.4.2 Distribution Shifts

Another approach to compare confidence scores’ differences in the original versus the coun-
terfactual scenarios is to analyse how the score distributions deviate. In case the outcome is
entirely independent of the sensitive feature, both distributions should be identical (minus
some possibly negligible random factor). One way to achieve this goal is to use the Kull-
back–Leibler Divergence (KLD), also known as relative entropy and defined as DKL(P ||Q),
to measure how a PDF P deviates from a second distribution Q.

14



The Matrix Reloaded

DKL(P ||Q) =
n∑

i=1

P (i) log
P (i)

Q(i)
(6)

In our counterfactual context, we can define P as the distribution of original prediction
scores, and Q the corresponding distribution for the counterfactual predictions. DKL is not
a metric, in the sense that it is not symmetric, and we choose this ordering, since usually P
represents the observations, while Q might represent a theory or a model of P . As expected,
a high value for DKL as computed for a specific subgroup suggests the presence of model
bias. If a proper (symmetric) metric is desirable, we can take the average ofDKL(P ||M) and
DKL(Q||M), whereM = 1

2(P+Q) (the average distribution), known as the Jensen-Shannon
Divergence (JSD), introducing the Jensen-Shannon Counterfactual Divergence (JSCD).

2.5 Use Cases

While the goal is to analyse model bias, the proposed framework is model-agnostic and
data-centric. As such, this subsection details the datasets employed for testing, outlining
the objectives and key aspects for a comprehensive evaluation.

To ensure robust metrics and fair evaluation across different model architectures, we
employed a cross-validation approach. Each dataset was divided into five train-test folds,
with each fold used for testing exactly once, resulting in five distinct models trained on the
remaining folds. Since there is no overlap between test samples, the results from individual
test folds were aggregated into a single matrix, allowing for more reliable conclusions due
to the increased sample size.

We then describe two chosen use cases, both with clinical applications: one using private
data and the other using a publicly available dataset, highlighting the different facets of our
framework.

2.5.1 CardioFollow.AI

CardioFollow.AI is a project aimed at providing continuous remote care to patients following
hospital discharge after cardiac surgery (Ribeiro et al. (2023); Santos et al. (2023); Curioso
et al. (2023)). The dataset includes a broad range of information, such as demographic
data, preoperative risks, pre-existing conditions, procedural details, and chronological data
(e.g., pre- and post-operative periods, time in intensive care, and time until discharge).
The target variable is the occurrence of post-surgery complications, with a significant class
imbalance (7.4% positives, 92.6% negatives). Further details can be found in Appendix D.

The current model in practice was optimised for prompt positive outcome identification,
using a minimal eight-feature set. It relies on a Random Forest classifier, trained with
Threshold Optimisation with 5-fold cross-validation to maximise recall, which is crucial for
timely preventive healthcare interventions. The following experiments are based on this
model’s architecture.

2.5.2 Heart Disease

Heart Disease is a public dataset from the UCI Machine Learning Repository (Asuncion
and Newman (2007)). It contains clinical and non-invasive test records from 303 patients
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at the Cleveland Clinic, 425 patients at the Hungarian Institute of Cardiology, 200 patients
at the Veterans Administration Medical Center in Long Beach, California, and 143 patients
from the University Hospitals in Zurich and Basel, Switzerland (Detrano et al. (1989)). The
goal is to predict Coronary Artery Disease (CAD) attested by angiography results, graded
by severity from 0-4 following the Coronary Artery Disease Reporting and Data System
(CAD-RADS) (Kumar and Bhatia (2022)). An alternative goal is to simply detect the
presence/absence of vessel occlusion. The patients went through three non-invasive tests:
exercise electrocardiogram, thallium scintigraphy, and cardiac fluoroscopy. The dataset
comprises 66 features, from demographic information, Age and Sex, risk factors, family
history, diabetes, cholesterol, and smoking history. Personal identifiable data, such as the
name, ID and social security number were excluded.

During preprocessing, the dataset was substantially reduced to 581 samples and 38
features, due to a high rate of missing values. To grant better results, the task under
analysis is the binary identification of coronary disease. Because FNs sustain a higher risk
for the patients than FPs, the preferred performance parameter is recall (Recall or True
Positive Rate (TPR)). The prevalence of the disease in the processed dataset is 62.9%.

3 Results and Discussion

The proposed counterfactual bias evaluation framework was validated on the two primary
use cases, leveraging the Counterfactual Confusion Matrix (CCM) and the derived metrics.
Additional use cases and their detailed analyses can be found in Appendix F.

A key aspect of our research lies in the framework’s ability to deepen model evaluation,
revealing biases potentially overlooked by conventional approaches. While standard metrics
provide valuable insights into fairness concerns, they may fail to capture nuanced biases
under the counterfactual setting. Our case studies aim to provide a comprehensive fairness
evaluation in ML models, uncovering hidden biases and proving the effectiveness of our
approach in highlighting unnoticed inequalities in complex real-world scenarios. We will
focus on key metrics to present our empirical findings. Each use case is unique and best
described with its most prominent metrics in terms of deviation from the ideal. As different
models are compared in each experiment, the evolution of these values is also noted. To
better guide the reader, the values mentioned in the text body, considered to be the most
descriptive, are highlighted in bold in the correspondent tables.

3.1 CardioFollow.AI

In ML, bias is typically linked to fairness, particularly regarding protected attributes. How-
ever, analysing other features may also yield critical insights into the model’s behaviour.
This section discusses bias analysis for the smoking status feature. For reference, the reader
may find the results for the sensitive feature Sex in Appendix F.2.4.

Smoking is a well-established risk factor that increases the probability of several lung
and heart diseases (Gallucci et al. (2020)). As such, it seems reasonable to assume that the
model would perform relatively well for individuals exhibiting this risk factor. However, the
model underperforms for smokers, hinting at a dataset representational bias. As shown in
Table 3, the TPR for the testing subset of non smokers is 74.6% and 71.4% for smokers.
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In this use case, different sets of CFs were used. The base model mirrors the architecture
described in Section 2.5.1, noting that the sensitive feature is not included in the model.

3.1.1 Detecting Bias

CFs generated without Domain Knowledge
Since smoking is correlated with most of the complications and preconditions, it seems

reasonable to allow all the features to be adjusted when generating CFs. While EOdds =
3.2p.p. (TPRNS = 74.6% - TPRS = 71.4%) is not strictly significant, the resulting ECCM
displayed in Figure 8 reveals a slight bias, associating non smokers with positive out-
comes (post-surgery complications), supported by a TNSRS→NS = 22.8%. Simultane-
ously, smokers are more linked to negative outcomes (uneventful recoveries), evidenced by
TPSRNS→S = 13.7%.

CFs generated by removing correlation with the Sex feature

Figure 6: Kernel Density Estimation of the normalised Height of smokers and non smokers
in the original dataset(Left) and in the dataset augmented with Sex CFs(Right).

A preliminary analysis found that Smoking is highly correlated with male patients in
this dataset (88.0% of smokers are male). Moreover, the PDF of the patient’s height is
skewed to higher values in relation to non smokers (see Figure 6), which can influenced
by the former correlation with sex. While height is not strictly related to smoking and
could be easily excluded from the CF generation process, there are features related to both
sex and smoking habits. For example, one side effect of smoking is the loss of appetite,
which leads to smokers having on average a lower Body Mass Index (BMI). Weight can
also be tied to the individual’s sex, with men being generally heavier. For this reason,
when switching from smoker to non smoker, because most smokers are men, whereas non
smokers have approximately the same sex representation (52.3% female and 47.7% male),
the tendency is to decrease the weight when the opposite would be closer to a real-world
scenario. With these considerations, we balanced the representation by augmenting the
dataset with Sex-based CFs, before generating the CFs regarding Smoking. These auxiliary
CFs were generated only allowing changes in the features that should be related to the
patient’s sex, as described in Appendix F.2.4.
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Table 2: Performance and Counterfactual Metrics referring to the base model trained on
the CardioFollow.AI data, considering the sensitive feature Smoking with different
sets of CFs.

CFs without decorrelation Decorrelated CFs

MCC (%)↑ 12.1 13.0 11.8 12.1 13.0 11.8
TPR (%)↑ 73.5 71.4 74.6 73.5 71.4 74.6
TNR (%)↑ 50.2 52.8 49.0 50.2 52.8 49.0

SR (%)↓ 10.4 14.6 8.4 14.6 28.8 7.6
CMCC (%)↑ 79.1 72.6 84.1 71.1 51.1 85.3
PSR (%)↓ 9.2 24.7 1.1 20.5 55.3 2.4
NSR (%)↓ 11.6 4.0 15.0 9.0 1.4 12.4
TPSR (%)↓ 9.8 2.6 13.7 8.0 2.6 10.9
TNSR (%)↓ 8.6 22.8 1.2 20.2 54.5 2.4
FPSR (%)↓ 11.8 4.2 15.2 9.1 1.2 12.6
FNSR (%)↓ 26.4 66.1 1.0 28.9 72.6 1.0

RMSCD ↓ 0.046 0.058 0.039 0.059 0.090 0.036
JSCD ↓ 0.038 0.038 0.027 0.048 0.047 0.026

Total S→NS NS→S Total S→NS NS→S

Figure 7: ECCM for the base model trained on the CardioFollow.AI data, considering the
Smoking as sensitive feature with different sets of CFs. Left: CFs generated with-
out removing correlation with the feature Sex; Right: CFs generated by removing
correlation with the feature Sex.
Y - Ground Truth (0 for Uneventful Recoveries and 1 for Post-surgery Compli-
cations); G - Group (S for Smoker and NS for Non Smoker); Ŷ - Prediction for
the factual(original) sample; ŶCF - Prediction for the CF sample.

Statistically, combining the original training set with the Sex-base CFs, aids in elimi-
nating correlations between sex and every feature that was not included in the generation
process. As smoking is part of the non-included features, there is now an equivalent fe-
male smoker for every real male smoker. This process aligned the mean height values for
smokers and non-smokers, as depicted in Figure 6. Subsequent analysis with this refined
set of CFs showed an increased tendency to associate non-smokers to positive outcomes
(TNSRS→NS = 54.5%).
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3.1.2 Mitigating Bias

We assessed the impact of CF augmentation on performance and bias, focusing on CFs
decorrelated from Sex. A parallel experiment using CFs without this decorrelation is de-
scribed in Appendix F.2.5.

Data Augmentation using CFs without Selection
A first experiment with all generated CFs revealed, as shown in Table 3, reduced switches

from TNS to FPNS (TNSRS→NS = 43.1%, TPSRNS→S = 2.1%) but an aggravated TPR
disparity between groups. This suggests a model seemingly more counterfactually fair,
whereas it is still not able to reliably predict complications for smokers.

Data Augmentation using CFs with Selection
Since Smoking is a risk factor, intuitively, there are some logical implications that can be

drawn. For instance, it is expected that if a non-smoker had complications, then if this pa-
tient smoked, they would also have complications due to the added risk only impairing their
recovery. Similarly, if a smoker did not have complications post-surgery, then if they did
not smoke, they would most likely not have complications as well. However, the remaining
scenarios are more challenging to deduce the result. This hypothesis was tested by conduct-
ing augmentation with only selected CFs that obey these rules. This method essentially
teaches the model about the added risk of smoking. However, an increased risk does not
equal certainty, and thus not all CFs should be included, otherwise, the model would overfit
on this feature. Some experiments led to the conclusion that, in this use case, a fraction of
10% allows to mitigate some of the existing CF bias, while increasing the performance for
positive outcomes for smokers (TPRS = 71.9%) and non-smokers (TPRNS = 75.7%). The
PredP remained low at 3.8p.p.. The model’s overall performance also improved slightly to
positive outcomes (TPR = 74.3%), but decreased for negative outcomes to a Specificity or
True Negative Rate (TNR)= 49.5%. These metrics are summarised in Table 3.

Figure 8: ECCM for the base model trained on the CardioFollow.AI data, considering the
Smoking as sensitive feature, and using data augmentation with CFs generated
by removing correlation with the feature Sex. Left: Model augmented with all
the CFs; Right: Model augmented with directed CFs.
Y - Ground Truth (0 for Uneventful Recoveries and 1 for Post-surgery Compli-
cations); G - Group (S for Smoker and NS for Non Smoker); Ŷ - Prediction for
the factual(original) sample; ŶCF - Prediction for the CF sample.
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Overall, the consistency of the predictions increased (CMCC = 74.8% vs 71.1% - base
model vs 51.7% - augmentation with all the CFs). Following the risk factor intuition
introduced before, we focus on the most relevant metrics suggesting reduced bias compared
to the base model: TPSRNS→S - decreased from 10.9% to 4.2%, TNSRS→NS - reduced
from 54.5% to 40.6%, and regarding the other direction, where FNSRNS→S increased from
1.0% to 35.5%, and FPSRS→NS slightly rose from 1.2% to 6.0%.

The FNSRNS→S = 35.5% indicates the model may associate non smokers with not hav-
ing complications, which in turn is countered by a still considerable TNSRS→NS = 40.6%.
There is a trade-off between these metrics. Nevertheless, given the overall improvements,
we consider the augmentation successful in reducing model bias. In relation to augmenta-
tion without CFs selection, these metrics improve with the exception of a slight increase in
TPSRNS→S from 2.1% to 4.1%.

Table 3: Performance and Counterfactual Metrics for the base model trained on the Car-
dioFollow.AI data, considering the sensitive feature Smoking, and using data aug-
mentation with CFs generated by removing correlation with the feature Sex.

Augmentation Method
Base Model All CFs Directed CFs

MCC (%)↑ 12.1 13.0 11.8 10.6 9.6 11.3 12.2 12.8 12.0
TPR (%)↑ 73.5 71.4 74.6 71.5 66.4 74.4 74.3 71.9 75.7
TNR (%)↑ 50.2 52.8 49.0 49.3 51.6 48.2 49.5 52.0 48.4

CMCC (%)↑ 71.1 51.1 85.3 51.7 52.2 58.4 74.8 56.8 84.5
TNSR (%)↓ 20.2 54.5 2.4 15.2 43.1 0.8 20.3 40.6 9.8
FNSR (%)↓ 28.9 72.6 0.0 74.3 80.8 69.4 45.5 60.7 35.5
TPSR (%)↓ 8.0 2.6 10.9 1.9 1.4 2.1 3.4 1.9 4.2
FPSR (%)↓ 9.1 1.2 12.6 34.0 7.4 46.0 5.4 6.0 5.2

RMSCD ↓ 0.059 0.090 0.036 0.155 0.110 0.173 0.063 0.095 0.038
JSCD ↓ 0.048 0.047 0.026 0.139 0.075 0.139 0.048 0.063 0.031

Total S→NS NS→S Total S→NS NS→S Total S→NS NS→S

This experience presents some of the challenges of handling datasets with underrepre-
sented groups and highlights the need for domain knowledge in generating CFs. Further-
more, it illustrates that even if the sensitive feature Smoking is not included in the model
training, the model can still yield different predictions for plausible CFs through correlated
features.

3.1.3 Fairness-Performance Trade-offs

The conducted experiment details the statistical alterations resulting from data augmen-
tation with CFs, exploring the aspects relating to group and counterfactual fairness. This
section will reflect on the trade-offs presented by ‘optimising’ fairness and the repercussions
on performance.

Using group fairness metrics as an objective measure of fairness while keeping in mind
the improvement in counterfactual metrics described in previous sections, the presented
comparison focuses on classic performance metrics and their parity. Since the dataset is
unbalanced, we focused on MCC, TPR and TNR, presenting ACC and Precision or Positive
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Predicted Value (PPV) as valuable in terms of variation from the base model to the model
achieved with the most successful mitigation strategy for each conducted experiment.

Table 4: Performance Metrics for: the base model trained on the CardioFollow.AI data and
trained on the data augmented with directed CFs, considering the sensitive feature
Smoking (Section 3.1).

CardioFollow.AI
51.9 54.2 50.7 3.5 Base

ACC(%)↑
51.3 53.5 50.2 3.3 Aug.

Variation(p.p.) - 0.6 - 0.7 - 0.5 - 0.2
12.1 13.0 11.8 1.2 Base

MCC(%)↑
12.2 12.8 12.0 0.8 Aug.

Variation(p.p.) 0.1 - 0.2 0.2 - 0.4
73.5 71.4 74.6 3.2 Base

TPR(%)↑
74.3 71.9 75.7 3.8 Aug.

Variation(p.p.) 0.8 0.5 1.1 0.6
50.2 52.8 49.0 3.8 Base

TNR(%)↑
49.5 52.0 48.4 3.6 Aug.

Variation(p.p.) - 0.7 - 0.8 - 0.6 - 0.2
10.0 11.3 9.5 1.9 Base

PPV(%)↑
10.0 11.2 9.5 1.8 Aug.

Variation(p.p.) 0.0 - 0.1 0.0 - 0.1
Total S→NS NS→S ∥Parity∥

When delving into fairness and bias mitigation, a critical discussion is whether, by
attempting to mitigate bias, we are actively interfering and prejudicing the ‘privileged’
group in question, or, in some cases, every group at different rates. On the extreme, it
may be asked if by attempting to solve fairness concerns, we are enabling the model to
achieve worse results in favour of an idealised ‘equality’. Regarding these concerns, we were
conscious of the effect of our attempts to mitigate bias regarding performance fluctuations.
Although trade-offs are expected and sometimes unavoidable, our efforts were guided by
optimising both performance and fairness. In Table 4, we verify that augmentation with
CFs did not particularly deteriorate performance metrics, keeping the values within close
range. The best performance for each metric, before or post-mitigation, is highlighted in
bold.

The results for the CardioFollow.AI usecase show a slight improvement in TPR, by
0.8p.p., with a decrease in TNR by 0.7p.p., alongside an improvement in counterfactual
metrics. The accuracy also decreased by 0.7p.p., but the performance was maintained for
MCC, which accounts for class imbalance. In terms of group fairness, the disparity in TPR
slightly increased, noting that the metric improved for both groups, EOpp = 3.2 ↗ 3.8 p.p..
In contrast, the disparity among TNR slightly decreased PredEq = 3.8 ↘ 3.6 p.p..

3.2 Heart Disease Dataset

3.2.1 Comparing CF generation methods

Following the architecture presented by Black et al. (2020) and the provided code (Yeom
(2020)), this section compares their approximate method to optimal transport adapting
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Wasserstein GANs, with our controlled generation process in terms of time efficiency and
applicability. We note that we could not successfully train the GAN models for the Car-
dioFollow.AI dataset, within the time budget available. The process did not result in
appropriate subgroup changes, needed for our framework (Figure E.2).

Time Efficiency To evaluate the time efficiency of the generation processes, the methods
were run ten times for the Heart Disease dataset, described in Section 2.5.2. The public
code requires that a GAN is trained for each directed combination of groups. As such,
considering the sensitive feature Sex, it was necessary to train a GAN to generate ‘males’
from ‘females’ and another for the mirrored scenario. Given the objectives of our framework,
the label of the CFs should remain the same. To ensure that, the data should be further
sectioned by label, thus requiring training four distinct GANs. To mirror our process of
generating plausible CFs, we trained another set of GANs with the plausible features.

Our method takes on average 16.69 ± 0.13 seconds to run whereas the combination of
the four GANs takes on average 232.26± 28.04 seconds (approximately 14 times slower),
granted that only CPU processing was used in these experiments1.

If we generate CFs accounting for domain knowledge, only allowing changes in specific
features, then our average run time is decreased to only 0.98 ± 0.01 seconds. Still, the
combination of the four GANs trained on the plausible set of features took on average
182.72 ± 5.19 seconds. Our process can be further improved using multiprocessing since
the generation of CFs is independent for each sample. The generative approach can run
on GPU and improve training time. Moreover, depending on the dataset, the results may
vary. In this particular instance, 500 epochs were needed to achieve proper representation.
Additionally, we used the same architecture for the four GANs, but in practice, it could be
challenging to incur in this route.

Comparing Counterfactuals To study the CFs, we follow a similarity criterion between
factuals and counterfactuals, calculating the cosine similarity for each pair. Additionally,
we used dimension reduction methods and clustering to identify which CFs differ between
our method and the GAN-based generation. The GAN-based approach keeps the pairs
closer, with an overall median of 0.892, whereas our method’s median stands at 0.846 (see
Figure E.1 for a boxplot). Nevertheless, minimal changes may fall short from achieving
proper CFs for our intended use. For instance, sensitive subgroups may have some overlap
for a given feature subspace, which may signify different things for the group. For example,
men and women can have the same body fat percentage but belong to different parts of
the spectrum within their group since women typically have higher essential fat Bredella
(2017). Here, a minimal change would fail to account for this scenario. Our method,
based on statistical tools and domain knowledge considers these scenarios. The GAN-based
method ideally avoids this by matching whole populations, but since it is not deterministic,
it may still fall into this error. On the other hand, GANs’ ability to learn inter-feature
relations may contribute to more realistic CFs, a feature that may be a double-edged sword
if there are undesirable or over-represented patterns in the training data.

1. Machine Specs
Processor : 12th Gen Intel(R) Core(TM) i7-1255U 1.70 GHz
RAM : 16,0 GB
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To further study the differences between CFs results, we used Uniform Manifold Approx-
imation and Projection (UMAP) to reduce dimensionality, applied to the set of plausible
features, as the remaining features are unchanged. In the reduced space we started by
mapping the trajectories from original samples to their counterfactual counterparts (see
Figure E.1). Then, we used K-Neighbors Clustering to assign samples to eight different
clusters. Finally, we calculated histograms for various features to find those with greater
differences between the generation methods for different cluster assignments. As an exam-
ple, we highlight the feature restecg that measures anomalies in the ST-T segment. This
measure’s efficacy has been reported as different for men and women, where the risk factor
is reportedly more reliable for men than women (Elhendy et al. (1999)) 2. We can thus infer
that the value of this feature should vary when generating CFs. Our method made such
changes in several instances, whereas the GAN-based method did not change this value for
any CF (see Figure E.1). While the effective quality of the CFs may not be easily assessed,
this example showcases a potential flaw when generating CFs with GANs as it may miss
subtle patterns that can have a greater impact in the specific application. Our method,
while with space for improvement, has the benefit of more controlled outputs.

3.2.2 Detecting Bias

Figure 9: ECCM for the base model trained on the Heart Disease dataset, considering the
sensitive feature Sex for CFs generated using a GAN or our method allowing
changes in plausible features.
Y - Ground Truth (0 for Free from CAD and 1 for Signs of CAD); G - Group (M
for Male and F for Female); Ŷ - Prediction for the factual(original) sample; ŶCF

- Prediction for the CF sample.

To evaluate the congruence and similarity between our CFs and the generated by the
GAN, we trained the model and evaluated it in two phases as for the other experiments.
Thus, using the defined plausible CFs for each generation process, we drew the ECCM for
a base model and a model trained on the data augmented with CFs. Starting with the base
model, we verify that the overall interpretation is similar (Figure 9).

The model seems to be prone to associate females with not having CAD marked by high
NSRM→F and PSRF→M (see Table 5). However, comparatively to the CFs generated with
the GAN(NSRM→F = 31.7% and PSRF→M = 23.4%), our CFs accuse more pronounced
tendencies, (NSRM→F = 54.0% and PSRF→M = 31.8%). Note that the performance
metrics are the same. Only the counterfactual metrics vary since it is the same model. The

2. The Heart Disease dataset dates to 1988, supporting this reference that describes issues prior to 1999.
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counterfactual metrics are on pair with group fairness metrics marked by higher TPR for
men and higher TNR for women.

Table 5: Performance and Counterfactual metrics for base model trained on the Heart Dis-
ease dataset, considering the sensitive feature Sex for CFs generated using a GAN
or our method allowing changes in the ‘plausible’ features.

Our Method GAN

MCC (%)↑ 60.3 74.1 53.8 CMCC (%)↑ 39.1 61.7 43.6 61.0 69.6 62.7
ACC (%)↑ 81.4 88 80 SR (%)↓ 35.6 22.7 38.2 21.3 16.7 22.2
TPR (%)↑ 85.8 72.7 87.3 PSR (%)↓ 11.3 31.8 1.4 7.7 23.4 0.0
TNR (%)↑ 74.1 96.8 65.1 NSR (%)↓ 49.8 0.0 54.0 29.2 0.0 31.7

Total F M Total F→M M→F Total F→M M→F

3.2.3 Mitigating Bias

Figure 10: ECCM for the base model trained on the Heart Disease dataset, considering
the sensitive feature Sex for CFs generated using a GAN-based method or our
method allowing changes in plausible features.
Y - Ground Truth (0 for Free from CAD and 1 for Signs of CAD); G - Group
(M for Male and F for Female); Ŷ - Prediction for the factual(original) sample;
ŶCF - Prediction for the CF sample.

To evaluate the effectiveness of the generated CFs in mitigating bias, we experimented
with augmentation using all or only the switched CFs for each generation method. Results
are presented in Table 6. Since the CFs for both approaches are different, the CF metrics
are not comparable. Instead, we analyse the individual impact of augmentation versus the
original values.

Both sets of CFs were effective in mitigating some bias while maintaining overall per-
formance. For the CFs generated with the proposed method, we verify that augmentation
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Table 6: Performance and Counterfactual Metrics referring to the base model trained on
the Heart Disease dataset augmented with CFs generated using a GAN or our
method allowing changes in plausible features, considering the sensitive feature
Sex.

Our Method GAN-based (Black et al. (2020))
All CFs Switched CFs All CFs Switched CFs

ACC (%)↑ 80.0 88.0 78.4 81.1 88.7 79.6 82.4 87.3 81.4 82.0 89.3 80.5
MCC (%)↑ 57.9 73.9 51.2 59.7 75.3 52.8 63.0 72.6 58.5 62.0 76.8 55.8
TPR (%)↑ 82.9 76.4 83.6 86.6 80.0 87.3 84.4 81.8 84.7 85.5 81.8 85.9
TNR (%)↑ 75.3 94.7 67.6 72.3 93.7 63.9 79.2 90.5 74.7 76.5 93.7 69.7

CMCC (%)↑ 74.4 69.1 73.4 63.8 68.8 64.9 90.0 88.4 89.7 87.4 82.4 87.5
SR (%)↓ 12.2 14.0 11.8 18.1 18.0 18.1 4.8 5.3 4.7 6.0 8.0 5.6
PSR (%)↓ 16.8 13.6 18.1 13.0 27.0 6.5 6.6 3.1 7.8 6.0 7.1 5.5
NSR (%)↓ 9.2 14.9 8.6 20.9 0.0 23.0 3.6 9.3 2.9 6.1 9.8 5.7

Total F→M M→F Total F→M M→F Total F→M M→F Total F→M M→F

with all CFs was more effective in minimising switches, (CMCC = 74.4% vs 63.8% - Aug-
mentation with switched CFs vs 39.1% - Base Model). However, adding only switched CFs
achieved greater overall performance (MCC = 59.7% vs 57.9% - Augmentation with all
CFs vs 60.3% - Base Model). The augmentation with switched CFs was able to mitigate
the PSRF→M from 31.8% to 27.0% and NSRM→F from 54.0% to 23.0%. As for CFs gen-
erated with the GANs, the augmentation was also effective. Adding only switched CFs, the
PSRF→M decreased from 23.4% to 7.1% and NSRM→F from 31.7% to 5.7%. Concerning
group fairness, adding the GANs’ CFs was more effective in mitigating group bias, with
EOpp = 4.1p.p. vs 7.3p.p. - Augmentation with our switched CFs vs 14.6p.p. - Base model;
PredEq = 24.0p.p. vs 30.2p.p. - Augmentation with our switched CFs vs 31.7p.p. - Base
model. In terms of performance, adding our CFs achieved slightly better results for positive
outcomes (TPR = 86.6% vs 85.5% - Augmentation with GANs’ switched CFs vs 85.8% -
Base model) while GAN-based CF augmentation was more efficient for predicting negative
outcomes (TNR = 76.5% vs 72.3% - Augmentation with our switched CFs vs 74.1% - Base
model).

4 Conclusions and Future Work

The proposed framework for bias evaluation extends the concept of Counterfactual Fairness,
aggregating individual metrics into a more comprehensive group-based analysis. Counter-
factual sample generation is a key step, and this work introduces a methodology to create
CFs based on training set statistical distributions to increase plausibility. As a result, not
only the sensitive feature but other, possibly correlated features, are also adjusted in the
counterfactual scenario. Notably, our framework can be applied even when omitting the
sensitive feature from the learning stage, allowing to still evaluate model bias. Additionally,
domain knowledge can be leveraged to reach a more realistic counterfactual setting (e.g.,
by only allowing a subset of features to be adjusted, even if others are - spuriously - sta-
tistically related). Our method is less strict than a purely causal model, required by other
counterfactual fairness methods, while still providing insights on how to improve the model.
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It is a user-friendly agnostic approach suitable as a first line for bias assessment. We note,
however, the impact that the generation process has on interpreting model bias, as it may,
by itself, introduce additional bias. Given this, when ensuing into fairness assessment it is
important to clearly evaluate the dataset, identify relations and corroborate them through
scientific evidence and align expectations with the fairness requirements. Even then, certain
patterns, biased or not, are often missed, as shown for an alternative GAN-based approach
for CFs generation. Our methodology calls for a conservative approach when selecting re-
lated features, acknowledging the context application and relevancy of said feature not only
to the sensitive attribute but to the problem itself. While this may pose a challenge, we
believe that data engineering and careful research are imperative when dealing with sen-
sitive topics. Moreover, the proposed generation process can be more or less constricted,
limiting the maximum depth, as well as adapting threshold flips. Through experimentation
and validation of CFs, for instance, one can assess if they would be considered outliers in
the new group, or observe changes in group fairness when using them for data augmen-
tation. The method is suited for larger datasets as there are more points of reference for
flips and the precision point for metrics also increases. More complex models with larger
feature space may pose a challenge in preliminary steps when choosing the features and are
more computationally demanding. Nevertheless, there is the benefit of less general features,
though further testing would be required to assess the process efficiency.

By relying more superficially on existing representations, our approach ensures plausible
changes, avoiding implausible inter- and extrapolations, thus providing a more reliable
evaluation of model bias. Although not the core contribution of this work, we propose
an alternative CF generation approach, compared to that of Black et al. (2020). Our
approach offers finer control over the generation process to capture subtle patterns, and it
excels in computational efficiency, avoiding training additional models. Still, if successfully
trained, the generative approach may be used as an augmentation source to improve both
performance and fairness.

Aiming to facilitate model bias analysis with an aggregated perspective, this work in-
troduces a new take on the Confusion Matrix, tailored to a counterfactual setting. The
Counterfactual Confusion Matrix (CCM) and its extended version ECCM provide clear
and efficient means to assess the susceptibility of a model to changes in a specified sensitive
attribute. As an agnostic instrument, it is extremely flexible to different tasks, and while
it has only been demonstrated in binary classification tasks for binary sensitive features,
it can be employed without loss of generalisation to categorical features and multiclass
problems. The derived metrics offer valuable insights into the presence of bias and how it
impacts specific subgroups. Moreover, the ECCM allows a more granular view on potential
bias sources, such as the model’s higher susceptibility when making Type-I errors. These
insights could facilitate targeted bias mitigation.

We demonstrated the applicability and complementarity of our framework in real-world
datasets. The findings support the need for a new perspective, as existing bias mitigation
techniques focusing on specific metrics may inadvertently compromise other important fair-
ness criteria. Furthermore, our work showcases the flexibility of using CFs for mitigation
techniques, through different selection methods to ensure more credible results, supported
by domain knowledge; and efficiency, by filtering the not consistent CFs.
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In future research, we aim to enhance the generation process by integrating the ben-
efits of generative models for improved robustness and incorporating Human-in-the-loop
methodologies for added control. We also intend to explore alternative data sources, like
real-world statistics to avoid local biases. The bias evaluation metrics will undergo a formal
review, focusing on trade-off analysis akin to ROC curves. Moreover, we will investigate
how to incorporate our findings into model fitting as constraints. Concerning bias mitiga-
tion, we will explore how to streamline the use of selectively curated CFs during learning
to minimise data redundancy. Additionally, the framework’s scope could extend to assess
model robustness from different perspectives, such as improving out-of-distribution cover-
age, thereby enhancing decision-support systems to benefit society at large.

Broader Impact Statement

This work introduces a novel framework for evaluating and mitigating bias in ML ap-
plications, extending the counterfactual setting to a group-based analysis. Our approach
offers a new perspective in bias analysis, contributing to the field of AI fairness, while em-
phasising the critical role of domain knowledge in creating plausible CFs for evaluation and
augmentation.

The potential misuse of the counterfactual generation process, if not grounded in domain
expertise, can inadvertently introduce biases, oversimplifying complex societal issues. Thus,
we highlight the importance of incorporating diverse, real-world knowledge and perspectives,
to be improved in future research. As we stress that bias in ML is highly context-dependent,
our framework should be integrated with other fairness metrics for a holistic analysis, rather
than used in isolation. This will ensure the proposed methodology not only identifies bias
but also accurately supports its interpretation, contributing to the development of equitable
AI systems that are more inclusive, representative, and beneficial for society.
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Jorge Santos, José Fragata, Ana Londral, and Inês Sousa. Unravelling heterogeneity: A
hybrid machine learning approach to predict post-discharge complications in cardiotho-
racic surgery. In Nuno Moniz, Zita Vale, José Cascalho, Catarina Silva, and Raquel Se-
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Appendix A. Pseudo-Code of the Counterfactual Generation Process

Algorithm 1 Counterfactual Generation

1: procedure GenerateCounterfactuals(TrainingSet, Samples, PotentialFea-
tures=[BinaryFeatures, CategoricalFeatures, ContinuousFeatures], SensitiveFeature,
minThreshold, maxDepth)

2: Initiate SamplesCF as a copy of Samples
3: for each feature fi not in BinaryFeatures do
4: Calculate P y

g of fi in the TrainingSet for each group g in SensitiveFeature
5: and label y
6: for each sample sk in SamplesCF do
7: if fi is in ContinuosFeatures then
8: Interpolate to find v′k,i in CDF P y

gCF based on vk,i in P y
g

9: else if fi is in CategoricalFeatures then
10: Find closest value v′k,i in CDF P y

gCF based on vk,i in P y
g

11: end if
12: end for
13: end for
14: for each sample sk in SamplesCF do
15: Flip value of SensitiveFeature
16: sk = FlipBinaryFeatures(sk, BinaryFeatures, TrainingSetlabel=y,
17: SensitiveFeature,minThreshold,maxDepth)
18: end for
19: return SamplesCF

20: end procedure
21: procedure FlipBinaryFeatures(Sample, BinaryFeatures, TrainingSet, Sensitive-

Feature, minThreshold, maxDepth, iter=0)
22: Initiate SampleCF as a copy of Sample
23: for each binary feature fi in BinaryFeatures do
24: if iter < maxDepth then
25: Calculate the difference in conditional probability of the value vi of fi
26: given the original, g, and new group, gCF , of the SensitiveFeature
27: ProbDiff = |P (vi|g)− P (vi|gCF )
28: if ProbDiff > minThreshold then
29: Flip the binary feature value
30: Start new iteration
31: iter += 1
32: SampleCF = FlipBinaryFeatures(SampleCF , BinaryFeatures− fi,
33: TrainingSet[SensitiveFeature = gCF ], SensitiveFeature = f,
34: minThreshold,maxDepth, iter)
35: end if
36: end if
37: end for
38: return SampleCF

39: end procedure
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Appendix B. Extended Counterfactual Confusion Matrix (ECCM)-
Additional Content

The broken down version of the ECCM retains the introduced properties, being easily
converted into the ECCM, CCM and traditional CM. Its main suit is including all the
required information for any (classification) performance or bias evaluation metric.
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Figure 11: The Extended Counterfactual Confusion Matrix broken down into groups.
Y - Ground Truth; Ŷ - Prediction for the factual(original) sample; ŶCF - Pre-
diction for the CF sample.

B.1 Edge Cases

The ideal ECCM represents a case where every CF is consistent with its original sample.
Visually, this corresponds to having both the inner columns empty. However, an ideal
ECCM does not necessarily correspond to an ideal CM, or vice-versa. An ideal CM cor-
responds to an ECCM with the FCP, False Switched Positives (FSP), False Consistent
Negatives (FCN), and FSN cells empty. An ideal model in both criteria is represented by
an ECCM which only has values in the TCP and True Consistent Negatives (TCN) cells.
These scenarios are represented in Figure 12.
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Ideal ECCM Ideal CM Ideal ECCM and CM
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Figure 12: Edge cases of Extended Counterfactual Confusion Matrix: (1) for a not ideal
model for performance but that is CF fair; (2) of an ideal model for performance
(ideal CM), but not in terms of CF fairness; (3) for an ideal model both in terms
of performance and CF fairness. Note that the colour gradation between blue
and green is merely representative of possible data partitions between groups
and labels, the main takeaway is these cells’ non-null values.

Appendix C. Method Scalability

The presented notation examples describe a generation and evaluation process initially
drawn for binary classes and sensitive features. However, the process is easily adaptable to
categorical sensitive features and multiclass problems. The main drawback is the increase
of computational cost with the increase of CFs generated and possible increase in the
complexity of the results analysis. However, it is a minor setback for a more thorough
evaluation of fairness, only requiring extra care and ensuing additional steps of evaluation.
Moreover, if the dataset sufficiently represents its subgroups to allow for these scenarios,
the evaluation through CFs should still be effective.

C.1 Counterfactual Generation

The generation process is suitable for categorical sensitive features through parallel pro-
cesses, where each paired combination of subgroups is treated separately. In these situ-
ations, the number of generated CFs increases, leading to a higher computational cost.
For a group of S samples in a dataset with G subgroups, the number of generated CFs is
(G− 1)× S.

The process is also suitable for multiclass problems given that the changes occur among
the subgroup samples with the same label. Essentially, there is a parallel process to generate
CFs for each label. If the dataset is big enough to support reliable multiclass classification,
the generation should not suffer from the process. On the other hand, the severe under-
representation of subgroups may require extra care when employing this process, as relying
on data distributions may not be the most suitable strategy.

C.2 Counterfactual Evaluation

The proposed metrics cover the analysis for binary sensitive features, although they can
also be used for categorical ones. In this instance, one can approach the problem not only
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pair by pair but also in a ‘one-versus-all’ strategy. For example, given three groups, A, B,
and C, to study bias, it may be relevant to study the switches from A → B and A → C,
as well A → B ∨ C. Metrics that suggest bias against the original group, e.g. FPSR, are
suited for the A → B ∨ C case. In contrast, metrics that indicate bias against the new
group, e.g. TPSR, are better suited for pair distinction, A → B and C → B, or the inverse
of the ‘one-versus-all’ strategy, A ∨ C → B.

Similar to the CM performance parameters, these metrics also apply to multiclass prob-
lems. Akin to sensitive features with multiple groups, it may be interesting to group out-
comes for specific analyses. Considering three possible outputs I,K, and J , metrics that
evaluate clear tendencies to one particular output, e.g. PSR, are suited for the ‘one-versus-
all’ strategy, in this case, exploring the portion of samples that were predicted as K or J
but switched to I. If the behaviour is attested from both K and J groups, it better supports
the hypothesis that the model associates the new group with I than if it only occurs for
samples initially predicted as K, although both are important considerations.
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C.3 Counterfactual metrics cheat sheet

Table 7: Summary of the CF metrics and its interpretation extrapolated from the Coun-
terfactual Confusion Matrix and its extended version.

Metrics derived from CCM
Group or Global Metric Parity (A - B)

CCM
Metric

Range
Highest
Bias
Value

Intuition Impaired
Group

CM
Analog

Range Impaired
Group

Group
Fairness
Analog

CR
= 1 - SR

[0,1] 0

The model relies heavily
on the distributions repre-
sented in the dataset for
each group of the sensitive
feature, indicating potential
bias

New
Group

ACC [-1,1] [-1,0[ A
]0,+1] B

Overall
Accuracy
Parity

PCR
= 1 - NSR

[0,1] 0
The model associates the
new group with negative
outcomes, indicating bias

New
Group

TNR [-1,1] [-1,0[ A
]0,+1] B

PredEq

NCR
= 1 - PSR

[0,1] 0
The model associates the
new group with positive
outcomes, indicating bias

Original
Group

TPR [-1,1] [-1,0[ A
]0,+1] B

EOpp

PCP
= 1 - PSDR

[0,1] 0
The model associates the
new group with positive
outcomes, indicating bias

Original
Group

PPV [-1,1] [-1,0[ A
]0,+1] B

PredP

CMCC [-1,1] -1

The model relies heavily
on the distributions repre-
sented in the dataset for
each group of the sensitive
feature

New
Group

MCC [-2,2] [-2,0[ A
]0,+2] B

-

Metrics derived from ECCM: Including the Ground Truth

Group or Global Metric Parity (A - B)

ECCM
Metric

Range
Highest
Bias
Value

Intuition Impaired
Group

Range Impaired
Group

TPSR [0,1] 1 The model is not able to predict correctly posi-
tive outcomes based on the group. It indicates the
need for more variability in samples with positive
ground truth for the new group

New
Group

[-1,1] [-1,0[ A
]0,+1] B

TNSR [0,1] 1 The model is not able to predict correctly nega-
tive outcomes based on the group. It indicates the
need for more variability in samples with negative
ground truth for the new group

New
Group

[-1,1] [-1,0[ A
]0,+1] B

FPSR [0,1] 1 The model is not able to predict correctly nega-
tive outcomes based on the group. It indicates the
need for more variability in samples with negative
ground truth for the original group

Original
Group

[-1,1] [-1,0[ B
]0,+1] A

FNSR [0,1] 1 The model is not able to predict correctly posi-
tive outcomes based on the group. It indicates the
need for more variability in samples with positive
ground truth for the new group

Original
Group

[-1,1] [-1,0[ B
]0,+1] A
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Appendix D. List Of Features CardioFollow.AI Dataset

Currently, there is a deployed model optimised with a minimum set of eight features com-
prising total time of stay (1), of that time: in intensive care (2); time to surgery (3) time
from surgery until discharge (4); number of complications (5); time in bypass (6); implant
size (7); and type of diabetes treatment (if any) (8). The time measurements are adequate
proxies for inferring urgency and how the patient recovered, whereas the other features
serve to assess the gravity of the occurrence. While other parameters are relevant for this
task, due to the relatively small dataset for the total possible combinations of risk factors,
procedures and complications, through careful experimentation with SHapley Additive ex-
Planations (SHAP) values, these are the features that paint the best overall scenario.

Category Variables

Demographic
Information

Age, Gender, Height, Weight

Pre-operative
Risk Factors

BMI, Body Surface Area (BSA), Smoking History, Diabetes, Hypertension, Hy-
percholesteremia

Existing Pathologies/
Dysfunctions

Renal Pathologies, Lung Pathologies, Vascular Pathologies, Neurological
Pathologies/ Dysfunctions

Procedure Specifics Heart Rhythm, Number of Diseased Coronary Vessels, Results from Cardiac
Catheterisation

Procedure Context State of the Patient, Urgency, Cause of Intervention, Type of Procedure, Proce-
dure Specifications, Implant Type

Morbidity Scale
Assessment

Complications, Morbidity Scale

Chronological
Information

Duration of Procedure, Pre-operation Period, Post-operation Period, Time Since
Last Consult

Target Variable Occurrence or Absence of Post-surgery Health Complications

Table 8: Lists of features of CardioFollow.AI Dataset

39



Pinto, Carreiro et al

Appendix E. Comparison between counterfactuals’ generation
approaches

E.1 Heart Disease

Figure 13: Cosine similarity between pairs of original samples from the Heart Disease
dataset and their respective CFs generated with our method(left) or with a
GAN(right) using filtered features, considering the sensitive feature Sex.

Table 9: Time performance for CF generation using a GAN or our method allowing changes
in ‘all’ or only the ‘plausible’ features, trained on the Heart Disease dataset, con-
sidering the sensitive feature Sex.

GAN Our Method
All Plausible All Plausible

0 59.61 55.59 60.34 63.72 44.41 46.48 44.42 45.84 16.83 0.96
1 61.71 61.77 63.97 59.23 48.49 45.45 46.84 44.86 16.76 1.01
2 56.71 57.54 58.62 58.02 46.20 47.85 46.21 45.14 16.49 0.96
3 56.48 58.45 58.87 58.23 45.01 47.07 44.58 45.13 16.85 0.98
4 57.08 57.36 59.27 61.62 47.07 48.08 47.03 44.33 16.66 0.98
5 57.34 61.70 58.78 57.44 44.95 45.24 46.38 45.58 16.55 0.98
6 57.73 60.97 58.40 57.47 45.73 44.98 44.69 46.08 16.58 0.98
7 55.69 54.83 54.92 56.67 45.13 44.62 46.26 44.43 16.71 0.98
8 56.01 54.84 55.00 55.84 45.18 45.16 44.69 45.84 16.85 0.97
9 55.43 54.17 54.53 60.68 44.67 45.11 47.17 44.79 16.63 0.98

-F→-M -M→-F +F→+M +M→+F -F→-M -M→-F +F→+M +M→+F
57.38 57.72 58.27 58.89 45.68 46.00 45.83 45.20 16.69 0.98

µ
Total 232.26 Total 182.72

1.94 2.93 2.88 2.44 1.26 1.27 1.11 0.61 0.13 0.01
σ

Total 28.04 Total 5.19
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Figure 14: Samples distribution from the Heart Disease dataset in a two-dimensional space
after applying UMAP. Mappings for CFs generated with our method (Top Row)
and through GANs (Bottom Row), showcasing all CFs(Left) or sectioned by flip:
Female→ Male (Middle); Male→ Female (Right).

Figure 15: Histogram of the feature restecg for factuals(Left) and counterfactuals generated
with GANs(Middle) and with our method(Right) for samples from the Heart
Disease dataset, considering the sensitive feature Sex.
Green - Women; Blue - Men
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Table 10: Performance and Counterfactual metrics for the base model trained on the Heart
Disease dataset, considering the sensitive feature Sex for CFs generated using a
GAN or our method allowing changes on only the ‘plausible’ features.

Our Method GAN

MCC (%)↑ 60.3 74.1 53.8 CMCC (%)↑ 39.1 61.7 43.6 61.0 69.6 62.7
ACC (%)↑ 81.4 88 80 SR (%)↓ 35.6 22.7 38.2 21.3 16.7 22.2
TPR (%)↑ 85.8 72.7 87.3 PSR (%)↓ 11.3 31.8 1.4 7.7 23.4 0.0
TNR (%)↑ 74.1 96.8 65.1 NSR (%)↓ 49.8 0.0 54.0 29.2 0.0 31.7

Total F M TPSR (%)↓ 46.9 0.0 51.3 20.6 0.0 22.5
FNSR (%)↓ 18.2 86.7 1.6 14.3 73.3 0.0
TNSR (%)↓ 9.2 22.8 1.3 5.6 15.2 0.0
FPSR (%)↓ 65.5 0.0 67.9 75.9 0.0 78.6
RMSCD ↓ 0.385 0.275 0.404 0.239 0.228 0.241
JSCD ↓ 0.270 0.161 0.243 0.163 0.151 0.130

Total F→M M→F Total F→M M→F

Table 11: Performance and Counterfactual Metrics referring to the base model trained on
the Heart Disease dataset augmented with CFs generated using a GAN or our
method allowing changes in plausible features, considering the sensitive feature
Sex.

Our Method GAN-based (Black et al. (2020))
All CFs Switched CFs All CFs Switched CFs

ACC (%)↑ 80.0 88.0 78.4 81.1 88.7 79.6 82.4 87.3 81.4 82.0 89.3 80.5
MCC (%)↑ 57.9 73.9 51.2 59.7 75.3 52.8 63.0 72.6 58.5 62.0 76.8 55.8
TPR (%)↑ 82.9 76.4 83.6 86.6 80.0 87.3 84.4 81.8 84.7 85.5 81.8 85.9
TNR (%)↑ 75.3 94.7 67.6 72.3 93.7 63.9 79.2 90.5 74.7 76.5 93.7 69.7

CMCC (%)↑ 74.4 69.1 73.4 63.8 68.8 64.9 90.0 88.4 89.7 87.4 82.4 87.5
SR (%)↓ 12.2 14.0 11.8 18.1 18.0 18.1 4.8 5.3 4.7 6.0 8.0 5.6
PSR (%)↓ 16.8 13.6 18.1 13.0 27.0 6.5 6.6 3.1 7.8 6.0 7.1 5.5
NSR (%)↓ 9.2 14.9 8.6 20.9 0.0 23.0 3.6 9.3 2.9 6.1 9.8 5.7
TPSR (%)↓ 2.7 16.7 1.2 17.2 0.0 19.0 1.3 6.7 0.7 2.2 6.7 1.7
FNSR (%)↓ 47.3 0.0 55.0 23.3 63.6 16.1 23.5 20.0 24.0 21.5 40.0 18.8
TNSR (%)↓ 5.5 15.6 0.0 9.9 22.5 2.6 1.1 1.2 1.1 1.2 3.4 0.0
FPSR (%)↓ 44.6 0.0 47.4 39.8 0.0 42.5 18.6 22.2 18.0 29.1 33.3 28.8
RMSCD ↓ 0.177 0.188 0.175 0.180 0.154 0.185 0.089 0.105 0.086 0.086 0.102 0.082
JSCD ↓ 0.124 0.184 0.113 0.117 0.088 0.106 0.066 0.098 0.060 0.062 0.091 0.055

Total F→M M→F Total F→M M→F Total F→M M→F Total F→M M→F
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E.2 CardioFollow.AI

Figure 16: Cosine similarity between pairs of original samples from the Cardio.Follow.AI
dataset and their respective CFs generated with our method(left) or with a
GAN(right) using filtered features, considering the sensitive feature Sex..
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Figure 17: Samples distribution from the CardioFollow.AI dataset in a two-dimensional
space after applying UMAP. Mappings for CFs generated with our method (Top
Row) and through GANs (Bottom Row), showcasing all CFs(Left) or sectioned
by flip: Female→ Male (Middle); Male→ Female (Right).

Appendix F. Supplementary Examples

F.1 Use Cases

F.1.1 Adult Census Income

This benchmark dataset for bias analysis in ML, provided by Kohavi and Becker (1996),
is derived from the 1994 Census Bureau database and consists of 48 thousand samples.
The goal is to predict whether the annual income is over or under $50k from demographic
information such as age, sex, marital status, and race; and factors like education, career,
and capital fluctuations. The dataset is unbalanced, with a distribution of 75.4% negative
(< $50k) and 24.6% positive (> $50k) instances.

F.1.2 COMPAS Recidivism

The COMPAS dataset is a collection of records commonly used in the criminal justice
system to predict the risk of reincidence. In our example, we employed the Adversarial
Debiasing neural network model (Bellamy et al. (2018)) in two scenarios: without (base
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model) and with debiasing, for the sensitive feature Race, which we simplified to either
white or non-white individuals, for classifying if an individual is likely to reincide into crime
(positive outcome, albeit negative for the individual) or not (negative outcome).

F.2 Discussion

F.2.1 ADULT Census Income

To illustrate the proposed metrics’ application, consider a scenario where a bank employs
AI to evaluate loan applications using a model based on the Adult Census Income dataset.
The system decides on loan approvals with a binary outcome: grant (positive) or deny
(negative) the loan, using a minimum income threshold of $ 50,000 as a primary criterion.
To ensure fairness, it is crucial to prevent any sex-based discrimination in rejecting qualified
applicants. Different fairness metrics could be employed although, in this case, separation
metrics would likely be preferred. To build the counterfactual world, we analysed the
dataset’s characteristics which comprise job titles, education level, familiar status, weekly
hours, and the target variable ‘(annual) Income’. Through a priori assessment we can
infer that a woman and a man with the same job and degree who input the same weekly
hours and care for the same familiar core would theoretically have a similar annual income.
Certain societal norms and other factors not reflected in these features may contradict
this assessment; however, that in itself can be related to historical bias. Since the topic
of ‘Gender Wage Gaps’ has been widely discussed and measures have been put in place
to minimise this disparity, this model is built with the ‘in world’ evolution in mind. In
this experiment the counterfactuals were generated by solely flipping the sensitive attribute
Sex, believing women and men with similar professional background would have comparable
incomes. Nevertheless, other strategies may be more appropriate given another context.

We trained the model using the Light GBM algorithm (Ke et al. (2017)), obtaining
an ACC of 87.0% and a TPR of 66.1%. Despite the modest performance, we considered
these results to suffice for demonstration purposes. Group fairness metrics yielded 9.0p.p.
for EOpp and 7.1p.p. for PredEq, as detailed in Table 12. These metrics, reflecting the
differences in FNR and FPR respectively, indicate a minor bias against females, evidenced
by a lower FNR for males and marginally higher FPR.

Detecting Bias

The counterfactual metrics also show slight biases (CMCC > 90.0%), although in a
different perspective. We highlight a higher NSR for females (16.2% vs. 5.1%), suggesting
a higher likelihood of negative outcomes when flipping to males than vice versa. We note
that the FPSR for females, at 37.5%, may indicate that over a third of the FPs for this
subgroup become TNs after flipping to male, hinting at possible bias in this type of error.
As a loose interpretation, we could infer that the model is biased towards approving loans
for females who are less likely to repay, compared to males under similar conditions.

Revisiting our bank scenario under strict EOpp legislation, with a maximum threshold
of 0.05, we resorted to Fair GBM (Cruz et al. (2023)), a fairness-constrained algorithm
derived from Light GBM, trained with identical hyperparameters. The resulting ECCMs
are displayed in Figure 18 and the corresponding metrics are summarised in Table 12.

While EOpp improved, dropping from 9.0p.p. to 4.2p.p., our metrics showed increased
counterfactual bias. The NSRF→M rose from 16.2% to 25.9%, and the FPSRF→M in-
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Figure 18: ECCM for the models trained on the Adult Income Census data, considering
the sensitive feature Sex. Left: Light GBM. Right: Fair GBM.
Y - Ground Truth (0 for Income < 50k and 1 for Income > 50k); G - Group
(M for Male and F for Female); Ŷ - Prediction for the factual(original) sample;
ŶCF - Prediction for the CF sample;

Table 12: Performance and Counterfactual Metrics for the Light GBM and for the Fair
GBM model trained on the Adult Income Census data, considering the sensitive
feature Sex.

Light GBM Model Fair GBM Model

ACC(%) ↑ 87.0 93.3 83.7 87.0 93.2 83.8
TPR(%) ↑ 66.1 58.6 67.6 65.4 61.6 66.2
TNR(%) ↑ 93.8 98.0 90.9 94.0 97.5 91.7

CMCC(%) ↑ 90.5 86.6 90.7 85.1 80.6 85.4
PSR(%) ↓ 2.2 0.7 3.2 4.4 0.8 6.8
NSR(%) ↓ 6.7 16.2 5.1 7.7 25.9 4.2
TNSR(%) ↓ 1.4 0.4 2.0 2.7 0.5 4.4
FPSR(%) ↓ 14.7 37.5 11.4 17.4 55.6 9.6

RMSCD ↓ 0.054 0.059 0.052 0.073 0.071 0.074
JSCD ↓ 0.079 0.130 0.062 0.097 0.148 0.083

Total F→M M→F Total F→M M→F

creased from 37.5% to 55.6%, indicating that the mitigation process worsened the counter-
factual bias in favour of female instances.

Mitigating Bias - Data Augmentation with CFs
To mitigate CF bias, we augmented the dataset with CFs altering only the sex at-

tribute, aiming to break its typical associations. Table 13 shows that, post-augmentation,
the model’s performance remained stable (ACC = 87.0%, TPR = 65.8%), yet group bias
increased slightly (EOpp = 12.0p.p., PredEq = 7.3p.p.). Notably, CF bias was effectively
neutralised (CR= 100.0%), as the model ceased associating the sensitive feature with others.
SHAP values confirmed the sensitive feature’s null contribution after augmentation, akin
to its exclusion in uncorrelated scenarios. Subsequent examples involving multiple feature
changes will demonstrate that this is not always the case.

Mitigating Bias - Data Augmentation with Switched CFs
By including only the outcome-switching CF samples, we aim to efficiently guide the

model to focus on critical bias-originating samples.
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Figure 19: ECCM for the models trained on the Adult Income Census data, considering the
sensitive feature Sex, and using data augmentation with CFs. Left: Light GBM,
augmentation with all CFs. Center: Light GBM, augmented with switched CFs.
Right: Fair GBM, augmented with switched CFs.
Y - Ground Truth (0 for Income < 50k and 1 for Income > 50k); G - Group
(M for Male and F for Female); Ŷ - Prediction for the factual(original) sample;
ŶCF - Prediction for the CF sample.

The overall performance is consistent (ACC = 87.0%, TPR = 66.0%), with a minor rise
in group bias (EOpp = 12.0p.p., PredEq = 7.5p.p.). CF fairness improved significantly:
overall consistency is high (CMCC = 96.7% vs. 90.5%) and the tendency to associate male
candidates with lower incomes was significantly attenuated (NSRF→M = 3.4% vs. 16.2%,
and FPSRF→M = 9.7% vs. 37.5%).

As a final experiment, we replaced Light GBM with Fair GBM for the augmented
dataset, where the results did not display any significant improvement compared the pre-
vious instance (see Figure 19). Nonetheless, unlike the first case, it did not exacerbate
CF bias, supporting that group fairness-constrained methodologies can be compatible with
CF metrics (refer to Table 13). Rather, we defend group fairness and CF fairness are
complementary, and efforts should be made to fulfil both criteria in model development.

F.2.2 COMPAS Recidivism

For this experiment, we will analyse the DemP, obtained from the ratio of the predicted
prevalence among subgroups (%P), and employ our metrics to unveil potential biases. The
standardised threshold for DemP is set at 80%, yet our initial test without debiasing revealed
a rate of 0.529 (22.9% : 43.3%). This indicates that individuals who are not caucasian are
twice as likely to be assigned as having a high risk of reincidence.

Other classic metrics also support this discrepancy, particularly a higher FNR and lower
FPR for white individuals, resulting in an EOpp of 20.4p.p. and a PredP of 14.8p.p.. This
suggests a bias in favour of white individuals. Our proposed metrics also report a tendency
to benefit white individuals, with a slightly lower NSR (remember that the positive outcome
is predicted reincidence here). Moreover, the value of 27.0% for FPSR suggests that a larger
proportion of FP switch to negative (non-reincidence) when flipping other races to white.

When Adversarial Debiasing was used, it granted an increase in DemP to 0.856 (from
0.529), surpassing the legal requirement. Nevertheless, the resulting ECCM, represented in
Figure 20, displayed some hidden biases derived from the mitigation process and, as a result,
a tendency to impair white individuals. First, we note a higher NSR of 29.9% for white
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Light GBM Model Fair GBM Model
Augmentation All CFs Switched CFs Switched CFs

ACC (%)↑ 87.0 93.2 83.8 87.0 93.2 83.7 87.0 93.3 83.6
MCC (%)↑ 63.4 64.1 61.2 63.3 64.3 60.9 63.3 64.5 60.8
TPR (%)↑ 65.8 55.8 67.8 66.0 56.0 68.0 65.7 56.0 67.6
TNR (%)↑ 93.9 98.3 91.0 93.8 98.3 90.8 93.9 98.4 90.9

CR (%)↑ 100.0 100.0 100.0 98.9 99.3 98.7 98.8 99.3 98.6
CMCC (%)↑ 100.0 100.0 100.0 96.7 95.3 96.7 96.4 95.2 96.5
PSR (%)↓ 0.0 0.0 0.0 0.7 0.5 0.9 0.7 0.6 0.9
NSR (%)↓ 0.0 0.0 0.0 2.6 3.4 2.5 2.8 2.7 2.8
TNSR (%)↓ 0.0 0.0 0.0 0.5 0.3 0.6 0.5 0.4 0.7
FPSR (%)↓ 0.0 0.0 0.0 5.9 9.7 5.4 6.4 7.6 6.3

RMSCD↓ 0.00 0.00 0.00 0.030 0.036 0.026 0.027 0.032 0.025
JSCD↓ 0.00 0.00 0.00 0.053 0.092 0.038 0.049 0.082 0.035

Total F→M M→F Total F→M M→F Total F→M M→F

Table 13: Performance and Counterfactual Metrics for the Light GBM and for the Fair
GBM model trained on the Adult Income Census data augmented with all or
only the switched CFs, considering the sensitive feature Sex.

Figure 20: The ECCM generated for the base model and for the Adversarial Debiasing
model trained on the COMPAS data, considering the sensitive feature Race.
Y - Ground Truth (0 for Low risk of criminal recidivism and 1 for High risk of
criminal recidivism); G - Group (W for White and NW for Not White); Ŷ -
Prediction for the factual(original) sample; ŶCF - Prediction for the CF sample.

instances, compared to 0.0% for other races. Additionally, inspecting the metrics including
the ground truth, we observe a higher likelihood for white samples to switch TP to FN
(28.3% vs 0.0%), and FP to TN (32.6% vs 0.0%) when flipping Race. On the other hand,
when switching the sensitive feature to white, there is a propensity to detect previously
overlooked cases (FN) for non-whites, noted by a FNSR of 26.3%. These findings highlight
the need for complementary evaluation frameworks for fairness in ML since optimising
towards specific criteria may introduce other types of undesirable biases.
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Table 14: Classic and Counterfactual metrics obtained for the COMPAS dataset before and
after applying fairness constraints.

Base Model Adversarial Debiasing
FNR (%) ↓ 46.4 61.2 40.2 49.6 52.2 48.5
FPR (%) ↓ 21.8 12.7 27.5 19.8 19.2 20.2
%P (%) 36.4 22.9 43.3 33.8 30.4 35.5
CMCC (%) ↑ 79.3 78.1 79.6 78.4 78.7 80.3
SR (%) ↓ 9.5 8.4 10.1 10.1 9.1 10.6
PSR (%) ↓ 6.1 8.1 4.7 10.5 0.0 16.4
NSR (%) ↓ 15.5 9.5 17.2 9.2 29.9 0.0
TPSR (%) ↓ 11.9 9.8 12.4 7.8 28.3 0.0
FPSR (%) ↓ 23.0 8.8 27.0 12.0 32.6 0.0
TNSR (%) ↓ 4.7 6.4 3.4 6.6 0.0 10.7
FNSR (%) ↓ 9.0 11.9 7.1 18.2 0.0 26.3
RMSCD ↓ 0.046 0.047 0.045 0.077 0.078 0.075
JSCD ↓ 0.037 0.036 0.039 0.062 0.039 0.042

Total W→NW NW→W Total W→NW NW→W

F.2.3 Heart Disease

In this experiment, bias associated with Sex is evaluated. Concerning the correlation of the
features with the sex of the individual, there are subtle differences between electrocardio-
grams for men and women due to hormonal levels, especially the impact of estrogen and
testosterone in cardiac functions, as well as anatomical differences such as the size of the
heart (Knowlton and Lee (2012)). As an example, women tend to have higher resting heart
rates due to having on average smaller hearts, needing higher frequency to pump enough
blood. Additionally, the protective effect of estrogen in arteries is heavily documented,
explaining the increased risk of cardiac complications after menopause for women (Bokhari
and Bergmann (2002)).

Figure 21: ECCM for the base model trained on the Heart Disease dataset, considering the
sensitive feature Sex, and using data augmentation with CFs generated with
Domain Knowledge. Left: Base Model; Middle: Model augmented with all the
CFs; Right: Model augmented with switched CFs.
Y - Ground Truth (0 for Free from CAD and 1 for Signs of CAD); G - Group
(M for Male and F for Female); Ŷ - Prediction for the factual(original) sample;
ŶCF - Prediction for the CF sample.

Analysing Bias - CFs with Domain Knowledge
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This dataset contains several attributes extracted from the Eletrocardiogram (ECG),
which were taken into account for generating CFs. In contrast, features such as Age and
pre-existing conditions and risk factors were kept unchanged.

The base model is a Logistic Regression and despite the small sample size, the results,
shown in Table 15, are satisfactory with an ACC = 81.5% and TPR = 87.1%. Nonetheless,
there is considerable bias noted by a difference in TPR against women, PredP = 16.1p.p..
This discrepancy is apparent in the majority of the cross-validation scheme, reinforcing
the existence of model bias. Drawing the ECCM (c.f. Figure 21), the results display a
clear tendency to associate female patients with negative outcomes, TPSRM→F = 57.8%
and NSRM→F = 59.1%, as well as a tendency of associating positive outcomes to men,
TNSRF→M = 19.8% and PSRF→M = 29.2%, supporting the group fairness assessment.

Mitigating Bias - Augmentation with all the CFs
To mitigate this bias, the dataset was supplemented with all the CFs generated in

the first instance. Using this augmented set, the CF bias was mostly mitigated, but,
unexpectedly, it introduced an opposite effect leading TPF to switch to FNM , as per a
TPSRF→M = 23.8%. While high, considering the TPSRM→F for the base model was
substantially higher and the other mentioned metrics decreased, the augmentation can be
deemed successful in the mitigation of CF bias.

Moreover, since the performance decreased, there is room to explore other iterations that
hopefully achieve similar results without duplicating the sample space. A logical conclusion
is to select which CFs to include. There are different available routes to achieve this, such
as selecting the most unique CFs to avoid redundancy, or selecting CFs that support the
Domain Knowledge, stirring the model in a predetermined direction as it is displayed in
experience Section 3.1. Finally, there is a simple approach of including CFs that show a
different outcome than the original sample, called ‘switched CFs’.

Mitigating Bias - Augmentation with switched CFs
Since the model is already able to correctly predict a given set of pairs of samples and

their CFs, there seems to be no need to add information about the CF equivalent of these
samples. Thus, only the incorrectly predicted, or switched CFs, should be added. This
method is not infallible, due to the unpredictability of training a model, but it can achieve
good results in specific scenarios. Compared to the original model, it was successful, in this
case, in mitigating CF, the CMCC increased from 33.1% in the original model to 72.2%,
and group bias, as per a PredP = 7.7p.p., with minimal loss in total performance, as
seen by an ACC = 80.5% and TPR = 85.1%. In relation to augmentation with all the
CFs the introduced bias displayed that severely increased the TPSRF→M , is much more
tenuous, TPSRF→M = 16.3%. In contrast, it was not able to correct the flux of TNF

to FPM , maintaining the TNSRM→F value at 19.8%. Overall, given this classification
context application that poses recall as the priority, opting to add only switched CFs proved
to be more fruitful in mitigating bias in the priority class. Along with the fact that the
contested metric in this case, TNSRM→F , is largely less grave in value than the TPSRF→M

introduced by augmentation with all the CFs.
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Table 15: Performance and Counterfactual metrics for the base model and models trained
on the dataset augmented with all the CFs and only the CFs that switched.

Augmentation Method
Base Model All CFs Switched CFs

ACC (%) ↑ 81.5 87.3 80.3 79.8 88.0 78.1 80.5 89.3 78.6
MCC (%) ↑ 60.3 72.5 54.1 57.4 73.9 50.6 58.4 76.8 50.8
TPR (%) ↑ 87.1 72.7 88.8 82.7 76.4 83.4 85.1 78.2 85.9
TNR (%) ↑ 72.3 95.8 63.1 75.0 94.7 67.2 72.9 95.8 63.9

CMCC (%) ↑ 33.1 64.5 35.8 71.5 70.4 68.7 72.2 64.4 71.7
SR (%) ↓ 39.7 20.7 43.6 13.5 12.7 13.7 13.0 16.7 12.2
PSR (%) ↓ 12.8 29.2 4.4 19.7 8.7 24.3 17.5 17.5 17.5
NSR (%) ↓ 54.5 0.0 59.1 9.6 21.3 8.4 10.3 14.9 9.9

TPSR (%) ↓ 53.0 0.0 57.8 3.3 23.8 1.2 4.1 16.3 2.9
FNSR (%) ↓ 33.1 64.4 35.8 71.5 70.4 68.7 72.2 64.4 71.7
TNSR (%) ↓ 10.3 19.8 4.6 7.1 10.0 5.6 11.4 19.8 6.5
FPSR (%) ↓ 62.4 0.0 65.2 42.9 0.0 45.6 41.8 0.0 43.7

RMSCD ↓ 0.368 0.263 0.386 0.172 0.159 0.175 0.146 0.138 0.147
JSCD ↓ 0.243 0.125 0.211 0.120 0.163 0.113 0.101 0.121 0.096

Total F→M M→F Total F→M M→F Total F→M M→F

F.2.4 CardioFollow.AI - Bias for the sensitive feature Sex

The proposed method for generating CFs (c.f. Section 2.1), ensures minimum changes in
the original sample. However, it mostly replicates the already preexisting patterns in the
original dataset. In this section, two sets of generated CFs are analysed: one in which all
the features have the potential to change, and another with only feasible changes, based
on Domain Knowledge. In this experience, instead of the deployed model described in
Section 2.5.1, a model following the same architecture but trained with all the extracted
features is used. This is done to include features directly related to the sensitive feature,
such as ‘BMI’, ‘Body Surface Area (BSA)’, ‘Weight’, ‘Height’, and ‘Creatinine’. If not
included, the generated CFs incur the risk of not suffering any alterations and, for this
reason, there are no possible interpretations to draw from. The training set is built from
the contributions of 1557 women and 2416 men with approximately the same prevalence,
approximately 7%. In addition to comparing different CFs sets for bias analysis, different
augmentation approaches are studied. The different metrics for the resulting models are
summarised in Table 16 to allow an easier discussion. Each metric is extrapolated from the
sum of the five matrixes correspondent to each fold generated from cross-validation. These
sets are validated through real-world knowledge.

Analysing Bias - CFs without Domain Knowledge

Before delving into CFs, the first step is to evaluate the base model performance and
group fairness metrics. In this specific task, where the TPR is optimised, the most suited
group fairness metric is PredP. The base model has an overall TPR of 74.6%. Sectioning
by the sensitive feature, the male subgroup has 72.3% TPR and the female subgroup has
78.0% TPR. In terms of PredP this corresponds to a 5.7p.p. difference, indicating slight bias
against men. As for the negative outputs, the overall TNR is 48.8%, meaning the model
predicts just as much FP as TN. This statistic is relatively consistent in both sexes with
49.4% for males and 47.8% for females.
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Figure 22: ECCM for the base model with CFs generated with (right) and without (left)
domain knowledge.
Y - Ground Truth (0 for Uneventful Recoveries and 1 for ‘post-surgery compli-
cations’); G - Group (M for Male and F for Female); Ŷ - Prediction for the
factual(original) sample; ŶCF - Prediction for the CF sample.

Evaluating the counterfactual fairness of the model with CFs generated without Do-
main Knowledge, there are more prediction changes when flipping male to female than
the other way around, SRM→F = 11.7% and SRF→M = 8.5%, and there is better con-
sistency regardless of the outcome as well, as seen by CMCCF→M = 83.2% against
CMCCM→F = 77.2%. By itself, this is indicative of a more considerable bias in female
patients, but other metrics support a tendency to associate female patients with positive
outcomes, such as PSRM→F = 19.7%. A large portion of these positive flips are correct
predictions, FNSRM→F = 36.7%, suggesting that more than one-third of the FNs pre-
dicted in male samples were correctly predicted as TPs, once changed to CF females. This
seems to be counter-intuitive as it would be expected that changing from men to women
would lead to less FNs, to match the original female TPR. Nonetheless, this result can
unveil bias that would only be revealed with new predictions on samples less similar to the
training dataset. However, it is important to note how these CFs were generated. Because
they were created without considering Domain Knowledge, the modifications incurred tend
to display the typical sample of the other subgroup. For example, one heavily correlated
feature with sex is Smoking, a risk factor much more common in men than women in this
dataset. 47.0% of men and only 9.9% of women are smokers, meaning 88.0% of smokers are
men. Based on these statistics, when generating a CF for a male smoker, the result is most
likely a woman who does not smoke. Logically, Smoking should be unrelated to the sex of
the patient and, as an addictive trait and risk factor, it should be kept unchanged in the
CF.

Analysing Bias - CFs with Domain Knowledge

Considering this setback, by resorting to Domain Knowledge, the second set of CF was
generated only allowing changes in the features that should be related to the patient’s sex.
The existing preconditions and risk factors should be left untouched since they are the most
critical points of similarity in this task. The main features that can be justifiably switched
are related to general biological differences between men and women. Men tend to have
lower fat storage, and higher density bones and are generally taller than women (Schlecht
et al. (2015); Power and Schulkin (2008)). Men tend to have higher muscle mass, resulting
in slightly higher creatinine levels than women. Creatinine is a waste product produced by
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Figure 23: ECCM for base model and the model after data augmentation with CFs,
ADASYN, and a combination of both.
Y - Ground Truth (0 for Uneventful Recoveries and 1 for Post-surgery Com-
plications); G - Group (M for Male and F for Female); Ŷ - Prediction for the
factual(original) sample; ŶCF - Prediction for the CF sample.

muscle metabolism and excreted by the kidneys and high levels can indicate kidney dis-
function. Thus, for the same blood concentration, women may face a more severe condition
than men (Agrawal et al. (2015)). The potential features for generating the CFs are ‘BMI’,
‘BSA’, ‘Weight’, ‘Height’, and ‘Creatinine’.

Contrary to the tendency displayed with CFs generated without Domain Knowledge,
this set reveals a tendency to associate male samples with positive outcomes, given by
PSRF→M = 8.1%, with a significant portion being from switches from FNs to TPs,
FNSRF→M = 18.5%. At the same time, it is noted a tendency to associate negative
outcomes to female samples, NSRM→F = 7.4%. This is the exact opposite of the other set
of CFs, emphasising the importance of a careful CF generation process. Assuming these
CFs as plausible, these results point to a slight bias against women. To attempt to mitigate
this issue, the dataset was augmented with the CFs generated for the train set in an attempt
to teach the model to better understand the differences in how to predict female and male
samples.

The ECCM for CFs with and without Domain Knowledge can be visualised in Figure 22,
where one can visually observe less samples in the middle columns when Domain Knowledge
is used, suggesting lower counterfactual bias.

Augmentation with CFs
Augmenting the dataset with CFs has the purpose of teaching the model how it should

interpret each instance of symptoms and characteristics in the case of the patient being
male or female.

However, applying the method to the training set did not achieve better results in the
criteria of performance, slightly decreasing the TPR at 73.1% and only increasing TNR
by 1.9p.p. to 50.7%. It was able to mitigate some of the discrepancies between men and
women in TPR, TPRM = 71.8% and TPRF = 75.1%, resulting in a PredP = 3.3p.p..
However, the difference is so subtle, it poses doubt about its actual improvement, especially
considering the drawbacks of data augmentation. Analysing the CFs changes, the method
is proved as not effective in this particular instance. The model displays a higher tendency
to associate male samples with positive outcomes PSRF→M = 10.0%, with a larger portion
occurring from TNs to FPs, TNSRF→M = 9.6%. On the other hand, the tendency to
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associate female samples with negative outcomes seems to be more prominent as well,
NSRM→F = 11.7%, with a higher portion resulting from TPs to FNs, TPSRM→F = 3.2%.
This is an unexpected result as it would be expected that augmentation with CFs would
decrease CF bias. Although the metrics’ values do not infer substantial bias, this experience
reveals that, based on context, including all the CFs may not be beneficial.

Augmentation with Adaptive Synthetic Sampling (ADASYN)
It is established the potential problem of this task lies in insufficient samples, hinting

at augmentation as a viable option. There are several techniques for data augmentation,
and the ADASYN method is well-regarded for its ability to oversample less populated
distributions by using density-based sample saturation to generate additional synthetic
samples (He et al. (2008)).

Proceeding with this method, the overall performance remained similar, but the group
performance became more discrepant in terms of TPR, TPRM = 69.8% and TPRF =
75.9%, PredP = 6.2p.p. and TNR, TNRM = 52.4% and TNRF = 49.1%. Nevertheless,
there are fewer switches in the CF predictions, CMCC = 95.3%. The NSRM→F = 1.6%
and the TPSRM→F = 0.8% are considerably lower. This method led to a worse equilibrium
between male and female samples in terms of group fairness. It is important, however, to
retain the properties that allowed for better CFs parameters.

Mitigating Bias - Augmentation with CFs oversampling with ADASYN

Trying to improve the overall performance, the dataset was augmented with CFs and
then oversampled with ADASYN. CFs serves to increase variability in the data, for example,
with more female patients that smoke, while the oversampling technique allows to fill less
populated feature spaces. As a result, the performance slightly improved in relation to
the other augmentation methods, TPR = 74.1%. Analysing by group, the TPR improved
slightly for men and decreased for women, TPRF = 76.3% and TPRM = 72.6%, with
PredP = 3.6p.p.. For negative outcomes, the values improve in relation to the original
model but are worse than the other tested techniques. As for the CF analysis, there are
fewer flips, with the overall CMCC improving from 89.7% to 93.4%, mitigating all the
mentioned metrics in the base model by at least 3.0p.p..

This use case displays how the generation of CFs heavily influences the results and
the importance of integrating Domain Knowledge to ensure a reliable evaluation. As for
mitigation exploration, this experience allowed to delve into the implications posed by CF
augmentation, as well as the potential for combining these samples with other methods to
allow for a more robust model in terms of performance and bias.

The ECCM for each of the augmentation techniques can be visualised in Figure 23,
complemented by the most relevant metrics summarised in Table 16.

F.2.5 CardioFollow.AI - Bias for the sensitive feature Smoking

Suspecting the potential bias due to the lack of representation of specific samples, the next
step is to attempt mitigation through augmentation with CFs. From this, it is expected to
mitigate both group and CF bias. Retraining the model with the dataset augmented by the
train set CFs, the results show improvement in performance for smokers, TPRS = 72.8%,
and non smokers, TPRS = 77.0%, both accompanied by a slight decrease in the negative
outcomes, where total TNR decreases from 50.2% to 49.1%.
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Table 16: Performance and Counterfactual Metrics referring to the base model and the
model after data augmentation with ADASYN, plausible CFs and a combination
of both.

Augmentation Method
Base Plausible CFs ADASYN CFs with ADASYN

MCC(%)↑ 12.0 13.6 10.9 12.2 14.3 10.9 12.0 13.2 11.1 12.2 13.0 11.5
TPR(%)↑ 74.6 78.0 72.3 73.1 75.1 71.8 72.3 75.9 69.8 74.1 76.3 72.6
TNR(%)↑ 48.8 47.8 49.4 50.7 52.0 49.9 51.2 49.1 52.4 49.6 48.3 50.4

CMCC(%)↑ 89.7 89.9 89.8 87.9 89.4 87.7 95.3 95.5 95.2 93.4 94.4 92.8
SR(%)↑ 5.1 5.1 5.2 6.1 5.5 6.4 2.3 2.2 2.4 3.3 2.8 3.6
PSR(%)↓ 4.6 8.1 2.8 4.4 10.0 0.8 2.6 1.8 3.1 2.9 3.2 2.7
NSR (%)↓ 5.5 2.5 7.4 7.8 0.9 11.7 2.0 2.7 1.6 3.6 2.4 4.4
TPSR(%)↓ 1.8 1.1 2.3 2.1 0.5 3.2 1.4 2.2 0.8 1.6 0.0 2.7
TNSR(%)↓ 4.5 7.7 2.6 4.1 9.6 0.6 2.5 1.8 3.0 2.8 3.2 2.6
FPSR(%)↓ 5.9 2.7 7.9 8.3 1.0 12.6 2.1 2.7 1.7 3.9 2.7 4.6
FNSR(%)↓ 10.5 18.5 6.1 11.2 21.3 5.0 4.8 0.0 7.5 4.5 3.5 5.2

RMSCD 0.014 0.014 0.014 0.019 0.018 0.020 0.011 0.011 0.010 0.013 0.013 0.014
JSCD 0.012 0.012 0.012 0.016 0.013 0.014 0.009 0.009 0.008 0.012 0.011 0.0121

Total F→M M→F Total F→M M→F Total F→M M→F Total F→M M→F

When reevaluating the CF metrics, it was noted that the value of TNSRS→NS = 12.1%
was mitigated (vs. 54.5%), as well as TPSRNS→S = 0.3% (vs. 10.9%). Nevertheless,
the value of FPSRNS→S = 57.4% is significantly higher than the base model without
augmentation (12.6%). When there is augmentation, a high flux from initially incorrectly
predicted values to correctly predicted values may indicate some overfitting. This occurs
because the CFs for the test group are generated based on the train samples, thus they
are inevitably closer to the train set than the original samples. For this reason, the main
concern is the switches in original TPs and TNs.
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